11401 自然科學學群 數學系

分歧理論 0611影片剪輯中 ing

戴佳原 教授

數學系
國立清華大學數學系教授
德國柏林自由大學數學與電腦科學系博士
【網站】https://reurl.cc/2KeZAX
 https://sites.google.com/view/jia-yuan-dai/home
【授課】分歧理論、延時微分方程

News

最新公告

2025-06-12 2025 開放式課程誠徵研究生資訊工讀生1名!
2025-05-29 【2025 NTHU OCW 授權合作*共創雙贏】讓我們齊心並肩,如龍舵手般穩操勝券,帶領學生勇闖知識航道,助教師勇奪教學的榮耀錦標!
2025-05-29 【2025 NTHU OCW 授權合作*共創雙贏】讓我們齊心並肩,如龍舵手般穩操勝券,帶領學生勇闖知識航道,助教師勇奪教學的榮耀錦標!
2025-04-17 4/26(六) - 4/29(二) 開放式課程系統升級維護通知!
2025-03-25 OEGlobal 2026 conference
2025-03-12 【校友力量大】李丞恩校友|程守慶教授複變數函數論筆記!
2025-03-07 李丞恩校友| 電子學A筆記 !
2025-03-07 李丞恩校友|高等微積分2B筆記 !
2025-03-07 李丞恩校友|高等微積分1筆記 !
2025-03-07 李丞恩校友|高等微積分2A筆記 !
2025-03-07 李丞恩校友| 電子學B筆記 !
2025-03-03 分享是最偉大的學習|李丞恩校友捐贈 高等微積分大要筆記 !
2025-02-25 分享是最偉大的學習|李丞恩校友捐贈10702吳尚鴻教授深度學習筆記!!
2025-02-19 分享是最偉大的學習|固態物理與電子薄膜筆記分享!
2025-02-18 臺灣開放式課程暨教育聯盟|榮獲內政部113年度全國社會公益團體貢獻獎 - 金質獎 (感謝會員學校齊心努力!)

Syllabus

課程大綱

 

課程說明
Course Description
We will study differential equations from the perspective of dynamical systems, focusing on qualitative analysis of phase portraits. Bifurcation theory aims to analyze how topological changes in phase portraits occur as parameters vary. This theory has various applications, including but not limited to engineering (e.g.,
beam buckling), biology (e.g., disease spread), chemistry (e.g., oscillatory reactions), physics (e.g., phase transitions), and climatology (e.g., global warming).

 

課程目標
Course Objectives

1.Become proficient in studying differential equations from the perspective of dynamical systems.
2.Master qualitative analysis and rigorously apply concepts in bifurcation theory, such as center manifolds,
 normal forms, and various reduction techniques.
3.Explore the historical development and significant applications of dynamical systems
 and differential equations.

 

參考用書
References (not textbooks, sorted alphabetically)

1.S. N. Chow and J. K. Hale: Methods of Bifurcation Theory, Springer (1982).
2.B. Fiedler: Global Bifurcation of Periodic Solutions with Symmetry, Springer (1988).
3.M. Golubitsky and I. Stewart: The Symmetry Perspective, Springer, Birkhäuser (2002).
4.J. Guckenheimer and P. Holmes: Nonlinear Oscillations,
 Dynamical Systems, and Bifurcations of Vector Fields, Springer (1983).
5.Y. Kuznetsov: Elements of Applied Bifurcation Theory, Springer (1995).
6.S. Liebscher: Bifurcation without Parameters, Springer (2014).
7.A. Vanderbauwhede: Center Manifolds, Normal Forms and Elementary Bifurcations,
 in Dynamics Reported Volume 2, John Wiley & Sons (1989).
  

 

教學進度
Course schedule

WeekDateContent
102/19Flows and differential equations; 
  Transformation of vector fields
202/26Linear autonomous ODEs; 
  Example: Poincaré diagram; 
Flow-box theorem
303/05Stable manifolds and unstable manifolds
403/12Center manifolds (applications)
503/19Center manifolds (proof)
603/26Normal forms
704/02# School Activity Day (No Make-Up Classes)
804/09Equivariant normal form theorem;
  Procedure of local bifurcation analysis
904/16Example: Planar Hopf bifurcation;
  Example: Takens-Bogdanov bifurcation
1004/23Lyapunov-Schmidt reduction;
  Stationary bifurcation
1104/30Example: Euler's rod;
  Equivariant Lyapunov-Schmidt reduction
1205/07Stationary symmetry breaking bifurcation; 
  Example: Semilinear elliptic equations
1305/14Hopf bifurcation
1405/21Reversible Hopf bifurcation; 
  Equivariant Hopf bifurcation
1505/28Introduction of bifurcation without parameters; 
  Example: Transcritical bifurcation without parameters
1606/04Final Exam
   
 

評分標準
Grading Criteria
 

Homework 70 %, final exam 30 %

 

注意事項 
Important Notice

 Plagiarism in assignments and cheating in exams are strictly prohibited in this course.
 If substantial evidence confirms plagiarism in assignments or cheating in exams,the semester grade will be recorded as zero.


生成式人工智慧倫理聲明
Generative AI Ethics Statement

This course allows students to use generative AI in their learning process, but be aware
 that generative AI still contains many errors and may affect the understanding of fundamental core knowledge. When using generative AI, students must adhere to the ethical guidelines provided in the course.

 

 

Keyword

關鍵字

  • 動力系統dynamical systems
  • 微分方程differential equations
  • 中心流形center manifold
  • 標準型normal form
  • Lyapunov-Schmidt化約
  • 具有對稱的分歧理論equivariant bifurcation theory

Chapters on OCW

Chapters on Youtube

Teachers

戴佳原 教授

Social Share

Details