開放式課程>>開放課程:自然科學學群

課程列表: 自然科學學群

10601 自然科學
普通物理
吳國安

人類對於周遭事物,如何隨時間與環境而變化,都充滿好奇心。我們要如何用物理學推敲出萬物的變化,或基於系統性的觀察而提出新的想法,這就是普通物理(一)的課程目標。那要如何養成研究問題的邏輯與方法呢?



【課程說明】
     What is this course about 
    人類對於周遭事物,如何隨時間與環境而變化,都充滿好奇心。我們要如何用物理學推敲出萬物的變化,或基於系統性的觀察而提出新的想法,這就是普通物理(ㄧ)的課程目標。那要如何養成研究問題的邏輯與方法呢?本課程以牛頓提出的力學為例,除了學習力學定律之外,也鼓勵同學探討牛頓提出這些理論的原因,同時思考章節之間的關聯性,例如在牛頓的向量力學架構下,已經可以解釋物體的運動,為何還需學習新的能量概念等等。
 
     課程內容涵蓋基礎牛頓力學、功與能量概念,在熟悉單粒子運動後,將建構簡單的多粒子系統(剛體)所遵守的物理規則(轉動運動),基於以上的物理知識,詳細探討日常生活中常見的物理現象,如重力、固體與流體、振盪、波動等。同時也將探討愛因斯坦為何會提出不同於牛頓力學的特殊相對論,以及在特殊相對論中架構下,為何在不同慣性座標系的觀察者們,對時間、空間的認知會有所不同。儘管已熟悉如何描述單顆粒子的運動(牛頓力學),仍不足以完整描述多粒子系統(如氣體),如何受到熱的影響而改變其狀態,所以我們會介紹熱力學的基本概念,分別從巨觀與微觀的角度來學習熱力學。
 

【課程教材】
       What is the teaching material
* 物理學系吳國安教授教學投影片
 
 
【參考資料】
      References
1.
The Feynman Lectures on Physics
2.

"Physics", Volume1, by R.Resnick, D.Halliday, and K. S. Krane.
3.

"University Physics", 2nd revised edition, by H. Benson.
 

 
【適用對象】
      Who is this course for
* 對生活中的物理現象有好奇心者 ,敬邀您一同探索日常生活中物理的奧秘!
 
 
【教學方式 】
      How does this course work
*
課程共 13章節,每一章節包含數個單元。
* 每單元為10~15分鐘的教學影片,針對單一概念講解,透過例題熟悉單元重點。
* 全程由授課教師精製之投影片,最佳化課程單元影片,提供融會貫通之學習效果。
*

著重物理定律背後的意義,及思索問題的邏輯性與一致性,在課堂外,希冀能思辨不同問題之間的共通性,舉一反三,解決問題。
* 希冀藉此平台討論課程中教師提問學生思考的問題。

 


 
【教學進度】
      What do you expect to learn in this course
1  動態系統與向量力學 
         —  從牛頓力學談起(向量力學)
2  功與能
         —  純量的角度來思考牛頓定律
3  位能與力學能守恆
         —  純量力學好簡單
4  線性動量
         —  守恆量與物理問題的簡化
5  多粒子系統 
         —  邁向真實世界的第一步
6 剛體轉動
        — 如何設計容易轉動的輪子
7  角動量
         — 如何設計容易轉動的輪子
8  重力與行星運動
         — 不會砸落在牛頓頭上的月球(但是蘋果會)
9  固體與流體
        — 巨觀的物理世界
10  振盪
        — 彈簧振盪*單擺運動*金融市場有關係嗎?
11  波動(力學波)
        —力學波的普世性
12  聲波
        — Sound waves for dummies
13  特殊相對論
        — 站在月台上的你似乎瘦了?!


 

10601 自然科學
高等微積分(一)
高淑蓉

本課程著重訓練思考邏輯及解決問題的思維方式;培養聽說讀寫的能力,以奠定自學的能力。

 
 
【課程大綱】
    著重訓練思考邏輯及解決問題的思維方式;培養聽說讀寫的能力,以奠定自學的能力。
 
 
  
【課程說明】
The Topology of Euclidean Space, Compact And Connected Sets, Contiinuous Mappings, Uniformly Convergence.
 
 
【指定用書】
Elementary Classical Analysis, 2nd Edition, by Jerrold E. Marsden, Michael J. Hoffman.*採購書籍可參閱此*
 
 
 
【教學進度與成績考核】
1. 循序漸進

2.

 

演習課小考30% 
二次期中考各30%、30%
期末考30%

 

 

10601 自然科學
幾何一
宋瓊珠
This is an introductory course on the theory of curves and surfaces in the three dimensional Euclidean space. After developing the theory of curves, we will study the geometry of a surface from both intrinsic and extrinsic point of view. Topics include first and second fundamental forms, various notions of curvature, and the famous Gauss-Bonnet theorem. 
 
  

【課程說明】
     Course Description
This is an introductory course on the theory of curves and surfaces in the three dimensional Euclidean space. After developing the theory of curves, we will study the geometry of a surface from both intrinsic and extrinsic point of view. Topics include first and second fundamental forms, various notions of curvature, and the famous Gauss-Bonnet theorem. 
 
 
 
【指定用書】
     Text Books
* 

Differential geometry of curves and surfaces, by Manfredo P. Do Carmo.Prentice Hall,  
* 

Elementary Differential Geometry, 2nd edition, A. Pressley, Springer, 2010. 
 
 
 
【參考書籍】
     References 
*   Elementary Differential Geometry, 2nd Edition, by   Barrett O'Nell. 
  
 
【教學方式】
     Teaching Method 
*  Lectures、講授、演習、討論

 

10502 自然科學
統計學
鄭少為

Course outline
    The course will be given on the basis of 3 hours a week (Tuesday, 10~12 AM and Thursday, 11~12 AM) in 綜合三館 room 203.
 The materials for teaching will be regularly posted on the course website (http://www.stat.nthu.edu.tw/~swcheng/Teaching/math2820/).
 

 

    This course is an introduction to the theory and application of statistical methods. We will particularly focus on probability models and modern statistical concepts, and methods developed in a mathematical framework. Topics to be covered include random variables and their various properties,statistical inference (point and interval estimation, hypothesis testing), statistical modeling for experimental and observational data, survey sampling, some aspects of experimental design, Bayesian analysis, decision theory, and a variety of real applications such as two-sample comparison and analysis of variance.

Textbook
    Rice, John A. (2007), Mathematical Statistics and Data Analysis, 3rd Edition. Duxbury Press.

References
1. Rice, John A. (1995), Mathematical Statistics and Data Analysis, 2nd Edition. Duxbury Press.
2. Roussas, G.. G. (1997), A Course in Mathematical Statistics, 2nd Edition. Academic Press.
3. Hogg, R. V., McKean, J. W., and Craig, A. T. (2005), Introduction to Mathematical Statistics, 6th Edition. Pearson Prentice Hall.
4. Wackerly, D.D., Mendenhall, W., and Scheaffer, R.L. (2007), Mathematical Statistics with Applications, 7th Edition. Duxbury Press.

Grading
    Your grade will be determined by
 homework (30 %), a midterm (30 %), and a final exam (40 %).

Prerequisites

Knowledge of Calculus and Probability.

10502 自然科學
分數教學
林碧珍

尋找興趣,提早準備,贏在起跑點!!想追求更多課本以外的專業知識嗎? 清華大學開放式課程為你種植了一座學習資源森林,等你來探索!現在就走進開放式課程的森林,品嚐最甜美的知識果實!

 

教學進度Syllabus
http://ocw.tlc.nthu.edu.tw/course/view.php?id=75 

講 次
【     教         學         進          度        】
第1講  ◆分數在不同階段之教材發展與各種意義
第2講  ◆學生學習分數的困難與迷思概念
第3講  ◆分數的不同意義
第4講  ◆九年一貫分數的能力指標
第5講  ◆分數的乘法教材、分數意義的歸納
第6講  ◆為什麼在第三階段要引入分數為兩數相除的結果

 

10302 自然科學
犯罪偵查科技
李承龍
福爾摩斯見微知著的觀察力總讓你崇拜不已嗎?工藤新一精確的推理過程一直使你心醉神迷嗎?《CSI犯罪現場》的採證技術都讓你感到驚奇無比嗎?那你絕對不能錯過在現實中體驗故事情節的大好機會!如果你覺得精妙的破案只能在影集中出現破除迷思就在這!
 
 
【課程介紹 】
犯罪偵查科技泛指與偵辦案件相關的應用科技。近年來由於CSI(犯罪現場調查)等犯罪調查影集的流行,社會大眾對於當中目眩神迷的辦案科技印象深刻,但在真實世界的科技是否相同?『神奇』的辦案科技應如何區分真假?凡事講求科學證據的現代社會,熟悉『犯罪偵查科技』將有助於瞭解科學搜證的真諦。 
懂得運用科技、發揮物證的證據力,不僅可以保護自己,更能協助他人,是大學通識課程講求全人教育,最不可或缺的一門課。  
    「犯罪偵查」包含自然科學與社會科學等跨領域的知識範疇,具有高度整合性的學術內涵,以偵查原理、偵查科技、偵查法學與現場偵查為核心領域,課程中藉由犯罪現場調查的過程,分析各類犯罪模式及現場物 證, 並討論最佳的偵查技巧和科技。經由案件偵查管理的探討,強化偵查作為和運用科技,可以促動犯罪偵防的機制。本課程除了探討各種先進的偵查科技外,對於當前眾所關切的毒品問題、數位影像等議題,做更深入的討論,同時藉由實際案例與老師豐富的辦案經驗,介紹犯罪偵查的全貌,並學習如何經由現場保全、勘察,來蒐集物理性、化學性和生物性的關鍵跡證。而善用物證的鑑定結果,結合邏輯推理、經驗法則,即可達成現場重建、發掘犯罪事實真相的目的。  
     課程的最終目標希望引發同學對『科學辦案』的興趣,並培養正確的蒐證觀念,訓練學生獨立思考、蒐集資訊、解決問題的能力。 
 

【指定用書 】
"Forensic Science Today” Student Edition, Second Edition, Dr. Henry C. Lee,George Taft,Kimberly A. Taylor J.D., Jeanette Hencken July 1, 2009. 
 

【參考書籍 】
Dr Henry Lee's Forensic Files: Five Famous Cases, Scott Peterson, Elizabeth Smart and More... by Henry C. Lee and Jerry Labriola ( 2 May 2006)
Investigation and Prevention of Officer-involved Deaths by Cyril H. Wecht, Henry C. Lee, D.P. van Blaricom, and Mel Tucker (7 Dec 2010) 
Real World of a Forensic Scientist: Renowned Experts Reveal What it Takes to Solve Crimes by Henry C. Lee, Elaine M. Pagliaro, and Katherine (1 Aug 2009) 
Shocking Cases by Dr. Henry Lee and Jerry Labriola ( 15 Jul 2010) 
犯罪現場:李昌鈺刑事鑑定指導手冊,李昌鈺等編著,民國92年,商周出版。 
刑事鑑識概要與採證要領,駱宜安,民國81年,警察專科學校出版。
神探李昌鈺破案實錄,李昌鈺口述、鄧洪整理,民國95年,時報出版 
讓證據說話:神探李昌鈺破案實錄2,李昌鈺 劉永毅,民國95年,時報出版 
重返319槍擊現場,李昌鈺 歐尼爾 夏珍/著 ,民國94年,時報出版
 
 
 【教學方式 】
     整體教學進度以『犯罪偵查』為主軸,介紹犯罪偵查科技的重點與流程。首先是建立犯罪偵查理論基礎,透過現場偵查、偵查原理、偵查科技,來分析犯罪模式;再來以主題式討論各類犯罪偵查科技作為。 
     每堂課要求學生將課堂心得、作業、參考資料等,以數位化方式整理並收集,藉以反映課堂的收穫與自身想法的提升,具體表現出學習前、後的差異,呈現學習過程和成果。期中、期末將透過同學的上台報告,整合階段性的學習重點。藉由推演、模擬各類情況,訓練同學邏輯推理能力,並建立完整的偵查科技概念。除了讓學生認識「犯罪偵查科技」和培養邏輯的推理能力外,更重要的是學習如何「自我保護、幫助他人」。 
 
【教學進度 】
   Week  1      課程簡介 
    Week  2      偵查科技概論 
    WeeK 3       現場保全及採證 
    WeeK 4       命案偵查科技 
    WeeK 5       車禍偵查科技 
    WeeK 6       綁票偵查科技 
    WeeK 7       火災偵查科技 
    WeeK 8       性侵害偵查科技 
    WeeK 9       期中考/期中報告 
    WeeK 10     邀請專家演講 
    WeeK 11     詐欺偵查科技 
    WeeK 12     毒品偵查科技 
    WeeK 13     電腦犯罪偵查科技 
    WeeK 14     數位/影像偵查科技 
    WeeK 15     新興犯罪偵查科技 
    WeeK 16     3D現場重建 
    WeeK 17     期末分組討論 
    WeeK 18     期末考/期末報告 
 
【成績考核 】
    隨堂筆記:40 % ■期中報告:25 % 
    學期報告:25 % ■出席狀況與上課參與: 10% 

 

10301 自然科學
生命科學一
焦傳金 / 莊永仁 / 李家維

尋找興趣,提早準備,贏在起跑點!!想追求更多課本以外的專業知識嗎? 清華大學開放式課程為你種植了一座學習資源森林,等你來探索!現在就走進開放式課程的森林,品嚐最甜美的知識果實!

 

 

Text Book :
Campbell Biology (10th Edition), Jane B. Reece , Lisa A. Urry, Michael L. Cain, Steven A. Wasserman , Peter V.
Minorsky, Robert B. Jackson (2013)
 
Course Schedule :
Week 1  2014 / 09 / 18 :
Life on Earth I - Ch01: Biology and Its Themes
Life on Earth II - Ch25: Macroevolution
Instructor: Li

Week 2  2014 / 09 / 25 :
Life on Earth I - Ch01: Biology and Its Themes
Life on Earth II - Ch25: Macroevolution
Instructor: Li

Week 3
  2014 / 10 / 02 :
Ch03: The Chemistry of Water
Instructor: Chiao

Week 4  2014 / 10 / 09 :
Ch04: Carbon: The Basis of Molecular Diversity
Ch05: Biological Macromolecules and Lipids
Instructor: Chiao

Week 5
  2014 / 10 / 16 :
Ch06: Energy and Life
Ch07: Cell Structure and Function
Instructor: Chiao

Week 6  2014 / 10 / 23 :
Ch09: Cellular Signaling
Instructor: Chiao

Week 7  2014 / 10 / 30 :
Ch10: Cell Respiration
Ch11: Photosynthetic Processes
Instructor: Chiao

Week 8  2014 / 11 / 06 :
Ch12: Mitosis
Ch13: Sexual Life Cycles and Meiosis
Instructor: Chiao

Week 9  2014 / 11 / 13 :
Midterm Examination ( Ch01-13 & Ch25)

Week 10  2014 / 11 / 20 :
Ch14: Mendelian Genetics
Ch15: Linkage and Chromosomes
Instructor: Chuang

Week 11  2014 / 11 / 27 :
Ch16: Nucleic Acids and Inheritance
Ch17: Expression of Genes
Instructor: Chuang

Week 12  2014 / 12 / 04 :
Ch18: Control of Gene Expression
Ch26: Introduction to Viruses
Instructor: Chuang

Week 13  2014 / 12 / 11 :
Ch19: DNA Technology
Instructor: Chuang

Week 14  2014 / 12 / 18 :
Ch20: The Evolution of Genomes
Instructor: Chuang

Week 15  2014 / 12 / 25 :
Ch21: How Evolution Works
Ch22: Phylogenetic Reconstruction
Instructor: Li

Week 16  2015 / 01 / 01 :
No class

Week 17  2015 / 01 / 08 :
Ch23: Microevolution
Ch24: Species and Speciation
Instructor: Li

Week 18  2015 / 01 / 15 :
Final Examination ( Ch14-24 & Ch26)

10202 自然科學
普通物理二
林秀豪

近年來,普通物理的課本越長越厚。老師怎麼教?學生如何讀?物理系專業的課程,教科書也沒長到這般怪獸的厚度,這真的是最有效率的學習方法嗎?我不以為然。在99學年,我決意進行一項普物教學的改革:每個學期我只教十個問題...

Ten Questions we will discuss this semester
Q1: Why are most materials charge neutral?
Chapter 21 – Electric Charge and Electric Field
Chapter 22 – Gauss’s Law

Q2: What causes lightning?
Chapter 22 – Electric Potential Chapter 24
– Capacitance, Dielectrics, Electric Energy Storage

Q3: Can magnetic forces do work?
Chapter 27 – Magnetism

Q4: How does the geomagnetic field arise?
Chapter 28 – Sources of Magnetic Field

Q5: Why can light propagate in vacuum?
Chapter 29 –
 Electromagnetic Induction and Faraday’s Law
Chapter 30 – Inductance, Electromagnetic Oscillations and AC Circuits
Chapter 31 – Maxwell equations and Electromagnetic Waves

Q6: What is the nature of light?

Chapter 34 – The Wave Nature of Light; Interference
Chapter 37 – Early Quantum Theory and Models of the Atom

Q7: Why are atoms stable?
Chapter 38 – Quantum Mechanics
Chapter 39 – Quantum Mechanics of Atoms

Q8: How is the secret of life encoded?
Chapter 40 – Molecules and Solids

Q9: How can we date fossils?
Chapter 42 – Nuclear Physics and Radioactivity

Q10: What are the building blocks of our universe?
Chapter 43 – Elementary Particles Chapter 44 – Astrophysics and Cosmology


Lectures (Spring, 2014) 下列為暫定課程時間,學期間的更新與變動請見:http://hsiuhau.wikispaces.com/Physics+II 

Week 1
 Feb 18 (Tue) Course introduction Feb 20 (Thu) Why are most materials charge neutral?


【Week 2
 Feb 25 (Tue) Coulomb’s law and electric field Feb 27 (Thu) Gauss’s law

【Week3
 Mar 4 (Tue) What causes lightning? Mar 6 (Thu) electrostatic potential energy

【Week4】
 Mar 11 (Tue) Can magnetic forces do work? Mar 13 (Thu) Hall effect

【Week5】
 Mar 18 (Tue) Magnetic materials Mar 20 (Thu) How does the geomagnetic field arise?

【Week6】
 Mar 25 (Tue) Biot-Savart law Mar 27 (Thu) Ampere’s law

【Week7】
 Apr 1 (Tue) Why can light propagate in vacuum? Apr 3 (Thu) 校際活動週(停課) Week 8 


【Week8】

 Apr 8 (Tue) dynamics of electric and magnetic fields Apr 10 (Thu) Maxwell equations

【Week9
 Apr 15 (Tue) Maxwell equation 2 Apr 17 (Thu) energy and momentum in EM waves

Week 10
 Apr 20 (Sun) 期中考 Apr 22 (Tue) 期中考講解 Apr 24 (Thu) What is the nature of light?

Week 11
 Apr 29 (Tue) resolution limit May 1 (Thu) blackbody radiation 

Week 12
 May 6 (Tue) Why are atoms stable? May 8 (Thu) de Broglie wave 

Week 13
 May 13 (Tue) Schrodinger equation May 15 (Thu) Schrodinger equation 2

Week 14
 May 20 (Tue) angular momentum and spin May 22 (Thu) Pauli exclusion principle

Week 15
 May 27 (Tue) How is the secret of life encoded? May 29 (Thu) band theory of solids

Week 16
 Jun 3 (Tue) How can we date fossils? Jun 5 (Thu) magnetic resonance imaging

Week 17
 Jun10 (Tue) What are the building blocks of our universe? Jun 12 (Thu) after the big bang 

Week 18
 (Final Week) Jun15 (Sun) 期末考 Jun 19 (Thu) 期末考講解

10202 自然科學
常微分方程二
許世壁
清大數學系重量級教授退休前的最後一堂課,讓許世璧教授以嚴謹仔細的教學,讓你從源頭開始輕鬆理解ODE!沒上過許世璧教授的課,別說你懂常微分方程!體驗經典,就是現在!

 
一、課程說明(Course Description)  
      本課程著重於常微分方程之定性理論,預備知識需高等微積分及線性代數. 
      本課程提供三學分的常微分方程基本理論,為研究生之標準課程。 
 
二、指定用書(Text Books)  
      Sze-Bi Hsu: Ordinary Differential Equations with Applications. World Scientific, 2013, 2nd edition 
 
 
三、參考書籍(References)  
      Jack Hale: Ordinary Equations 
      Jack Hale and Kocak: Dynamics and bifurcations 
 
四、教學方式(Teaching Method)  
      演講及計算. 
 
 
五、教學進度(Syllabus) 
1.   Fundamental Theory of ODE: Existence: Uniqueness of System of ODE, Continuously dependence on parameter and initial conditions, Differential Inequality.
2 Linear system : Linear systems with constant coefficients and Periodic Linear Systems, Louiville Formula, Two-Dimensional Phase plane analysis, 
 
3 Stability of Nonlinear Systems: Linearization, Variation of Constant Formula,. Stable and unstable manifolds, Orbital stability. 
 
六、成績考核(Evaluation) 
     Homework: 30% 
     Mid term :30% 
     Final Exam.: 40% 
10201 自然科學
常微分方程一
許世壁
清大數學系重量級教授退休前的最後一堂課,讓許世璧教授以嚴謹仔細的教學,讓你從源頭開始輕鬆理解ODE!沒上過許世璧教授的課,別說你懂常微分方程!體驗經典,就是現在!

 
一、課程說明(Course Description) 
       本課程著重於常微分方程之定性理論,預備知識需高等微積分及線性代數. 
       本課程提供三學分的常微分方程基本理論,為研究生之標準課程。 

二、指定用書(Text Books) 
      Sze-Bi Hsu: Ordinary Differential Equations with Applications. World Scientific,
      2013, 2nd edition 

三、參考書籍(References) 
      Jack Hale: Ordinary Equations 
      Jack Hale and Kocak: Dynamics and bifurcations 

四、教學方式(Teaching Method) 
      演講及計算. 
  
五、教學進度(Syllabus) 
1. Fundamental Theory of ODE: Existence: Uniqueness of System of ODE, Continuously dependence on parameter and initial conditions, Differential Inequality
2. Linear system : Linear systems with constant coefficients and Periodic Linear Systems, Louiville Formula, Two-Dimensional Phase plane analysis, 
3. Stability of Nonlinear Systems: Linearization, Variation of Constant Formula,. Stable and unstable manifolds, Orbital stability. 
 

  六、成績考核(Evaluation) 
      Homework: 30% 
      Mid term :30% 
      Final Exam.: 40% 

圖片上傳中...