

清華大學物理系 林秀豪

普通物理 (fall, 2013)

- 生物多樣性之謎
- 合作好?還是自私好呢?
- 細菌玩起剪刀石頭布?

多采多姿的生態

達爾文說物競天擇,適者生存。 那生態圈的生物多樣性是打那兒來的?

生物多樣性的歷史

自寒武紀大爆發,物種大量出現。 但地球上的物種大滅絕,又為何發生?

北加拿大的雪兔吃草,是素食主義的; 而野貓則是吃肉的,主要以雪兔為食。

兔口與貓口的統計

北加拿大的雪兔與野貓數量, 以十年左右做週期震盪。

出生與死亡

一小段時間後,族群數量改變了 $\Delta X \equiv X(t + \Delta t) - X(t)$

若出生率大於死亡率,族群數量呈指數增長。

若出生率小於死亡率,族群數量呈指數減少。

指數性的不穩定

暴增?滅絕?沒有其他的選擇嗎?

狩獵者遇到獵物前

弱肉強食的結果

生生不息的 平衡?

Lotka-Volterra model

The Lotka-Volterra equations, also known as the *predator-prey equations*, are a pair of first order, <u>non-linear</u>, <u>differential equations</u> frequently used to describe the dynamics of <u>biological systems</u> in which two species interact, one a predator and one its prey. They were proposed independently by <u>Alfred J. Lotka</u> in 1925 and <u>Vito</u> <u>Volterra</u> in 1926.

$$\frac{dx}{dt} = (a - by)x$$
$$\frac{dy}{dt} = (-c + dx)y$$

where

- y is the number of some predator (for example, wolves);
- *x* is the number of its prey (for example, <u>rabbits</u>);
- *dy/dt* and *dx/dt* represents the growth of the two populations against time;
- t represents the time; and
- *a*, *b*, *c* and *d* are <u>parameters</u> representing the interaction of the two <u>species</u>.

貓口與兔口的震盪

雪兔與野貓同時存在, 弱肉強食的演化機制 下, 貓口與兔口同時出現震盪。

將貓口與兔口畫在 一起,結果十分有 趣,出現一個個週 期性的圈圈。

掠食者數量稀少,獵物大量繁殖

掠食者數量稀少,獵物大量繁殖

生物多樣性之謎

物種間的競爭形成**動態** 平衡,使生態圈的物種 得以生生不息。

這樣微妙的動態平衡, 正解釋了自然界處處可 見的生物多樣性。

噬菌體的戰爭

顧名思義,噬菌體是一 種專吃細菌的病毒。

異形入侵

合作 v.s. 自私

合作者:彼此幫助,適應力強, 一般稱為好人或 是濫好人。

自私者: 勾心鬥 角,自私自利, 一般稱為壞蛋或 是混蛋。

自私的活下來?

美國馬里蘭大學學者發現,長得慢又 很壞的<u>自私型噬菌體</u>大獲全勝!

犯人的困境

做壞事被抓時,是該合作?(打死不承認) 還是該自私一點?(出賣同夥)

合作?出賣?

© 2010 Encyclopædia Britannica, Inc.

天真的想法

如果一起出賣對方而承 認,就被關五年。如果 一起合作來個矢口否 認,那罪證不足,頂多 被關一年。

出賣才是理性的抉擇

理性的想法

如果對方出賣我而認 罪,我應該也出賣他。 如果對方合作而矢口否 認,那更該出賣他。

© 2010 Encyclopædia Britannica, Inc.

補習,是大多數台灣小孩的共同回憶。多年的教育改革後,補習班為何還這麼多?

你小孩補習嗎?

自私:如果大家都送小孩去 補習,適應力反而降為8。 合作:如果大家都 不補習,小孩子的 適應力為10。

競爭力估算

$$F_C = 10x + 6(1 - x) = 6 + 4x$$
$$F_D = 20x + 8(1 - x) = 8 + 12x$$

假設台灣社會合作 型家長比例是×。

噬菌體的競爭

自私自利的噬菌體 , 有較高的競爭優勢。

Moran process

Initial population

Select for death

Replace

先選定一個繁衍個體,依造適應力決定繁衍機率,然後隨機取代另一個死亡個體。

replicator equations

The payoff matrix P describes the competitions between collaborators and defectors,

$$P = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

and thus determines the replicator equations for them,

$$\frac{dx_c}{dt} = f_c x_c - \phi x_c, \qquad \frac{dx_d}{dt} = f_d x_d - \phi x_d,$$

where $x_c = N_c/N_{tot}$ and $x_d = N_d/N_{tot}$ are the frequencies for the collaborators and defectors. The fitness can be read off from the payoff matrix directly,

$$f_c = ax_c + bx_d, \qquad f_d = cx_c + dx_d.$$

Finally, the average fitness for the ecosystem, $\phi = f_c x_c + f_d x_d$, is a homogeneous function of order two for the variables x_c, x_d .

algorithm for MORAN

Now we turn to the algorithm for Moran process. The probability to pick C is x_c and the probability to reproduce is $0 \le F_c \le 1$. If we happen to pick another C for annihilation, nothing happens and N_c, N_d remain the same. However, the chance to annihilate D is x_d that leads to $(\Delta N_c, \Delta N_d) = (+1, -1)$.

Thus, the probability distribution $P(\Delta N_c, \Delta N_d)$ for the change of the populations is

$$P(+1,-1) = F_c x_c x_d, \qquad P(-1,+1) = F_d x_c x_d,$$

and P(0,0) = 1 - P(+1,-1) - P(-1,+1) to ensure probability conservation. The average changes of the populations after one Monte-Carlo step are

$$\langle \Delta N_c \rangle = (F_c - F_d) x_c x_d,$$

 $\langle \Delta N_d \rangle = (F_d - F_c) x_c x_d.$

continuous limit

Assuming the competitions are short-ranged, there are $\mathcal{O}(N)$ reproduction-death processes in a realistic time interval. Thus, the real time and the Monte-Carlo time are related,

$$\Delta t = (\tau_0/N_{tot}) \Delta \tau = \tau_0/N_{tot}.$$

In the continuous limit (or infinite-population limit), the growth rate for the collaborators is

$$\frac{dx_c}{dt} \approx \frac{\Delta x_c}{\Delta t} = \frac{\langle \Delta N_c \rangle / N_{tot}}{\tau_0 / N_{tot}} = \frac{\langle \Delta N_c \rangle}{\tau_0}.$$

The differential equation emergent from Moran process takes the following form,

$$\frac{dx_c}{dt} = x_c x_d (f_c - f_d),$$

where the fitness is $f_i = F_i/\tau_0$. This may look different from the replicator equation. But, after some algebra, it is straightforward to show that they are identical (up to stochastic fluctuations).

一開始自私者分布零散,接著 慢慢形成小集團,再漸漸連結 成大集團。最後,一統江湖!

自然界的剪刀石頭布

將有助於生物多樣性? 還是增加生態系的不穩 定性,而導致滅絕?

複雜的掠食關係

三個環狀相剋的物種,族群數量會隨著時間 震盪,而達成微妙的生態平衡。

蜥蜴玩剪刀石頭布?

Nature **380**, 240 (1996)

印第安那的學者跑到加州抓蜥蜴,發現他們 在陽光下大玩剪刀石頭布。

Nature 380, 240 (1996)

Nature 380, 240 (1996)

在不同戰略下,各色公 蜥蜴數量消長互見,呈 現震盪的現象。

結果,細菌也愛玩

Nature 418, 171 (2002)

加州的學者在實驗室中發現,大腸桿菌也在 玩剪刀石頭布的遊戲。

Nature 418, 171 (2002)

C:激進恐怖菌
R:憂天杞國菌
S:平菌老百姓

不同的下場

數值模擬的結果,的確 得到類似的現象。族群 數量是整數,為什麼會 如此重要?

Nature 448, 1046 (2007)

物種遷移反而摧毀生態平衡

Figure 1 | **The rules of the stochastic model.** Individuals of three competing species A (red), B (blue), and C (yellow) occupy the sites of a lattice. **a**, They interact with their nearest neighbours through selection or reproduction, both of which reactions occur as Poisson processes at rates σ and μ , respectively. Selection reflects cyclic dominance: A can kill B, yielding an empty site (black). In the same way, B invades C, and C in turn outcompetes A. Reproduction of individuals is only allowed on empty neighbouring sites, to mimic a finite carrying capacity of the system. We also endow individuals with mobility: at exchange rate ε , they are able to swap position with a neighbouring individual or hop onto an empty neighbouring site (exchange). **b**, An example of the three processes, taking place on a 3×3 square lattice.

多樣性 v.s. 滅絕

There's still a long way to understand biodiversity and extinction!

