Chi-chao Chao

EECS 2060 Discrete Mathematics Spring 2021

Final Examination

7:00pm to 10:10pm, June 25, 2021

Rules and Regulations:

This is a *remote open-book* examination. If you have any questions, no one except me can be consulted. There is a time limit of *three hours and ten minutes*. Please submit your answer in a single pdf file to iLMS by the due time. No late submission will be accepted.

Problems for Solution:

1. (10%) Given an undirected simple graph G, its line graph L(G) is an undirected simple graph such that: (1) each vertex of L(G) represents an edge of G; (2) two vertices of L(G) are adjacent, i.e, linked by an edge, if and only if their corresponding edges share a common vertex in G. For example, a graph G (left) and its line graph L(G) (right) are shown below.

- (a) (5%) Please draw $L(K_5)$, where K_5 is the complete graph on 5 vertices.
- (b) (5%) Does $L(K_5)$ have a Euler circuit?
- 2. (20%) The complete tripartite graph $K_{l,m,n}$ is defined as follows: There are three disjoint subsets of vertices, X, Y, and Z, with |X| = l, |Y| = m, and |Z| = n. Two vertices are linked by an edge if and only if they lie in different subsets. The graph $K_{1,2,3}$ is illustrated in the accompanying figure.

- (a) (4%) How many edges does $K_{l,m,n}$ have?
- (b) (4%) What is the girth of $K_{l,m,n}$?

- (c) (6%) Is $K_{1,1,6}$ planar? Give a planar embedding of the graph or provide an argument that none exists. How about $K_{1,2,3}$?
- (d) (6%) For what values of l, m, and n is $K_{l,m,n}$ planar, assuming $l \leq m \leq n$?
- 3. (a) (6%) What is the maximum number of internal vertices that a complete quaternary (i.e., m = 4,) tree of height 8 can have? What is the maximum number of internal vertices for a complete *m*-ary tree of height *h*?
 - (b) (4%) Suppose a certain binary tree's vertices are listed in preorder as A, B, D, E, C, F, G, and in inorder as D, B, E, A, F, G, C. Draw the tree.
 - (c) (4%) Represent the following algebraic expression as a binary tree and then write the expression in Polish notation.

$$((A+B)*(C+D)) \div (((A-B)*C)+D).$$

(d) (6%) Apply merge sort to the following list. Draw the splitting and merging trees. Also find the *exact* number of comparisons used in application of the procedure.

77, 23, 82, 47, 65, 17, 97, 85, 35, 91, 61, 73, 12.

4. (10%) Consider K_4 , the complete graph on 4 vertices, shown below.

- (a) (4%) Find the depth-first spanning tree rooted at vertex a. (Follow the alphabetical order of vertices in case of a tie.)
- (b) (6%) How many nonisomorphic spanning trees are there for K_4 ? How many nonidentical (though some may be isomorphic) spanning trees are there for K_4 ?
- 5. (15%) Consider the weighted simple graph given below.

- (a) (5%) Use Dijkstra's algorithm to find a tree of shortest paths from vertex v to all the other vertices.
- (b) (5%) Find a minimal spanning tree.
- (c) (5%) Find a maximal spanning tree among all the spanning trees that do not include the edge of weight 12.
- 6. (a) (5%) Consider two partitions of the set $S = \{1, 2, 3, ..., 16\}$:

$$S = A_1 \cup A_2 \cup A_3 \cup A_4 = B_1 \cup B_2 \cup B_3 \cup B_4$$

where $A_1 = \{1, 5, 9, 13\}, A_2 = \{2, 6, 10, 14\}, A_3 = \{3, 7, 11, 15\}, A_4 = \{4, 8, 12, 16\}, and <math>B_1 = \{1, 2, 3, 5, 7, 11, 13\}, B_2 = \{4, 6, 9, 10, 14, 15\}, B_3 = \{8, 12\}, B_4 = \{16\}$. Is it possible to select four distinct numbers from S such that there is a representative for each A_i , i = 1, 2, 3, 4, and a representative for each B_j , j = 1, 2, 3, 4? (*Hint:* Construct a bipartite graph $G = (X \cup Y, E)$ with $X = \{a_1, a_2, a_3, a_4\}$ and $Y = \{b_1, b_2, b_3, b_4\}$ such that there is an edge $e \in E$ linking a_i and b_j if $A_i \cap B_j \neq \emptyset$.)

(b) (5%) Suppose that we are given two partitions of a set S:

$$S = A_1 \cup A_2 \cup \cdots \cup A_n = B_1 \cup B_2 \cup \cdots \cup B_n.$$

A simultaneous system of distinct representatives (sSDR) is a set $\{s_1, s_2, \ldots, s_n\}$ of distinct elements of S such that each subset of either partition contains one s_i . Prove that there is an sSDR if and only if the union of any k subsets A_i 's is not contained in the union of fewer than k subsets B_i 's, for $k = 1, 2, \ldots, n-1$.

7. (a) (5%) Consider the following bipartite graph $G = (X \cup Y, E)$. Find a maximal matching by using the Hungarian algorithm.

(b) (5%) Change the graph (modified from the bipartite graph in (a)) shown below into a network so that a maximum flow in the network corresponds to a maximal matching in the bipartite graph in (a). (*Hint:* You need to add direction on each edge and then assign appropriate capacity on each edge.)

(c) (5%) Find a maximum flow in the network obtained in (b) by using the Edmonds-Karp algorithm.