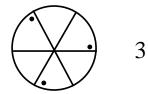
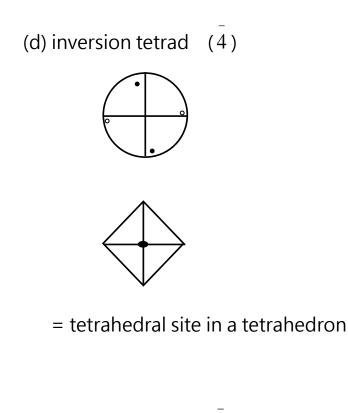
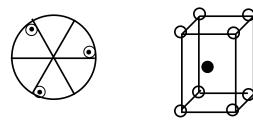


(4) Rotation-Inversion axis = Rotate by $\frac{360^{\circ}}{n}$ · then invert. (a) one fold rotation inversion $(\bar{1})$ (b) two fold rotation inversion (2)= mirror symmetry = m (c) inversion triad $(\bar{3})$ = Octahedral site in an octahedron Note:





(e) inversion hexad (6)



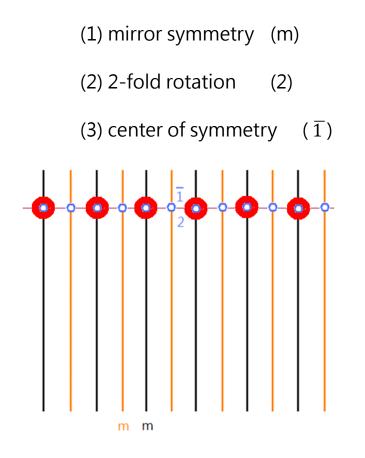
Hexagonal close-packed (hcp) lattice

3-2 Fourteen Bravais lattice structures

Construct Bravais lattices from symmetrical point of view

3-2-1 1-D lattice

3 types of symmetry can be arranged in a 1-D lattice



3-2-2 2-D lattice

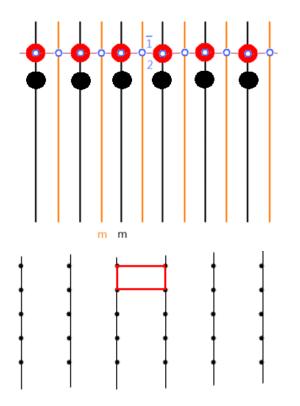
Two ways to repeat 1-D \Rightarrow 2-D

(1) maintain 1-D symmetry

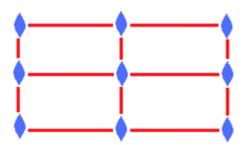
(2) destroy 1-D symmetry

(a) Rectangular lattice $(a \neq b + \gamma = 90^{\circ})$

Maintain mirror symmetry m



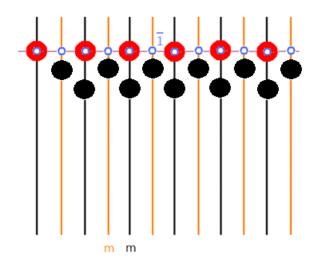
Symmetry elements in a rectangular lattice

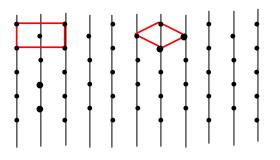


Unit cell $a \neq b$, $\gamma = 90^{\circ}$

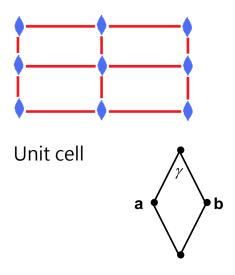
(b) Center Rectangular lattice ($a \neq b + \gamma = 90^{\circ}$)

Maintain mirror symmetry m





Symmetry elements in a center rectangular lattice

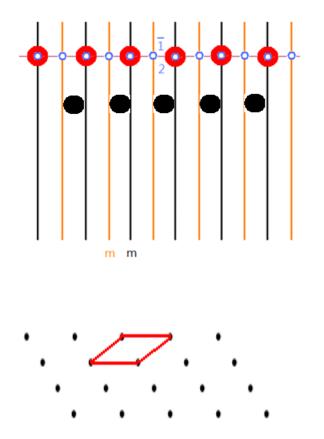


Rhombus cell (Primitive unit cell)

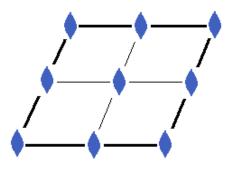
 $a = b \cdot \gamma \neq 90^{\circ}$

(c) Parallelogram lattice $(a \neq b + \gamma \neq 90^{\circ})$

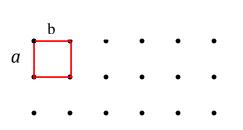
Destroy mirror symmetry



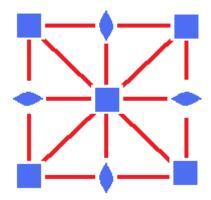
Symmetry elements in a parallelogram lattice



(d) square lattice ($a = b \cdot \gamma = 90^{\circ}$)

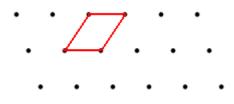


Symmetry elements in a square lattice

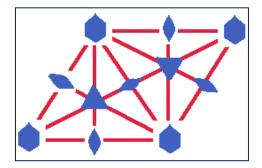


Unit cell

(e) hexagonal lattice (a = b, $\gamma = 120^{\circ}$)

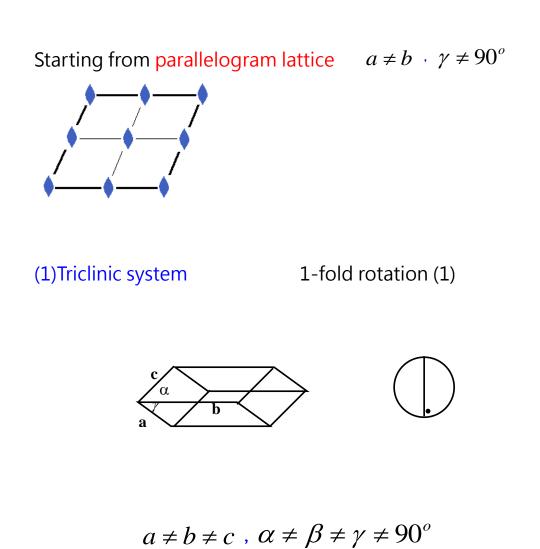


Symmetry elements in a hexagonal lattice

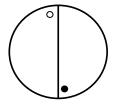


Unit cell

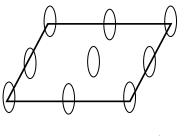
3-2-3 3-D lattice : 7 systems · 14 Bravais lattices



lattice center symmetry at lattice point as shown above which the molecule is isotropic (1)



(2) Monoclinic system

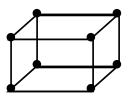


 $a \neq b \neq c$, $\alpha = \beta = 90^{\circ} \neq \gamma$

one diad axis

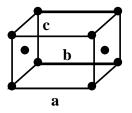
(only one axis perpendicular to the drawing plane = maintain 2-fold symmetry in a parallelogram lattice)

(1) Primitive monoclinic lattice (P cell)



Primitive monoclinic lattice (P cell)

(2) Base centered monoclinic lattice

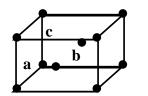


B-face centered monoclinic lattice

The second layer coincident to the middle of the

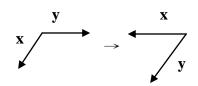
first layer \cdot and maintain 2-fold symmetry

Note: other ways to maintain 2-fold symmetry



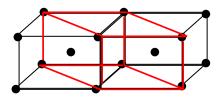
A-face centered monoclinic lattice

If relabeling lattice coordination



then A-face centered monoclinic lattice = B-face centered monoclinic lattice

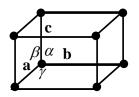
(3) Body centered monoclinic = Base centered monoclinic



So monoclinic has two types

- 1. Primitive monoclinic
- 2. Base centered monoclinic

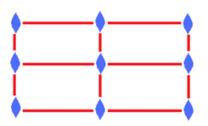
(3) Orthorhombic system



 $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$

3 -diad axes

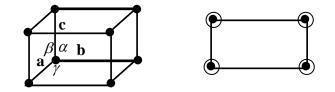
(1) Derived from rectangular lattice ($a \neq b + \gamma = 90^{\circ}$)



 \rightarrow to maintain 2 fold symmetry

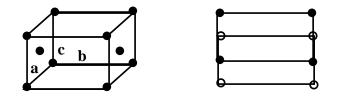
The second layer superposes directly on the first layer

(a) Primitive orthorhombic lattice

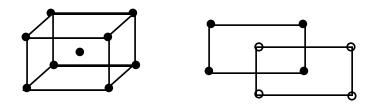


(b) B- face centered orthorhombic

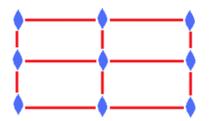
= A -face centered orthorhombic



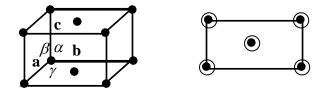
(c) Body-centered orthorhombic (I- cell)



(2) Derived from centered rectangular lattice ($a \neq b + \gamma = 90^{\circ}$)



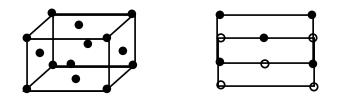
(a) C-face centered Orthorhombic



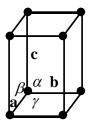
C- face centered orthorhombic

= B- face centered orthorhombic

(b) Face-centered Orthorhombic (F-cell)



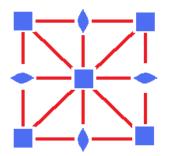
(4) Tetragonal system



$$a = b \neq c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

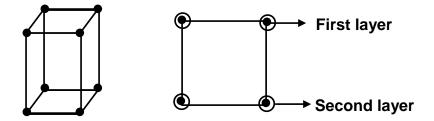
One tetrad axis

starting from square lattice $(a = b + \gamma = 90^{\circ})$

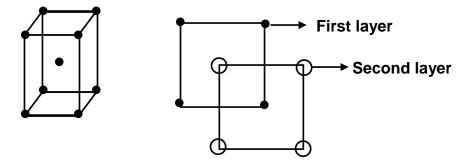


(1) maintain 4-fold symmetry

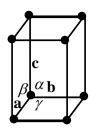
(a) Primitive tetragonal lattice



(b) Body-centered tetragonal lattice



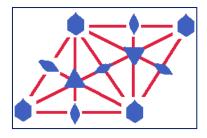
(5) Hexagonal system



 $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$

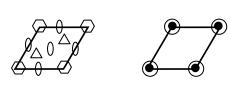
One hexad axis

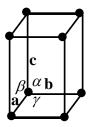
starting from hexagonal lattice $(a = b + \gamma = 90^{\circ})$



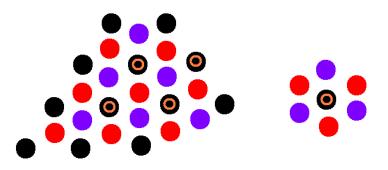
(1) maintain 6-fold symmetry

Primitive hexagonal lattice

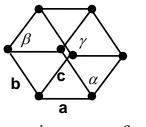




(2) maintain 3-fold symmetry



Rhombohedral lattice



a = b = c , $\alpha = \beta = \gamma \neq 90^{\circ}$

(6) Cubic system



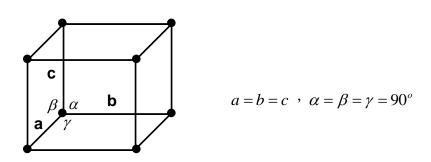
4 triad axes (triad axis=cube diagonal)

Cubic is a special form of Rhombohedral lattice

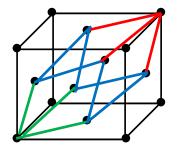
Cubic system has 4 triad axes mutually inclined along cube

diagonal

(a) $\alpha = 90^{\circ}$ Primitive cubic



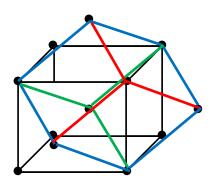
(b) $\alpha = 60^{\circ}$ Face-centered cubic



a=b=c , $\alpha=\beta=\gamma=60^{\circ}$

 \equiv 2 regular tetrahedral

(c) $\alpha = 109^{\circ}$ Body-centered cubic



a = b = c, $\alpha = \beta = \gamma = 109^{\circ}$