intal.

MCS® 51 MICROCONTROLLER
FAMILY USER’S MANUAL

ORDER NO.: 272383-002
FEBRUARY 1994

Intel Corporation makes no warranty for the use of its products and assumas no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH
trademark or products.

*Other brands and names ars the property of their respective ownars.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

¢-INTEL CORPORATION, 1983

MCS® 51
MICROCONTROLLER
FAMILY

USER’S MANUAL

CONTENTS PAGE

CHAPTER 1

MCS 51 Family of Microcontrollers
Architectural Overview

CHAPTER 2

MCS 51 Programmer’s Guide and
Instruction Set

CHAPTER 3

8051, 8052 and 80C51 Hardware
Description

CHAPTER 4
8XC52/54/58 Hardware Description

[CHAPTER 5
8XC51FX Hardware Description

CHAPTER 6
87C51GB Hardware Description

CHAPTER 7
83C152 Hardware Description

h
MCS® 51 Family of 1
Microcontrollers
Architectural Overview

MCS® 51 FAMILY OF
MICROCONTROLLERS
ARCHITECTURAL
OVERVIEW

CONTENTS PAGE
INTRODUCTIONccooeereereerrereencercrannens 1-3
[CHMOS DEVICESoccereererererseeeresesomsnenens 15
MEMORY ORGANIZATION IN MCS® 51
DEVICES ... eam e 1-6
Lo%ilcal Separation of Program and Data
OMONY .cevvmiiirirerereeersctnsestseanererassnasmascass 1-6
Program Memoryccceeevmmenieenescsvecnenans 1-7
Data MEemMOTY ...t 1-8
THE MCS® 51 INSTRUCTION SET........... 1.9 |
[Program Status Wordcooowereereerereres 1-9 |
Addressing Modes...........ccoeveeeveecerennnen. 1-10
Arthmetic Instructionsccoeereeeecrieeennene 1-10
Logical Instructions........ccccceevrenrerereeeeennnn. 1-12
Data Transfers........veeveeveveeeceiveeercerececannn. 112 |
Boolean Instructionscccveveeeevrcresennnnnn. 1-14
Jump INSTructionsccoeeoceeoos e 1-16 |
CPUTIMING ...t 1-17
achine Cyclescoovvceveenricecreec e, 1-18
Interrupt Structure..........ccceeeevercreecnireceenae 1-20
ADDITIONAL REFERENCES...................1-22

1-1

intgl. MCS®-51 ARCHITECTURAL OVERVIEW

INTRODUCTION

The 8051 is the original member of the MCS®-51 family, and is the core for all MCS-51 devices. The features of the
8051 core are:

® 8.bit CPU optimized for control applications

* Extensive Boolean processing (single-bit logic) capabilities
® 64K Program Memory address space

® 64K Data Memory address space

® 4K bytes of on-chip Program Memory

¢ 128 bytes of on-chip Data RAM

® 32 bidirectional and individually addressable I/0 lines
Two 16-bit timer/counters

e Full duplex UART

® 6-source/5-vector interrupt structure with two priority levels
® On-chip clock oscillator

The basic architectural structure of this 8051 core is shown in Figure 1.

EXTERNAL
INTERRUPTS
4
TIMER 1
ROM | counter
INTERRUPT [128 BYTES TS
CONTROL ¢ RAM TIMER O
ﬁl
Y
cPU (;
BUS SERIAL
osc CONTROL 4 1/0 PORTS PORT
I I ﬁ H H H ™ RXD
- - PO P2 P P3
e e/
ADDRESS/DATA
2702511

Figure 1. Block Diagram of the 8051 Core

MCS®-51 ARCHITECTURAL OVERVIEW

SBA € 0 0 0 0 0 9 1 € ze 029121 962 WOH dLO MeE 8518
SBA ! 0 0 0 0 0 9 ! € 33 .029121 952 WOH M2€ 85108
SOA € 0 0 0 0 0 9 1 € 3 L02'91L2E 952 WOH d1O %9} ¥5148
SA ! 0 0 0 0 0 9 1 3 2€ 02912 [H WOH 81 ¥5108
SBA € 0) 0 0) 9 1 € z€ 02912t 952 WOH d10 Y8 2518
SBA 1 0 [4] 0 0 0 9 1 € 2€ 028912k [NOH M8 25108
eurT 19npoid BSAS/ZSIXS
]
SOA £ 0 0 0 0 0 9 ! € 2e | vz'oz'al'el 952 WOHdJ3 Yee 850.8
]
SOA I 0 [¢] 0 0 0 9 ! € ze | ve'ogal'el 9g2 WOH MzE 85008
I
SOA € 0 0 0 0 v} 9 i [2e | ve'oe'al'al 952 WOYd3 X91 5048
1
SOA L 0 0 0 0 o} 9 i € 2e | v2'02'9L'el 9s2 NOH M91 5008
1
SEA € 0 0 0 0 0 9 ! £ g€ | ve'oe'9L'gl 952 WOUd3 M8 26018
1
SBA .l 0 0 0 0 0 9 ! € 2 | ve'oz'ol'el 962 WOH M8 26008
I
SOA - 0 0 0 0 0 9 ! € 2 | ve'og'al'el 9s2 SS3ToY 26008
B[1oNPo.d 8SAS/TSOXS
!
seA € 0 0 0 0 0 S } 4 g€ | ve'oe9l'elL 82l WOHd3I Mt 16048
SBA d 0 0 0 [} 0 S ! z 3 g1'et 82 WOH I dHE 15008
SBA 0 0 0 0 0 0 S ! 2 ze 8l'el 82 WOU v HA1$308
SOA - 0 0 0 0 0 S 1 F (23 ol'ch 82 SSIINOY HEIE008
BUI7 PNPOid 15008
- [0 0 0 0 0 9 3 € 2€ gk 9S¢ WOHd3 M8 HEZS.8
- 0 0 0 0 0 0 9 ! € 2 2t 952 WOH Y8 HVZ508
- - 0 0 0 0 0 9 ! € 3 3 952 SSTINCH HVZe08
BU[J9NpoId ¢S08
- Z 0 0 0 0 0 S 1 4 (3]} g2l WOHJG3 MY HE1528
- 1 0 0 0 0 0 [i [[43 gl 82l WOUJd3 v HISZ8
- d 0 0 0 0 0 S 1 2 2€ E 82l WNOH I dHV 1508
- 0 0 0 0 0 0 S 1 g 2€ 2l 8zt WOH Mt HV1S08
- - 0 0 0 0 0 S 1 [3€ [82l SSTINOH HVIE08
our7 19npoid 1508
(savhq)
S83pON BIPI R | sHg | sjeuuRyd sjauueyd | sjsuury) | s8N0y 8J9JUNOY | Suld (@HW) NvH (se14q)
umoq emod | X001 VNG 9SO | d3s av vad wdnueul | LHvn | pewiL on posdg J9181BaH | WOHdI/WOY 301A3a

$19]10}uU00IOIW JO Ajjwed LS ;SO YL '| dlqeL

1-4

MCS®-51 ARCHITECTURAL OVERVIEW

Jo|jonu0) pieoqhey

«3UIN 10NP0Id 1S 1SOX8

19)|0AUOD UORBDUNWWEDY = L8 PNpoid 251OX8
Mp O} pajul|| ssa8008 AloWBW |BLeIXe ‘Po|qes|p UOJBIYIOA weboaug = d
sped ZHNGL 9 21 J0§ i %207 ou ‘sed ZHWYZ B ZHWNOZ 40} 1G0T | = «k ‘s)g %00
Auo ebuey einpeiedwe] [eoLBWWOY 10} 9|dR|IBAY ZHNOE = 02
uojiesado Auo-Buisiul ZHIN ¥2 = we (ZuN) peads
SOIf prepuels YoswalsAs = WOH. :(Se14Q) NOHJdI/WOH dLO/WOY
SOA 0 0 1 0 ¥ 0 0k ! z ¥z 9 95 WOHdaI 9L [TVISIS0L8
SOA 0 0 1 0 2 0 01 Y z V2 91 952 WOH 39} IVISIS068
SO 0 0 ! 0 ¥ 0 01 1 T ¥e o 952 WOH. %91 IVISISO18
SOA - 0 3 0 2 0 (] I H ve 91 952 SS3TWOY WVIS15008
SaA 0 0 i 0 ¥ 0 [\ 1 4 ¥e [T 952 WOHJ3 Y9I | HV 1515048
SOA 0 0 ! 0 ¥ 0 ol ! H [9 952 WOH Y91 HV1S1S0€8
§8X 0 0 I 0 ¥ 0 ol 1 2 ve L]} 952 WOH. M9} HYIS1S018
SBA - 0 ! 0 ¥ 0 0} I Z ¥2 91 952 SSTINOH__ | HVY1SI5008
SBA 0 0 1 0 ¥ 0 [Y H ve 9 952 WOH %8 B5a- 151508
SBA 0) ! 0 ¥ 0 01 1 F ¥Z 9L 952 WOH. X8~ | ©a-1516318
SOA - [4] 1 0 [2 0 01 1 2 ¥e 91 952 SSTINOH | ©8-1S15008
LUl Jonpoid 1SLSOX8
[seA 0 2 Y 1 0 0 I I H (13 6ol 952 WO %8 VIe510t8
S8A - 2 ! ! 0 0 i 1 Z 95 691 96z SSITNOH ares1o08
SO - 2 I ! 0 0 1 i 4 or G91 952 SSTTNOY V251008
U PNPOId ZSLIX8
EN 3 0 0 !] i Sl T 3 8% 1A (FH WOYd3 %8 a915078
SBA 1 0 0 1 8 ol SI I € (14 9l'ct 95¢ NOH 8 g99150¢8
SBA - 0 [} i g o1 SI I € 8v [I¥4" 952 SSTIWOH @915008
euf] 1oNpoid XHD1S0X8
SoA € 0 0 0 0 S Z ! € 3 .02 912l 95¢ WOU d10 %e€ D41518
S8A i 0 0 0 0 S L 1 € 2 02912t 952 WOH M2g 04151E8
SOA 3 0 0 0 0 S L 1 £ [ATNAY 953 WOU d1O Mgl adisue
SBA 1 0 0 0 0 S L 1 € 2€ 029121 962 WOH Y9t g4151e8
SOA € 0 0 0 0 S L I [73 L0291'2h 952 WOH d10 M8 v41S1.8
SOA l 0 0 0 0 S L ! € e .029121 952 WOU %8 v4157e8
SBA - 0 0 0 0 S L 1 € 2 029121 962 SSITNOH V415108
8Ur7] PWNPoId 24/84/VALSIXE
1
SBA € 0 0 0 0 S L s € zc | ve'og'aL'al 963 WOHd3 X2E 241508
]
SOA ! 0 0 0 0 S L ! € 2 | ¥eoe9L'zl 952 NOU MzE 0415068
!
SOA g 0 0 0 0 S L ! € g€ | ve'og'9l'gt 952 WOHd3 X91 a4180.8
]
SOA ! 0 0 0 0] L ! € 2 | ve'oz'9Lgl 952 INOU 91 a4150€e8
i
soA £ 0 0 0 0] L s £ 2 | ve'ogal'el 952 WOHJdI X8 vd4180.8
SIA 0 0 0 0 0 S Z i € 26 92l 952 WOH X8 V415068
SOA - 0 0 0 0 S L 1 € ZE 9t'eh 95 SS3IN0Y V415008
SU] PNPOid D3/83/V41GOX8
(sa)kq)
S3POW 9IP| ¥ | syE | sjpUUEYDY sjeuuBy) | SeUUBYD | SANOS si9unod | suid @HW) wvd (se14q)
uMO(JOMOd | N901 YING 269 | 43§ an vod wdnuag | IHvR | pewny on peadg Jaisibor | WOHdI/WOH 30IA20

$19]|0U020.) JO AIWES |G SO 24l °L 3IqeL

MCS®-51 ARCHITECTURAL OVERVIEW

PROGRAM MEMORY DATA MEMORY

S (3 I oA N .
: FFFFH: t : FFFFH: :
[4] 1
[] L L L]
: Vo .
: > > b '
L] L] L] []
»]] EXTERNAL —] '
] [] 1] []
] (] L] (]
L] [] L] []
H EXTERNAL M :
]] L]]

< <
H v \ \ |
. I \
L]] L} 1
' r—j \ Vo :
H I INTERNAL .
' ’ ' FFHp o == ==]
L] » [] .]
b - - HEHE :
' EA=0 EA=1 » . H 1
M EXTERNAL INTERNAL » .]
L] [} [}]
L] L] L] []
L]] 1] L]
L] [] L] L]
' g 0000 —y) 0000 '
L] kel [] L] []
:----% L S } {
PSEN RDWR 270251-2
Figure 2. MCS®-51 Memory Structure
CHMOS Devices MEMORY ORGANIZATION IN

Functionally, the CHMOS devices (designated with
“C” in the middle of the device name) are all fully
compatible with the 8051, but being CMOS, draw less
current than an HMOS counterpart. To further exploit
the power savings available in CMOS circuitry, two re-
duced power modes are added:

® Software-invoked Idle Mode, during which the CPU
is turned off while the RAM and other on-chip
peripherals continue operating. In this mode, cur-
rent draw is reduced to about 15% of the current
drawn when the device is fully active.

® Software-invoked Power Down Mode, during which
all on-chip activities are suspended. The on-chip
RAM continues to hold its data. In this mode the
device typically draws less than 10 pA.

Although the 80C51BH is functionally compatible with
its HMOS counterpart, specific differences between the
two types of devices must be considered in the design of
an application circuit if one wishes to ensure complete
interchangeability between the HMOS and CHMOS
devices. These considerations are discussed in the Ap-
plication Note AP-252, “Designing with the
80CS1BH”.

For more information on the individual devices and
features listed in Table 1, refer to the Hardware De-
scriptions and Data Sheets of the specific device.

MCS®-51 DEVICES

Logical Separation of Program and
Data Memory

All MCS-51 devices have separate address spaces for
Program and Data Memory, as shown in Figure 2. The
logical separation of Program and Data Memory allows
the Data Memory to be accessed by 8-bit addresses,
which can be more quickly stored and manipulated by
an 8-bit CPU. Nevertheless, 16-bit Data Memory ad-
dresses can also be generated through the DPTR regis-
ter.

Program Memory can only be read, not written to.
There can be up to 64K bytes of Program Memory. In
the ROM and EPROM versions of these devices the
lowest 4K, 8K or 16K bytes of Program Memory are
provided on-chip. Refer to Table 1 for the amount of
on-chip ROM (or EPROM) on each device. In the
ROMiess versions all Program Memory is external.
The read strobe for external Program Memory is the
signal PSEN (Program Store Enable).

intel.

MCS®-51 ARCHITECTURAL OVERVIEW

Data Memory occupies a separate address space from
Program Memory. Up to 64K bytes of external RAM
can be addressed in the external Data Memory space.
The CPU generates read and write signals, RD and
WR, as needed during external Data Memory accesses.

External Program Memory and external Data Memory
may be combined if desired by applying the RD and
PSEN signals to the inputs of an AND gate and using
the output of the gate as the read strobe to the external

Program/Data memory.

Program Memory

Figure 3 shows a map of the lower part of the Program
Memory. After reset, the CPU begins execution from
location 0000H.

As shown in Figure 3, each interrupt is assigned a fixed
location in Program Memory. The interrupt causes the
CPU to jump to that location, where it commences exe-
cution of the service routine. External Interrupt 0, for
example, is assigned to location 0003H. If External In-
terrupt 0 is going to be used, its service routine must
begin at location 0003H. If the interrupt is not going to
be used, its service location is available as general pur-
pose Program Memory.

TN

[oneep

(0033H)
0028H

0023H

INTERRUPT

LOCATIONS 001BH

8 BYTES
Q013H

000BH

OO03H
OG00H

270251-3

Figure 3. MCS®-51 Program Memory

The interrupt service locations are spaced at 8-byte in-
tervals: 0003H for External Interrupt 0, 000BH for
Timer 0, 0013H for External Interrupt 1, 001BH for
Timer 1, etc. If an interrupt service routine is short
enough (as is often the case in control applications), it
can reside entirely within that 8-byte interval. Longer
service routines can use a jump instruction to skip over
subsequent interrupt locations, if other interrupts are in
use.

1-7

The lowest 4K (or 8K or 16K) bytes of Program Mem-
ory can be either in the on-chip ROM or in an external
ROM. This selection is made by strapping the EA (Ex-
ternal Access) pin to either V¢ or Vgs.

In the 4K byte ROM devices, if the EA pin is strapped
to Ve, then program fetches to addresses O000H
through OFFFH are directed to the internal ROM. Pro-
gram fetches to addresses 1000H through FFFFH are
directed to external ROM.

In the 8K byte ROM devices, EA = V(¢ selects ad-
dresses 0000H through 1FFFH to be internal, and ad-

dresses 2000H through FFFFH to be external.

In the 16K byte ROM devices, EA = Vo selects ad-
dresses 0000H through 3FFFH to be internal, and ad-
dresses 4000H through FFFFH to be external.

If the EA pin is strapped to Vgs, then all program
fetches are directed to external ROM. The ROMless
parts must have this pin externally strapped to Vgg to
enable them to execute properly.

The read strobe to external ROM, PSEN, is used for all
external program fetches. PSEN is not activated for in-
ternal program fetches.

®
MCS =51 EPROM
<___> P PO INSTR.
&
E ER
ALE —v
LATCH ADDR
o >
PSEN Ot
270251-4

Figure 4. Executing from External
Program Memory

The hardware configuration for external program exe-
cution is shown in Figure 4. Note that 16 I/0 lines
(Ports 0 and 2) are dedicated to bus functions during
external Program Memory fetches. Port 0 (PO in Figure
4) serves as a multiplexed address/data bus. It emits
the low byte of the Program Counter (PCL) as an ad-
dress, and then goes into a float state awaiting the arriv-
al of the code byte from the Program Memory. During
the time that the low byte of the Program Counter is
valid on PO, the signal ALE (Address Latch Enable)
clocks this byte into an address latch. Meanwhile, Port
2 (P2 in Figure 4) emits the high byte of the Program
Counter (PCH). Then PSEN strobes the EPROM and
the code byte is read into the microcontroller.

intel. ,

MCS®-51 ARCHITECTURAL OVERVIEW

Program Memory addresses are always 16 bits wide,
even though the actual amount of Program Memory
used may be less than 64K bytes. External program
execution sacrifices two of the 8-bit ports, PO and P2, to
the function of addressing the Program Memory.

Data Memory

The right half of Figure 2 shows the internal and exter-
nal Data Memory spaces available to the MCS-51 user.

Figure 5 shows a hardware configuration for accessing
up to 2K bytes of external RAM. The CPU in this case
is executing from internal ROM. Port O serves as a
multiplexed address/data bus to the RAM, and 3 lines
of Port 2 are being used to page the RAM. The CPU
generates RD and WR signals as needed during exter-
nal RAM accesses.

P1 PO ' — DATA
westgqEA [vee
WITH INTERNAL LATCH p——N]] RaM
ROM aLe > —V
| { apoR
Y
=h =
— lez e
[z Vo Xpace
ﬁ WR BITS wE oF
270251-5

Figure 5. Accessing External Data Memory.
If the Program Memory is Internal, the Other
Bits of P2 are Available as 1/0.

There can be up to 64K bytes of external Data Memo-
ry. External Data Memory addresses can be either 1 or
2 bytes wide. One-byte addresses are often used in con-
junction with one or more other 1/0 lines to page the
RAM, as shown in Figure 5. Two-byte addresses can
also be used, in which case the high address byte is
emitted at Port 2.

recccane FFH
} ACCESSIBLE § ACCESSIBLE
UPPER 5 BY INDIRECT | BY DIRECT
128) ADORESSING | ADDRESSING
3 ONLY
L
80H 80H
W;m ACCESSIBLE kSPECIAL RTS
L BY DIRECT
128 | AND INDIRECT phowdis] STATUS AND
ADDRESSING CONTROL BITS
0 TIMER
REGISTERS
STACK POINTER
ACCUMULATOR
(ETC.)
270251-6

Figure 6. Internal Data Memory

Internal Data Memory is mapped in Figure 6. The
memory space is shown divided into three blocks,
which are generally referred to as the Lower 128, the
Upper 128, and SFR space.

Internal Data Memory addresses are always one byte
wide, which implies an address space of only 256 bytes.
However, the addressing modes for internal RAM can
in fact accommodate 384 bytes, using a simple trick.
Direct addresses higher than 7FH access one memory
space, and indirect addresses higher than 7FH access a
different memory space. Thus Figure 6 shows the Up-
per 128 and SFR space occupying the same block of
addresses, 80H through FFH, although they are physi-
cally separate entities.

7FH

BANK 2FH] Y
SELECT BIT-ADDRESSABLE SPACE
gs"vi N (BIT ADDRESSES 0~7F)

—-_111{
10{

10H 4 BANKS OF

o - RO-R7

oof 07H|+{— RESET VALUE OF
) STACK PONTER

270251-7

Figure 7. The Lower 128 Bytes of Internal RAM

The Lower 128 bytes of RAM are present in all
MCS-51 devices as mapped in Figure 7. The lowest 32
bytes are grouped into 4 banks of 8 registers. Program
instructions call out these registers as RO through R7.
Two bits in the Program Status Word (PSW) select
which register bank is in use. This allows more efficient
use of code space, since register instructions are shorter
than instructions that use direct addressing.

FFH

NO BIT~ADDRESSABLE
SPACES

AVAILABLE AS STACK
SPACE IN DEVICES WITH
256 BYTES RAM

NOT IMPLEMENTED IN 8051

270251-8

Figure 8. The Upper 128 Bytes of Internal RAM

MCS®-51 ARCHITECTURAL OVERVIEW

ferfac] rolrsifrsof ov|

PSW 7
CARRY FLAG RECEIVES CARRY OUT
FROM BIT 1 OF ALU OPERANDS

PSW 6

AUXILIARY CARRY FLAG RECEIVES
CARRY OUT FROM BIT 1 OF
ADDITION OPERANDS

PSW 5
GENERAL PURPOSE STATUS FLAG

PSW 4

[r]
L PSW O

PARITY OF ACCUMULATOR SET

BY HARDWARE YO 1 IF IT CONTAINS

AN ODD NUMBER OF 1S, OTHERWISE
IT IS RESET TO O

SW 1
USER DEFINABLE FLAG

PSW 2
OVERFLOW FLAG SET BY

ARITHMETIC OPERATIONS

REGISTER BANK SELECY BIT 1

PSW 3
REGISTER BANK SELECT BIT O
270251-10

Figure 10. PSW (Program Status Word) Register in MCS®-51 Devices

The next 16 bytes above the register banks form a block
of bit-addressable memory space. The MCS-51 instruc-
tion set includes a wide selection of single-bit instruc-
tions, and the 128 bits in this area can be directly ad-
dressed by these instructions. The bit addresses in this
area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by
either direct or indirect addressing. The Upper 128
(Figure 8) can only be accessed by indirect addressing.
The Upper 128 bytes of RAM are not implemented in
the 8051, but are in the devices with 256 bytes of RAM.
(See Table 1).

Figure 9 gives a brief look at the Special Function Reg-
ister (SFR) space. SFRs include the Port latches, tim-
ers, peripheral controls, etc. These registers can only be
accessed by direct addressing. In general, all MCS-51
microcontrollers have the same SFRs as the 8051, and
at the same addresses in SFR space. However, enhance-
ments to the 8051 have additional SFRs that are not
present in the 8051, nor perhaps in other proliferations
of the family.

FFH : REGISTER=MAPPED PORTS
£0H ACC
ADDRESSES THAT END IN
; OH OR 8H ARE ALSO
: BIT-ADDRESSABLE
goH| PORT 3
: ~PORT PINS
' =~ACCUMULATOR
aoH| PoRT2 (eTc.)
90H PORT 1
:
son] PORTO
270251-9
Figure 9. SFR Space

Sixteen addresses in SFR space are both byte- and bit-
addressable. The bit-addressable SFRs are those whose
address ends in 000B. The bit addresses in this area are
80H through FFH.

THE MCS®-51 INSTRUCTION SET

All members of the MCS-51 family execute the same
instruction set. The MCS-51 instruction set is opti-
mized for 8-bit control applications. It provides a vari-
ety of fast addressing modes for accessing the internal
RAM to facilitate byte operations on small data struc-
tures. The instruction set provides extensive support for
one-bit variables as a separate data type, allowing direct
bit manipuiation in control and logic systems that re-
quire Boolean processing.

An overview of the MCS-51 instruction set is presented
below, with a brief description of how certain instruc-
tions might be used. References to “the assembler” in
this discussion are to Intel’s MCS-51 Macro Assembler,
ASMS51. More detailed information on the instruction
set can be found in the MCS-51 Macro Assembler Us-
er’s Guide (Order No. 9800937 for ISIS Systems, Order
No. 122752 for DOS Systems).

Program Status Word

The Program Status Word (PSW) contains several
status bits that reflect the current state of the CPU. The
PSW, shown in Figure 10, resides in SFR space. It con-
tains the Carry bit, the Auxiliary Carry (for BCD oper-
ations), the two register bank select bits, the Overflow
flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a
Carry bit in arithmetic operations, also serves as the
“Accumulator” for a number of Boolean operations.

intel.

MCS®-51 ARCHITECTURAL OVERVIEW

The bits RSO and RS1 are used to select one of the four
register banks shown in Figure 7. A number of instruc-
tions refer to these RAM locations as RO through R7.
The selection of which of the four banks is being re-
ferred to is made on the basis of the bits RSO and RS1
at execution time.

The Parity bit reflects the number of 1s in the Accumu-
lator: P = 1 if the Accumulator contains an odd num-
ber of 1s, and P = 0 if the Accumulator contains an
even number of 1s. Thus the number of 1s in the Accu-
mulator plus P is always even.

Two bits in the PSW are uncommitted and may be used
as general purpose status flags.

Addressing Modes

The addressing modes in the MCS-51 instruction set
are as follows:

DIRECT ADDRESSING

In direct addressing the operand is specified by an 8-bit
address field in the instruction. Only internal Data
RAM and SFRs can be directly addressed.

INDIRECT ADDRESSING

In indirect addressing the instruction specifies a register
which contains the address of the operand. Both inter-
nal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be RO or
R1 of the selected register bank, or the Stack Pointer.
The address register for 16-bit addresses can only be the
16-bit “data pointer” register, DPTR.

REGISTER INSTRUCTIONS

The register banks, containing registers RO through R7,
can be accessed by certain instructions which carry a
3-bit register specification within the opcode of the in-
struction. Instructions that access the registers this way
are code efficient, since this mode eliminates an address
byte. When the instruction is executed, one of the eight
registers in the selected bank is accessed. One of four
banks is selected at execution time by the two bank
select bits in the PSW.

REGISTER-SPECIFIC INSTRUCTIONS

Some instructions are specific to a certain register. For
example, some instructions always operate on the Ac-
cumulator, or Data Pointer, etc., so no address byte is
needed to point to it. The opcode itself does that. In-
structions that refer to the Accumlator as A assemble
as accumulator-specific opcodes.

IMMEDIATE CONSTANTS

The value of a constant can follow the opcode in Pro-
gram Memory. For example,

MOV A, #100

loads the Accumulator with the decimal number 100.
The same number could be specified in hex digits as
64H.

INDEXED ADDRESSING

Only Program Memory can be accessed with indexed
addressing, and it can only be read. This addressing
mode is intended for reading look-up tables in Program
Memory. A 16-bit base register (either DPTR or the
Program Counter) points to the base of the table, and
the Accumulator is set up with the table entry number.
The address of the table entry in Program Memory is
formed by adding the Accumulator data to the base
pointer.

Another type of indexed addressing is used in the “case
jump” instruction. In this case the destination address
of a jump instruction is computed as the sum of the
base pointer and the Accumulator data.

Arithmetic Instructions

The menu of arithmetic instructions is listed in Table 2.
The table indicates the addressing modes that can be
used with each instruction to access the <byte> oper-
and. For example, the ADD A, <byte> instruction can
be written as:

ADD A,7FH (direct addressing)
ADD A,@RO (indirect addressing)
ADD A,R7 (register addressing)
ADD A,#127 (immediate constant)

The execution times listed in Table 2 assume a 12 MHz
clock frequency. All of the arithmetic instructions exe-
cute in 1 ps except the INC DPTR instruction, which
takes 2 ps, and the Multiply and Divide instructions,
which take 4 ps.

Note that any byte in the internal Data Memory space
can be incremented or decremented without going
through the Accumulator.

One of the INC instructions operates on the 16-bit
Data Pointer. The Data Pointer is used to generate
16-bit addresses for external memory, so being able to
increment it in one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator
by the data in the B register and puts the 16-bit product
into the concatenated B and Accumulator registers.

1-10

intel.

MCS®-51 ARCHITECTURAL OVERVIEW

Table 2. A List of the MCS®-51 Arithmetic Instructions

Mnemonic Operation Addressing Modes Execution

Dir | Ind | Reg | Imm | Time(xs)
ADD A, <byte> A=A+ <byte> X X X X 1
ADDC A,<byte> A=A+ <byte> +C X X X X 1
SUBB A,<byte> A=A-— <byte> - C X X X X 1
INC A A=A+1 Accumulator only 1
INC . <byte> <byte> = <byte> + 1 x | x | x | 1
INC DPTR DPTR = DPTR + 1 Data Pointer only 2
DEC A A=A-1 Accumulator only 1
DEGC <byte> <byte> = <byte> — 1 x | x | x | 1
MUL AB B:A=BxA ACC and B only 4
DA A Decimal Adjust Accumulator only 1

The DIV AB instruction divides the Accumulator by
the data in the B register and leaves the 8-bit quotient
in the Accumulator, and the 8-bit remainder in the B
register.

Oddly enough, DIV AB finds less use in arithmetic
“divide” routines than in radix conversions and pro-
grammable shift operations. An example of the use of
DIV AB in a radix conversion will be given later. In
shift operations, dividing a number by 27 shifts its n
bits to the right. Using DIV AB to perform the division

completes the shift in 4 ps and leaves the B register
holding the bits that were shifted out.

The DA A instruction is for BCD arithmetic opera-
tions. In BCD arithmetic, ADD and ADDC instruc-
tions should always be followed by a DA A operation,
to ensure that the result is also in BCD. Note that DA
A will not convert a binary number to BCD. The DA
A operation produces a meaningful resuilt only as the
second step in the addition of two BCD bytes.

Table 3. A List of the MCS®-51 Logical instructions

Mnemonic Operation Addressing Modes E).(ecution

Dir | ind | Reg | Imm | Time (us)
ANL A, <byte> A = A .AND. <byte> X X X X 1
ANL <byte>,A <byte> = <byte> .AND.A X 1
ANL <byte> #data <byte> = <byte> .AND. #data X 2
ORL A, <byte> A = A .OR. <byte> X X X X 1
ORL <byte>,A <byte> = <byte> .OR.A X 1
ORL <byte>,#data <byte> = <byte> .OR. #data X 2
XRL A, <byte> A = A XOR. <byte> X X X X 1
XRL <byte>,A <byte> = <byte> .XOR. A X 1
XRL <byte>,#data <byte> = <byte> .XOR. #data | X 2
CRL A A = 00H Accumulator only 1
CPL A A= NOT.A Accumutator only 1
RL A Rotate ACC Left 1 bit Accumuiator only 1
RLC A Rotate Left through Carry Accumulator only 1
RR A Rotate ACC Right 1 bit Accumulator only 1
RRC A Rotate Right through Carry Accumulator only 1
SWAP A Swap Nibbles in A Accumulator only 1

intgl.

MCS®-51 ARCHITECTURAL OVERVIEW

Logical Instructions

Table 3 shows the list of MCS-51 logical instructions.
The instructions that perform Boolean operations
(AND, OR, Exclusive OR, NOT) on bytes perform the
operation on a bit-by-bit basis. That is, if the Accumu-
lator contains 00110101B and <byte> contains
01010011B, then

ANL A, <byte>

will leave the Accumulator holding 00010001B.
The addressing modes that can be used to access the

<byte> operand are listed in Table 3. Thus, the ANL
A, <byte> instruction may take any of the forms

ANL A,7FH (direct addressing)
ANL A,@R1 (indirect addressing)
ANL AR6 (register addressing)
ANL A,#53H (immediate constant)

All of the logical instructions that are Accumulator-
specific execute in 1ps (using a 12 MHz clock). The
others take 2 us.

Note that Boolean operations can be performed on any
byte in the lower 128 internal Data Memory space or
the SFR space using direct addressing, without having
to use the Accumulator. The XRL <byte>, #data in-
struction, for example, offers a quick and easy way to
invert port bits, as in

XRL Pl #0FFH

If the operation is in response to an interrupt, not using
the Accumulator saves the time and effort to stack it in
the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the
Accumulator 1 bit to the left or right. For a left rota-
tion, the MSB rolls into the LSB position. For a right
rotation, the LSB rolis into the MSB position.

The SWAP A instruction interchanges the high and
low nibbles within the Accumulator. This is a useful
operation in BCD manipulations. For example, if the
Accumulator contains a binary number which is known
to be less than 100, it can be quickly converted to BCD
by the following code:

MOV B,#10
DIV AB
SWAP A
ADD AB

Dividing the number by 10 leaves the tens digit in the
low nibble of the Accumulator, and the ones digit in the
B register. The SWAP and ADD instructions move the
tens digit to the high nibble of the Accumulator, and
the ones digit to the low nibble.

Data Transfers

INTERNAL RAM

Table 4 shows the menu of instructions that are avail-
able for moving data around within the internal memo-
ry spaces, and the addressing modes that can be used
with each one. With a 12 MHz clock, all of these in-
structions execute in either 1 or 2 ps.

The MOV <dest>, <src> instruction allows data to
be transferred between any two internal RAM or SFR
locations without going through the Accumulator. Re-
member the Upper 128 byes of data RAM can be ac-
cessed only by indirect addressing, and SFR space only
by direct addressing.

Note that in all MCS-51 devices, the stack resides in
on-chip RAM, and grows upwards. The PUSH instruc-
tion first increments the Stack Pointer (SP), then copies
the byte into the stack. PUSH and POP use only direct
addressing to identify the byte being saved or restored,

Table 4. A List of the MCS®-51 Data Transfer Instructions that Access Internal Data Memory Space

Mnemonic Operation Addressing Modes Fr)_(ecution

Dir | Ind | Reg | Imm | Time (ks)
MOV A, <src> A = <src> X X X X 1
MOV <dest>,A <dest> = A X X X 1
MOV <dest>, <src> | <dest> = <src> X X X X 2
MOV DPTR,#data16 DPTR = 16-bit immediate constant. X 2
PUSH <src> INC SP : MOV “@SP”, <src> X 2
POP <dest> MOV <dest>, “@SP” : DEC SP X 2
XCH A, <byte> ACC and <byte> exchange data X X X 1
XCHD A,@Ri ACC and @Ri exchange low nibbles X 1

1-12

MCS®-51 ARCHITECTURAL OVERVIEW

ntel.

but the stack itself is accessed by indirect addressing
using the SP register. This means the stack can go into
the Upper 128, if they are implemented, but not into
SFR space.

In devices that do not implement the Upper 128, if the
SP points to the Upper 128, PUSHed bytes are lost, and
POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV
that can be used to initialize the Data Pointer (DPTR)
for look-up tables in Program Memory, or for 16-bit
external Data Memory accesses.

The XCH A, <byte> instruction causes the Accumu-
lator and addressed byte to exchange data. The XCHD
A, @RI instruction is similar, but only the low nibbles
are involved in the exchange.

To see how XCH and XCHD can be used to facilitate
data manipulations, consider first the problem of shift-
ing an 8-digit BCD number two digits to the right. Fig-
ure 11 shows how this can be done using direct MOVs,
and for comparison how it can be done using XCH
instructions. To aid in understanding how the code
works, the contents of the registers that are holding the
BCD number and the content of the Accumulator are
shown alongside each instruction to indicate their
status after the instruction has been executed.

| 2a] 28| 2c | 20 | 26 | Acc
MOV A2EH 00 |12 |34 | 56 | 78 | 78
MOV 2EH2DH | 00 [12 | 34 | 56 | s6 | 78
MOV 2DH2CH | 00 { 12 { 34 | 34 | 56 | 78
MOV 2CH2BH | 00 (12 | 12 | 34 | 56 | 78
Mov 2BH#0 |00l ool 1234l 56l 78
(a) Using direct MOVs: 14 bytes, 9 us
| 2a | 28 | 2c | 2D | 28 | AcC
CLR A 00 | 12 | 34 | 56 | 78 | o0
XCH A2BH | 00 | 00 | 34 | 56| 78 | 12
XCH A2cH | 00 | oo | 12| 56| 78| 24
XCH A20H | 00 | 00 |12 |34 | 78 | 56
XCH A2EH | oo l oo | 121 34 | 581 78
(b) Using XCHs: 9 bytes, 5 us

Figure 11. Shitting a BCD Number
Two Digits to the Right

After the routine has been executed, the Accumulator
contains the two digits that were shifted out on the
right. Doing the routine with direct MOVs uses 14 code
bytes and 9 pus of execution time (assuming a 12 MHz
clock). The same operation with XCHs uses less code
and executes almost twice as fast.

To right-shift by an odd number of digits, a one-digit
shift must be executed. Figure 12 shows a sample of
code that will right-shift a BCD number one digit, us-
ing the XCHD instruction. Again, the contents of the
registers holding the number and of the Accumulator
are shown alongside each instruction.

2A|2B|2C|2D|2E|ACC
MOV R1,#2EH 00[12]34|56[78| XX
MOV RO,#2DH 00l121341661781 XX
loop for R1 = 2EH:

LOOP: MOV A@R1 00(12|34|56|78{ 78
XCHD A,@R0 00|12|34| 58|78} 76
SWAP A 00(12|34|58|78} 67
MOV @R1,A 00{12|34|58|67| 67
DEC R1 00{12|34|58(67| 67
DEC RO ool121341581671 67
CINE R1,#2AH,LOOP

loop for R1 = 2DH: 00]|12|38|45|67| 45
loop for R1 = 2CH: 00[18}23|45(67| 23
loop for R1 = 2BH: 08l01123145167] 01
CLR A |oe 01|23|45‘s7 00
XCH A2AH 00101123145167! 08
Figure 12. Shifting a BCD Number
One Digit to the Right

First, pointers R1 and RO are set up to point to the two
bytes containing the last four BCD digits. Then a loop
is executed which leaves the last byte, location 2EH,
holding the last two digits of the shifted number. The
pointers are decremented, and the loop is repeated for
location 2DH. The CINE instruction (Compare and
Jump if Not Equal) is a loop control that will be de-
scribed later.

The loop is executed from LOOP to CINE for R1 =
2EH, 2DH, 2CH and 2BH. At that point the digit that
was originally shifted out on the right has propagated
to location 2AH. Since that location should be left with
0Os, the lost digit is moved to the Accumulator.

intgl.

MCS®-51 ARCHITECTURAL OVERVIEW

EXTERNAL RAM

Table 5 shows a list of the Data Transfer instructions
that access external Data Memory. Only indirect ad-
dressing can be used. The choice is whether to use a
one-byte address, @Ri, where Ri can be either RO or
R1 of the selected register bank, or a two-byte address,
@DPTR. The disadvantage to using 16-bit addresses if
only a few K bytes of external RAM are involved is
that 16-bit addresses use all 8 bits of Port 2 as address
bus. On the other hand, 8-bit addresses allow one to
address a few K bytes of RAM, as shown in Figure 5,
without having to sacrifice all of Port 2.

All of these instructions execute in 2 ps, with a
12 MHz clock.

Table 5. A List of the MCS®-51 Data
Transter Instructions that Access
External Data Memory Space

A&?;:hss Mnemonic Operation ﬁ"l::u(ﬂ#:')l
sbis |MOVXA@Ri |poadextamal)
8bits | MOVX@RiA | Ao extomal 2

16bits | MOVXA@DPTR | Readextoral|
16bits | MOVX @DPTRA | it edemal |

Note that in all external Data RAM accesses, the Ac-
cumulator is always either the destination or source of
the data.

The read and write strobes to external RAM are acti-
vated only during the execution of a MOVX instruc-
tion. Normally these signals are inactive, and in fact if
they’re not going to be used at all, their pins are avail-
able as extra 1/0 lines. More about that later.

LOOKUP TABLES

Table 6 shows the two instructions that are available
for reading lookup tables in Program Memory. Since
these instructions access only Program Memory, the
lookup tables can only be read, not updated. The mne-
monic is MOVC for “move constant”.

If the table access is to external Program Memory, then
the read strobe is PSEN.

Tabile 6. The MCS®-51 Lookup
Table Read Instructions

Mnemonic Operation ﬁ.f';:"(ﬁ:s?
MOVC A,@A+DPTR | Read Pgm Memory 2
at (A+DPTR)
MOVC A,@A+PC Read Pgm Memory 2
at(A+PC)

The first MOVC instruction in Table 6 can accommo-
date a table of up to 256 entries, numbered O through
255. The number of the desired entry is loaded into the
Accumulator, and the Data Pointer is set up to point to
beginning of the table. Then

MOVC A,@A+DPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, ex-
cept the Program Counter (PC) is used as the table
base, and the table is accessed through a subroutine.
First the number of the desired entry is loaded into the
Accumulator, and the subroutine is called:

MOV
CALL

A,ENTRY__NUMBER
TABLE

The subroutine “TABLE” would look like this:

TABLE: MOVC A,@A+PC
RET

The table itself immediately follows the RET (return)
instruction in Program Memory. This type of table can
have up to 255 entries, numbered 1 through 255. Num-
ber O can not be used, because at the time the MOVC
instruction is executed, the PC contains the address of
the RET instruction. An entry numbered 0 would be
the RET opcode itself.

Boolean Instructions

MCS-51 devices contain a complete Boolean (single-bit)
processor. The internal RAM contains 128 addressable
bits, and the SFR space can support up to 128 other
addressable bits. All of the port lines are bit-address-
able, and each one can be treated as a separate single-
bit port. The instructions that access these bits are not
just conditional branches, but a complete menu of
move, set, clear, complement, OR, and AND instruc-
tions. These kinds of bit operations are not easily ob-
tained in other architectures with any amount of byte-
oriented software.

ntel.

MCS®-51 ARCHITECTURAL OVERVIEW

Table 7. A List of the MCS®-51

Boolean Instructions
Mnemonic Operation %;2“:;‘;’;
ANL Cpbit jC = G.AND.bit 2
ANL GC,/bit |C = C.AND. .NOT. bit 2
ORL C,bit {C = C.OR.bit 2
ORL C,/bit |C = C.OR..NOT. bit 2
MOV Cbit |C = bit 1
MOV bit,C |bit=C 2
CLR C cC=0 1
CLR bit bit=0 1
SETB C C=1 1
SETB bit bit = 1 1
CPL C C = .NOT.C 1
CPL bit bit = .NOT. bit 1
JC rel JumpifC = 1 2
JNC rel JumpifC =0 2
JB bit,rel | Jump if bit = 1 2
JNB bitrel {Jumpifbit =0 2
JBC bitrel |Jumpif bit = 1; CLR bit 2

The instruction set for the Boolean processor is shown
in Table 7. All bit accesses are by direct addressing. Bit
addresses OOH through 7FH are in the Lower 128, and
bit addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port
pin:

MOV
MOV

CFLAG
P1.0,C

In this example, FLAG is the name of any addressable
bit in the Lower 128 or SFR space. An I/0 line (the
LSB of Port 1, in this case) is set or cleared depending
on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accu-
mulator of the Boolean processor. Bit instructions that
refer to the Carry bit as C assemble as Carry-specific
instructions (CLR C, etc). The Carry bit also has a
direct address, since it resides in the PSW register,
which is bit-addressable.

Note that the Boolean instruction set includes ANL
and ORL operations, but not the XRL (Exclusive OR)
operation. An XRL operation is simple to implement in
software. Suppose, for example, it is required to form
the Exclusive OR of two bits:

C = bitl .XRL. bit2

The software to do that could be as follows:

MOV Cpbitl
JNB bit2,OVER
CPL C

OVER: (continue)

First, bitl is moved to the Carry. If bit2 = 0, then C
now contains the correct result. That is, bit1 .XRL. bit2
= bitl if bit2 = 0. On the other hand, if bit2 = 1 C
now contains the complement of the correct result. It
need only be inverted (CPL C) to complete the opera-
tion.

This code uses the INB instruction, one of a series of
bit-test instructions which execute a jump if the ad-
dressed bit is set (JC, JB, JBC) or if the addressed bit is
not set (JNC, INB). In the above case, bit2 is being
tested, and if bit2 = 0 the CPL C instruction is jumped
over.

JBC executes the jump if the addressed bit is set, and
also clears the bit. Thus a flag can be tested and cleared
in one operation.

All the PSW bits are directly addressable, so the Parity
bit, or the general purpose flags, for example, are also
available to the bit-test instructions.

RELATIVE OFFSET

The destination address for these jumps is specified to
the assembler by a label or by an actual address in
Program Memory. However, the destination address
assembles to a relative offset byte. This is a signed
(two’s complement) offset byte which is added to the
PC in two’s complement arithmetic if the jump is exe-
cuted.

The range of the jump is therefore —128 to + 127 Pro-
gram Memory bytes relative to the first byte following
the instruction.

intel.

MCS®-51 ARCHITECTURAL OVERVIEW

Jump Instructions

Table 8 shows the list of unconditional jumps.

Table 8. Unconditional Jumps
in MCS®-51 Devices

Mnemonic Operation E.,,’;:}:"&:’;
JMP addr Jump to addr 2
JMP @A+DPTR | Jump to A+DPTR 2
CALL addr Call subroutine at addr 2
RET Return from subroutine 2
RETI Return from interrupt 2
NOP No operation 1

The Table lists a single “JMP addr” instruction, but in
fact there are three—STMP, LYMP and AJMP—which
differ in the format of the destination address. JIMP is a
generic mnemonic which can be used if the program-
mer does not care which way the jump is encoded.

The SIMP instruction encodes the destination address
as a relative offset, as described above. The instruction
is 2 bytes long, consisting of the opcode and the relative
offset byte. The jump distance is limited to a range of
—128 to + 127 bytes relative to the instruction follow-
ing the SIMP.

The LIMP instruction encodes the destination address
as a 16-bit constant. The instruction is 3 bytes long,
consisting of the opcode and two address bytes. The
destination address can be anywhere in the 64K Pro-
gram Memory space.

The AJMP instruction encodes the destination address
as an 11-bit constant. The instruction is 2 bytes long,
consisting of the opcode, which itself contains 3 of the
11 address bits, followed by another byte containing the
low 8 bits of the destination address. When the instruc-
tion is executed, these 11 bits are simply substituted for
the low 11 bits in the PC. The high 5 bits stay the same.
Hence the destination has to be within the same 2K
block as the instruction following the ATMP.

In all cases the programmer specifies the destination
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the destina-
tion address into the correct format for the given in-
struction. If the format required by the instruction will
not support the distance to the specified destination ad-
dress, a “Destination out of range” message is written
into the List file.

The JMP @A-+DPTR instruction supports case
jumps. The destination address is computed at execu-
tion time as the sum of the 16-bit DPTR register and

1-16

the Accumulator. Typically, DPTR is set up with the
address of a jump table, and the Accumulator is given
an index to the table. In a 5-way branch, for example,
an integer O through 4 is loaded into the Accumulator.
The code to be executed might be as follows:

MOV DPIR,#JUMP__TABLE
MOV A,INDEX _NUMBER
RL A

IMP @A +DPIR
The RL A instruction converts the index number (0
through 4) to an even number on the range O through 8,
because each entry in the jump table is 2 bytes long:

JUMP_TABLE:

AJMP CASE_0
AJMP CASE__1
AJMP CASE_2
AJMP CASE_3
AJMP CASE_4

Table 8 shows a single “CALL addr” instruction, but
there are two of them—LCALL and ACALL—which
differ in the format in which the subroutine address is
given to the CPU. CALL is a generic mnemonic which
can be used if the programmer does not care which way
the address is encoded.

The LCALL instruction uses the 16-bit address format,
and the subroutine can be anywhere in the 64K Pro-
gram Memory space. The ACALL instruction uses the
11-bit format, and the subroutine must be in the same
2K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the address
into the correct format for the given instructions.

Subroutines should end with a RET instruction, which
returns execution to the instruction following the
CALL.

RETI is used to return from an interrupt service rou-
tine. The only difference between RET and RETI is
that RETI tells the interrupt control system that the
interrupt in progress is done. If there is no interrupt in
progress at the time RETI is executed, then the RETI
is functionally identical to RET.

Table 9 shows the list of conditional jumps available to
the MCS-51 user. All of these jumps specify the desti-
nation address by the relative offset method, and so are
limited to a jump distance of — 128 to + 127 bytes from
the instruction following the conditional jump instruc-
tion. Important to note, however, the user specifies to
the assembler the actual destination address the same
way as the other jumps: as a label or a 16-bit constant.

intgl.

MCS®-51 ARCHITECTURAL OVERVIEW

Table 9. Conditional Jumps in MCS®-51 Devices

Mnemonic Operation Addressing Modes ?‘(ecution
Dir | Ind | Reg | Imm | Time(ns)
JZ rel JumpifA =0 Accumulator only 2
JINZ rel Jumpif A# 0 Accumulator only 2
DJNZ <byte> rel Decrement and jump if not zero X X 2
GINE A, <byte>rel Jumpif A # <byte> X X 2
CINE <byte>,#datarel | Jumpif <byte> #* #data X X 2
There is no Zero bit in the PSW. The JZ and INZ
instructions test the Accumulator data for that condi- wesTst
tion. HMOS

The DINZ instruction (Decrement and Jump if Not
Zero) is for loop control. To execute a loop N times,
load a counter byte with N and terminate the loop with
a DINZ to the beginning of the loop, as shown below
for N = 10:

MOV COUNTER, #10
LOOP: (begin loop)
x

*
*

(end loop)
DINZ COUNTER,LOOP
(continue)

The CINE instruction (Compare and Jump if Not
Equal) can also be used for loop control as in Figure 12.
Two bytes are specified in the operand field of the in-
struction. The jump is executed only if the two bytes
are not equal. In the example of Figure 12, the two
bytes were the data in R1 and the constant 2AH. The
initial data in R1 was 2EH. Every time the loop was
executed, R1 was decremented, and the looping was to
continue until the R1 data reached 2AH.

Another application of this instruction is in “greater
than, less than” comparisons. The two bytes in the op-
erand field are taken as unsigned integers. If the first is
less than the second, then the Carry bit is set (1). If the
first is greater than or equal to the second, then the
Carry bit is cleared.

CPU TIMING

All MCS-51 microcontrollers have an on-chip oscillator
which can be used if desired as the clock source for the
CPU. To use the on-chip oscillator, connect a crystal or
ceramic resonator between the XTAL1 and XTAL2
pins of the microcontroller, and capacitors to ground as
shown in Figure 13.

J_T ALz
QUARTZ CRYSTAL
ok CERAMC ey T

RESONATOR T ez

OR CHMOS

270251-11

Figure 13. Using the On-Chip Oscillator

OR CHMODS

XTAL2
Cl m£
L

SIGNAL
L

A. HMOS or CHMOS

®
MCS =51
CHMOS
ONLY

(&C)— XTALZ

CLOCK et XTAL1

i

C. CHMOS Oniy

270251-12

270251-13

270251-14

Figure 14. Using an External Clock

ntgl.

MCS®-51 ARCHITECTURAL OVERVIEW

Examples of how to drive the clock with an external
oscillator are shown in Figure 14. Note that in the
HMOS devices (8051, etc.) the signal at the XTAL?2 pin
actually drives the internmal clock generator. In the
CHMOS devices (80C51BH, etc.) the signal at the
XTALI pin drives the internal clock generator. If only
one pin is going to be driven with the external oscillator
signal, make sure it is the right pin.

The internal clock generator defines the sequence of
states that make up the MCS-51 machine cycle.

Machine Cycles

A machine cycle consists of a sequence of 6 states,
numbered S1 through $6. Each state time lasts for two
oscillator periods. Thus a machine cycle takes 12 oscil-
lator periods or 1 ps if the oscillator frequency is
12 MHz.

Each state is divided into a Phase 1 half and a Phase 2
half. Figure 15 shows the fetch/execute sequences in

selssla«lssls«i

(A) 1-byte, 1-cycie instruction, e.g., INC A. I

READ OPCODE. I

READ 2ND BVTE.[

|
sz[ss[u[ss]ss—!

{B) 2-byte, 1-cycie instruction, 2.9., ADD A, #data l
l I

| READ OPCODE. I
READ NEXT
l OPCODE (DISCARD).

READ NEXT OPCODE.

READ NEXT OPCODE AGAIN.

|
f
[
|
|
!
|
I
[
|
|
|
|
I
I
|
[

$1 s2 s3 sS4 | S5 S6 $1 S2 S3 l sS4 LSS S6 3]
0sC. PiP2iPiP2iPt P2 iP1P2IimiP2P1 P2IPMP2IPIP2IP1 P2 P P2 P2 I P2 IP1 P2
(XTAL2)
] |
e | L L M1 L1 [
1
i ' !
| READ OPCODE. READ NEXT !
| OPCODE
I (DISCARD,- I READ NEXT OPCODE AGAIN.

|
[st [s2] 53 | sa [ss | s6]

slelw]ul=]=]

(C) 1-byte, 2-cycle instuction, e.g., INC DPTR. |

)
! I READ NEXT OPCODE AGAIN.
I (azon\&gpcooz " NO I
READ NEXT
! OPCODE (DISCARD) | TETCH- NO FETCH. !
| l ! l [~ NOALE I
I I rszlsslulsslselswsz[sa[s.lsqj
' lwnn | DATA I |
(D) MOVX (1-byte, 2-cycle) . I
! ACCESS EXTERNAL MEMORY]

270261-15

Figure 15. State Sequences in MCS®-51 Devices

1-18

intgl.

MCS®-51 ARCHITECTURAL OVERVIEW

states and phases for various kinds of instructions. Nor-
mally two program fetches are generated during each
machine cycle, even if the instruction being executed
doesn’t require it. If the instruction being executed
doesn’t need more code bytes, the CPU simply ignores
the extra fetch, and the Program Counter is not incre-
mented.

Execution of a one-cycle instruction (Figure 15A and
B) begins during State 1 of the machine cycle, when the
opcode is latched into the Instruction Register. A sec-
ond fetch occurs during S4 of the same machine cycle.
Execution is complete at the end of State 6 of this ma-
chine cycle.

The MOVX instructions take two machine cycles to
execute. No program fetch is generated during the sec-
ond cycle of a MOVX instruction. This is the only time
program fetches are skipped. The fetch/execute se-
quence for MOVX instructions is shown in Figure

15(D).

The fetch/execute sequences are the same whether the
Program Memory is internal or external to the chip.
Execution times do not depend on whether the Pro-
gram Memory is internal or external.

Figure 16 shows the signals and timing involved in pro-
gram fetches when the Program Memory is external. If
Program Memory is external, then the Program Memo-
ry read strobe PSEN is normally activated twice per
machine cycle, as shown in Figure 16(A).

If an access to external Data Memory occurs, as shown
in Figure 16(B), two PSENs are skipped, because the
address and data bus are being used for the Data Mem-
ory access.

Note that a Data Memory bus cycle takes twice as
much time as a Program Memory bus cycle. Figure 16
shows the relative timing of the addresses being emitted
at Ports 0 and 2, and of ALE and PSEN. ALE is used
to latch the low address byte from PO into the address
latch.

ONE MACHINE CYCLE ONE MACHINE CYCLE
|s1|szlsz|s¢|ss|ssls1]s2|ss|s4|ss|ss|
e 171 L
e — 1 L[1L [1 [
&b) ! . ; ! (A)
. , [; : WITHOUT A
! | b) ! MOVX.
P2PCHOUTX , PCHOUT X | PCHOUT Xl pcHOUT X :pcnou‘r XPCHOUT
]
Po —(u7) m), E < E) E o, E
‘LPcLour chn.ou'r tpcmu-r chuou‘r
VALID VALI VALID VALID
| CYCLE1 : CYCLE2 4
$1|s2|ss|sa|ss|s6|s1|s2|sa|sa]ss|ss
] I |
] L L ' L (8)
I : E— ! WITH A
! ! , . MOVX.
Pzpcuour)(PCH OUT)(! DPH OUT OR P2 OUT X T pcHout X PCHOUT
ADD ;
~ () o, D
f. PCLOUT t acor our trcLour
VALID VALID VALID
270251-16

Figure 16. Bus Cycles in MCS®-51 Devices Executing from External Program Memory

1-19

ntel.

MCS®-51 ARCHITECTURAL OVERVIEW

When the CPU is executing from internal Program
Memory, PSEN is not activated, and program address-
és are not emitted. However, ALE continues to be acti-
vated twice per machine cycle and so is available as a
clock output signal. Note, however, that one ALE is
skipped during the execution of the MOVX instruction.

interrupt Structure

The 8051 core provides 5 interrupt sources: 2 external
interrupts, 2 timer interrupts, and the serial port inter-
rupt. What follows is an overview of the interrupt
structure for the 8051. Other MCS-51 devices have ad-
ditional interrupt sources and vectors as shown in Ta-
ble 1. Refer to the appropriate chapters on other devic-
es for further information on their interrupts.

INTERRUPT ENABLES

Each of the interrupt sources can be individually en-
abled or disabled by setting or clearing a bit in the SFR

_(MSB) (LSB)
[ea] =T —=Tes]em [exi] emo] exo]
Enable bit = 1 enables the interrupt.
Enable bit = 0 disables it.
Symbol Position Function
EA IE7 disables all interrupts. If EA = 0, no
interrupt will be acknowledged. If EA
= 1, each interrupt source is
individually enabled or disabled by
setting or clearing its enable bit.
—_ IE6 reserved*®
- IE.S reserved*
ES IE4 Serial Port Interrupt enabie bit.
ETt IES3 Timer 1 Overflow Interrupt enable bit.
EX1 IE2 External Interrupt 1 enable bit.
ETO IE. Timer 0 Overflow Interrupt enable bit.
EX0 IEQ External Interrupt O enable bit.
*These reserved bits are used in other MCS-51 devices.

Figure 17. IE (Interrupt Enable)
Register in the 8051

1-20

named IE (Interrupt Enable). This register also con-
tains a global disable bit, which can be cleared to dis-
able all interrupts at once. Figure 17 shows the IE reg-
ister for the 8051.

INTERRUPT PRIORITIES

Each interrupt source can also be individually pro-
grammed to one of two priority levels by setting or
clearing a bit in the SFR named IP (Interrupt Priority).
Figure 18 shows the IP register in the 8051.

A low-priority interrrupt can be interrupted by a high-
priority interrupt, but not by another low-priority inter-
rupt. A high-priority interrupt can’t be interrupted by
any other interrupt source.

If two interrupt requests of different priority levels are
received simultaneously, the request of higher priority
level is serviced. If interrupt requests of the same priori-
ty level are received simultaneously, an internal polling
sequence determines which request is serviced. Thus
within each priority level there is a second priority
structure determined by the polling sequence.

Figure 19 shows, for the 8051, how the IE and IP regis-
ters and the polling sequence work to determine which
if any interrupt will be serviced.

(MSB) (LSB)
{=[=T—TesTeri]pxt [Pro]Pxo]

Priority bit = 1 assigns high priority.
Priority bit = 0 assigns low priority.

Symbo! Position Function

- IP.7 reserved®

- P.6 reserved”

- iP5 reserved*

PS P4 Serial Port interrupt priority bit.
PT1 IP3 Timer 1 interrupt priority bit.
PX1 P2 External Interrupt 1 priority bit.
PTO P Timer 0 interrupt priority bit.
PX0 P.0 External Interrupt O priority bit.

*These reserved bits are used in other MCS-51 devices.

Figure 18. IP (Interrupt Priority)
Register in the 8051

MCS®-51 ARCHITECTURAL OVERVIEW

HIGH PRIORITY
IE REGISTER IP REGISTER INTERRUPT
—o/o-o'./ o M
: >
]
! o >
o—oe INTERRUPT
(e - > POLLING
: SEQUENCE
l -
3 o
—o//o-o':(o o\c .
i ot —s
o/ o-o’.(R
: P
[}
RI ; © >
> oottt T L

{
INDIVIDUAL _]

ENABLES

(]
‘L GLOBAL

DISABLE

\\. LOW PRIORITY

INTERRUPT
270251-17

Figure 19. 8051 Interrupt Control System

In operation, all the interrupt flags are latched into the
interrupt control system during State 5 of every ma-
chine cycle. The samples are polled during the follow-
ing machine cycle. If the flag for an enabled interrupt is
found to be set (1), the interrupt system generates an
LCALL to the appropriate location in Program Memo-
ry, unless some other condition blocks the interrupt.
Several conditions can block an interrupt, among them
that an interrupt of equal or higher priority level is
already in progress.

The hardware-generated LCALL causes the contents of
the Program Counter to be pushed onto the stack, and
reloads the PC with the beginning address of the service
routine. As previously noted (Figure 3), the service rou-
tine for each interrupt begins at a fixed location.

Only the Program Counter is automatically pushed
onto the stack, not the PSW or any other register. Hav-
ing only the PC be automatically saved allows the pro-
grammer to decide how much time to spend saving
which other registers. This enhances the interrupt re-
sponse time, albeit at the expense of increasing the pro-
grammer’s burden of responsibility. As a result, many
interrupt functions that are typical in control applica-
tions—toggling a port pin, for example, or reloading a
timer, or unloading a serial buffer—can often be com-

1-21

pleted in less time than it takes other architectures to
commence them.

SIMULATING A THIRD PRIORITY LEVEL IN
SOFTWARE

Some applications require more than the two priority
levels that are provided by on-chip hardware in
MCS-51 devices. In these cases, relatively simple soft-
ware can be written to produce the same effect as a
third priority level.

First, interrupts that are to have higher priority than 1
are assigned to priority 1 in the IP (Interrupt Priority)
register. The service routines for priority 1 interrupts
that are supposed to be interruptible by “priority 2”
interrupts are written to include the following code:

PUSH IE
MOV IE,# MASK
CALL LABEL

(2211233
(execute service routine)
CEEEER R

POP

RET
LABEL: RETI

IE

intgl.

MCS®-51 ARCHITECTURAL OVERVIEW

As soon as any priority 1 interrupt is acknowledged,
the IE (Interrupt Enable) register is re-defined so as to
disable all but “priority 2” interrupts. Then, a CALL to
LABEL executes the RETI instruction, which clears
the priority 1 interrupt-in-progress flip-flop. At this
point any priority 1 interrupt that is enabled can be
serviced, but only “priority 2” interrupts are enabled.

POPping IE restores the original enable byte. Then a
normal RET (rather than another RETI) is used to
terminate the service routine. The additional software
adds 10 ps (at 12 MHz) to priority 1 interrupts.

1-22

ADDITIONAL REFERENCES

The following application notes are found in the Em-
bedded Control Applications handbook. (Order Num-
ber: 270648)

1. AP-69 “An Introduction to the Intel MCS®-51 Sin-
gle-Chip Microcomputer Family”

2. AP-70 “Using the Intel MCS®-51 Boolean Process-
ing Capabilities”

MCS®51 Programmer’s
Guide and Instruction Set

MCS® 51 PROGRAMMER’S CONTENTS

GUIDE AND
INSTRUCTION SET

PAGE
MEMORY ORGANIZATION........................ 2-3
PROGRAM MEMORYc.oeccevrnrinnenn. 2-3
|Data MEMOMYovreerereteeeteeesiestesseveseanens 2-4
| INDIRECT ADDRESS AREA 2-6
DIRECT AND INDIRECT ADDRESS
AREAccoovvviieiie e 2-6
SPECIAL FUNCTION REGISTERS............ 2-8

WHAT DO THE SFRs CONTAIN JUST

AFTER POWER-ON OR A RESET......... 2-9
SFRMEMORYMAPcccovervree, 2-10
PSW: PROGRAM STATUS WORD. BIT

ADDRESSABLEcccceounneee. 2-11
PCON: POWER CONTROL REGISTER.

NOT BIT ADDRESSABLE 2-11
N s s T — 212
IE: INTERRUPT ENABLE REGISTER.

BIT ADDRESSABLE 2-12
ASSIGNING HIGHER PRIORITY TO

ONE OR MORE INTERRUPTS............. 2-13
PRIORITY WITHIN LEVEL 2-13
IP: INTERRUPT PRIORITY REGISTER.

BIT ADDRESSABLE 2-13
TCON: TIMER/COUNTER CONTROL

REGISTER. BIT ADDRESSABLE 2-14
TMOD: TIMER/COUNTER MODE

CONTROL REGISTER. NOT BIT

ADDRESSABLEcccocveeeee, 2-14
TIMER SET-UP ..., 2-15
TIMER/COUNTER 0coooverrrcreeeere 215
TIMER/COUNTER 1........c.cccooeviimreeciinnenn, 2-16
T2CON: TIMER/COUNTER 2 CONTROL

REGISTER. BIT ADDRESSABLE 2-17
TIMER/COUNTER 2 SET-UP 2-18
SCON: SERIAL PORT CONTROL

REGISTER. BIT ADDRESSABLE......... 2-19

21

CONTENTS PAGE CONTENTS PAGE
SERIAL PORT SET-UP..........cccovvieeernen 2-19 | [USING TIMER/COUNTER 2 TO
GENERATE BAUD RATES 2-20
GENERATING BAUD RATES.................. 2-19 ‘
Serial PortinMode O.........ccceveeerininnnnne. 2-19 || SERIAL PORT INMODE 2 2-20
Serial Portin Mode 1........cccccveeieireinecnnes 2-19 | |SERIAL PORTINMODE 3ooooooeeen, 2-20
USING TIMER/COUNTER 1 TO MCS®e-51 INSTRUCTION SET 2-21
GENERATE BAUD RATES 2-20
INSTRUCTION DEFINITIONS 2-28

2-2

intel. MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

The information presented in this chapter is collected from the MCS®-51 Architectural Overview and the Hardware
Description of the 8051, 8052 and 80C51 chapters of this book. The material has been selected and rearranged to
form a quick and convenient reference for the programmers of the MCS-51. This guide pertains specifically to the
8051, 8052 and 80CS51.

MEMORY ORGANIZATION

PROGRAM MEMORY

The 8051 has separate address spaces for Program Memory and Data Memory. The Program Memory can be up to
64K bytes long. The lower 4K (8K for the 8052) may reside on-chip.

Figure 1 shows a map of the 8051 program memory, and Figure 2 shows a map of the 8052 program memory.

FFFF FFFF
\
80K
BYTES
EXTERNAL
64K
> OR ——J BYTES
EXTERNAL
1000
AND
OFFF
4K BYTES J
INTERNAL
0000 0000
270249-1

Figure 1. The 8051 Program Memory

in'l'el. MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

FFFF FFFF
\
58 K
BYTES
EXTERNAL
84K
OR =y BYTES
EXTERNAL
2000
AND
1FFF
8K BYTES J
INTERNAL
0000 0000
270249-2

Figure 2. The 8052 Program Memory

Data Memory:

The 8051 can address up to 64K bytes of Data Memory external to the chip. The “MOVX” instruction is used to
access the external data memory. (Refer to the MCS-51 Instruction Set, in this chapter, for detailed description of
instructions).

The 8051 has 128 bytes of on-chip RAM (256 bytes in the 8052) plus a number of Special Function Registers (SFRs).

The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing
(MOV @Ri). Figure 3 shows the 8051 and the 8052 Data Memory organization.

2-4

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

38

DIRECT
ADDRESSING
ONLY

DIRECT &
INDIRECT
ADDRESSING

S

64K

270249-3

Figure 3a. The 8051 Data Memory

348

INDIRECT
ADDRESSING ONLY

80H TO FFH

DIRECT

ONLY

DIRECT &
INDIRECT
ADDRESSING

Y — no—-

/

64K
BYTES
EXTERNAL

270249-4

Figure 3b. The 8052 Data Memory

inté, MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

INDIRECT ADDRESS AREA:

Note that in Figure 3b the SFRs and the indirect address RAM have the same addresses (SOH-OFFH). Neverthe-
less, they are two separate areas and are accessed in two different ways.

For example the instruction
MOV 80H, #0AAH

writes OAAH to Port 0 which is one of the SFRs and the instruction
MOV RO,#80H
MOV @RO, #0BBH

writes OBBH in location 30H of the data RAM. Thus, after execution of both of the above instructions Port 0 will
contain 0AAH and location 80 of the RAM will contain 0BBH.

Note that the stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available
as stack space in those devices which implement 256 bytes of internal RAM.

DIRECT AND INDIRECT ADDRESS AREA:

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into 3 segments
as listed below and shown in Figure 4.

1. Register Banks 0-3: Locations 0 through 1FH (32 bytes). ASM-51 and the device after reset default to register
bank Q. To use the other register banks the user must select them in the software (refer to the MCS-51 Micro
Assembler User’s Guide). Each register bank contains 8 one-byte registers, 0 through 7.

Reset initializes the Stack Pointer to location 07H and it is incremented once to start from location 08H which is the
first register (RO) of the second register bank. Thus, in order to use more than one register bank, the SP should be
intialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM).

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this
segment can be directly addressed (0-7FH).

The bits can be referred to in two ways both of which are acceptable by the ASM-51. One way is to refer to their
addresses, ie. 0 to 7FH. The other way is with reference to bytes 20H to 2FH. Thus, bits 0—-7 can also be referred to
as bits 20.0-20.7, and bits 8-FH are the same as 21.0-21.7 and so on.

Each of the 16 bytes in this segment can also be addressed as a byte.

3. Scratch Pad Area: Bytes 30H through 7FH are available to the user as data RAM. However, if the stack pointer
has been initialized to this area, enough number of bytes should be left aside to prevent SP data destruction.

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Figure 4 shows the different segments of the on-chip RAM.

8 8 8 &8 8 & 8 88 8 &8 3 3

- -
-] [

- 8 Bytes '

7F
”
oF
o7

SCRATCH
SF

PAD
57
AREA
a4
a7
3F
7
L TF | BT
ADDRESSABLE

0... 27 SEGMENT
3 ¥

2 17 REGISTER

1 oF BANKS

0 o7

270249-5

Figure 4. 128 Bytes of RAM Direct and Indirect Addressable

intel. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

SPECIAL FUNCTION REGISTERS:
Table 1 contains a list of all the SFRs and their addresses.

Comparing Table 1 and Figure 5 shows that all of the SFRs that are byte and bit addressable are located on the first
column of the diagram in Figure 5.

Table 1

Symbol Name Address
*ACC Accumulator OEOH
*B B Register OFOH
*PSW Program Status Word 0DOH
SP Stack Pointer 81H

DPTR Data Pointer 2 Bytes
DPL Low Byte 82H
DPH High Byte 83H
*PO Port 0 80H
*P1 Port 1 90H
*P2 Port 2 0AOH
*P3 Port3 0BOH
*IP Interrupt Priority Control 0B8H
*IE Interrupt Enable Control 0ABH
TMOD Timer/Counter Mode Control 89H
*TCON Timer/Counter Control 88H
*+T2CON Timer/Counter 2 Control 0C8H
THO Timer/Counter O High Byte 8CH
TLO Timer/Counter O Low Byte 8AH
TH1 Timer/Counter 1 High Byte 8DH
TL Timer/Counter 1 Low Byte 8BH
+TH2 Timer/Counter 2 High Byte O0CDH
+TL2 Timer/Counter 2 Low Byte 0CCH
+RCAP2H T/C 2 Capture Reg. High Byte 0CBH
+RCAP2L T/C 2 Capture Reg. Low Byte 0CAH
*SCON Serial Control 98H
SBUF Serial Data Buffer 99H
PCON Power Control 87H

* = Bit addressable
+ = 8052 only

intel. MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

WHAT DO THE SFRs CONTAIN JUST AFTER POWER-ON OR A RESET?

Table 2 lists the contents of each SFR after power-on or a hardware reset.

Table 2. Contents of the SFRs after reset

Register Value in Binary
*ACC 00000000
*B 00000000
*PSW 00000000
sP 00000111
DPTR
DPH 00000000
DPL 00000000
*PO 11111111
*P1 11111111
*P2 11111114
*P3 11111111
P 8051 XXX00000,
8052 XX000000
*E 8051 0XX00000,
8052 0X000000
TMOD 00000000
*TCON 00000000
*+T2CON 00000000
THO 00000000
TLO 00000000
TH1 00000000
TL1 00000000
+TH2 00000000
+TL2 00000000
+RCAP2H 00000000
+RCAP2L 00000000
*SCON 00000000
SBUF indeterminate
PCON HMOS 0XXXXXXX
CHMOS 0XXX0000

Bit Addressable

X = Undefined
+ 8052 only

2-9

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

SFR MEMORY MAP

8 Bytes
F8
FO B
E8
EO ACC
D8
Do PSW
@] T2CON RCAP2L RCAP2H TL2 TH2
Cco
B8 P
BO P3
A8 IE
A0 P2
98 SCON SBUF
90 P1
88 TCON TMOD TLO T THO TH1
80 PO SP DPL DPH PCON
T Figure 5
Bit
Addressable

2-10

FF

EF
E7
DF
D7
CF
c7
BF
B7
AF
A7
oF
97
8F
87

intel. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Those SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit
is provided for quick reference. For more detailed information refer to the Architecture Chapter of this book.

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

| ov | ac [Fo [mrst [Reo [ov | — [P |
CY PSW.7 Carry Flag.

AC PSW.6 Auxiliary Carry Flag,

FO PSW.5 Flag O available to the user for general purpose.

RS1 PSW.4 Register Bank selector bit 1 (SEE NOTE 1).
RSO PSW.3 Register Bank selector bit 0 (SEE NOTE 1).

ov PSW.2 Overflow Flag.

— PSW.1 User definable flag.

P PSW.0 Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of

‘1’ bits in the accumulator.
NOTE:
1. The value presented by RSO and RS1 selects the corresponding register bank.
RS1 RSO Register Bank Address

0 0 0 00H-07H
0 1 1 08H-OFH
1 0 2 10H-17H
1 1 3 18H-1FH

PCON: POWER CONTROL REGISTER. NOT BIT ADDRESSABLE.

| smoo | — [— [—] ef1t [aro [po | oL |

SMOD Double baud rate bit. If Timer 1 is used to generate baud rate and SMOD = 1, the baud rate is doubled
when the Serial Port is used in modes 1, 2, or 3.

— Not implemented, reserved for future use.*

—_— Not implemented, reserved for future use.*

—_ Not implemented, reserved for future use.*

GF1 General purpose flag bit.

GFO0 General purpose flag bit.

PD Power Down bit. Setting this bit activates Power Down operation in the 80C51BH. (Available only in
CHMOS).

IDL Idle Mode bit. Setting this bit activates Idle Mode operation in the 80C51BH. (Available only in CHMOS).

If 1s are written to PD and IDL at the same time, PD takes precedence.

*User software should not write 1s 0 reserved bits. These bits may be used in future MCS-51 products to invoke new
features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

2-11

in‘l‘el. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

INTERRUPTS:

In order to use any of the interrupts in the MCS-51, the following three steps must be taken.

1. Set the EA (enable all) bit in the IE register to 1.

2. Set the corresponding individual interrupt enable bit in the IE register to 1.

3. Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See Table below.

Interrupt Vector
Source Address

IEO 0003H

TFO 000BH

IE1 0013H

TF1 001BH

RI&TI 0023H

TF2 & EXF2 002BH

In addition, for external interrupts, pins INTO and INT1 (P3.2 and P3.3) must be set to 1, and depending on whether
the interrupt is to be level or transition activated, bits ITO or IT1 in the TCON register may need to be set to 1.

ITx = 0 level activated

ITx = 1 transition activated

|E: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt is enabled.

[ea] — | er2 | es | Em | B0 | ETO [Exo |

EA IE.7 Disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = 1, each interrupt
source is individually enabled or disabled by setting or clearing its enable bit.

—_ IE.6 Not implemented, reserved for future use.*

ET2 IE.5 Enable or disable the Timer 2 overflow or capture interrupt (8052 only).

ES IE4 Enable or disable the serial port interrupt.

ET1 IE.3 Enable or disable the Timer 1 overflow interrupt.

EX1 IE2 Enable or disable External Interrupt 1.

ETO IE.1 Enable or disable the Timer O overflow interrupt.

EXO0 IE.0 Enable or disable External Interrupt 0.

*User software should not write 1s to reserved bits. These bits may be used in future MCS-51 products to invoke
new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

in‘l‘el. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

ASSIGNING HIGHER PRIORITY TO ONE OR MORE INTERRUPTS:

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1.

Remember that while an interrupt service is in progress, it cannot be interrupted by a lower or same level interrupt.

PRIORITY WITHIN LEVEL:
Priority within level is only to resolve simultaneous requests of the same priority level.
From high to low, interrupt sources are listed below:

IEO

TFO

IE1

TF1

RI or TI

TF2 or EXF2

IP: INTERRUPT PRIORITY REGISTER. BIT ADDRESSABLE.

If the bit is O, the corresponding interrupt has a lower priority and if the bit is 1 the corresponding interrupt has a
higher priority.

| — | — | pr2 | ps | Pr1 | Px1 | PO | Pxo |
— IP. 7 Not implemented, reserved for future use.*

— IP. 6 Not implemented, reserved for future use.*

PT2 IP. 5 Defines the Timer 2 interrupt priority level (8052 only).

PS IP. 4 Defines the Serial Port interrupt priority level.

PT1 IP. 3 Defines the Timer 1 interrupt priority level.

PX1 IP. 2 Defines External Interrupt 1 priority level.

PTO IP. 1 Defines the Timer O interrupt priority level.

PX0 IP. 0 Defines the External Interrupt O priority level.

*User software should not write 1s to reserved bits. These bits may be used in future MCS-51 products to invoke
new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1.

2-13

intel . MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

TCON: TIMER/COUNTER CONTROL REGISTER. BIT ADDRESSABLE.

| 771 | TRt | TF0O | 7RO | E1 [m1 [EO | mo |

TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hard-
ware as processor vectors to the interrupt service routine.

TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/OFF.

TFO TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter O overflows. Cleared by hard-
ware as processor vectors to the service routine.

TRO TCON. 4 Timer O run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.

IE1 TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected.
Cleared by hardware when interrupt is processed.

T TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered
External Interrupt.

IEO TCON. 1 External Interrupt O edge flag. Set by hardware when External Interrupt edge detected. Cleared
by hardware when interrupt is processed.

ITO TCON. O Interrupt O type control bit. Set/cleared by software to specify falling edge/low level triggered
External Interrupt.

TMOD: TIMER/COUNTER MODE CONTROL REGISTER. NOT BIT
ADDRESSABLE.

| ate | o/T | M1 | mo | GatE | oT | M1 | mo |
N /N J

g g

TIMER 1 TIMER 0

GATE When TRx (in TCON) is set and GATE = 1, TIMER/COUNTERx will run only while INTx pin is high
(hardware control). When GATE = 0, TIMER/COUNTERx will run only while TRx = 1 (software
control).

C/T Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Coun-
ter operation (input from Tx input pin).

M1 Mode selector bit. (NOTE 1)
MO Mode selector bit. (NOTE 1)

NOTE 1:
M1 MO Operating Mode

0 0 0 13-bit Timer (MCS-48 compatibie)

0 1 1 16-bit Timer/Counter

1 0 2 8-bit Auto-Reload Timer/Counter

1 1 3 (Timer 0) TLO is an 8-bit Timer/Counter controlled by the standard Timer 0
control bits, THO is an 8-bit Timer and is controlled by Timer 1 control bits.

1 1 3 (Timer 1) Timer/Counter 1 stopped.

in‘tel. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

TIMER SET-UP
Tables 3 through 6 give some values for TMOD which can be used to set up Timer O in different modes.

It is assumed that only one timer is being used at a time. If it is desired to run Timers 0 and 1 simultaneously, in any
mode, the value in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 5 and 6).

For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER,
then the value that must be loaded into TMOD is 69H (09H from Table 3 ORed with 60H from Table 6).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different
point in the program by setting bit TRx (in TCON) to 1.

TIMER/COUNTER 0

As a Timer:
Table 3
TMOD
MODE TIMER 0 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 00H 08H
1 16-bit Timer 01H 09H
2 8-bit Auto-Reload 02H 0AH
3 two 8-bit Timers 03H OBH
As a Counter:
Table 4
TMOD
MODE COUNTER 0 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 04H OCH
1 16-bit Timer 05H ODH
2 8-bit Auto-Reload 06H OEH
3 one 8-bit Counter o7H OFH
NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TRO in the software.
2. The Timer is tuned ON/OFF by the 1 to 0 transition on INTO (P3.2) when TRO = 1
{hardware control).

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

TIMER/COUNTER 1

As a Timer:
Table 5
TMOD
MODE TIMER 1 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
{NOTE 1) (NOTE 2)
0 13-bit Timer 00H 80H
1 16-bit Timer 10H 80H
2 8-bit Auto-Reload 20H AOH
3 does notrun 30H BOH
As a Counter:
Table 6
TMOD
MODE COUNTER 1 INTERNAL EXTERNAL
FUNCTION CONTROL CONTROL
(NOTE 1) (NOTE 2)
0 13-bit Timer 40H COH
1 16-bit Timer 50H DOH
2 8-bit Auto-Reload 60H EOH
3 not available — —
NOTES:

1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.
2. The Timer is tuned ON/OFF by the 1 to O transition on INTT (P3.3) when TR1 =

(hardware control).

2-16

1

intel.

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE

8052 Only

| 7r2 | ExF2 | Rowk | Teik [Exenz [tR2 [c/72 | cr/REE |

TF2 T2CON. 7 Timer 2 overflow flag set by hardware and cleared by software. TF2 cannot be set when
either RCLK = 1 or CLK = 1

EXF2 T2CON. 6 Timer 2 external flag set when either a capture or reload is caused by a negative transition on
T2EX, and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU
to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.

RCLK T2CON.5 Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
receive clock in modes 1 & 3. RCLK = 0 causes Timer 1 overflow to be used for the receive
clock.

TLCK T2CON. 4 Transmit clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
transmit clock in modes 1 & 3. TCLK = O causes Timer 1 overflows to be used for the
transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of
negative transition on T2EX if Timer 2 is not being used to clock the Serial Port.
EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON. 2 Software START/STOP control for Timer 2. A logic 1 starts the Timer.

C/T2 T2CON.!1 Timer or Counter select.

0 = Internal Timer. 1 = External Event Counter (falling edge triggered).

CP/RL2 T2CON.O

Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if
EXEN2 = 1. When cleared, Auto-Reloads will occur either with Timer 2 overflows or
negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1,
this bit is ignored and the Timer is forced to Auto-Reload on Timer 2 overflow.

2-17

MCS?®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

intel.

TIMER/COUNTER 2 SET-UP

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit.
Therefore, bit TR2 must be set, separately, to turn the Timer on.

As a Timer:
Table 7
T2CON
MODE INTERNAL EXTERNAL
CONTROL CONTROL
(NOTE 1) (NOTE 2)

16-bit Auto-Reload 00H 08H

16-bit Capture 01H 09H

BAUD rate generator receive &

transmit same baud rate 34H 36H

receive only 24H 26H

transmit only 14H 16H
As a Counter:

Table 8
TMOD
MODE INTERNAL EXTERNAL
CONTROL CONTROL
(NOTE 1) (NOTE 2)
16-bit Auto-Reload 02H 0AH
16-bit Capture 03H 0BH

NOTES:

1. Capture/Reload occurs only on Timer/Counter overflow.
2. Capture/Reload occurs on Timer/Counter overflow and a 1 to 0 transition on T2EX
(P1.1) pin except when Timer 2 is used in the baud rate generating mode.

2-18

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE.

[sMo | sm1 [sm2 [men | B8 [mBe [T | R |

SMO SCON. 7 Serial Port mode specifier. (NOTE 1).
SM1 SCON. 6 Serial Port mode specifier. (NOTE 1).
SM2 SCON. 5 Enables the multiprocessor communication feature in modes 2 & 3. In mode 2 or 3, if SM2 is set
to 1 then RI will not be activated if the received 9th data bit (RB8) is 0. In mode 1, if SM2 = 1
then RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be 0.
(See Table 9).
REN SCON. 4 Set/Cleared by software to Enable/Disable reception.
TB8 SCON. 3 The 9th bit that will be transmitted in modes 2 & 3. Set/Cleared by software.
RB8 SCON. 2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8 is the stop bit
that was received. In mode 0, RBS is not used.
T SCON. 1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode O, or at the
beginning of the stop bit in the other modes. Must be cleared by software.
RI SCON. 0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway
through the stop bit time in the other modes (except see SM2). Must be cleared by software.
NOTE 1:
SMo SM1 Mode Description Baud Rate
0 0 0 SHIFT REGISTER Fosc./12
0 1 1 8-Bit UART Variable
1 0 2 9-Bit UART Fosc./64 OR
Fosc./32
1 1 3 9-Bit UART Variable
SERIAL PORT SET-UP:
Table 9
MODE SCON SM2 VARIATION
? ;g: Single Processor
Environment
2 90H (SM2 = 0)
3 DOH
? 7'}‘)?‘ Multiprocessor
Environment
2 BoH (SM2 = 1)
3 FOH

GENERATING BAUD RATES

Serial Port in Mode 0:

Mode 0 has a fixed baud rate which is 1/12 of the oscillator frequency. To run the serial port in this mode none of
the Timer/Counters need to be set up. Only the SCON register needs to be defined.

Osc Freq

Baud Rate =
au e 2

Serial Port in Mode 1:
Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (8052 only).

2-19

intgl. MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

USING TIMER/COUNTER 1 TO GENERATE BAUD RATES:
For this purpose, Timer 1 is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter.

K x Oscillator Freq.

Baud Rate = = 12 % 1256 — (TH1)]

If SMOD = 0, then K
If SMOD = |, then K

1.
2. (SMOD is the PCON register).

Most of the time the user knows the baud rate and needs to know the reload value for TH1.
Therefore, the equation to calculate TH1 can be written as:

K x Osc Freq.

THt = 256 —
2 384 x baud rate

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In
this case, the user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register. (ie, ORL
PCON, #80H). The address of PCON is 8§7H.

USING TIMER/COUNTER 2 TO GENERATE BAUD RATES:

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this
chapter. If Timer 2 is being clocked through pin T2 (P1.0) the baud rate is:

Baud Rate = Timer 2 Overflow Rate
16
And if it is being clocked internally the baud rate is:
Osc Freq

Baud Rate =

32 x [65536 — (RCAP2H, RCAP2L)]
To obtain the reload value for RCAP2H and RCAP2L the above equation can be rewritten as:

Osc Freq

RCAP2H, RCAP2L = 65536 — m

SERIAL PORT IN MODE 2:

The baud rate is fixed in this mode and is %5, or 4. of the oscillator frequency depending on the value of the SMOD
bit in the PCON register.

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock.
SMOD = 1, Baud Rate = 3; Osc Freq.

SMOD = 0, Baud Rate = Y4, Osc Freq.

To set the SMOD bit: ORL PCON, # 80H. The address of PCON is 87H.

SERIAL PORT IN MODE 3:

The baud rate in mode 3 is variable and sets up exactly the same as in mode 1.

2-20

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

MCS®-51 INSTRUCTION SET

Table 10. 8051 Instruction Set Summary

Interrupt Response Time: Refer to Hardware De-
scription Chapter.

Instructions that Affect Flag Settings(1)

Instruction Flag Instruction Flag
C OV AC C OV AC

ADD X X X CLRC (o}
ADDC X X X CPLC X

SuBB X X X ANLCbit X

MUL o X ANLC/bit X

DIV O X ORLCbit X

DA X ORLChit X

RRC X MOVChit X

RLC X CJINE X
SETBC 1

(1)Note that operations on SFR byte address 208 or
bit addresses 209-215 (i.e., the PSW or bits in the
PSW) will also affect flag settings.

Note on instruction set and addressing modes:

Rn — Register R7-RO of the currently se-
lected Register Bank.

— 8-bit internal data location’s address.
This could be an Internal Data RAM
location (0-127) or a SFR [ie., 1/O
port, control register, status register,
etc. (128-255)].

direct

@Ri — 8-bit internal data RAM location (0-
255) addressed indirectly through reg-
ister R1 or RO.

#data — 8-bit constant included in instruction.

#data 16 — 16-bit constant included in instruction.

addr 16 — 16-bit destination address. Used by
LCALL & LIMP. A branch can be
anywhere within the 64K-byte Pro-
gram Memory address space.

addr 11 — 11-bit destination address. Used by

ACALL & AJMP. The branch will be
within the same 2K-byte page of pro-
gram memory as the first byte of the
following instruction.

rel — Signed (two’s complement) 8-bit offset
byte. Used by SIMP and all condition-
al jumps. Range is —128 to +127
bytes relative to first byte of the fol-
lowing instruction.

bit — Direct Addressed bit in Internal Data
RAM or Special Function Register.

Mnemonic

Description

Byte

Oscillator
Period

ARITHMETIC OPERATIONS

ADD
ADD
ADD

ADD

ADDC

ADDC

ADDC

ADDC

SuUBB

suBB

suBB

suBB

INC

INC
INC

INC

DEC
DEC
DEC

DEC

ARn
A direct
A,@Ri

A, #data

A,Rn

A direct

A,@Ri

A, #data

ARn

A, direct

A,@Ri

A, #data

Rn
direct

@Ri
A

Rn
direct

@Ri

Add register to
Accumulator

Add direct byte to
Accumulator

Add indirect RAM
to Accumulator
Add immediate
datato
Accumulator

Add register to
Accumulator

with Carry

Add direct byte to
Accumuiator

with Carry

Add indirect

RAM to
Accumulator

with Carry

Add immediate
data to Acc

with Carry
Subtract Register
from Acc with
borrow

Subtract direct
byte from Acc
with borrow
Subtract indirect
RAM from ACC
with borrow
Subtract
immediate data
from Acc with
borrow

Increment
Accumulator

increment register
increment direct

byte

Increment direct
RAM
Decrement
Accumulator
Decrement
Register
Decrement direct
byte

Decrement
indirect RAM

12

12

12

12

12

12

12

12

12

12

12

12

12

12
12

12

12

12

12

12

All mnemonics copyrighted ©Intel Corporation 1980

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Table 10. 8051 Instruction Set Summary (Continued)

Mnemonic Description Byte oﬁ:ﬁ' Mnemonic Description Byte O::I:il::’or
ARITHMETIC OPERATIONS (Continued) LOGICAL OPERATIONS (Continued)
INC DPTR Increment Data 1 24 RL A Rotate 1 12
Pointer Accumulator Left
MUL AB Multiply A & B 1 48 RLC A Rotate 1 12
DIV AB Divide Aby B 1 48 Accumulator Left
DA A Decimal Adjust 1 12 through the Carry
Accumulator RR A Rotate 1 12
LOGICAL OPERATIONS Accumulator
ANL A,Rn AND Register to 1 12 Right
Accumulator RRC A Rotate 1 12
ANL Adirect AND direct byte 2 12 Accumulator
to Accumulator Right through
ANL A@Ri AND indirect 1 12 the Carry
RAM to SWAP A Swap nibbles 1 12
Accumulator within the
ANL A #data AND immediate 2 12 Accumutator
datato DATA TRANSFER
Accumulator MOV ARn Move 1 12
ANL direct,A AND Accumulator 2 12 register to
to direct byte Accumulator
ANL direct,#data AND immediate 3 24 MOV A direct Move direct 2 12
data to direct byte byte to
ORL ARn OR register to 1 12 Accumulator
Accumulator MOV A,@Ri Move indirect 1 12
ORL A,direct OR direct byte to 2 12 RAM to
Accumulator Accumulator
ORL A,@Ri OR indirect RAM 1 12 MOV A #data Move 2 12
to Accumulator immediate
ORL A, #data OR immediate 2 12 data to
datato Accumulator
Accumulator MOV RnA Move 1 12
ORL directA OR Accumulator 2 12 Accumulator
to direct byte to register
ORL direct, #data OR immediate 3 24 MOV Rn,direct Move direct 2 24
data to direct byte byte to
XRL ARn Exclusive-OR 1 12 register
register to MOV Rn,#data Move 2 12
Accumulator immediate data
XRL Adirect Exclusive-OR 2 12 to register
direct byte to MOV direct,A Move 2 12
Accumulator Accumulator
XRL A,@Ri Exclusive-OR 1 12 to direct byte
indirect RAM to MOV direct,Rn Move register 2 24
Accumulator to direct byte
XRL A, #data Exclusive-OR 2 12 MOV directdirect Move direct 3 24
immediate data to byte to direct
Accumulator MOV direct,@Ri Move indirect 2 24
XRL direct, A Exclusive-OR 2 12 RAM to
Accumulator to direct byte
direct byte MOV direct,#data Move 3 24
XRL direct,#data Exclusive-OR 3 24 immediate data
immediate data to direct byte
to direct byte MOV @Ri,A Move 1 12
CLR A Clear 1 12 Accumulator to
Accumulator indirect RAM
CPL A Complement 1 12 All mnemonics copyrighted ®Intel Corporation 1980
Accumulator

2-22

intal.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Table 10. 8051 Iinstruction Set Summary (Continued)

2-23

Osclllator Oscillator
Mnemonic Description Byte Period Mnemonic Description Byte Period
DATA TRANSFER (Continued) BOOLEAN VARIABLE MANIPULATION
MOV @Ridirect Move direct 2 24 CLR o] Clear Carry 1 12
byte to CLR bit Clear direct bit 2 12
indirect RAM SETB C Set Carry 1 12
MOV @Ri,#data Move 2 12 SETB bit Set direct bit 2 12
immediate CPL C Compiement 1 12
data to Carry
indirect RAM CPL bit Complement 2 12
MOV DPTR,#data16 Load Data 3 24 direct bit
Pointer with a ANL C,bit AND direct bit 2 24
16-bit constant to CARRY
MOVC A,@A+DPTR Move Code 1 24 ANL C,/bit AND complement 2 24
byte relative to of direct bit
DPTR to Acc to Carry
MOVC A,@A+PC Move Code 1 24 ORL C,bit OR direct bit 2 24
byte relative to to Carry
PCto Acc ORL C,/bit OR complement 2 24
MOVX A,@Ri Move 1 24 of direct bit
External to Carry
RAM (8-bit MOV C.bit Move direct bit 2 12
addr) to Acc to Carry
MOVX A,@DPTR Move 1 24 MOV bit,C Move Carry to 2 24
External direct bit
RAM (16-bit JC rel Jump if Carry 2 24
addr) to Acc is set
MOVX @RiA Move Acc to 1 24 JNC rel Jump if Carry 2 24
External RAM not set
(8-bit addr) J8 bitrel Jump if direct 3 24
MOVX @DPTR,A Move Acc to 1 24 Bit is set
External RAM JNB bitrel Jump if direct 3 24
(16-bit addr) Bit is Not set
PUSH direct Push direct 2 24 JBC bitrel Jump if direct 3 24
byte onto Bitis set &
stack clear bit
POP direct Pop direct 2 24 PROGRAM BRANCHING
byte from ACALL addr11 Absolute 2 24
stack Subroutine
XCH ARn Exchange 1 12 Call
register with LCALL addri6 Long 3 24
Accumulator Subroutine
XCH Adirect Exchange 2 12 Call
direct byte RET Return from 1 24
with Subroutine
Accumulator RETI Return from 1 24
XCH A@Ri Exchange 1 12 interrupt
indirect RAM AJMP addri1 Absolute 2 24
with Jump
Accumulator LJMP addri6 LongJump 3 24
XCHD A,@Ri Exchange low- 1 12 SIMP el Short Jump 2 24
order Digit (relative addr)
indirect RAM All mnemonics copyrighted ®©Intel Corporation 1980
with Acc

in‘l‘el. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Table 10. 8051 Instruction Set Summary (Continued)

Mnemonic Description Byte Osclp l|lato| r Mnemonic Description Byte o:ﬂ.:::;”
PROGRAM BRANCHING (Continued) PROGRAM BRANCHING (Continued)
JMP @A+DPTR Jump indirect 1 24 CJNE Rn,#datarel Compare 3 24
relative to the immediate to
DPTR register and
JZ rel Jump if 2 24 Jump if Not
Accumulator Equal
is Zero CJNE @Ri, #datarel Compare 3 24
JNZ rel Jump if 2 24 immediate to
Accumulator indirect and
is Not Zero Jump if Not
CGJINE Adirectrel Compare 3 24 Equal
direct byte to DJNZ Rn,rel Decrement 2 24
Acc and Jump register and
if Not Equal Jump if Not
CINE A,#data,rel Compare 3 24 Zero
immediate to DJINZ directrel Decrement 3 24
Acc and Jump direct byte
if Not Equal and Jump if
Not Zero
NOP No Operation 1 12

2-24

All mnemonics copyrighted © intel Corporation 1980

in‘l‘el. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Table 11. Instruction Opcodes in Hexadecimal Order

: :: e :'u:;::; Mnemonic Operands cm :f";';::; Mnemonic Operands
00 1 NOP 33 1 RLC A

01 2 AJMP code addr 34 2 ADDC A, #data

02 3 LJMP code addr 35 2 ADDC A,data addr
03 1 RR A 36 1 ADDC A,@R0

04 1 INC A 37 1 ADDC A,@R1

05 2 INC data addr 38 1 ADDC ARO

06 1 INC @RO 39 1 ADDC AR1

07 1 INC @R1 3A 1 ADDC AR2

08 1 INC RO 3B 1 ADDC AR3

09 1 INC R1 3C 1 ADDC AR4

0A 1 INC R2 3D 1 ADDC AR5

0B 1 INC R3 3E 1 ADDC A RS

0oC 1 INC R4 3F 1 ADDC AR7

[+]0} 1 INC R5 40 2 JC code addr
OE 1 INC R6 41 2 AJMP code addr
OF 1 INC R7 42 2 ORL data addr,A
10 3 JBC bit addr, code addr 43 3 ORL data addr, #data
1 2 ACALL code addr 44 2 ORL A, #data

12 3 LCALL code addr 45 2 ORL A,data addr
13 1 RRC A 46 1 ORL A,@R0

14 1 DEC A 47 1 ORL A @Rt

15 2 DEC data addr 48 1 ORL ARO

16 1 DEC @RO 49 1 ORL AR1

17 1 DEC @R1 4A 1 ORL AR2

18 1 DEC RO 4B 1 ORL AR3

19 1 DEC R1 4C 1 ORL AR4

1A 1 DEC R2 4D 1 ORL AR5

1B 1 DEC R3 4E 1 ORL AR6

1C 1 DEC R4 4F 1 ORL AR7

1D 1 DEC R5 50 2 JNC code addr
1E 1 DEC Ré 51 2 ACALL code addr
1F 1 DEC R7 52 2 ANL data addr,A
20 3 JB bit addr, code addr 53 3 ANL data addr, # data
21 2 AJMP code addr 54 2 ANL A, #data

22 1 RET 55 2 ANL A,data addr
23 1 RL A 56 1 ANL A,@R0

24 2 ADD A, #data 57 1 ANL A,@R1

25 2 ADD A,data addr 58 1 ANL ARO

26 1 ADD A,@RO 59 1 ANL AR1

27 1 ADD A@R1 5A 1 ANL AR2

28 1 ADD ARO 5B 1 ANL AR3

29 1 ADD AR1 5C 1 ANL AR4

2A 1 ADD AR2 5D 1 ANL ARS

28 1 ADD A,R3 S5E 1 ANL AR

2C 1 ADD AR4 5F 1 ANL AR7

2D 1 ADD AR5 €0 2 Jz code addr
2E 1 ADD AR6 61 2 AJMP code addr
2F 1 ADD AR7 62 2 XRL data addr,A
30 3 JNB bit addr, code addr 63 3 XRL data addr, # data
31 2 ACALL code addr 64 2 XRL A, #data

32 1 RETI 65 2 XRL A,data addr

2-25

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Table 11. instruction Opcodes in Hexadecimal Order (Continued)

(::?e ;u;‘;:; Mnemonic Operands (:lo?e :f";;l::; Mnemonic Operands

66 1 XRL A,@R0 99 1 suBB AR1

67 1 XRL A,@R1 9A 1 SuBB AR2

68 1 XRL ARO 9B 1 suBB AR3

69 1 XRL AR1 aC 1 suBB A,R4

6A 1 XRL AR2 aD 1 suBB AR5

6B 1 XRL AR3 SE 1 SuUBB AR6

6C 1 XRL AR4 oF 1 SuBB AR7

6D 1 XRL A,RS A0 2 ORL C,/bit addr

6E 1 XAL AR6 At 2 AJMP code addr

6F 1 XRL AR7 A2 2 MOV C,bit addr

70 2 JNZ code addr A3 1 INC DPTR

71 2 ACALL code addr A4 1 MUL AB

72 2 ORL C,bit addr A5 reserved

73 1 JMP @A+DPTR A6 2 MOV @RO0,data addr

74 2 MOV A, #data A7 2 MOV @R1,data addr

75 3 MOV data addr, #data A8 2 MOV RO,data addr

76 2 MOV @RO0, #data A9 2 MOV R1,data addr

77 2 MOV @R1,#data AA 2 MOV R2,data addr

78 2 MOV RO, #data AB 2 MOV R3,data addr

79 2 MOV R1,#data AC 2 MOV Rd4,data addr

7A 2 MOV R2, #data AD 2 MOV RS5,data addr

7B 2 MOV R3,#data AE 2 MOV R6,data addr

7C 2 MOV R4, #data AF 2 MOV R7,data addr

7D 2 MOV RS, #data BO 2 ANL C,/bit addr

7€ 2 MOV R6, #data B1 2 ACALL code addr

7F 2 MOV R7,#data B2 2 CPL bit addr

80 2 SJMP code addr B3 1 CPL o]

81 2 AJMP code addr B4 3 CJINE A, #data,code addr
82 2 ANL C,bit addr BS 3 CINE A, data addr,code addr
83 1 MOVC A,@A+PC B6 3 CJINE @RO, #data,code addr
84 1 piv AB B7 3 CJINE @R1, #data,code addr
85 3 MOV data addr, data addr B8 3 CJINE RO, #data,code addr
86 2 MOV data addr,@R0 B9 3 GJINE R1, #data,code addr
87 2 MOV data addr,@R1 BA 3 GJINE R2, # data,code addr
88 2 MOV data addr,RO BB 3 GJNE R3, #data,code addr
89 2 MOV data addr,R1 BC 3 CJNE R4, # data,code addr
8A 2 MOV data addr,R2 BD 3 CJINE RS, #data,code addr
88 2 MOV data addr,R3 BE 3 CJINE R6, # data,code addr
8C 2 MOV data addr,R4 BF 3 CJINE R7, #data,code addr
8D 2 MOV data addr,RS Cco 2 PUSH data addr

8E 2 MOV data addr,R6 C1 2 AJMP code addr

8F 2 MOV data addr,R7 c2 2 CLR bit addr

90 3 MOV DPTR, #data Cc3 1 CLR C

91 2 ACALL code addr C4 1 SWAP A

92 2 MOV bit addr,C Cs 2 XCH A,data addr

93 1 MOVC A,@A+DPTR C6 1 XCH A,@RO

94 2 SUBB A, #data Cc7 1 XCH A,@R1

95 2 SuBB A,data addr cs 1 XCH ARO

96 1 suBB A,@R0 C9 1 XCH AR1

97 1 SUBB A@R1 CA 1 XCH AR2

98 1 SUBB ARO CB 1 XCH AR3

2-26

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

Table 11. Instruction Opcodes in Hexadecimal Order (Continued)

ch:;(e ;u;'y::; Mnemonic Operands (:::e ;lfugryt::; Mnemonic Operands
cCc 1 XCH A,R4 E6 1 MOV A,@RO
CcD 1 XCH AR5 E7 1 MOV A,@R1

CE 1 XCH ARE E8 1 MOV ARO

CF 1 XCH AR7 E9 1 MOV AR1

Do 2 POP data addr EA 1 MOV AR2

D1 2 ACALL code addr EB 1 MOV A,R3

D2 2 SETB bit addr EC 1 MOV A,R4

D3 1 SETB c ED 1 MOV A,R5

D4 1 DA A EE 1 MOV A,R6

Ds 3 DJNZ data addr,code addr EF 1 MOV A,R7

D6 1 XCHD A,@RO FO 1 MOVX @DPTR,A
D7 1 XCHD A,@R1 F1 2 ACALL code addr
D8 2 DINZ RO,code addr F2 1 MOVX @R0,A

D9 2 DINZ R1,code addr F3 1 MOVX @R1A
DA 2 DJNZ R2,code addr F4 1 CcPL A

DB 2 DJUNZ R3,code addr F§ 2 MOV data addr,A
DC 2 DJINZ R4,code addr Fé 1 MOV @R0,A
DD 2 DJNZ RS,code addr F7 1 MOV @R1,A
DE 2 DJNZ R6,code addr F8 1 MOV RO,A

DF 2 DJNZ R7,code addr F9 1 MOV R1,A

EO 1 MOVX A,@DPTR FA 1 MOV R2,A

E1 2 AJMP code addr FB 1 MOV R3,A

E2 1 MOVX A,@RO FC 1 MOV R4,A

E3 1 MOVX A@R1 FD 1 MOV RS5,A

E4 1 CLR A FE 1 MOV Ré.A

ES 2 MOV A,data addr FF 1 MOV R7,A

2-27

intel.

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

ACALL addr11

INSTRUCTION DEFINITIONS

Function:
Description:

Exampie:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address. The instruction
increments the PC twice to obtain the address of the following instruction, then pushes the
16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice. The
destination address is obtained by successively concatenating the five high-order bits of the
incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called
must therefore start within the same 2K block of the program memory as the first byte of the
instruction following ACALL. No flags are affected.

Initially SP equals O7H. The label “SUBRTN is at program memory location 0345 H. After
executing the instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain
25H and O1H, respectively, and the PC will contain 0345H.

2
2

|at0agas1[0001]| [a7a6a5a4] adazatl a0

ACALL

(PC) « (PC) + 2

(SP) «—(SP) + 1

((8P)) « (PC70)
(SP)e—(SP) + 1

((SP)) « (PCy5.9)
(PCio.0) < page address

2-28

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

ADD A, <src-byte>

Function:

Description:

Example:

ADD A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ADD A direct
Bytes:
Cycles:
Encoding:

Operation:

Add

ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumula-
tor. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or
bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an
overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6;
otherwise OV is cleared. When adding signed integers, OV indicates a negative number pro-
duced as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme-
diate.

The Accumulator holds OC3H (11000011B) and register 0 holds OAAH (10101010B). The
instruction,

ADD ARO

will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry
flag and OV set to 1.

1
1

[0010 1rrr]|

ADD
(A) < (A) + (Rn)

2
1

loo10][0101]| | directaddress

ADD
(A) < (A) + (direct)

2-29

intel. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

ADD A,@Ri
Bytes: 1
Cycles: 1

Encoding: | 0010|011 |

Operation: ADD
(A) < (A) + (RD

ADD A, #data
Bytes: 2
Cycles: 1
Encoding: | 0010|0100 | | immediate data

Operation: ADD
(A) < (A) + #data

ADDC A, <src-byte>

Function: Add with Carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator
contents, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set,
respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding

unsigned integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not out of
bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number
produced as the sum of two positive operands or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme-

diate.

Example: The Accumulator holds OC3H (11000011B) and register 0 holds OAAH (10101010B) with the

carry flag set. The instruction,

ADDC A,RO

will leave 6EH (01101110B) in the Accumulator with AC cleared and both the Carry flag and

OV setto 1.

2-30

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

ADDC ARn
Bytes:
Cycles:
Encoding:

Operation:

ADDC A,direct
Bytes:

Cycles:
Encoding:

Operation:

ADDC A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

ADDC A, #data
Bytes:

Cycles:
Encoding:

Operation:

1
1

|0011|1rrr]

ADDC
A=@K+ ©O +Ry

2
1

[0011]0101] |directaddress

ADDC
(A) €= (A) + (O + (direct)

1
1

loo11]o11i]

ADDC
A=A+ O + (®Y)

2
1

[oo011]0100]| | immediatedata

ADDC
(A) < (A) + (C) + #data

2-31

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

AJMP addr11

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Absolute Jump

AJMP transfers program execution to the indicated address, which is formed at run-time by
concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode bits
7-5, and the second byte of the instruction. The destination must therefore be within the same
2K block of program memory as the first byte of the instruction following ATMP.

The label “JMPADR?” is at program memory location 0123H. The instruction,
AJMP JMPADR

is at location 0345H and will load the PC with 0123H.
2
2

|at0a9a80 [0001]| [a7a6as5as]asaatao

AJMP

PC) < (PC) + 2
(PC10.0) < page address

ANL <dest-byte>,<src-byte>

Function:

Description:

Example:

Logical-AND for byte variables

ANL performs the bitwise logical-AND operation between the variables indicated and stores
the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

If the Accumulator holds OC3H (11000011B) and register O holds 55H (01010101B) then the
instruction,

ANL ARO

will leave 41H (01000001B) in the Accumulator.

‘When the destination is a directly addressed byte, this instruction will clear combinations of
bits in any RAM location or hardware register. The mask byte determining the pattern of bits
to be cleared would cither be a constant contained in the instruction or a value computed in
the Accumulator at run-time. The instruction,

ANL P1,#01110011B

will clear bits 7, 3, and 2 of output port 1.

2-32

intel. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

ANL ARn
Bytes: 1
Cycles: 1

Encoding: | 0101 | 1rrr|

Operation: ANL
(A) < (A) A Rn)

ANL Adirect
Bytes: 2
Cycles: 1
Encoding: | 0101][0101 | | directaddress

Operation: ANL

(A) <= (A) A (direct)

ANL A,@Ri
Bytes: 1
Cycles: 1

Encoding: 0101] 011i]

Operation: ANL

(A) < (A) A ((Ri))

ANL A #data
Bytes: 2
Cycles: 1
Encoding: (0101|0100 | | immediate data

Operation: ANL
(A) «<— (A) A #data

ANL direct,A
Bytes: 2
Cycles: 1

Encoding: IT1 01 | 0010 | [direct address

Operation: ANL
(direct) <— (direct) A (A)

2-33

intgl.

MCS?®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

ANL direct,#data

Bytes:
Cycles:

Encoding:

Operation:

ANL C,<src-bit>

3
2

[01010011 l I direct address I [immediate data

ANL
(direct) <— (direct) A #data

Function:

Description:

Example:

ANL C,bit
Bytes:
Cycles:
Encoding:

Operation:

ANL C,/bit
Bytes:
Cycles:

Encoding:

Operation:

Logical-AND for bit variables

If the Boolean value of the source bit is a logical O then clear the carry flag; otherwise leave the
carry flag in its current state. A slash (/) preceding the operand in the assembly language
indicates that the logical complement of the addressed bit is used as the source value, but the
source bit itself is not affected. No other flags are affected.

Only direct addressing is allowed for the source operand.
Set the carry flag if, and only if, P10 = 1, ACC.7 = 1,and OV = 0:

MOV (P10 ;LOAD CARRY WITH INPUT PIN STATE
ANL CACC7 ;AND CARRY WITH ACCUM. BIT 7

ANL C/0V ;AND WITH INVERSE OF OVERFLOW FLAG
2

2

1000|0010 | bitaddress

ANL
(C) «(C) A (bit)

2
2

10110000 | bitaddress |

ANL

QOO AT (bit)

in‘l'el. ‘ MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

CJNE <dest-byte>,<src-byte>, rel

Function:

Description:

Example:

CJNE Adirectrel
Bytes:
Cycles:
Encoding:

Operation:

Compare and Jump if Not Equal.

CINE compares the magnitudes of the first two operands, and branches if their values are not
equal. The branch destination is computed by adding the signed relative-displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction.
The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned
integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may be
compared with any directly addressed byte or immediate data, and any indirect RAM location
or working register can be compared with an immediate constant.

The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the se-
quence,

O ; R7 = 60H.
NOT__EQ: JC REQ_LOW ; :{-771{)7 6?) l20]-1

sets the carry flag and branches to the instruction at label NOT__EQ. By testing the carry flag,
this instruction determines whether R7 is greater or less than 60H.

If the data being presented to Port 1 is also 34H, then the instruction,
WAIT: CINE APLWAIT
clears the carry flag and continues with the next instruction in sequence, since the Accumula-

tor does equal the data read from P1. (If some other value was being input on P1, the program
will loop at this point until the P1 data changes to 34H.)

3
2

| 1011 | 0101] | direct address | | rel. addressJ

PC)«—(PC) + 3
IF (A) <> (direct)
THEN
(PC) «— (PC) + relative offset

IF (A) < (direct)
THEN

2-35

in'l'el. MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

CJNE A,#datarel

Bytes: 3
Cycles: 2
Encoding: | 1011 I 010 0—| I immediate data I [rel. address

Operation: (PC)<«(PC) + 3
IF (A) <> data
THEN
(PC) « (PC) + relative offset

IF (A) < data
THEN

©C)«1
ELSE

(C)«0

CJNE Rn,#data,rel
Bytes: 3
Cycles: 2

Encoding: I 1011 | 1 rrr—| [immediate daﬂ rrel. addresq

Operation: (PC)<«(PC) + 3
IF (Rn) <> data

THEN
®PC) €« (PC) + relative offset
IF (Rn) < data
THEN
© <1
ELSE
© «0
CJINE @Ri,#data,rel
Bytes: 3
Cycles: 2
Encoding: | 1011/ 011i| | immediatedata | | rel address |

Operation: (PC)<«(PC) + 3
IF (Ri)) <> data
THEN

(PC) «— (PC) + relative offset

IF ((Ri) < data
THEN

(© «1
ELSE

(©«0

2-36

intel.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

CLR A
Function: Clear Accumulator
Description: The Accumulator is cleared (all bits set on zero). No flags are affected.
Example: The Accumulator contains 5SCH (01011100B). The instruction,
CLR A
will leave the Accumulator set to 00H (00000000B).
Bytes: 1
Cycles: 1
Encoding: | 1110[0100
Operation: CLR
(A)«0
CLR bit
Function: Clear bit
Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the
carry flag or any directly addressable bit.
Example: Port 1 has previously been written with SDH (01011101B). The instruction,
CLR Pi2
will Jeave the port set to S9H (01011001B).
CLR C
Bytes: 1
Cycles: 1
Encoding: | 1100|0011
Operation: CLR
Cy<0
CLR bit
Bytes: 2
Cycles: 1
Encoding: | 1100|0010 | | bitaddress
Operation: CLR
(bit) «— 0

2-37

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

CPL A
Function: Complement Accumulator
Description: Each bit of the Accumulator is logically complemented (one’s complement). Bits which previ-
ously contained a one are changed to a zero and vice-versa. No flags are affected.
Example: The Accumulator contains SCH (01011100B). The instruction,
CPL A
will leave the Accumulator set to 0A3H (10100011B).
Bytes: 1
Cycles: 1
Encodingg | 1111|0100 |
Operation: CPL
(A) < 1(A)
CPL Dbit
Function: Complement bit
Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and
vice-versa. No other flags are affected. CLR can operate on the carry or any directly address-
able bit.
Note: When this instruction is used to modify an output pin, the value used as the original data
will be read from the output data latch, not the input pin.
Example: Port 1 has previously been written with 5SBH (01011101B). The instruction sequence,
CPL PI.1
CPL Pi2
will leave the port set to 5SBH (01011011B).
ceL C
Bytes: 1
Cycles: 1
Encoding: 10110011
Operation: CPL
©<«10©

intgl.

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

CPL bit
Bytes: 2
Cycles: 1
Encoding: | 1011 | 0010 l | bit address
Operation: CPL
(bit) <— 1 (bit)
DA A
Function: Decimal-adjust Accumulator for Addition
Description: DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two

variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one,
six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This
internal addition would set the carry flag if a carry-out of the low-order four-bit field propagat-
ed through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-111xxxx),
these high-order bits are incremented by six, producing the proper BCD digit in the high-order
nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but
wouldn’t clear the carry. The carry flag thus indicates if the sum of the original two BCD
variables is greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the Accumulator, depending on
initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD nota-
tion, nor does DA. A apply to decimal subtraction.

2-39

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Example:

Bytes:
Cycles:

Encoding:

Operation:

The Accumulator holds the value 56H (01010110B) representing the packed BCD digits of the
decimal number 56. Register 3 contains the value 67H (01100111B) representing the packed
BCD digits of the decimal number 67. The carry flag is set. The instruction sequence.

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the value OBEH
(10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-order two
digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be set by the Decimal
Adjust instruction, indicating that a decimal overflow occurred. The true sum 56, 67, and ! is
124,

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumulator
initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD A,#9%9H
DA A

will leave the carry set and 29H in the Accumulator, since 30 + 99 = 129. The low-order
byte of the sum can be interpreted to mean 30 — 1 = 29,

1
1

{1101]0100|

DA
-contents of Accumulator are BCD
IF [[(A3g) > 91 V [(AC) = 1]]
THEN(A3.9) < (A3) + 6
AND

IF [[A79>91V [C) =1]]
THEN (A74) < (A74) + 6

2-40

intal.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

DEC byte
Function: Decrement
Description: The variable indicated is decremented by 1. An original value of 00H will underflow to OFFH.
No flags are affected. Four operand addressing modes are allowed: accumulator, register,
direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: Register O contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H
and 40H, respectively. The instruction sequence,
DEC @RO
DEC RO
DEC @RO
will leave register O set to 7EH and internal RAM locations 7EH and 7FH set to OFFH and
3FH.
DEC A
Bytes: 1
Cycles: 1
Encoding: | 0001|0100 |
Operation: DEC
A<=@® -1
DEC Rn
Bytes: 1
Cycles: 1
Encoding: | 0001 | 1rrr|
Operation: DEC
(Rn) <= (Rn) — 1

2-41

intel.

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

DEC direct
Bytes: 2
Cycles: 1
Encoding: ’ 0001 | 0101 l mrect address
Operation: DEC
(direct) <— (direct) — 1
DEC @Ri
Bytes: 1
Cycles: 1
Encoding: 0001 I 01 1i—|
Operation: DEC
(RD) < (Ri) — 1
DIV AB
Function: Divide
Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit
integer in register B. The Accumulator receives the integer part of the quotient; register B
receives the integer remainder. The carry and OV flags will be cleared.
Exception: if B had originally contained OOH, the values returned in the Accumulator and B-
register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case.
Example: The Accumulator contains 251 (OFBH or 11111011B) and B contains 18 (12H or 00010010B).
The instruction,
DIV AB
will leave 13 in the Accumulator (ODH or 00001101B) and the value 17 (11H or 00010001B)
in B, since 251 = (13 X 18) + 17. Carry and OV will both be cleared.
Bytes: 1
Cycles: 4
Encoding: | 1000|0100 |
Operation: DIV
(GYEX

Bho < @/®)

2-42

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

DJNZ <byte>,<rel-addr>

Function:
Description:

Example:

DJNZ Rn,rel
Bytes:
Cycles:
Encoding:

Operation:

Decrement and Jump if Not Zero

DJINZ decrements the location indicated by 1, and branches to the address indicated by the
second operand if the resulting value is not zero. An original value of 00H will underflow to
OFFH. No flags are affected. The branch destination would be computed by adding the signed
relative-displacement value in the last instruction byte to the PC, after incrementing the PC to
the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respec-
tively. The instruction sequence,

DIJNZ 40H,LABEL__1
DINZ 50H,LABEL__2
DIJNZ 60H,LABEL__3

will cause a jump to the instruction at label LABEL__2 with the values 00H, 6FH, and 15H in
the three RAM locations. The first jump was nor taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction.
The instruction sequence,

MOV R2,#8
TOGGLE: CPL P17
DINZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1.
Each pulse will last three machine cycles; two for DINZ and one to alter the pin.

2
2

I1101|1rrr| |re|.address

DINZ
@PC)«— (PC) + 2
(Rn) < (Rn) — 1
IF (Rn) > 0or(Rn) <0
THEN
(PC) <~ (PC) + rel

2-43

intgl. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

DJNZ direct,rel

Bytes: 3
Cycles: 2
Encoding: l 1101 l 0101 | [direct address | | rel. address]

Operation: DINZ
(PC) < (PC) + 2
(direct) «— (direct) — 1
IF (direct) > 0 or (direct) < 0
THEN
(PC) « (PC) + rel

INC <byte>

Function: Increment

Description: INC increments the indicated variable by 1. An original value of OFFH will overflow to O0H.
No flags are affected. Three addressing modes are allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, nor the input pins.

Example: Register O contains 7EH (011111110B). Internai RAM locations 7EH and 7FH contain OFFH
and 40H, respectively. The instruction sequence,

INC @RO
INC RO
INC @RO

will leave register O set to 7FH and internal RAM locations 7EH and 7FH holding (respective-
ly) OOH and 41H.
INC A
Bytes: 1
Cycles: 1

Encoding: | 0000|0100

Operation: INC
(A)y<—(A) + 1

2-44

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

INC Rn
Bytes: 1
Cycles: 1|
Encoding: fooooﬁ rrr]
Operation: INC
(Rn) < (Rn) + 1
INC direct
Bytes: 2
Cycles: 1
Encoding: | 0000|0101 | | directaddress
Operation: INC
(direct) <— (direct) + 1
INC @Ri
Bytes: 1
Cycles: 1
Encoding: | 0000|011 |
Operation: INC
(RD) « (RD) + 1
INC DPTR
Function: Increment Data Pointer
Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed; an
overflow of the low-order byte of the data pointer (DPL) from OFFH to O0H will increment
the high-order byte (DPH). No flags are affected.
This is the only 16-bit register which can be incremented.
Example: Registers DPH and DPL contain 12H and OFEH, respectively. The instruction sequence,
INC DPIR
INC DPTR
INC DPTR
will change DPH and DPL to 13H and 01H.
Bytes: 1
Cycles: 2
Encoding: | 1010] 0011
Operation: INC

(DPTR) <— (DPTR) + 1

2-45

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

JB bit,rel
Function: Jump if Bit set
Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The
instruction sequence,
JB P1.2,LABELIl
JB ACC.2,LABEL2
will cause program execution to branch to the instruction at label LABEL2.

Bytes: 3
Cycles: 2
Encoding: LO 010 | 0000 | [bit address‘| Pel. address
Operation: JB
(PC)«—(PC) + 3
IF @ity =1
THEN
(PC) « (PC) + rel
JBC bitrel
Function: Jump if Bit is set and Clear bit
Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with the next

instruction. Zhe bit will not be cleared if it is already a zero. The branch destination is comput-
ed by adding the signed relative-displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. No flags are affected.
Note: When this instruction is used to test an output pin, the value used as the original data
will be read from the output data latch, ror the input pin.

Example: The Accumulator holds 56H (01010110B). The instruction sequence,

JBC ACC.3,LABELLl
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the label LABEL2,
with the Accumulator modified to 52H (01010010B).

2-46

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

Bytes: 3
Cycles: 2
Encoding: | 0001|0000 | | bitaddress | | rel address
Operation: JBC
(PC) « (PC) + 3
IF (bit) = 1
THEN
(bit) «— 0
(PC) «— (PC) + rel
JC rel
Function: Jump if Carry is set
Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice. No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
JC LABELI
CPL C
JC LABEL2
will set the carry and cause program execution to continue at the instruction identified by the
label LABEL2.
Bytes: 2
Cycles: 2
Encoding: (0100|0000 | | rel address
Operation: JC
(PC)«—(PC) + 2
IF (=1
THEN

(PC) « (PC) + rel

2-47

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

JMP @A+DPTR

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Jump indirect

Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and
load the resulting sum to the program counter. This will be the address for subsequent instruc-
tion fetches. Sixteen-bit addition is performed (modulo 216): a carry-out from the low-order
eight bits propagates through the higher-order bits. Neither the Accumulator nor the Data
Pointer is altered. No flags are affected.

An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will
branch to one of four ATMP instructions in 2 jump table starting at JMP__TBL:

MOV
JMP
JMP__TBL: AJMP
AJMP
AIMP
AJMP

DPTR, #JMP_TBL
@A +DPTR
LABELO

LABEL1

LABEL2

LABEL3

If the Accumulator equals 04H when starting this sequence, execution will jump to label
LABEL?2. Remember that AJMP is a two-byte instruction, so the jump instructions start at

every other address.
1
2

lo111]0011]

JMP
(PC) «— (A) + (DPTR)

2-48

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

JNB Dbitrel
Function: Jump if Bit Not set
Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The
instruction sequence,
JNB PI1.3,LABELI
JNB ACC.3,LABEL2
will cause program execution to continue at the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: l 0011 I 0000 | | bit address | | rel. address
Operation: JNB
(PC) < (PC) + 3
IF (bit) = 0
THEN (PC) <— (PC) + rel.
JNC rel
Function: Jump if Carry not set
Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The carry flag is not modified.
Example: The carry flag is set. The instruction sequence,
JNC LABELI
CPL C
JNC LABEL2
will clear the carry and cause program execution to continue at the instruction identified by
the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: [0101 [0000 l | rel. address]
Operation: JNC
(PC) < (PC) + 2
IF © =0

THEN (PC) < (PC) + rel

2-49

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

JNZ rel
Function: Jump if Accumulator Not Zero
Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis-
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally holds OOH. The instruction sequence,
JNZ LABELI
INC A
JNZ LABEL2
will set the Accumulator to O1H and continue at label LABEL2.
Bytes: 2
Cycles: 2
Encoding: l 0111 [0000 I l rel. address
Operation: JNZ
(PC)«— (PC) + 2
IF (A)#*0
THEN (PC) < (PC) + rel
JZ rel
Function: Jump if Accumulator Zero
Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis-
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumnulator is not modified. No flags are affected.
Example: The Accumulator originally contains O1H. The instruction sequence,
JZ LABELl
DEC A
JZ LABEL2
will change the Accumulator to 00H and cause program execution to continue at the instruc-
tion identified by the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0110 [0000]| [reladdress
Operation: JZ
®PC) < (PC) + 2
IF (Ay=0

THEN (PC) < (PC) + rel

2-80

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

LCALL addri6

Function: Long call
Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of
the LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K-byte program memory address space.
No flags are affected.
Example: Initially the Stack Pointer equals O7H. The label “SUBRTN” is assigned to program memory
location 1234H. After executing the instruction,
LCALL SUBRTN
at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H
will contain 26H and 01H, and the PC will contain 1234H.
Bytes: 3
Cycles: 2
Encoding: [0001|0010 | addri5-add8 | | addr7-addro
Operation: LCALL
PC)<— (PC) + 3
(SP)<«(SP) + 1
((SP)) «— (PCy.9)
(SP)<—(SP) + 1
((SP)) <= (PCy5.9)
(PC) < addrysg
LJMP addrié
Function: Long Jump
Description: LYMP causes an unconditional branch to the indicated address, by loading the high-order and
low-order bytes of the PC (respectively) with the second and third instruction bytes. The
destination may therefore be anywhere in the full 64K program memory address space. No
flags are affected.
Example: The label “TMPADR” is assigned to the instruction at program memory location 1234H. The
instruction,
LIMP JMPADR
at location 0123H will load the program counter with 1234H.
Bytes: 3
Cycles: 2
Encoding: |0000[0010]| [addri5adas | | addr7-addro
Operation: LIMP
(PC) < addr)5¢

2-51

intel o MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

MOV <dest-byte>,<src-byte>

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the
first operand. The source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data
present at input port 1 is 11001010B (OCAH).

MOV RO,#30H ;RO <= 30H
MOV A,@R0O ;A <= 40H
MOV RIL,A R1 <= 40H
MOV B,@R1 ;B <= 10H
MOV @R1,Pl :RAM (40H) <= OCAH
MOV P2,PI ;P2 #0CAH

leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register
B, and 0CAH (11001010B) both in RAM location 40H and output on port 2.

MOV ARn
Bytes: 1
Cycles: 1

Encoding: | 1110 [1rrr|

Operation: MOV

(A) < (Rn)
*MOV Adirect
Bytes: 2
Cycles: 1
Encoding: u1 10 l 0101 | | direct address

Operation: MOV
(A) < (direct)

MOV A,ACC is not a valid instruction.

2-52

intel.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

MOV A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

MOV A,#data
Bytes:

Cycles:
Encoding:

Operation:

MOV Rn,A
Bytes:
Cycles:
Encoding:

Operation:

MOV Rn,direct
Bytes:

Cycles:
Encoding:

Operation:

MOV Rn,#data
Bytes:

Cycles:
Encoding:

Operation:

1.
1

[1110]011i]

MOV
(A) < ((RD)

2
1

[o111]0100] [immediatedata |

MOV
(A) < #data

1
1

{1111 1r0cr|

MOV
(Ro) < (A)

2
2

[1010[1rrr]

MOV
(Rn) < (direct)

l direct addr.

2
1

lﬂmediate dataJ

o111] 1rrr]

MOV
(Rn) < #data

2-53

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

MOV direct,A
Bytes:
Cycles:
Encoding:

Operation:

MOV direct,Rn
Bytes:

Cycles:
Encoding:

Operation:

2
1

[1111][0101| | directaddress

MOV

(direct) «<— (A)

2

2

FOOO l 1 rrr] [directaddress
MOV

(direct) <~ (Rn)

MOV direct,direct

Bytes:
Cycles:
Encoding:

Operation:

MOV direct,@Ri
Bytes:
Cycles:
Encoding:

Operation:

3
2

[1000[0101]

Ldir. addr. (src) l

L dir. addr. (dest)J

MOV
(direct) €~ (direct)

2
2

1000 011i]

MOV
(direct) <~ ((R))

| direct addr.

MOV direct,#data

Bytes:
Cycles:

Encoding:

Operation:

3
2

01110101 |

[direct address J

l immediate data

MOV
(direct) <— #data

2-54

intel.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

MOV @Ri,A
Bytes:
Cycles:
Encoding:

Operation:

MOV @Ridirect
Bytes:
Cycles:
Encoding:

Operation:

MOV @Ri,#data
Bytes:
Cycles:
Encoding:

Operation:

1
1

[1111]011i]

MOV
(R)) < &)

2
2

1010} 011i| | drectaddr |

MOV
((Ri)) < (direct)

2
1

[o0111]011i] [immediateaata |

MOV
(R) < #data

MOV <dest-bit>,<src-bit>

Function:
Description:

Example:

Move bit data

The Boolean variable indicated by the second operand is copied into the location specified by
the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.

The carry flag is originally set. The data present at input Port 3 is 11000101B. The data
previously written to output Port 1 is 35H (00110101B).

MOV P13,C
MOV C,P3.3
MOV Pl12,C

will leave the carry cleared and change Port 1 to 39H (00111001B).

2-55

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

MOV Cpbit
Bytes:
Cycles:
Encoding:

Operation:

MOV bitC
Bytes:
Cycles:
Encoding:

Operation:

2
1

[1010]/0010]| | bitaddress |

MOV
(© < iy

2
2

{1001 0010 | bitaddress

MoV
Git) < (O

MOV DPTR,#datal6

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:

Operation:

Load Data Pointer with a 16-bit constant

The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded
into the second and third bytes of the instruction. The second byte (DPH) is the high-order
byte, while the third byte (DPL) holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

The instruction,

MOV DPTR, #1234H

will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H.

3
2

[1001]0000]| | immed datais8 | | immed.dataz-0 |

MOV
(DPTR) <— #datajso
DPH O DPL <— #datajs.g O] #data7g

2-56

intd. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

MOVC A,@A+ <base-reg>

Function: Move Code byte

Description: The MOVC instructions load the Accumulator with a code byte, or constant from program
memory. The address of the byte fetched is the sum of the original unsigned eight-bit Accumu-
lator contents and the contents of a sixteen-bit base register, which may be either the Data
Pointer or the PC. In the latter case, the PC is incremented to the address of the following
instruction before being added with the Accumulator; otherwise the base register is not al-
tered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may
propagate through higher-order bits. No flags are affected.

Example: A value between O and 3 is in the Accumulator. The following instructions will translate the
value in the Accumulator to one of four values defined by the DB (define byte) directive.

REL__PC: INC A
MOVC A,eA+PC

RET

DB 66H
DB 7TH
DB 88H
DB 99H

If the subroutine is called with the Accumulator equal to O1H, it will return with 77H in the
Accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the Accumulator instead.

MOVC A,@A+DPTR
Bytes: 1
Cycles: 2

Encoding: | 1001 [0011]

Operation: MOVC
(A) < ((A) + (DPTR))
MOVC A,@A + PC
Bytes: 1
Cycles: 2

Encoding: l1000|0011

Operation: MOVC
(PC) « (PC) + 1
(A) < ((A) + (PO)

2-57

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

MOVX <dest-byte>,<src-byte>

Function:

Description:

Example:

Move External

The MOVX instructions transfer data between the Accumulator and a byte of external data
memory, hence the “X” appended to MOV. There are two types of instructions, differing in
whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of RO or Rl in the current register bank provide an eight-bit
address multiplexed with data on PO. Eight bits are sufficient for external I/0 expansion
decoding or for a relatively small RAM array. For somewhat larger arrays, any output port
pins can be used to output higher-order address bits. These pins would be controlled by an
output instruction preceding the MOVX.

In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address. P2
outputs the high-order eight address bits (the contents of DPH) while PO multiplexes the low-
order eight bits (DPL) with data. The P2 Special Function Register retains its previous con-
tents while the P2 output buffers are emitting the contents of DPH. This form is faster and
more efficient when accessing very large data arrays (up to 64K bytes), since no additional
instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its
high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to
output high-order address bits to P2 followed by a MOVX instruction using RO or R1.

An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/
1/0/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external
RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H.
Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A,@RI1

MOVX @ROA

copies the value 56H into both the Accumulator and external RAM location 12H.

2-58

in‘l'el . MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

MOVX A,@Ri
Bytes: 1
Cycles: 2

Encoding: | 1110001 |

Operation: MOVX

(A) < (Ri)
MOVX A,2DPTR
Bytes: 1
Cycles: 2

Encoding: | 1110[0000 |

Operation: MOVX

(A) < (DPTR))
MOVX @Ri,A
Bytes: 1
Cycles: 2

Encoding: | 1111[001i |

Operation: MOVX

((Ri)) <= (A)
MOVX @DPTR,A
Bytes: 1
Cycles: 2

Encoding: [1111[/0000

Operation: MOVX
(DPTR) < (A)

2-59

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

MUL AB
Function: Multiply
Description: = MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The
low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte in
B. If the product is greater than 255 (OFFH) the overflow flag is set; otherwise it is cleared.
The carry flag is always cleared.
Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (OAOH).
The instruction,
MUL AB
will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumula-
tor is cleared. The overflow flag is set, carry is cleared.
Bytes: 1
Cycles: 4
Encoding: | 1010] 0100]
Operation: MUL
(Apo<— (M) X (®B)
(B)1s-s
NOP
Function: No Operation
Description: Execution continues at the following instruction. Other than the PC, no registers or flags are
affected.

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A
simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must
be inserted. This may be done (assuming no interrupts are enabled) with the instruction
sequence,

CLR P27
NOP
NOP
NOP
NOP
SETB P27
Bytes: 1
Cycles: 1
Encoding: | 0000 [0000 |
Operation: NOP
(PC) «—(PC) + 1

2-60

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

ORL <dest-byte> <src-byte>

Function:

Description:

Example:

ORL A,Rn
Bytes:
Cycles:

Encoding:

Operation:

Logical-OR for byte variables

ORL performs the bitwise logical-OR operation between the indicated variables, storing the
results in the destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, nor the input pins.

If the Accumulator holds OC3H (11000011B) and RO holds 55H (01010101B) then the in-
struction,

ORL ARO

will leave the Accumulator holding the value OD7H (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of bits
in any RAM location or hardware register. The pattern of bits to be set is determined by a
mask byte, which may be either a constant data value in the instruction or a variable computed
in the Accumulator at run-time. The instruction,

ORL P1,#00110010B

will set bits 5, 4, and 1 of output Port 1.

1
1

|0100|1rrr|

ORL
(A)<—(A) V (Rn)

2-61

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

ORL A,direct

Bytes:
Cycles:

Encoding:

Operation:

ORL A,2Ri

Bytes:
Cycles:

Encoding:

Operation:

ORL A,#data

Bytes:
Cycles:

Encoding:

Operation:

ORL direct,A

Bytes:
Cycles:

Encoding:

Operation:

2
1

| 0100 ’ 0101 | Ldirectaddress

ORL
(A) <= (A) V (direct)

1
1

o100 o111]

ORL
Ay <= A) V (RD)

2
1

[o0100[0100]| | immediatedata |

ORL
(A) €« (A) V #data

2
1

ORL direct,#data

Bytes:
Cycles:

Encoding:

Operation:

[0100[0010] | diectaddress

ORL

(direct) < (direct) V (A)

3

2

lo100] 0011]| | directada. | | immedite data

ORL
(direct) <— (direct) V #data

262

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

ORL C,<src-bit>

Function:
Description:

Example:

ORL C,bit
Bytes:
Cycles:
Encoding:

Operation:

ORL C,/bit
Bytes:
Cycles:

Encoding:

Operation:

Logical-OR for bit variables
Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state
otherwise . A slash (“/”’) preceding the operand in the assembly language indicates that the

logical complement of the addressed bit is used as the source value, but the source bit itself is
not affected. No other flags are affected.

Set the carry flag if and only if P1.0 = 1, ACC. 7 = 1, or OV = 0:
MOV CP10 ;LOAD CARRY WITH INPUT PIN P10

ORL CACC.7 ;OR CARRY WITH THE ACC. BIT 7

ORL C,/0V ;OR CARRY WITH THE INVERSE OF OV.

2
2

[o0111]0010] | bitaddress |

ORL
O« © V@Y

2
2

|1010[0000]| | bitaddress |

ORL _
Q@< ©V Git)

2-63

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

POP direct
Function: Pop from stack.

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the
Stack Pointer is decremented by one. The value read is then transferred to the directly ad-
dressed byte indicated. No flags are affected.

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H
through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence,
POP DPH
POP DPL
will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this
point the instruction,
POP SP
will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was
decremented to 2FH before being loaded with the value popped (20H).
Bytes: 2
Cycles: 2
Encoding: | 1101 | 0000 I I direct address
Operation: POP
(direct) <— ((SP))
(SP) <« (SP) — 1
PUSH direct
Function: Push onto stack

Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied
into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are affect-
ed.

Example: On entering an interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the
value 0123H. The instruction sequence,
PUSH DPL
PUSH DPH
will leave the Stack Pointer set to OBH and store 23H and O1H in internal RAM locations
OAH and OBH, respectively.
Bytes: 2
Cycles: 2
Encoding: | 1100|0000 | | diectaddress
Operation: PUSH
(SP)«—(SP) + 1
((SP)) «— (direct)

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

RET
Function: Return from subroutine
Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing
the Stack Pointer by two. Program execution continues at the resulting address, generally the
instruction immediately following an ACALL or LCALL. No flags are affected.

Example: The Stack Pointer originally contains the value OBH. Internal RAM locations 0AH and OBH
contain the values 23H and O1H, respectively. The instruction,

RET
will leave the Stack Pointer equal to the value 09H. Program execution will continue at
location 0123H.
Bytes: I
Cycles: 2
Encoding: | 0010 0010 |
Operation: RET
(PCys5.8) < ((SP))
(SP)«(SP) — 1
(PCr.0) < ((SP)
(SP)«(SP) — 1
RETI
Function: Return from interrupt

Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores
the interrupt logic to accept additional interrupts at the same priority level as the one just
processed. The Stack Pointer is left decremented by two. No other registers are affected; the
PSW is not automatically restored to its pre-interrupt status. Program execution continues at
the resulting address, which is generally the instruction immediately after the point at which
the interrupt request was detected. If a lower- or same-level interrupt had been pending when
the RETI instruction is executed, that one instruction will be executed before the pending
interrupt is processed.

Example: The Stack Pointer originally contains the value OBH. An interrupt was detected during the
instruction ending at location 0122H. Internal RAM locations OAH and OBH contain the
values 23H and O1H, respectively. The instruction,

RETI
will leave the Stack Pointer equal to 09H and return program execution to location 0123H.
Bytes: 1
Cycles: 2
Encoding: 00110010 |
Operation: RETI
(PCy5.8) < ((SP))
(SP) «—(SP) — 1
(PCr.0) <= (SP))

(SP) «— (SP) ~ 1

2-65

intel.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

RL A
Function: Rotate Accumulator Left
Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0
position. No flags are affected.
Example: The Accumulator holds the value OC5SH (11000101B). The instruction,
RL A
leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: |
Encoding: |001OI 0011
Operation: RL
(Ap + D€ (An) n=0-6
(A0) « (A7)
RLC A
Function: Rotate Accumulator Left through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit
7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No
other flags are affected.
Example: The Accumulator holds the value OC5H (11000101B), and the carry is zero. The instruction,
RIC A
leaves the Accumulator holding the value 8BH (10001010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: (0011|0011
Operation: RLC
(An+)€ (An) n=0-6
(AQ) < (O)
(C) « (A7)

2-66

intgl.

MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

RR A
Function: Rotate Accumulator Right
Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7
position. No flags are affected.
Example: The Accumulator holds the value OCSH (11000101B). The instruction,
RR A
leaves the Accumulator holding the value OE2H (11100010B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: | 0000 [001 1]
Operation: RR
(An)e— A, + 1) n=0-6
(A7) < (AD)
RRC A
Function: Rotate Accumulator Right through Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right.
Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7
position. No other flags are affected.
Example: The Accumulator holds the value OC5H (11000101B), the carry is zero. The instruction,
RRC A
leaves the Accumulator holding the value 62 (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: 0001|0011
Operation: RRC
(An)€—=(An + 1) n=0—6
A7) <—(©O
(C) < (AD)

2-67

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

SETB <bit>
Function: Set Bit
Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly
addressable bit. No other flags are affected.
Example: The carry flag is cleared. Qutput Port 1 has been written with the value 34H (00110100B). The
instructions,
SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding: | 11010011
Operation: SETB
© 1
SETB bit
Bytes: 2
Cycles: 1
Encoding: | 11010010 | bitaddress
Operation: SETB
(bit) < 1

2-68

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

SJMP rel
Function: Short Jump
Description: Program control branches unconditionally to the address indicated. The branch destination is
computed by adding the signed displacement in the second instruction byte to the PC, after
incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes
preceding this instruction to 127 bytes following it.
Example: The label “RELADR” is assigned to an instruction at program memory location 0123H. The
instruction,
SIMP RELADR
will assemble into location 0100H. After the instruction is executed, the PC will contain the
value 0123H.
(Note: Under the above conditions the instruction following STMP will be at 102H. Therefore,
the displacement byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put
another way, an SJMP with a displacement of OFEH would be a one-instruction infinite loop.)
Bytes: 2
Cycles: 2
Encoding: | 1000/ 0000 | | reladdress
Operation: SIMP
(PC) < (PC) + 2

(PC) «— (PC) + rel

2-69

intgl.

MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

SUBB A, <src-byte>

Function:

Description:

Example:

SUBB A,Rn
Bytes:
Cycles:
Encoding:

Operation:

Subtract with borrow

SUBB subtracts the indicated variable and the carry flag together from the Accumulator,
leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed
for bit 7, and clears C otherwise. (If C was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction, so
the carry is subtracted from the Accumulator along with the source operand.) AC is set if a
borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but
not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative
value is subtracted from a positive value, or a positive result when a positive number is
subtracted from a negative number.

The source operand aliows four addressing modes: register, direct, register-indirect, or imme-
diate.

The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry
flag is set. The instruction,

SUBB AR2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared
but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the carry (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR C instruction.

1
1

[1001[1rrr]

SUBB i
A)«<— (@A) - ©) - Rn)

2-70

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

SUBB Adirect
Bytes: 2
Cycles: 1
Encoding: L1 001 L 0101 j l direct address |
Operation: SUBB
(A) < (A) — (O) — (direct)
SUBB A,cRi
Bytes: 1
Cycles: i
Encoding: | 1001 | 0111i]
Operation: SUBB
&) < &) = (© — (®)
SUBB A,#data
Bytes: 2
Cycles: 1
Encoding: L1 001 l 0100 l Ummediate data
Operation: SUBB
(A) < (A) — (C) — #data
SWAP A
Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator
(bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction. No
flags are affected.
Example: The Accumulator holds the value OC5H (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value SCH (01011100B).
Bytes: 1
Cycles: 1
Encoding: | 1100|0100 |
Operation: SWAP

(A3.0) < (A19)

2-71

intel. MCS®-51 PROGRAMMER'S GUIDE AND INSTRUCTION SET

XCH A,<byte>

Function: Exchange Accumulator with byte variable

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time
writing the original Accumulator contents to the indicated variable. The source/destination
operand can use register, direct, or register-indirect addressing.

Example: RO contains the address 20H. The Accumulator holds the value 3FH (00111111B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,

XCH A,@RO

will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in
the accumulator.

XCH ARn
Bytes: 1
Cycles: 1

Encoding: l 110 0T1 rrr I

Operation: XCH

A) Z (Rn)
XCH Adirect
Bytes: 2
Cycles: 1

Encoding: [1100] 0101 | | diectaddress |

Operation: XCH
(A) 2 (direct)

XCH A,@Ri
Bytes: 1
Cycles: 1

Encoding: | 1100]011i]|

Operation: XCH
(A) 2 (Ri)

2-72

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

XCHD A,@Ri
Function: Exchange Digit
Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing a
hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the
specified register. The high-order nibbles (bits 7-4) of each register are not affected. No flags
are affected.
Example: RO contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,
XCHD A,@RO
will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the
Accumulator.
Bytes: 1
Cycles: 1
Encoding: |[1101]011i|
Operation: XCHD

(Az0) < ((Rizg)

XRL <dest-byte>,<src-byte>

Function:
Description:

Example:

Logical Exclusive-OR for byte variables

XRL performs the bitwise logical Exclusive-OR operation between the indicated variables,
storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accu-
mulator, the source can use register, direct, register-indirect, or immediate addressing; when
the destination is a direct address, the source can be the Accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.)

If the Accumulator holds OC3H (11000011B) and register 0 holds OAAH (10101010B) then
the instruction,

XRL A,RO
will leave the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combina-
tions of bits in any RAM location or hardware register. The pattern of bits to be complement-
ed is then determined by a mask byte, either a constant contained in the instruction or a
variable computed in the Accumulator at run-time. The instruction,

XRL P1,#00110001B

will complement bits 5, 4, and 0 of output Port 1.

2-73

intgl.

MCS®-51 PROGRAMMER'’S GUIDE AND INSTRUCTION SET

XRL A,Rn
Bytes:
Cycles:
Encoding:

Operation:

XRL A,direct
Bytes:
Cycles:
Encoding:

Operation:

XRL A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

XRL A,#data
Bytes:
Cycles:
Encoding:

Operation:

XRL direct,A
Bytes:
Cycles:
Encoding:

Operation:

1
1

|£11ol1rrrl

XRL
A) <) ¥ Ry

2
1

lo110[0101]| | drectaddress
XRL

(A) < (A) ¥ (direct)

1

1

l[o110]011i]

XRL

A) = (A) ¥ (R)

2

1

lo110]0100] [immediatedata |
XRL

(A) < (A) ¥ #data

2

1

!0110]0010‘ [directaddress

XRL
(direct) < (direct) ¥ (A)

2-74

intel. MCS®-51 PROGRAMMER’S GUIDE AND INSTRUCTION SET

XRL direct,#data
Bytes: 3
Cycles: 2

Encoding: [0110] 0011 | | directaddress | | immediatedata |

Operation: XRL
(direct) <— (direct) ¥ #data

2-75

8051, 8052 and 80C51
Hardware Description

8051, 8052 and 80C51 Hardware Description

CONTENTS PAGE CONTENTS PAGE
[INTRODUCTIONcccerermrmererererrranearenaas 3-3|[INTERRUPTS.......cc...ooeovvorvererreerereenene 3-23 |
| Special Function Registers......................... 3-3| [Priority Level Structurecocceceece.e. 3-24|
PORT STRUCTURES AND How Interrupts Are Handled 3-24 |
OPERATION........cooooooesssiveeesssesssss 3-6 | |External INtermuptscoocoossereeveiarccennnn. 3-25 |
1/O Configurations.........ccccvecveeeeeeceerereerecnnnn. 3-7 | | Besponse TiMe......ccocoeievieeicerneciecer s, 3-25
[[Writingtoa P -
_V ringtoa [+ o S, 371 SINGLE-STEP OPERATION......eooneeens 3-26
Port Loading and Interfacing 3-8
Read_Modify_Write eature 3_9 RESET .. 3'26
AccEss‘NG EXTERNAL MEMORY 3_9 POWER-ON RESET 3'27
o | |POWER-SAVING MODES OF
:_'MER’°°:1§_TERS """""""""""""""""" 39 | 1" OPERATIONccorooooeoesoerer e 3-27
imer 0 and Timer To....c.coeinnnns 3-10 | FEAMOS Power Reduction Modes 307
|EPROM VERSIONS.........ccocoooooororecerrne 3-29 |
Exposure to Light..........cocoevvviereceannnne, 3-29|
- = Program Memory Locksceesrvreenenn. 3-29|
Serial Port Control Register............... 314 [ONCE MOGEcovvverereicremeeaenerirereeneeneenss 3-30 |
[Baud Rates . rremmrrreererreseerres 315
More AboutMode O........ccccooeverrerincnens 317 | THE ON-CHIP OSCILLATORS 3-30
More ADOULMOGE T o 317] |HMOS Versions ... 3-30
More About Modes 2 and 3 3_20 ms VeI’SIonS 3-32
INTERNAL TIMING...........ccocoeiercnirnnns 3-33

intel.

8051, 8052 AND 80C51
HARDWARE DESCRIPTION

INTRODUCTION

This chapter presents a comprehensive description of
the on-chip hardware features of the MCS®-51 micro-
controllers. Included in this description are

® The port drivers and how they function both as
ports and, for Ports 0 and 2, in bus operations

The Timer/Counters

The Serial Interface

The Interrupt System

Reset

The Reduced Power Modes in the CHMOS devices

¢ The EPROM versions of the 8051AH, 8052AH and
80CS51BH

The devices under consideration are listed in Table 1.
As it becomes unwieldy to be constantly referring to
each of these devices by their individual names, we will
adopt a convention of referring to them generically as
8051s and 8052s, unless a specific member of the group
is being referred to, in which case it will be specifically
named. The “8051s” include the 8051AH, 80C51BH,
and their ROMless and EPROM versions. The “8052s”
are the 8052AH, 8032AH and 8752BH.

Figure 1 shows a functional block diagram of the 8051s
and 8052s.

Table 1. The MCS-51 Family of Microcontrollers

Device ROMiess EPROM ROM RAM 16-bit Ckt
Name Version Version Bytes Bytes Timers Type
8051AH 8031AH 8751H, 8751BH 4K 128 2 HMOS
8052AH 8032AH 8752BH 8K 256 3 HMOS
80CS51BH 80C31BH 87C51 4K 128 2 CHMOS

Special Function Registers

A map of the on-chip memory area called SFR (Special Function Register) space is shown in Figure 2. SFRs marked
by parentheses are resident in the 8052s but not in the 8051s.

ini‘el. HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

P0.0-PO.7 P20-P2.7

PORT 2
DRIVERS

<
i
(1]

18

RAM ADDR.
REGISTER

PROGRAM
ADDR,
REGISTER

B
REGISTER

BUFFER

PCON
[T2CON

et
JL1 THZ® | TL2® |RCAPDN") PC
NCAP2L:| SBUF {E 19 INCREMENTER

INTERRUPT, SERIAL
PORT AND TIMER

BLOCKS PROGRAM

COUNTER

PSEN <-L 5 E
ALE as-] TIMING 5
ER —p| _AND Se oPTR
CONTROL &2 L
RST 2c
| [
I
I osC
|
A e g - - —— A J
O LOH “Resident in 8052/8032 only.
T P1.0-P1.7 P3.0-P3.7
]lll

270252-1

Figure 1. MCS-51 Architectural Block Diagram

3-4

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

8 Bytes
F8 FF
FoO B F7
E8 EF
EO ACC E7
D8 DF
Do PSW D7
c8 (T2CON) {RCAP2L) (RCAP2H) TL2) (TH2) CF
co : c7
B8 P BF
BO P3 87
A8 IE AF
A0 P2 A7
98 SCON SBUF 9F
90 P1 97
88 TCON TMOD TLO TL1 THO TH1 8F
80 PO sP DPL DPH PCON 87

Figure 2. SFR Map. (.. . .) Indicates Resident in 8052s, not in 8051s

Note that not all of the addresses are occupied. Unoc-
cupied addresses are not implemented on the chip.
Read accesses to these addresses will in general return
random data, and write accesses will have no effect.

User software should not write 1s to these unimple-
mented locations, since they may be used in future
MCS-51 products to invoke new features. In that case
the reset or inactive values of the new bits will always
be 0, and their active values will be 1.

The functions of the SFRs are outlined below.

ACCUMULATOR

ACC is the Accumulator register. The mnemonics for
Accumulator-Specific instructions, however, refer to
the Accumulator simply as A.

B REGISTER

The B register is used during multiply and divide oper-
ations. For other instructions it can be treated as anoth-
er scratch pad register.

PROGRAM STATUS WORD

The PSW register contains program status information
as detailed in Figure 3.

STACK POINTER

The Stack Pointer Register is 8 bits wide. It is incre-
mented before data is stored during PUSH and CALL
executions. While the stack may reside anywhere in on-
chip RAM, the Stack Pointer is initialized to 07H after
a reset. This causes the stack to begin at location O8H.

DATA POINTER

The Data Pointer (DPTR) consists of a high byte
(DPH) and a low byte (DPL). Its intended function is

to hold a 16-bit address. It may be manipulated as a
16-bit register or as two independent 8-bit registers.

PORTS 0 TO 3

PO, P1, P2 and P3 are the SFR latches of Ports 0, 1, 2
and 3, respectively.

SERIAL DATA BUFFER

The Serial Data Buffer is actually two separate regis-
ters, a transmit buffer and a receive buffer register.
When data is moved to SBUF, it goes to the transmit
buffer where it is held for serial transmission. (Moving
a byte to SBUF is what initiates the transmission.)
When data is moved from SBUF, it comes from the
receive buffer.

TIMER REGISTERS

Register pairs (THO, TLO), (TH1, TL1), and (TH2,
TL2) are the 16-bit Counting registers for Timer/Coun-
ters 0, 1, and 2, respectively.

CAPTURE REGISTERS

The register pair (RCAP2H, RCAP2L) are the Cap-
ture registers for the Timer 2 “Capture Mode.” In this
mode, in response to a transition at the 8052’s T2EX
pin, TH2 and TL2 are copied into RCAP2H and
RCAP2L. Timer 2 also has a 16-bit auto-reload mode,
and RCAP2H and RCAP2L hold the reload value for
this mode. More about Timer 2’s features in a later
section.

CONTROL REGISTERS

Special Function Registers IP, IE, TMOD, TCON,
T2CON, SCON, and PCON contain control and status
bits for the interrupt system, the Timer/Counters, and
the serial port. They are described in later sections.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

(MSB) (LSB)
[ex. T acTr Tt o] ov] —T p |
Symbol Position Name and Significance Symbol Position Name and Significance
%34 PSW.7 Carry flag. oV PSw.2 Overflow flag.
AC PSW.6 Auxiliary Carry flag. — PSW.1 User definable flag.
(For BCD operations.) P PSW.0 Parity flag.

FO PSW.5 Flag 0 Set/cleared by hardware each
{Available to the user for general instruction cycle to indicate an odd/
purposes.) even number of “one” bits in the

RSt PSW.4 Register bank select control bits 1 & Accumulator, i.e., even parity.
RSO PSW.3 0. Set/cleared by software to NOTE:
determine working register bank (see The contents of (RS1, RSQ) enable the working register banks as
follows:
Note). (00)—Bank 0 (00H~-O7H)
(0.1 —Bank 1 (08H-OFH)
(1.0)—Bank 2 (10H-17H)
(1.1)~Bank 3 (18H-1FH)
Figure 3. PSW: Program Status Word Register
ADDR/DATA v READ
READ contROL G° LATCH vee
LATCH INTERNAL
:D"' INT. BUS PULL-UP#
INT. BUS WRITE TCH m
WRITE D pox Q 1P TO c. of—i
b c‘i.”G!‘G {?J—_l LATCH
LATCH j |___
READ
READ PIN
PIN 270262-3
) 270252-2 B. Port 1 Bit
A. Port 0 Bit
ALTERNATE
OUTPUT
ADDH FUNCTION
veo READ
READ CONTROL | \\rernaL LATCH
LATCH PULL-UP# INTERNAL
- INT. BUS PULL-UB X,
INT. BUS > P2x Ot WRITE
1 10
ngn's ct“c% ? LATCH
LATCH
READ PIN ALTERNATE
PIN INPUT
270252-4 FUNCTION
C. Port 2 Bit i zrozez-
-ro D. Port 3 Bit

Figure 4. 8051 Port Bit Latches and 1/0 Buffers
*See Figure 5 for details of the internal pullup.

PORT STRUCTURES AND
OPERATION

All four ports in the 8051 are bidirectional. Each con-
sists of a latch (Special Function Registers PO through
P3), an output driver, and an input buffer.

The output drivers of Ports 0 and 2, and the input buff-
ers of Port 0, are used in accesses to external memory.
In this application, Port O outputs the low byte of the

3-6

external memory address, time-multiplexed with the
byte being written or read. Port 2 outputs the high byte
of the external memory address when the address is 16
bits wide. Otherwise the Port 2 pins continue to emit
the P2 SFR content.

All the Port 3 pins, and (in the 8052) two Port 1 pins
are multifunctional. They are not only port pins, but
also serve the functions of various special features as
listed on the following page.

intel.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Port Pin Alternate Function
*P1.0 T2 (Timer/Counter 2
external input)
*P1.1 T2EX (Timer/Counter 2
Capture/Reload trigger)
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTO (external interrupt)
P3.3 INT1 (external interrupt)
P3.4 TO (Timer/Counter 0 external
input)
P3.5 T1 (Timer/Counter 1 external
input)
P3.6 WR (external Data Memory
write strobe)
P3.7 RD (external Data Memory
read strobe)

*P1.0 and P1.1 serve these alternate functions only on
the 8052.

The alternate functions can only be activated if the cor-
responding bit latch in the port SFR contains a 1. Oth-
erwise the port pin is stuck at 0.

1/0 Configurations

Figure 4 shows a functional diagram of a typical bit
latch and 1/0 buffer in each of the four ports. The bit
latch (one bit in the port’s SFR) is represented as a
Type D flip-flop, which will clock in a value from the
internal bus in response to a “write to latch™ signal
from the CPU. The Q output of the flip-flop is placed
on the internal bus in response to a “read latch” signal
from the CPU. The level of the port pin itself is placed
on the internal bus in response to a “read pin” signal
from the CPU. Some instructions that read a port acti-
vate the “read latch” signal, and others activate the
“read pin” signal. More about that later.

As shown in Figure 4, the output drivers of Ports 0 and
2 are switchable to an internal ADDR and ADDR/
DATA bus by an internal CONTROL signal for use in
external memory accesses. During external memory ac-
cesses, the P2 SFR remains unchanged, but the PO SFR
gets 1s written to it.

Also shown in Figure 4, is that if a P3 bit latch contains
a 1, then the output level is controlled by the signal
labeled “alternate output function.” The actual P3.X
pin level is always available to the pin’s alternate input
function, if any.

Ports 1, 2, and 3 have internal pullups. Port 0 has open
drain outputs. Each 1/0 line can be independently used
as an input or an output. (Ports 0 and 2 may not be
used as general purpose I/O when being used as the

ADDR/DATA BUS). To be used as an input, the port
bit latch must contain a 1, which turns off the output
driver FET. Then, for Ports 1, 2, and 3, the pin is
pulled high by the internal pullup, but can be pulled
low by an external source.

Port O differs in not having internal pullups. The pullup
FET in the PO output driver (see Figure 4) is used only
when the Port is emitting 1s during external memory
accesses. Otherwise the pullup FET is off. Consequent-
ly PO lines that are being used as output port lines are
open drain. Writing a 1 to the bit latch leaves both
output FETs off, so the pin floats. In that condition it
can be used a high-impedance input.

Because Ports 1, 2, and 3 have fixed internal pullups
they are sometimes called “quasi-bidirectional” ports.
When configured as inputs they pull high and will
source current (IIL, in the data sheets) when externally
pulled low. Port O, on the other hand, is considered
“true” bidirectional, because when configured as an in-
put it floats.

All the port latches in the 8051 have 1s written to them
by the reset function. If a 0 is subsequently written to a
port latch, it can be reconfigured as an input by writing
altoit

Writing to a Port

In the execution of an instruction that changes the val-
ue in a port latch, the new value arrives at the latch
during S6P2 of the final cycle of the instruction. How-
ever, port latches are in fact sampled by their output
buffers only during Phase 1 of any clock period. (Dur-
ing Phase 2 the output buffer holds the value it saw
during the previous Phase 1). Consequently, the new
value in the port latch won’t actually appear at the
output pin until the next Phase 1, which will be at S1P1
of the next machine cycle. See Figure 39 in the Internal
Timing section.

If the change requires a 0-to-1 transition in Port 1, 2, or
3, an additional pullup is turned on during S1P1 and
S1P2 of the cycle in which the transition occurs. This is
done to increase the transition speed. The extra pullup
can source about 100 times the current that the normal
pullup can. It should be noted that the internal pullups
are field-effect transistors, not linear resistors. The pull-
up arrangements are shown in Figure 5.

In HMOS versions of the 8051, the fixed part of the
pullup is a depletion-mode transistor with the gate
wired to the source. This transistor will allow the pin to
source about 0.25 mA when shorted to ground. In
parallel with the fixed pullup is an enhancement-mode
transistor, which is activated during S1 whenever the
port bit does a 0-to-1 transition. During this interval, if
the port pin is shorted to ground, this extra transistor
will allow the pin to source an additional 30 mA.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

20SC. PERIODS

270252-6
A. HMOS Configuration. The enhancement mode transistor
is turned on for 2 osc. periods after Q makes a 0-to-1 transition.
Vee Vee Vee
2 0SC. PERIODS
=
FROM PORT
LATCH
INPUT
DATA
READ
PORT PIN
270252-7

B. CHMOS Configuration. pFET 1 is turned on for 2 osc. periods after Q
makes a 0-to-1 transition. During this time, pFET 1 also turns on pFET 3
through the inverter to form a latch which holds the 1. pFET 2 is also on.

Figure 5. Ports 1 And 3 HMOS And CHMOS Internal Pullup Configurations.
Port 2 is Similar Except That It Holds The Strong Pullup On While Emitting
1s That Are Address Bits. (See Text, “Accessing External Memory”.)

In the CHMOS versions, the pullup consists of three
pFETs. It should be noted that an n-channel FET
(nFET) is turned on when a logical 1 is applied to its
gate, and is turned off when a logical 0 is applied to its
gate. A p-channel FET (pFET) is the opposite: it is on
when its gate sees a 0, and off when its gate sees a 1.

pFET] in Figure 5 is the transistor that is turned on for
2 oscillator periods after a O-to-1 transition in the port
latch. While it’s on, it turns on pFET3 (a weak pull-
up), through the inverter. This inverter and pFET form
a latch which hold the 1.

Note that if the pin is emitting a 1, a negative glitch on
the pin from some external source can turn off pFET3,
causing the pin to go into a float state. pFET?2 is a very
weak pullup which is on whenever the nFET is off, in
traditional CMOS style. It’s only about Y/, the strength
of pFETS3. Its function is to restore a 1 to the pin in the
event the pin had a 1 and lost it to a glitch.

Port Loading and Interfacing

The output buffers of Ports 1, 2, and 3 can each drive 4
LS TTL inputs. These ports on HMOS versions can be
driven in a normal manner by any TTL or NMOS cir-
cuit. Both HMOS and CHMOS pins can be driven by
open-collector and open-drain outputs, but note that 0-
to-1 transitions will not be fast. In the HMOS device, if
the pin is driven by an open-collector output, a O-to-1
transition will have to be driven by the relatively weak
depletion mode FET in Figure 5(A). In the CHMOS
device, an input 0 turns off pullup pFET3, leaving only
the very weak pullup pFET2 to drive the transition.

In external bus mode, Port O output buffers can each
drive 8 LS TTL inputs. As port pins, they require exter-
nal pullups to drive any inputs.

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Read-Modify-Write Feature

Some instructions that read a port read the latch and
others read the pin. Which ones do which? The instruc-
tions that read the latch rather than the pin are the ones
that read a value, possibly change it, and then rewrite it
to the latch. These are called “read-modify-write” in-
structions. The instructions listed below are read-mod-
ify-write instructions. When the destination operand is
a port, or a port bit, these instructions read the latch
rather than the pin:

ANL (logical AND, e.g., ANL P1, A)

ORL (logical OR, e.g., ORL P2, A)

XRL (logical EX-OR, e.g., XRL P3, A)

JBC (ump if bit = 1 and clear bit, e.g.,
JBC P1.1, LABEL)

CPL (complement bit, e.g., CPL P3.0)

INC (increment, e.g., INC P2)

DEC (decrement, e.g., DEC P2)

DINZ (decrement and jump if not zero, e.g.,

DINZ P3, LABEL)
MOV, PX.Y, C (move carry bit to bit Y of Port X)
CLR PXY (clear bit Y of Port X)
SETBPX.Y (set bit Y of Port X)

It is not obvious that the last three instructions in this
list are read-modify-write instructions, but they are.
They read the port byte, all 8 bits, modify the addressed
bit, then write the new byte back to the latch.

The reason that read-modify-write instructions are di-
rected to the latch rather than the pin is to avoid a
possible misinterpretation of the voltage level at the
pin. For example, a port bit might be used to drive the
base of a transistor. When a 1 is written to the bit, the
transistor is turned on. If the CPU then reads the same
port bit at the pin rather than the latch, it will read the
base voltage of the transistor and interpret it as a 0.
Reading the latch rather than the pin will return the
correct value of 1.

ACCESSING EXTERNAL MEMORY

Accesses to external memory are of two types: accesses
to external Program Memory and accesses to external
Data Memory. Accesses to external Program Memory
use signal PSEN (program store enable) as the read
strobe. Accesses to external Data Memory use RD or
WR (alternate functions of P3.7 and P3.6) to strobe the
memory. Refer to Figures 36 through 38 in the Internal
Timing section.

Fetches from external Program Memory always use a
16-bit address. Accesses to external Data Memory can
use either a 16-bit address (MOVX @DPTR) or an
8-bit address (MOVX @Ri).

3-9

Whenever a 16-bit address is used, the high byte of the
address comes out on Port 2, where it is held for the
duration of the read or write cycle. Note that the Port 2
drivers use the strong pullups during the entire time
that they are emitting address bits that are 1s. This is
during the execution of a MOVX @DPTR instruction.
During this time the Port 2 latch (the Special Function
Register) does not have to contain 1s, and the contents
of the Port 2 SFR are not modified. If the external
memory cycle is not immediately followed by another
external memory cycle, the undisturbed contents of the
Port 2 SFR will reappear in the next cycle.

If an 8-bit address is being used (MOVX @Ri), the
contents of the Port 2 SFR remain at the Port 2 pins
throughout the external memory cycle. This will facili-
tate paging.

In any case, the low byte of the address is time-multi-
plexed with the data byte on Port 0. The ADDR/
DATA signal drives both FETs in the Port 0 output
buffers. Thus, in this application the Port 0 pins are not
open-drain outputs, and do not require external pull-
ups. Signal ALE (Address Latch Enable) should be
used to capture the address byte into an external latch.
The address byte is valid at the negative transition of
ALE. Then, in a write cycle, the data byte to be written
appears on Port O just before WR is activated, and re-
mains there until after WR is deactivated. In a read
cycle, the incoming byte is accepted at Port O just be-
fore the read strobe is deactivated.

During any access to external memory, the CPU writes
OFFH to the Port 0 latch (the Special Function Regis-
ter), thus obliterating whatever information the Port 0
SFR may have been holding. If the user writes to Port 0
during an external memory fetch, the incoming code
byte is corrupted. Therefore, do not write to Port O if
external program memory is used.

External Program Memory is accessed under two con-
ditions:

1) Whenever signal EA is active; or

2) Whenever the program counter (PC) contains a

number that is larger than OFFFH (1FFFH for the
8052).

This requires that the ROMless versions have EA wired

low to enable the lower 4K (8K for the 8032) program
bytes to be fetched from external memory.

When the CPU is executing out of external Program
Memory, all 8 bits of Port 2 are dedicated to an output
function and may not be used for general purpose I/0.
During external program fetches they output the high
byte of the PC. During this time the Port 2 drivers use
the strong pullups to emit PC bits that are 1s.

TIMER/COUNTERS

The 8051 has two 16-bit Timer/Counter registers: Tim-
er 0 and Timer 1. The 8052 has these two plus one

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

more: Timer 2. All three can be configured to operate
either as timers or event counters.

In the “Timer” function, the register is incremented
every machine cycle. Thus, one can think of it as count-
ing machine cycles. Since a machine cycle consists of 12
oscillator periods, the count rate is Y/, of the oscillator
frequency.

In the “Counter” function, the register is incremented
in response to a 1-to-0 transition at its corresponding
external input pin, TO, T1 or (in the 8052) T2. In this
function, the external input is sampled during S5P2 of
every machine cycle. When the samples show a high in
one cycle and a low in the next cycle, the count is incre-
mented. The new count value appears in the register
during S3P1 of the cycle following the one in which the
transition was detected. Since it takes 2 machine cycles
(24 oscillator periods) to recognize a 1-to-0 transition,
the maximum count rate is ‘%, of the oscillator fre-
quency. There are no restrictions on the duty cycle of
the external input signal, but to ensure that a given
level is sampled at least once before it changes, it
should be held for at least one full machine cycle.

In addition to the “Timer” or “Counter” selection,
Timer O and Timer 1 have four operating modes from
which to select. Timer 2, in the 8052, has three modes
of operation: “Capture,” “Auto-Reload” and “baud
rate generator.”

Timer 0 and Timer 1

These Timer/Counters are present in both the 8051 and
the 8052. The “Timer” or “Counter” function is select-
ed by control bits C/T in the Special Function Register
TMOD (Figure 6). These two Timer/Counters have

four operating modes, which are selected by bit-pairs
(M1, MO) in TMOD. Modes 0, 1, and 2 are the same
for both Timer/Counters. Mode 3 is different. The four
operating modes are described in the following text.

MODE 0

Either Timer in Mode 0 is an 8-bit Counter with a
divide-by-32 prescaler. This 13-bit timer is MCS-48
compatible. Figure 7 shows the Mode 0 operation as it
applies to Timer 1.

In this mode, the Timer register is configured as a
13-Bit register. As the count rolls over from all 1s to all
Os, it sets the Timer interrupt flag TF1. The counted
input is enabled to the Timer when TR1 = 1 and either
GATE = Oor INT1 = 1. (Setting GATE = 1 allows
the Timer to be controlled by external input INT1, to
facilitate pulse width measurements.) TR1 is a control
bit in the Special Function Register TCON (Figure 8).
GATE is in TMOD.

The 13-Bit register consists of all 8 bits of TH1 and the
lower 5 bits of TL1. The upper 3 bits of TL1 are inde-
terminate and should be ignored. Setting the run flag
(TR1) does not clear the registers.

Mode 0 operation is the same for Timer 0 as for Timer
1. Substitute TRO, TFO and INTO for the correspond-
ing Timer 1 signals in Figure 7. There are two different
GATE bits, one for Timer 1 (TMOD.7) and one for
Timer 0 (TMOD.3).

MODE 1

Mode 1 is the same as Mode O, except that the Timer
register is being run with all 16 bits.

(MSB)

(LSB)

[cate | o1 |
L——

M1TM01GATE [ecA [[wmo |

v

Timer 1
GATE Gating control when set. Timer/Counter “x” is enabled
only while FTNTX" pin is high and “TRx" control pin is
set. When cleared Timer “x” is enabled whenever
“TRx" control bit is set.
c/T Timer or Counter Selector cleared for Timer operation

(input from internal system clock). Set for Counter
operation (input from “Tx"" input pin).

Timer 0
M1 MO Operating Mode
[0 B8-bit Timer/Counter “THx" with “TLx" as 5-bit
prescaler,

16-bit Timer/Counter “THx" and “TLx" are
cascaded; there is no prescaler.

8-bit auto-reload Timer/Counter “THx" holds a
value which is to be reloaded into “TLx"” sach
time it overflows.

(Timer 0) TLO is an 8-bit Timer/Counter
controlied by the standard Timer O contro! bits.
THO is an 8-bit timer only controlled by Timer 1
control bits.

(Timer 1) Timer/Counter 1 stopped.

Figure 6. TMOD: Timer/Counter Mode Control Register

3-10

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

osc +12
C/T=0
: TL TH1
— 42/ e seis) | @oi) TF1 |+ INTERRUPT
C/T=1 |
T1IPIN , CONTROL
TR1
GATE
INTT PIN
270252-9
Figure 7. Timer/Counter 1 Mode 0: 13-Bit Counter
(MSB) (LSB)
[v¢1 | e [tr0 | tRO | &1 [1 | w0 | mo |
Symbol Position Name and Significance Symbol Position Name and Significance
TF1 TCON.7 Timer 1 overflow Flag. Setby IE1 TCON.3 Interrupt 1 Edge fiag. Set by hardware
hardware on Timer/Counter overflow. when extemal interrupt edge
Clsared by hardware when processor detected. Cleared when interrupt
vectors to interrupt routine. processed.
TRt TCON.6 Timer 1 Run control bit. Set/cleared m TCON.2 Interrupt 1 Type contro! bit. Set/
by sottware to tumn Timer/Counter on/ cleared by software to specify falling
off. edge/low level triggered external
TFO TCONS Timer O overfiow Flag. Setby interrupts.
hardware on Timer/Counter overtlow. IEO TCON.1 Interrupt 0 Edge fiag. Set by hardware
Cleared by hardware when processor when external interrupt edge
vectors to interrupt routine. detected. Cleared when interrupt
RO TCON.4 Timer 0 Run contral bit. Set/cleared processed.
by software to turn Timer/Counter on/ ITO TCON.O Interrupt 0 Type control bit. Set/
off. cleared by software to specify falling
edge/low level triggered external
interrupts.
Figure 8. TCON: Timer/Counter Control Register
MODE 2 Timer O in Mode 3 establishes TLO and THO as two

Mode 2 configures the Timer register as an 8-bit Coun-
ter (TL1) with automatic reload, as shown in Figure 9.
Overflow from TL1 not only sets TF1, but also reloads
TL1 with the contents of TH]1, which is preset by soft-
ware. The reload leaves TH1 unchanged.

Mode 2 operation is the same for Timer/Counter 0.

MODE 3

Timer 1 in Mode 3 simply holds its count. The effect is
the same as setting TR1 = O.

3-1

separate counters. The logic for Mode 3 on Timer O is
shown in Figure 10. TLO uses the Timer 0 control bits:
C/T, GATE, TRO, INTO, and TF0. THO is locked into
a timer function (counting machine cycles) and takes
over the use of TR1 and TF1 from Timer 1. Thus, THO
now controls the “Timer 1” interrupt.

Mode 3 is provided for applications requiring an extra
8-bit timer or counter. With Timer 0 in Mode 3, an
8051 can look like it has three Timer/Counters, and an
8052, like it has four. When Timer O is in Mode 3,
Timer 1 can be turned on and off by switching it out of
and into its own Mode 3, or can still be used by the
serial port as a baud rate generator, or in fact, in any
application not requiring an interrupt.

inl'el. HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

osC 12
c/T=0 -,
TF INTERRUPT
T (8 Bits)
T1PIN CONTROL
o RELOAD
GATE THY
(a8}
iNTO PIN
270252-10
Figure 9. Timer/Counter 1 Mode 2: 8-Bit Auto-Reload
0osC +12 1/121psc
21gsc ——1
C/T=0
TLO
— a{t (8 bits) TFO INTERRUPT
ToPN— e BoAes :
CONTROL
TRO
GATE
TNTO PIN
11210s¢c e i F INTERRUPT
CONTROL
TR1 ‘
270252-11
Figure 10. Timer/Counter 0 Mode 3: Two 8-Bit Counters
Timer 2

Table 2. Timer 2 Operating Modes

Timer 2 is a 16-bit Timer/Counter which is present

only in the 8052. Like Timers O and 1, it can operate RCLK + TCLKI|CP/RL2|TR2 Mode

either as a timer or as an event counter. This is selected 16-bi

by bit C/T2 in the Special Function Register T2CON 8 ? 1 12_2:: é;‘;?: load
(Figure 11). It has three operating modes: “‘capture,” 1 X 1 |Baud Rate &
“‘auto-load” and “baud rate generator,” which are se- aud Rate Generator
lected by bits in T2CON as shown in Table 2. X X |0 |off)

3-12

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

(MSB) (LSB)

| tr2 | exr2 [mok | Tok | Exen2 | TR2 | o2 | o |

Symbol Position Name and Significance

TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software.
TF2 will not be set when either RCLK = 1 or TCLK = 1.

EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative
transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1
will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be
cleared by software.

RCLK T2CON.S Receive clock flag. When set, causes the serial port to use Timer 2 overflow
pulses for its receivs clock in Modes 1 and 3. RCLK = 0 causes Timer 1 overflow
1o be used for the receive clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow
pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1
overflows to be usad for the transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a
result of a negative transition on T2EX if Timer 2 is not being used to clock the
serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.

TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer.

c/T2 T2CON.1 Timer or counter select. (Timer 2)

0 = Internal timer (OSC/12)
1 = External event counter (falling edge triggered).

CP/RLZ T2CON.O Capture/Reload flag. When set, captures will occur on negative transitions at
T2EX if EXEN2 = 1. When cleared, auto-reloads will occur either with Timer 2
overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK
= 10r TCLK = 1, this bit is ignored and the timer is forced to auto-reload on
Timer 2 overflow.

Figure 11. T2CON: Timer/Counter 2 Control Register

In the Capture Mode there are two options which are
selected by bit EXEN2 in T2CON. If EXEN2 = 0,
then Timer 2 is a 16-bit timer or counter which upon
overflowing sets bit TF2, the Timer 2 overflow bit,
which can be used to generate an interrupt. If EXEN2
= 1, then Timer 2 still does the above, but with the
added feature that a 1-to-0 transition at external input
T2EX causes the current value in the Timer 2 registers,
TL2 and TH2, to be captured into registers RCAP2L
and RCAP2H, respectively. (RCAP2L and RCAP2H
are new Special Function Registers in the 8052.) In
addition, the transition at T2EX causes bit EXF2 in
T2CON to be set, and EXF2, like TF2, can generate an
interrupt.

The Capture Mode is illustrated in Figure 12.

In the auto-reload mode there are again two options,
which are selected by bit EXEN2 in T2CON. If
EXEN2 = 0, then when Timer 2 rolls over it not only
sets TF2 but also causes the Timer 2 registers to be
reloaded with the 16-bit value in registers RCAP2L
and RCAP2H, which are preset by software. If EXEN2
= 1, then Timer 2 still does the above, but with the

313

added feature that a 1-to-0 transition at external input
T2EX will also trigger the 16-bit reload and set EXF2.

The auto-reload mode is illustrated in Figure 13.

The baud rate generator mode is selected by RCLK =
1 and/or TCLK = 1. It will be described in conjunc-
tion with the serial port.

SERIAL INTERFACE

The serial port is full duplex, meaning it can transmit
and receive simultaneously. It is also receive-buffered,
meaning it can commence reception of a second byte
before a previously received byte has been read from
the receive register. (However, if the first byte still
hasn’t been read by the time reception of the second
byte is complete, one of the bytes will be lost). The
serial port receive and transmit registers are both ac-
cessed at Special Function Register SBUF. Writing to
SBUF loads the transmit register, and reading SBUF
accesses a physically separate receive register.

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Bk
cmz=0 ‘o n2 T2 l]
— & (6-BITS) 8-BITS
1::/1:-1 H (-8
T2PN |eonmo'.
™
CAPTURE TWER 2
INTERRUPT
DETECTOR
o A7 o=
L
CONTROL.
EXEN2
270252-12

Figure 12. Timer 2 in Capture Mode

The serial port can operate in 4 modes:

Mode 0: Scrial data enters and exits through RXD.
TXD outputs the shift clock. 8 bits are transmitted/re-
ceived: 8 data bits (LSB first). The baud rate is fixed at
1/12 the oscillator frequency.

- Mode 1: 10 bits are transmitted (through TXD) or re-
ceived (through RXD): a start bit (0), 8 data bits (LSB
first), and a stop bit (1). On receive, the stop bit goes
into RB8 in Special Function Register SCON. The
baud rate is variable.

Mode 2: 11 bits are transmitted (through TXD) or re-
ceived (through RXD): a start bit (0), 8 data bits (I.SB
first), 2 programmable 9th data bit, and a stop bit (1).
On Transmit, the 9th data bit (TB8 in SCON) can be
assigned the value of O or 1. Or, for example, the parity
bit (P, in the PSW) could be moved into TBS. On re-
ceive, the 9th data bit goes into RBS in Special Functon
Register SCON, while the stop bit is ignored. The baud
rate is programmable to either /3, or Y4, the oscillator
frequency.

Mode 3: 11 bits are transmitted (through TXD) or re-
ceived (through RXD): a start bit (0), 8 data bits (LSB
first), a programmable 9th data bit and a stop bit (1). In
fact, Mode 3 is the same as Mode 2 in all respects
except the baud rate. The baud rate in Mode 3 is vari-
able.

In all four modes, transmission is initiated by any in-
struction that uses SBUF as a destination register. Re-
ception is initiated in Mode O by the condition RI = 0
and REN = 1. Reception is initiated in the other
modes by the incoming start bit if REN = 1.

3-14

Multiprocessor Communications

Modes 2 and 3 have a special provision for multipro-
cessor communications. In these modes, 9 data bits are
received. The 9th one goes into RB8. Then comes a
stop bit. The port can be programmed such that when
the stop bit is received, the serial port interrupt will be
activated only if RB8 = 1. This feature is enabled by
setting bit SM2 in SCON. A way to use this feature in
multiprocessor systems is as follows.

When the master processor wants to transmit a block of
data to one of several slaves, it first sends out an ad-
dress byte which identifies the target slave. An address
byte differs from a data byte in that the 9th bit is 1 in an
address byte and O in a data byte. With SM2 = 1, no
slave will be interrupted by a data byte. An address
byte, however, will interrupt all slaves, so that each
slave can examine the received byte and see if it is being
addressed. The addressed slave will clear its SM2 bit
and prepare to receive the data bytes that will be com-
ing. The slaves that weren’t being addressed leave their
SM2s set and go on about their business, ignoring the
coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be
used to check the validity of the stop bit. In a Mode 1
reception, if SM2 = 1, the receive interrupt will not be
activated unless a valid stop bit is received.

Serial Port Control Register

The serial port control and status register is the Special
Function Register SCON, shown in Figure 14. This
register contains not only the mode selection bits, but
also the 9th data bit for transmit and reccive (TB8 and
RB8), and the serial port interrupt bits (TI and RI).

intel. HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

==
Cr2=0

(8-BITS) samsy [T

™2

TRANSITION
r DETECTOR
TIMER 2
INTERRUPT
T2EX PIN > -_ ‘T o EXF2
i
CONTROL
EXEN2
270252-13
Figure 13. Timer 2 in Auto-Reload Mode
(MSB) (LSB)

[sMo [smi [smze [men[vee [mBe [T] mi]

Where SMO, SM1 specify the serial port mode, as follows:

SMO SM1 Mode Description BaudRate

0 [} 0 shift register fosc./ 12
0 1 1 8-bit UART variable
1] 2 9-bit UART fosc./64
or
tosc./32
1 1 3 9-bit UART variable
s SM2 enables the multiprocessor

communication feature in Modes 2
and 3. In Mode 2 or 3, if SM2 is set to
1 then Rl will not be activated if the
received 9th data bit (RB8) is 0. In
Mods 1, if SM2 = 1 then Ri will not
be activated if a valid stop bit was not
received. In Mode 0, SM2 should be
0.

¢ REN enables serial reception. Set by
software to enable reception. Clear
by soft to disablk ption.

s TB8 is the th data bit that will be
transmitted in Modes 2 and 3. Setor
clear by software as desired.

* RB8 inModes 2and 3, is the 5th data bit
that was received. in Mode 1, if SM2
= 0, RBB is the stop bit that was
received. in Mode 0, RB8 is not used.

* Ti is transmit interrupt fiag. Set by
hardware at the end of the 8th bit time
in Mode 0, or at the beginning of the
stop bit in the other modes, in any
serial transmission. Must be cleared
by software.

* Ri is receive interrupt flag. Set by
hardware at the end of the Bth bit time
in Mode 0, or halfway through the stop
bit time in the other modes, in any
serial reception (except see SM2).
Must be cleared by software.

Figure 14. SCON: Serial Port Control Register

Baud Rates
The baud rate in Mode 0 is fixed:
Mode 0 Baud Rate = ——Osclumrl};req"my

The baud rate in Mode 2 depends on the value of bit
SMOD in Special Function Register PCON. If SMOD
= 0 (which is the value on reset), the baud rate Y, the
oscillator frequency. If SMOD = 1, the baud rate is
a2 the oscillator frequency.

3-15

2SMOD
Mode 2 Baud Rate=

X (Oscillator Frequency)

In the 8051, the baud rates in Modes 1 and 3 are deter-
mined by the Timer 1 overflow rate. In the 8052, these
baud rates can be determined by Timer 1, or by Timer
2, or by both (one for transmit and the other for re-
ceive).

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Using Timer 1 to Generate Baud Rates

When Timer 1 is used as the baud rate generator, the
baud rates in Modes 1 and 3 are determined by the
Timer 1 overflow rate and the value of SMOD as fol-
lows:

Modes 1, 3

2SMOD
Baud Rate =

32

X (Timer 1 Overflow Rate)

The Timer 1 interrupt should be disabled in this appli-
cation. The Timer itself can be configured for either
“timer” or “counter” operation, and in any of its 3
running modes. In the most typical applications, it is
configured for “timer” operation, in the auto-reload

mode (high nibble of TMOD = 0010B). In that case,
the baud rate is given by the formula

g‘%“ki’t 3 2SMOD _ Oxcillator Frequency
AU e =
32 12x [256 ~ (TH1)]

One can achieve very low baud rates with Timer 1 by
leaving the Timer 1 interrupt enabled, and configuring
the Timer to run as a 16-bit timer (high nibble of
TMOD = 0001B), and using the Timer 1 interrupt to
do a 16-bit software reload.

Figure 15 lists various commonly used baud rates and
how they can be obtained from Timer 1.

Timer 1
Baud Rate fosc SMOD _ Reload
C/T | Mode Value
Mode O Max: 1 MHZ | 12 MHZ X X X X
Mode 2 Max: 375K 12 MHZ 1 X X X
Modes 1, 3: 62.5K 12 MHZ 1 0 2 FFH
19.2K 11.059 MHZ 1 0 2 FDH
9.6K 11.059 MHZ 0 0 2 FDH
4.8K 11.059 MHZ 0 0 2 FAH
24K 11.059 MHZ 0 0 2 F4H
1.2K 11.059 MHZ 0 0 2 E8H
1375 11.986 MHZ 0 0 2 1DH
110 6 MHZ 0 0 2 72H
110 12 MHZ 0 0 1 FEEBH

Figure 15. Timer 1 Generated Commonly Used Baud Rates

Using Timer 2 to Generate Baud Rates

In the 8052, Timer 2 is selected as the baud rate genera-
tor by setting TCLK and/or RCLK in T2CON (Figure

11). Note then the baud rates for transmit and receive
can be simultaneously different. Setting RCLK and/or
TCLK puts Timer 2 into its baud rate generator mode,
as shown in Figure 16.

NOTE: O3C. FREQ. IS DIVIDED BY 2, NOT 12,

270252-14

Figure 16. Timer 2 in Baud Rate Generator Mode

3-16

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

The baud rate generator mode is similar to the auto-re-
load mode, in that a rollover in TH2 causes the Timer 2
registers to be reloaded with the 16-bit value in registers
RCAP2H and RCAP2L, which are preset by software.

Now, the baud rates in Modes | and 3 are determined
by Timer 2’s overflow rate as follows:

Timer 2 Overflow Rate
16

The Timer can be configured for either “timer” or
“‘counter” operation. In the most typical applications, it
is configured for “timer” operation (C/T2 = 0). “Tim-
er” operation is a little different for Timer 2 when it’s
being used as a baud rate generator. Normally, as a
timer it would increment every machine cycle (thus at
%12 the oscillator frequency). As a baud rate generator,
however, it increments every state time (thus at 3% the
oscillator frequency). In that case the baud rate is given
by the formula

Modes 1, 3
Baud Rate =

Modes 1, 3 Baud Rate =

Oscillator Frequency
32x {65536 — (RCAP2H, RCAP2L)]

where (RCAP2H, RCAP2L) is the content of
RCAP2H and RCAP2L taken as a 16-bit unsigned in-
teger.

Timer 2 as a baud rate generator is shown in Figure 16.
This Figure is valid only if RCLK + TCLK = 1in
T2CON. Note that a rollover in TH2 does not set TF2,
and will not generate an interrupt. Therefore, the Timer
2 interrupt does not have to be disabled when Timer 2
is in the baud rate generator mode. Note too, that if
EXEN?2 is set, a 1-to-0 transition in T2EX will set
EXF2 but will not cause a reload from (RCAP2H,
RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use
as a baud rate generator, T2EX can be used as an extra
external interrupt, if desired.

It should be noted that when Timer 2 is running (TR2
= 1) in “timer” function in the baud rate generator
mode, one should not try to read or write TH2 or TL2.
Under these conditions the Timer is being incremented
every state time, and the results of a read or write may
not be accurate. The RCAP registers may be read, but
shouldn’t be written to, because a write might overlap a
reload and cause write and/or reload errors. Turn the
Timer off (clear TR2) before accessing the Timer 2 or
RCAP registers, in this case.

More About Mode 0

Serial data enters and exits through RXD. TXD out-
puts the shift clock. 8 bits are transmitted/received: 8
data bits (LSB first). The baud rate is fixed at Y}, the
oscillator frequency.

Figure 17 shows a simplified functional diagram of the
serial port in Mode 0, and associated timing.

317

Transmission is initiated by any instruction that uses
SBUF as a destination register. The “write to SBUF”
signal at S6P2 also loads a 1 into the 9th position of the
transmit shift register and tells the TX Control block to
commence a transmission. The internal timing is such
that one full machine cycle will elapse between “write
to SBUF,” and activation of SEND.

SEND enables the output of the shift register to the
alternate output function line of P3.0, and also enables
SHIFT CLOCK to the alternate output function line of
P3.1. SHIFT CLOCK is low during S3, S4, and S5 of
every machine cycle, and high during S6, S1 and S2. At
S6P2 of every machine cycle in which SEND is active,
the contents of the transmit shift register are shifted to
the right one position.

As data bits shift out to the right, zeroes come in from
the left. When the MSB of the data byte is at the output
position of the shift register, then the 1 that was initial-
ly loaded into the 9th position, is just to the left of the
MSB, and all positions to the left of that contain zeroes.
This condition flags the TX Control block to do one
last shift and then deactivate SEND and set TL. Both of
these actions occur at S1P1 of the 10th machine cycle
after “write to SBUF.”

Reception is initiated by the condition REN = 1 and
R1 = 0. At S6P2 of the next machine cycle, the RX
Control unit writes the bits 11111110 to the receive
shift register, and in the next clock phase activates RE-
CEIVE.

RECEIVE enables SHIFT CLOCK to the alternate
output function line of P3.1. SHIFT CLOCK makes
transitions at S3P1 and S6P1 of every machine cycle.
At S6P2 of every machine cycle in which RECEIVE is
active, the contents of the receive shift register are shift-
ed to the left one position. The value that comes in
from the right is the value that was sampled at the P3.0
pin at SS5P2 of the same machine cycle.

As data bits come in from the right, 1s shift out to the
left. When the O that was initially loaded into the right-
most position arrives at the leftmost position in the shift
register, it flags the RX Control block to do one last
shift and load SBUF. At S1P1 of the 10th machine
cycle after the write to SCON that cleared RI, RE-
CEIVE is cleared and RI is set.

More About Mode 1

Ten bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first),
and a stop bit (1). On receive, the stop bit goes into
RBS8 in SCON. In the 8051 the baud rate is determined
by the Timer 1 overflow rate. In the 8052 it is deter-
mined either by the Timer 1 overflow rate, or the Timer
2 overflow rate, or both (one for transmit and the other
for receive).

Figure 18 shows a simplified functional diagram of the
serial port in Mode 1, and associated timings for trans-
mit receive.

intel. HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

WRITE
O — RXD
SBuUF P3.OALT
OUTPUT
FUNCTION
SHIFT
TX CONTROL
S6 TXCLOCK 1, SEND]
SERIAL
PORT TXD T
INTERRUPT gt};tT
FUNCTION
rxcLock Rl RECEIVE
REN RXCONTROL gy ey
ﬁ:D"—’START 11111110 T
RXD
S PBOALT
INPUT
FUNCTION
8051 INTERNAL BUS
uﬂﬂ‘ | ” | Ll l!‘ ‘.‘th‘.u i’ﬂﬂlll“ﬂ] " nauuul IRV MNN I SRS l [TP 7% 1) '!!
ALE
WRITE TO SBUF
SEND [| M
SHIFT n n n n n n n I
AXD(DATAOUD) & X— B X _DF T B3 X B4 YT & X TRANSMIT
TXD (SHIFTCLOCK) -
1] SIP1- SEP1 —
J1LWRITE TO SCON !CLEAR Rl)
T - —
RECEIVE F
L—— Yrecewe
SHIFT n n N 1 I il JL n_
RXD (DATA IN)———[20____ D1 P2 B3 nbe 405 406 407
[%
TXD (SHIFT CLOCK)
27025215

Figure 17. Serial Port Mode 0

3-18

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

intgl.

TIMER 1 TIMER 2 8051 INTERNAL BUS
OVERFLOW OVERFLOW
Tes
e 4
TO
SBUF
- v SBUF XD
ZERO DETECTOR
v 1
START SHIFT pata
TX CONTROL
__.[Tl—— TXCLOCK SEND|
SERIAL
PORT
INTERRUPT
RCLK =
+18
SAMPLE
1-T0-0 RXCLOCK RI LOAD >
IO} SBUF
T:s‘fnes'cmn START mx conTroL SHIFT|
1FFH
RXD
8051 INTERNAL BUS
™ .
oc I 1 1 L A 1 1 Il 1 2
LWRITE TO SBUF
= e =
DATA T3P T 1 TRANSMIT
SHIFT 2 1 1 1 2 1 1 &
X0\ [DO XD X D2 Y OIS D8 X T X e X_DrY
T STARTBIT STOPBIT
<16 AESET
g% cLocKy |] A R —A 1 [i [} [| [1 N .
RXD ART @t STOPBIT
SHIFT] A] L] 1 1 2 1 1 N
Rl —
270252-16

Figure 18. Serial Port Mode 1. TCLK, RCLK and Timer 2 are Present in the 8052/8032 Only.

Transmission is initiated by any instruction that uses
SBUF as a destination register. The “write to SBUF”
signal also loads a 1 into the 9th bit position of the

times are synchronized to the divide-by-16 counter, not
to the “write to SBUF” signal).

transmit shift register and flags the TX Control unit
that a transmission is requested. Transmission actually
commences at SIP1 of the machine cycle following the
next rollover in the divide-by-16 counter. (Thus, the bit

3-19

The transmission begins with activation of SEND,
which puts the start bit at TXD. One bit time later,
DATA is activated, which enables the output bit of the
transmit shift register to TXD. The first shift pulse oc-
curs one bit time after that.

intal.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

As data bits shift out to the right, zeroes are clocked in
from the left. When the MSB of the data byte is at the
output position of the shift register, then the 1 that was
initially loaded into the 9th position is just to the left of
the MSB, and all positions to the left of that contain
zeroes. This condition flags the TX Control unit to do
one last shift and then deactivate SEND and set TI.
This occurs at the 10th divide-by-16 rollover after
“write to SBUF.”

Reception is initiated by a detected 1-to-0 transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset, and 1FFH is written into the input shift
register. Resetting the divide-by-16 counter aligns its
rollovers with the boundaries of the incoming bit times.

The 16 states of the counter divide each bit time into
16ths. At the 7th, 8th, and 9th counter states of each bit
time, the bit detector samples the value of RXD. The
value accepted is the value that was seen in at least 2 of
the 3 samples. This is done for noise rejection. If the
value accepted during the first bit time is not 0, the
receive circuits are reset and the unit goes back to look-
ing for another 1-to-0 transition. This is to provide re-
jection of false start bits. If the start bit proves valid, it
is shifted into the input shift register, and reception of
the rest of the frame will proceed.

As data bits come in from the right, 1s shift out to the
left. When the start bit arrives at the leftmost position
in the shift register, (which in mode 1 is a 9-bit regis-
ter), it flags the RX Control block to do one last shift,
load SBUF and RBS, and set RI. The signal to load
SBUF and RBS, and to set RI, will be generated if, and
only if, the following conditions are met at the time the
final shift pulse is generated.

1) Rl = 0, and
2) Either SM2 = 0, or the received stop bit = 1

If either of these two conditions is not met, the received
frame is irretrievably lost. If both conditions are met,
the stop bit goes into RBS8, the 8 data bits go into
SBUF, and RI is activated. At this time, whether the
above conditions are met or not, the unit goes back to

looking for a 1-to-0 transition in RXD.

More About Modes 2 and 3

Eleven bits are transmitted (through TXD), or received
(through RXD): a start bit (0), 8 data bits (LSB first), a
programmable 9th data bit, and a stop bit (1). On trans-

3-20

mit, the 9th data bit (TB8) can be assigned the value of
0 or 1. On receive, the 9th data bit goes into RBS in
SCON. The baud rate is programmable to either Y5, or
Ve the oscillator frequency in Mode 2. Mode 3 may
have a variable baud rate generated from either Timer 1
or 2 depending on the state of TCLK and RCLK.

Figures 19 and 20 show a functional diagram of the
serial port in Modes 2 and 3. The receive portion is
exactly the same as in Mode 1. The transmit portion
differs from Mode 1 only in the 9th bit of the transmit
shift register.

Transmission is initiated by any instruction that uses
SBUF as a destination register. The “write to SBUF”
signal also loads TB8 into the 9th bit position of the
transmit shift register and flags the TX Control unit
that a transmission is requested. Transmission com-
mences at S1P1 of the machine cycle following the next
rollover in the divide-by-16 counter. (Thus, the bit
times are synchronized to the divide-by-16 counter, not
to the “write to SBUF” signal.)

The transmission begins with activation of SEND,
which puts the start bit at TXD. One bit time later,
DATA is activated, which enables the output bit of the
transmit shift register to TXD. The first shift pulse oc-
curs one bit time after that. The first shift clocks a 1
(the stop bit) into the 9th bit position of the shift regis-
ter. Thereafter, only zeroes are clocked in. Thus, as
data bits shift out to the right, zeroes are clocked in
from the left. When TBS is at the output position of the
shift register, then the stop bit is just to the left of TBS,
and all positions to the left of that contain zeroes. This
condition flags the TX Control unit to do one last shift
and then deactivate SEND and set TI. This occurs at
the 11th divide-by-16 rollover after “write to SBUF.”

Reception is initiated by a detected 1-to-0 transition at
RXD. For this purpose RXD is sampled at a rate of 16
times whatever baud rate has been established. When a
transition is detected, the divide-by-16 counter is imme-
diately reset, and 1FFH is written to the input shift
register.

At the 7th, 8th and 9th counter states of each bit time,
the bit detector samples the value of RXD. The value
accepted is the value that was seen in at least 2 of the 3
samples. If the value accepted during the first bit time
is not 0, the receive circuits are reset and the unit goes
back to looking for another 1-to-0 transition. If the
start bit proves valid, it is shifted into the input shift
register, and reception of the rest of the frame will pro-
ceed.

nte| . HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

8051 INTERNAL BUS

WRITE
TO
SBUF
TXD
PHASE 2 CLOCK
{' fosc)
START STSSNG_'T SHIFTyATA
TXCONTROL ———|
+16 TXCLOCK TI SEND
SERIAL
PORT
INTERRUPT
(SMOD IS PCON.7) n
SAMPLE
1-TO-0 AX Rl LOAD —
ANSITIO! START °¢°§6‘umo SBUF
DETECTOR X L SHIFT
AXD
READ
SBUF
T™> 8051 INTERNAL BUS
JCLOCK, 1 [A]] Il]] 1 [1
LWRITE TO SBUF
= S e
DATA CStP1 T —
SHIFT] 1 1 [l]] 1 1 1 TRANSMIT
o T STOPBI
SToPBIT GEN | ——
ACLOCK § Wi n A 1 L 1 1 B A 1
RXD T DETECTORLTAN T L BT 1 OF (1% B WX Be X o7 X BB Jstop
RECEIVE{ —___ SAMPLETIMES ¢ a9 W . w__ mm 7] ™ ™ o BIT
SHIFY 1 1 1 1 1 1L 1 1 1 Iy
At p—
270252-17

Figure 19. Serial Port Mode 2

3-21

in‘I‘eI. HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

TIMER 1 TIMER 2 8051 INTERNAL BUS
OVERFLOW OVERFLOW
r 88
warre hvé
TO
‘SBUF
= Cf SBUF XD
[zERO DETECTOR
Py
START SHIFT pata
TX CONTROL _
——-I:_ﬁ]-—— TXCLOCK 1 SEND
SERIAL
vy e PORT
INTERRUPT
RCLK —— ——
+16
ISAMPLE
1-T0-0 RXCLOCK RI LOA? |
RANSITION TART SBUI
DETECTOR s RXCONTROL SHIFT
] 1FFH

It

INPUT SHIFT REG.

(9BITS)
AXD SHIFT
. LOAD
SBUF
SBUF
READ
SBUF
8051 INTERNAL BUS
TX
jcLocK 3] I L ! 1 1 1] 1 A
) WRITE TO SBUF

=—— s B

DATA Cs1m T 1

SHIFT [1 [1 1 1 1 1 i TRANSMIT

TXD \CIARTEY STOP BIT

Tl

STOP BITGEN] |
ACLOCK 3 a6 RESET n I L 1 1 1 1 1 x
RXO S T DETECTORLSAM YO8 U OV JT 07 X B 1 W ¥ 05 X 6 X _©7 X A& Jgrop
RECEIVE SAMPLE TIMES ”m " ™ m o m " o0 nm__ BIT

SHIFT 1 1 A P) i 1 1 Y 0
Rl —

270252-18

Figure 20. Serial Port Mode 3. TCLK, RCLK, and Timer 2 are Present in the 8052/8032 Only.

intel.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

As data bits come in from the right, 1s shift out to the
left. When the start bit arrives at the leftmost position
in the shift register (which in Modes 2 and 3 is a 9-bit
register), it flags the RX Control block to do one last
shift, load SBUF and RBS, and set RI. The signal to
load SBUF and RBS, and to set RI, will be generated if,
and only if, the following conditions are met at the time
the final shift pulse is generated:

1) Rl = 0, and
2) Either SM2 = 0 or the received 9th data bit = 1

If either of these conditions is not met, the received
frame is irretrievably lost, and RI is not set. If both
conditions are met, the received 9th data bit goes into
RBS, and the first 8 data bits go into SBUF. One bit
time later, whether the above conditions were met or
not, the unit goes back to looking for a 1-to-0 transition
at the RXD input.

Note that the value of the received stop bit is irrelevant
to SBUF, RBS, or RI.

INTERRUPTS

The 8051 provides S interrupt sources. The 8052 pro-
vides 6. These are shown in Figure 21.

The External Interrupts INTO and INT1 can each be
either level-activated or transition-activated, depending
on bits ITO and IT1 in Register TCON. The flags that
actually generate these interrupts are bits 1EO and IE1
in TCON. When an external interrupt is generated, the
flag that generated it is cleared by the hardware when
the service routine is vectored to only if the interrupt

TFO
INTERRUPT
SOURCES
™1
g o>—
;1
) e
EXF2 {8062 ONLY) Y,
270252-19

Figure 21. MCS®-51 Interrupt Sources

was transition-activated. If the interrupt was level-acti-
vated, then the external requesting source is what con-
trols the request flag, rather than the on-chip hardware.

The Timer O and Timer 1 Interrupts are generated by
TFO and TF1, which are set by a rollover in their re-
spective Timer/Counter registers (except see Timer O in
Mode 3). When a timer interrupt is generated, the flag
that generated it is cleared by the on-chip hardware
when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR
of RI and TI. Neither of these flags is cleared by hard-
ware when the service routine is vectored to. In fact,
the service routine will normally have to determine
whether it was RI or TI that generated the interrupt,
and the bit will have to be cleared in software.

In the 8052, the Timer 2 Interrupt is generated by the
logical OR of TF2 and EXF2. Neither of these flags is
cleared by hardware when the service routine is vec-
tored to. In fact, the service routine may have to deter-
mine whether it was TF2 or EXF2 that generated the
interrupt, and the bit will have to be cleared in soft-
ware.

All of the bits that generate interrupts can be set or
cleared by software, with the same result as though it
had been set or cleared by hardware. That is, interrupts
can be generated or pending interrupts can be canceled
in software.

(MSB) (LSB)

[ea] — [ere] es | ert] ext] evo] exo]

Enable Bit = 1 onables the interrupt.
Enable Bit = 0 disables it.

Symbol Position Function

EA IE7 disables all interrupts. If EA = 0, no
interrupt will be acknowledged. If EA
= 1, each interrupt sousce is
individually enabled or disabled
setting or clearing its enabie bit.

- IES reserved.

ET2 IES Timer 2 intarrupt enable bit.

ES IE.4 Serial Port interrupt enable bit.

ET1 E3 Timer 1 interrupt enable bit.

EX1 IE2 Extemal interrupt 1 enable bit.

ETO IEA Timer 0 interrupt enabie bit.

EX0 IEQ External intarrupt 0 enable bit.

User software should never write 1s to unimplemented bits, since
they may be used in future MCS-51 products.

Figure 22. [E: Interrupt Enable Register

3-23

intal.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Each of these interrupt sources can be individually en-
abled or disabled by setting or clearing a bit in Special
Function Register IE (Figure 22). IE contains also a
global disable bit, EA, which disables all interrupts at
once.

Note in Figure 22 that bit position IE.6 is unimple-
mented. In the 8051s, bit position IE.5 is also unimple-
mented. User software should not write 1s to these bit
positions, since they may be used in fauture MCS-51
products.

Priority Level Structure

Each interrupt source can also be individually pro-
grammed to one of two priority levels by setting or
clearing a bit in Special Function Register IP (Figure
23). A low-priority interrupt can itself be interrupted
by a high-priority interrupt, but not by another low-pri-
ority interrupt. A high-priority interrupt can’t be inter-
rupted by any other interrupt source.

(MSB) (LSB)
[=1 =Ter2] ps [pr1] Px1]Pro] Px0]

Priority bit = 1 assigns high priority.
Priority bit = 0 assigns low priority.

Symbol Position Function

- P.7 reserved

— P.6 reserved

PT2 iP5 Timer 2 interrupt priority bit.
PS P4 Serial Port interrupt priority bit.
PT1 1P.3 Timer 1 interrupt priority bit.
PX1 IP.2 External interrupt 1 priority bit.
PTO IP.1 Timer O interrupt priority bit.
PX0 1P.0 Extemnal interrupt O priority bit.

User software should never write 1s to unimplemented bits, since
they may be used in future MCS-51 products.

Figure 23. IP: Interrupt Priority Register

If two requests of different priority levels are received
simultaneously, the request of higher priority level is
serviced. If requests of the same priority level are re-

ceived simultaneously, an internal polling sequence de-
termines which request is serviced. Thus within each
priority level there is a second priority structure deter-
mined by the polling sequence, as follows:

Source Priority Within Level
IEO (highest)
TFO
IE1
TF1
RI+TI
TF2 + EXF2

oOOohw®N

(lowest)

Note that the “priority within level” structure is only
used to resolve simultaneous requests of the same priori-
ty level.

The IP register contains a number of unimplemented
bits. IP.7 and IP.6 are vacant in the 8052s, and in the
8051s these and IP.5 are vacant. User software should
not write 1s to these bit positions, since they may be
used in future MCS-51 products.

How Interrupts Are Handled

The interrupt flags are sampled at S5P2 of every ma-
chine cycle. The samples are polled during the follow-
ing machine cycle. The 8052’s Timer 2 interrupt cycle
is different, as described in the Response Time Section.
If one of the flags was in a set condition at S5P2 of the
preceding cycle, the polling cycle will find it and the
interrupt system will generate an LCALL to the appro-
priate service routine, provided this hardware-generat-
ed LCALL is not blocked by any of the following con-
ditions:
1. An interrupt of equal or higher priority level is al-
ready in progress.
2. The current (polling) cycle is not the final cycle in
the execution of the instruction in progress.

3. The instruction in progress is RETI or any write to
the IE or IP registers.

Any of these three conditions wiil block the generation
of the LCALL to the interrupt service routine. Condi-
tion 2 ensures that the instruction in progress will be

GOES LATCHED
ACTIVE

C1 ¥ c2 c3 y C4 t c5
issp2l s 1
ULy R
A\ S P
— ~ -
€ INTERRUPTS LONG CALLTC INTERRUPT ROUTINE
ARE POLLED INTERRUPT
INTERRUPT INTERRUPT VECTOR ADDRESS

This is the fastest possible response when C2 is the final cycle of an instruction other than RETI or an access to |E or IP.

270252-20

Figure 24. Interrupt Response Timing Diagram

3-24

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

completed before vectoring to any service routine. Con-
dition 3 ensures that if the instruction in progress is
RETI or any access to IE or IP, then at least one more
instruction will be executed before any interrupt is vec-
tored to.

The polling cycle is repeated with each machine cycle,
and the values polled are the values that were present at
S5P2 of the previous machine cycle. Note then that if
an interrupt flag is active but not being responded to for
one of the above conditions, and is not still active when
the blocking condition is removed, the denied interrupt
will not be serviced. In other words, the fact that the
interrupt flag was once active but not serviced is not
remembered. Every polling cycle is new.

The polling cycle/LCALL sequence is illustrated in
Figure 24.

Note that if an interrupt of higher priority level goes
active prior to S5P2 of the machine cycle labeled C3 in
Figure 24, then in accordance with the above rules it
will be vectored to during C5 and C6, without any in-
struction of the lower priority routine having been exe-
cuted.

Thus the processor acknowledges an interrupt request
by executing a hardware-generated LCALL to the ap-
propriate servicing routine. In some cases it also clears
the flag that generated the interrupt, and in other cases
it doesn’t. It never clears the Serial Port or Timer 2
flags. This has to be done in the user’s software. It
clears an external interrupt flag (IEO or IE1) only if it
was transition-activated. The hardware-generated
LCALL pushes the contents of the Program Counter
onto the stack (but it does not save the PSW) and re-
loads the PC with an address that depends on the
source of the interrupt being vectored to, as shown be-
low.

Vector
Source Address
IEO 0003H
TFO 000BH
IE1 0013H
TF1 001BH
R+ TI 0023H
TF2 + EXF2 0028H

Execution proceeds from that location until the RETI
instruction is encountered. The RETI instruction in-
forms the processor that this interrupt routine is no
longer in progress, then pops the top two bytes from the
stack and reloads the Program Counter. Execution of
the interrupted program continues from where it left
off.

Note that a simple RET instruction would also have
returned execution to the interrupted program, but it
would have left the interrupt control system thinking
an interrupt was still in progress.

3-256

External Interrupts

The external sources can be programmed to be level-ac-
tivated or transition-activated by setting or clearing bit
IT1 or ITO in Register TCON. If ITx = 0, external
interrupt x is triggered by a detected low at the INTx
pin. If ITx = 1, external interrupt x is edge-triggered.
In this mode if successive samples of the INTx pin
show a high in one cycle and a low in the next cycle,
interrupt request flag IEx in TCON is set. Flag bit IEx
then requests the interrupt.

Since the external interrupt pins are sampled once each
machine cycle, an input high or low should hold for at
least 12 oscillator periods to ensure sampling. If the
external interrupt is transition-activated, the external
source has to hold the request pin high for at least one
machine cycle, and then hold it low for at least one
machine cycle to ensure that the transition is seen so
that interrupt request flag IEx will be set. IEx will be
automatically cleared by the CPU when the service
routine is called.

If the external interrupt is level-activated, the external
source has to hold the request active until the requested
interrupt is actually generated. Then it has to deacti-
vate the request before the interrupt service routine is
completed, or else another interrupt will be generated.

Response Time

The INTO and INT1 levels are inverted and latched
into the interrupt flags IEO and IE1 at S5P2 of every
machine cycle. Similarly, the Timer 2 flag EXF2 and
the Serial Port flags RI and TI are set at S5P2. The
values are not actually polled by the circuitry until the
next machine cycle.

The Timer O and Timer 1 flags, TFO and TF1, are set at
S5P2 of the cycle in which the timers overflow. The
values are then polled by the circuitry in the next cycle.
However, the Timer 2 flag TF2 is set at S2P2 and is
polled in the same cycle in which the timer overflows.

If a request is active and conditions are right for it to be
acknowledged, a hardware subroutine call to the re-
quested service routine will be the next instruction to be
executed. The call itself takes two cycles. Thus, a mini-
mum of three complete machine cycles elapse between
activation of an external interrupt request and the be-
ginning of execution of the first instruction of the serv-
ice routine. Figure 24 shows interrupt response timings.

A longer response time would result if the request is
blocked by one of the 3 previously listed conditions. If
an interrupt of equal or higher priority level is already
in progress, the additional wait time obviously depends
on the nature of the other interrupt’s service routine. If
the instruction in progress is not in its final cycle, the
additional wait time cannot be more than 3 cycles, since
the longest instructions (MUL and DIV) are only 4

intel.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

cycles long, and if the instruction in progress is RETI
or an access to IE or IP, the additional wait time can-
not be more than 5 cycles (a maximum of one more
cycle to complete the instruction in progress, plus 4
cycles to complete the next instruction if the instruction
is MUL or DIV).

Thus, in a single-interrupt system, the response time is
always more than 3 cycles and less than 9 cycles.

SINGLE-STEP OPERATION

The 8051 interrupt structure allows single-step execu-
tion with very little software overhead. As previously
noted, an interrupt request will not be responded to
while an interrupt of equal priority level is still in prog-
ress, nor will it be responded to after RETI until at
least one other instruction has been executed. Thus,
once an interrupt routine has been entered, it cannot be
re-entered until at least one instruction of the interrupt-
ed program is executed. One way to use this feature for
single-stop operation is to program one of the external
interrupts (say, INTO) to be level-activated. The service
routine for the interrupt will terminate with the follow-
ing code:

JNB P3.2,$;Wait Here Till INTO Goes High
JB P3.2,$;Now Wait Here Till it Goes Low
RETt :Go Back and Execute One Instruction

Now if the INTO pin, which is also the P3.2 pin, is held
normally low, the CPU will go right into the External
Interrupt O routine and stay there until INTO is pulsed
(from low to high to low). Then it will execute RETI,
g0 back to the task program, execute one instruction,
and immediately re-enter the External Interrupt O rou-
tine to await the next pulsing of P3.2. One step of the
task program is executed each time P3.2 is pulsed.

RESET

The reset input is the RST pin, which is the input to a
Schmitt Trigger.

A reset is accomplished by holding the RST pin high
for at least two machine cycles (24 oscillator periods),
while the oscillator is running. The CPU responds by
generating an internal reset, with the timing shown in
Figure 25.

The external reset signal is asynchronous to the internat
clock. The RST pin is sampled during State 5 Phase 2
of every machine cycle. The port pins will maintain
their current activities for 19 oscillator periods after a
logic 1 has been sampled at the RST pin; that is, for 19
to 31 oscillator periods after the external reset signal
has been applied to the RST pin.

While the RST pin is high, ALE and PSEN are weakly
pulled high. After RST is pulled low, it will take 1 to 2
machine cycles for ALE and PSEN to start clocking.
For this reason, other devices can not be synchronized
to the internal timings of the 8051.

Driving the ALE and PSEN pins to O while reset is
active could cause the device to go into an indetermi-
nate state.

The internal reset algorithm writes Os to all the SFRs
except the port latches, the Stack Pointer, and SBUF.
The port latches are initialized to FFH, the Stack
Pointer to 0TH, and SBUF is indeterminate. Table 3
lists the SFRs and their reset values.

The internal RAM is not affected by reset. On power
up the RAM content is indeterminate.

|e——12 OSC. PERIODS ———]
|ss|s6 | st|s2|s3]s4|s5|s6]s1|s2]|s3|54|55|s6]| s1]s2]s3]s4]
w__ ST
INTERNAL RESET SIGNAL
SAMPLE RST SAM,PTE RST £
'
Ll '
1 ! ;
'
ALE: ! I I
: !
I n
FSEN: | | : :
' '
] 1]
PO: X wst ADDR’ INST JADDRY INsT YADDR K INST ADDR) INST Xmmi
F——11 0SC. PERIODS —* 19 0SC. PERIODS ————
270252-33

Figure 25. Reset Timing

3-26

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Table 3. Reset Values of the SFRs

SFR Name Reset Value
PC 0000H
ACC 00H
B 00H
PSW 00H
SP 07H
DPTR 0000H
P0-P3 FFH
IP (8051) XXX00000B
IP (8052) XX000000B
{E (8051) 0XX00000B
IE (8052) 0X000000B
TMOD 00H
TCON 00H
THO 00H
TLO 00H
TH1 00H
TL1 00H
TH2 (8052) OOH
TL2 (8052) 00H
RCAP2H (8052) 00H
RCAP2L (8052) 00H
SCON 00H
SBUF Indeterminate
PCON (HMOS) OXXXXXXXB
PCON (CHMOS) 0XXX0000B

vcC
10ut _;
vee
8051
RST
s2x0)
:
t+ vss
270252-21

Figure 26. Power on Reset Circuit

POWER-ON RESET

For HMOS devices when V¢ is turned on an automat-
ic reset can be obtained by connecting the RST pin to
Vcc through a 10 wF capacitor and to Vgg through an
8.2 KN resistor (Figure 26). The CHMOS devices do
not require this resistor although its presence does no
harm. In fact, for CHMOS devices the external resistor
can be removed because they have an internal pulldown
on the RST pin. The capacitor value could then be re-
duced to 1 pF.

When power is turned on, the circuit holds the RST pin
high for an amount of time that depends on the capaci-
tor value and the rate at which it charges. To ensure a
valid reset the RST pin must be held high long enough
to allow the oscillator to start up plus two machine
cycles.

On power up, Ve should rise within approximately
ten milliseconds. The oscillator start-up time will de-
pend on the oscillator frequency. For a 10 MHZz crystal,
the start-up time is typically 1 ms. For a 1 MHz crystal,
the start-up time is typically 10 ms.

With the given circuit, reducing Ve quickly to O caus-
es the RST pin voltage to momentarily fall below OV,
However, this voltage is internaily limited and will not
harm the device.

NOTE:
The port pins will be in a random state until
the oscillator has started and the internal reset
algorithm has written 1s to them.

Powering up the device without a valid reset could
cause the CPU to start executing instructions from an
indeterminate location. This is because the SFRs, spe-
cifically the Program Counter, may not get properly
initialized.

POWER-SAVING MODES OF
OPERATION

For applications where power consumption is critical
the CHMOS version provides power reduced modes of
operation as a standard feature. The power down mode
in HMOS devices is no longer a standard feature and is
being phased out.

CHMOS Power Reduction Modes

CHMOS versions have two power-reducing modes,
Idle and Power Down. The input through which back-
up power is supplied during these operations is VCC.
Figure 27 shows the internal circuitry which imple-
ments these features. In the Idle mode (IDL = 1), the
oscillator continues to run and the Interrupt, Serial
Port, and Timer blocks continue to be clocked, but the

intel.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

clock signal is gated off to the CPU. In Power Down
(PD = 1), the oscillator is frozen. The Idle and Power
Down modes are activated by setting bits in Special
Function Register PCON. The address of this register
is 87H. Figure 26 details its contents.

In the HMOS devices the PCON register only contains
SMOD. The other four bits are implemented only in
the CHMOS devices. User software should never write
1s to unimplemented bits, since they may be used in
future MCS-51 products.

IDLE MODE

An instruction that sets PCON.O causes that to be the
last instruction executed before going into the Idle
mode. In the Idle mode, the internal clock signal is
gated off to the CPU, but not to the Interrupt, Timer,
and Serial Port functions. The CPU status is preserved
in its entirety: the Stack Pointer, Program Counter,
Program Status Word, Accumulator, and all other reg-
isters maintain their data during Idle. The port pins
hold the logical states they had at the time Idle was
activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of
any enabled interrupt will cause PCON.O to be cleared
by hardware, terminating the Idle mode. The interrupt
will be serviced, and following RETI the next instruc-
tion to be executed will be the one following the in-
struction that put the device into Idle.

XTAL 2 XTAL 1
osc
INTERRUPT,
cé?.i‘ SERIAL PORY,
TIMER BLOCKS
= crPu
oL
270262-22

Figure 27. Idle and Power Down Hardware

3-28

MSB) (LSB)
{smoo | - | -] -leri]aro]p| o |
Symbol Position Name and Function
SMOD PCON.7 Double Baud rate bit. When settoa 1

and Timer 1 is used to generate baud
rate, and the Serial Port is used in

modes 1, 2, or 3.
— PCON.6 (Reserved)
-— PCON.5 (Reserved)
—_ PCON.4 (Reserved)
GF1 PCON.3 General-purpose flag bit.
GFo PCON.2 General-purpose flag bit.
PD PCON.1 Power Down bit. Setting this bit
activates power down operation.
IDL PCON.O Idle mode bit. Setting this bit activates
idle mode operation.

If 1s are written to PD and IDL at the same time, PD takes
precedence. The reset value of PCON is (0XXX0000).

In the HMOS devices the PCON register only contains SMOD.
The other four bits are implemented only in the CHMOS devices.
User software should never write 1s to unimplemented bits, since
they may be used in future MCS-51 products.

Figure 28. PCON: Power Control Register

The flag bits GFO and GF1 can be used to give an
indication if an interrupt occurred during normal oper-
ation or during an Idle. For example, an instruction
that activates Idle can also set one or both flag bits.
When Idle is terminated by an interrupt, the interrupt
service routine can examine the flag bits.

The other way of terminating the Idle mode is with a
hardware reset. Since the clock oscillator is still run-
ning, the hardware reset needs to be held active for only
two machine cycles (24 oscillator periods) to complete
the reset.

The signal at the RST pin clears the IDL bit directly
and asynchronously. At this time the CPU resumes
program execution from where it left off; that is, at the
instruction following the one that invoked the Idle
Mode. As shown in Figure 25, two or three machine
cycles of program execution may take place before the
internal reset algorithm takes control. On-chip hard-
ware inhibits access to the internal RAM during this
time, but access to the port pins is not inhibited. To
climinate the possibility of unexpected outputs at the
port pins, the instruction following the one that invokes
Idle should not be one that writes to a port pin or to
external Data RAM.

POWER DOWN MODE

An instruction that sets PCON.1 causes that to be the
last instruction executed before going into the Power
Down mode. In the Power Down mode, the on-chip
oscillator is stopped. With the clock frozen, all func-

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Table 4. EPROM Versions of the 8051 and 8052

Device EPROM EPROM Ckt VPP Time Required to

Name Version Bytes Type Program Entire Array
8051AH 8751H/8751BH 4K HMOS 21.0v/12.75V 4 minutes
80C51BH 87C51 4K CHMOS 12.75V 13 seconds
8052AH 8752BH 8K HMOS 12.75V 26 seconds

tions are stopped, but the on-chip RAM and Special
Function Registers are held. The port pins output the
values held by their respective SFRs. ALE and PSEN
output lows.

The only exit from Power Down for the 80C51 is a
hardware reset. Reset redefines all the SFRs, but does
not change the on-chip RAM.

In the Power Down mode of operation, VCC can be
reduced to as low as 2V. Care must be taken, however,
to ensure that VCC is not reduced before the Power
Down mode is invoked, and that VCC is restored to its
normal operating level, before the Power Down mode is
terminated. The reset that terminates Power Down also
frees the oscillator. The reset should not be activated
before VCC is restored to its normal operating level,
and must be held active long enough to allow the oscil-
lator to restart and stabilize (normally less than 10
msec).

EPROM VERSIONS

The EPROM versions of these devices are listed in Ta-
ble 4. The 8751H programs at VPP = 21V using one
50 msec PROG pulse per byte programmed. This re-
sults in a total programming time (4K bytes) of approx-
imately 4 minutes.

The 8751BH, 8752BH and 87C51 use the faster
“Quick-Pulse” programming™ algorithm. These de-
vices program at VPP = 12.75V using a series of
twenty-five 100 us PROG pulses per byte programmed.
This results in a total programming time of approxi-
mately 26 seconds for the 8752BH (8 Kbytes) and
13 seconds for the 87C51 (4 Kbytes).

Detailed procedures for programming and verifying
each device are given in the data sheets.

Exposure to Light

It is good practice to cover the EPROM window with
an opaque label when the device is in operation. This is
not so much to protect the EPROM array from inad-
vertent erasure, but to protect the RAM and other on-
chip logic. Allowing light to impinge on the silicon die
while the device is operating can cause logical malfunc-
tion.

3-29

Program Memory Locks

In some microcontroller applications it is desirable that
the Program Memory be secure from software piracy.
Intel has responded to this need by implementing a
Program Memory locking scheme in some of the MCS-
51 devices. While it is impossible for anyone to guaran-
tee absolute security against all levels of technological
sophistication, the Program Memory locks in the MCS-
51 devices will present a substantial barrier against ille-
gal readout of protected software.

One Lock Bit Scheme on 8751H

The 8751H contains a lock bit which, once pro-
grammed, denies electrical access by any external
means to the on-chip Program Memory. The effect of
this lock bit is that while it is programmed the internal
Program Memory can not be read out, the device can
not be further programmed, and it can not execute ex-
ternal Program Memory. Erasing the EPROM array
deactivates the lock bit and restores the device’s full
functionality. It can then be re-programmed.

The procedure for programming the lock bit is detailed
in the 8751H data sheet.

Two Program Memory Lock Schemes

The 8751BH, 8752BH and 87C51 contain two Program
Memory locking schemes: Encrypted Verify and Lock
Bits.

Encryption Array: Within the EPROM is an array of
encryption bytes that are initially unprogrammed (all
1I’s). The user can program the array to encrypt the
code bytes during EPROM verification. The verifica-
tion procedure sequentially XNORs each code byte
with one of the key bytes. When the last key byte in the
array is reached, the verify routine starts over with the
first byte of the array for the next code byte. If the key
bytes are unprogrammed, the XNOR process leaves the
code byte unchanged. With the key bytes programmed,
the code bytes are encrypted and can be read correctly
only if the key bytes are known in their proper order.
Table 6 lists the number of encryption bytes available
on the various products.

When using the encryption array, one important factor
should be considered. If a code byte has the value

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

OFFH, verifying the byte will produce the encryption
byte value. If a large block of code is left unpro-
grammed, a verification routine will display the encryp-
tion array contents. For this reason all unused code
bytes should be programmed with some value other
than OFFH, and not all of them the same value. This
will ensure maximum program protection.

Program Lock Bits: Also included in the Program
Lock scheme are Lock Bits which can be enabled to
provide varying degrees of protection. Table 5 lists the
Lock Bits and their corresponding effect on the micro-
controller. Refer to Table 6 for the Lock Bits available
on the various products.

Erasing the EPROM also erases the Encryption Array
and the Lock Bits, returning the part to full functionali-
ty.

Table 5. Program Lock Bits and their Features
Program Lock Bits
LB1 | LB2 | LB3
1f U U U

Protection Type

No program lock features
enabled. (Code verify will
still be encrypted by the
encryption array if
programmed.)

MOVC instructions
executed from external
program memory are
disabled from fetching
code bytes from internal
memory, EA is sampled
and latched on reset, and
further programming of
the EPROM is disabled.

Same as 2, also verify is
disabled.

Same as 3, also external
execution is disabled.

3| P P U

al P P[P

P-Programmed
U-Unprogrammed

Any other combination of the Lock Bits is not defined.

Table 6. Program Protection
Device Lock Bits Encrypt Array
8751BH LBt, LB2 32 Bytes
8752BH LB1, LB2 32 Bytes
87C51 LB1, LB2,LB3 64 Bytes

When Lock Bit 1 is programmed, the logic level at the
EA pin is sampled and latched during reset. If the de-
vice is powered up without a reset, the latch initializes
to a random value, and holds that value until reset is
activated. It is necessary that the latched value of EA
be in agreement with the current logic level at that pin
in order for the device to function properly.

ROM PROTECTION

The 8051AHP and 80C51BHP are ROM Protected
versions of the 8051AH and 80C51BH, respectively. To
incorporate this Protection Feature, program verifica-
tion has been disabled and external memory accesses
have been limited to 4K. Refer to the data sheets on
these parts for more information.

ONCE™ Mode

The ONCE (“on-circuit emulation™) mode facilitates
testing and debugging of systems using the device with-
out the device having to be removed from the circuit.
The ONCE mode is invoked by:

1. Pull ALE low while the device is in reset and PSEN
is high;
2. Hold ALE low as RST is deactivated.

While the device is in ONCE mode, the Port O pins go
into a float state, and the other port pins and ALE and
PSEN are weakly pulled high. The oscillator circuit
remains active. While the device is in this mode, an
emulator or test CPU can be used to drive the circuit.
Normal operation is restored after a normal reset is
applied.

THE ON-CHIP OSCILLATORS

HMOS Versions

The on-chip oscillator circuitry for the HMOS
(HMOS-I and HMOS-II) members of the MCS-51 fam-
ily is a single stage linear inverter (Figure 29), intended
for use as a crystal-controlled, positive reactance oscil-
lator (Figure 30). In this application the crystal is oper-
ated in its fundamental response mode as an inductive
reactance in parallel resonance with capacitance exter-
nal to the crystal.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

T

270252-23

@
o TO INTERNAL
D TIMING CKTS
! a3, Q4
VYss «
V.| - O xnu——-—t;] XTALZ- ———
o—}——GuaARTZ CRYSTAL
+—i0} | OR CERAMIC RESONATOR
——1—3
€ _l_ ©2
270252-24

Figure 30. Using the HMOS On-Chip Oscillator

The crystal specifications and capacitance values (C1
and C2 in Figure 30) are not critical. 30 pF can be used
in these positions at any frequency with good quality
crystals. A ceramic resonator can be used in place of
the crystal in cost-sensitive applications. When a ce-
ramic resonator is used, C1 and C2 are normally select-
ed to be of somewhat higher values, typically, 47 pF.
The manufacturer of the ceramic resonator should be
consulted for recommendations on the values of these
capacitors.

3-31

Figure 29. On-Chip Oscillator Circuitry in the HMOS Versions of the MCS®-51 Family

In general, crystals used with these devices typically
have the following specifications:

ESR (Equivalent Series Resistance)
Co (Shunt Capacitance)

Cy, (Load Capacitance)
Drive Level

see Figure 31
7.0 pF max.
30 pF 3 pF
1 mW

500

400 A

300

L— —t——

ESR In OHMS

o

100 +

i Il - .
v T ¥ L

4 8 12 16
CRYSTAL FREQUENCY in MHz

270252~34

Figure 31. ESR vs Frequency

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

Frequency, tolerance and temperature range are deter-
mined by the system requirements.

A more in-depth discussion of crystal specifications, ce-
ramic resonators, and the selection of values for C1 and
C2 can be found in Application Note AP-155, “Oscilla-
tors for Microcontrollers,” which is included in the
Embedded Applications Handbook.

To drive the HMOS parts with an external clock
source, apply the external clock signal to XTAL2, and
ground XTALI, as shown in Figure 32. A pullup resis-
tor may be used (to increase noise margin), but is op-
tional if VOH of the driving gate exceeds the VIH MIN
specification of XTAL2.

Vee
8051
EXTERNAL
XTAL2
OSCILLATOR
SIGNAL 1 XTAL1
T
GATE vss
WITH .
TOTEM-POLE
OUTPUT =
270252-25

Figure 32. Driving the HMOS MCS®-51
Parts with an External Clock Source

CHMOS Versions

The on-chip oscillator circuitry for the 80C51BH,
shown in Figure 33, consists of a single stage linear
inverter intended for use as a crystal-controlled, posi-
tive reactance oscillator in the same manner as the
HMOS parts. However, there are some important dif-
ferences.

One difference is that the 80C51BH is able to turn off
its oscillator under software control (by writing a 1 to
the PD bit in PCON). Another difference is that in the
80CS1BH the internal clocking circuitry is driven by
the signal at XTAL1, whereas in the HMOS versions it
is by the signal at XTAL2.

The feedback resistor Ry in Figure 33 consists of paral-
leled n- and p- channel FETs controlled by the PD bit,
such that Ry is opened when PD = 1. The diodes D1
and D2, which act as clamps to VCC and VSS, are
parasitic to the R¢ FETs.

The oscillator can be used with the same external com-
ponents as the HMOS versions, as shown in Figure 34.
Typically, C1 = C2 = 30 pF when the feedback ele-
ment is a quartz crystal, and C1 = C2 = 47 pFwhena
ceramic resonator is used.

To drive the CHMOS parts with an external clock
source, apply the external clock signal to XTAL1, and
leave XTAL2 float, as shown in Figure 35.

TO INTERNAL
TIMING CKTS

400 O

XTALt D AN

a

AN D XTAL2

[
i

Vss
270252-26

Figure 33. On-Chip Oscillator Circuitry in the CHMOS Versions of the MCS®-51 Family

3-32

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

XTAL2

—— QUARTZ CRYSTAL
OR CERAMIC
RESONATOR

270252-27

80CS1

-
3@“&?—.[%"—-

SIGNAL
CNIOS GATE |
270252-28

XTAL2

XTAL1

Vss

Figure 35. Driving the CHMOS MCS®-51
Parts with an External Clock Source

The reason for this change from the way the HMOS
part is driven can be seen by comparing Figures 29 and
33. In the HMOS devices the internal timing circuits
are driven by the signal at XTAL2. In the CHMOS
devices the internal timing circuits are driven by the
signal at XTALI1.

3-33

Figure 34. Using the CHMOS On-Chip Oscillator

INTERNAL TIMING

Figures 36 through 39 show when the various strobe
and port signals are clocked internally. The figures do
not show rise and fall times of the signals, nor do they
show propagation delays between the XTAL signal and
events at other pins.

Rise and fall times are dependent on the external load-
ing that each pin must drive. They are often taken to be
something in the neighborhood of 10 nsec, measured
between 0.8V and 2.0V.

Propagation delays are different for different pins. For
a given pin they vary with pin loading, temperature,
VCC, and manufacturing lot. If the XTAL waveform is
taken as the timing reference, prop delays may vary
from 25 to 125 nsec.

The AC Timings section of the data sheets do not refer-
ence any timing to the XTAL waveform. Rather, they
relate the critical edges of control and input signals to
each other. The timings published in the data sheets
include the effects of propagation delays under the
specified test conditions.

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

snruls'mzz
miripip

STATE 3 STATE‘leATES STATEGlS‘l’ATEi STATE 2

pilezirip2

pir2ip|pr

etlp2ipmipr2

= [T U UL

ALE:
PSEN: ——— pama DATA DATA
Po: | PCL PCL PCL
' ' our o our ' our [~
P2: PCH OUT PCH OUT PCH OUT
270252-29
Figure 36. External Program Memory Fetches
sm-ulsm-s 5 | STATE 6| STATE 1 ' sm'szlsm's a| suruls'mss
pipzipirzlple2imie2ipile2ierlp2lpilp2]p1ip2
ALE:
RO: PCL OUT F
PROGRAM MEMORY
DATA SAMPLED ——I r— EXTERNAL
P0: DPL OR Ri FLOAT FLOAT £y |
our [—
PCH OR PCH OR
2 PH OR
P2 P2 SFR DPH OR P2 SFR OUT P2 SFR

270252~30

Figure 37. External Data Memory Read Cycle

3-34

intgl.

HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

STATE 4| STATE 5 |STATE & STATE!ISTATEZISTA‘I‘ESIS‘TA‘I‘EJISTATES

P1lpP2

= [TUUUTIUUU U UL

Ple2ip

Ie2lplezlpilp2lpiipz] Pilp2lp1]e2

ALE:
WR: PCL OUT F
PROGRAM MEMORY
_\- IS EXTERNAL
<
' DPL OR R PeLl, -
PO: out DATA OUT Iou'r
PCH OR PCH OR
P2
P2 SFR DPH OR P2 SFR OUT P2 SFR

270252-31

Figure 38. External Data Memory Write Cycle

Ism-sc STATE S | STATE 6 | STATE 1 | STATE 2 | STATE 3 | STATE 4 | STATE 5
piipzlpmipzlpiir2lpeilr2imrp2lpiip2imip2ier|p2

PO, P1,P2,P3 Po,P1,P2,P3
INPUTS SAMPLED:
RST RST

MOV PORT, SRC: OLD DATA NEW DATA
SERIAL PORT
SHIFT CLOCK
(MODE 0)
—»{ |«— RXD PIN SAMPLED RXD SAMPLED ~»| |«—

270252-32

Figure 39. Port Operation

3-35

in'l'el. HARDWARE DESCRIPTION OF THE 8051, 8052 AND 80C51

ADDITIONAL REFERENCES

The following application notes and articles are found in the Embedded Applications handbook.
(Order Number: 270648)

1. AP-125 “Designing Microcontroller Systems for Electrically Noisy Environments”.

2. AP-155 “Oscillators for Microcontrollers”.

3. AP-252 “Designing with the 80C51BH”.

4. AR-517 “Using the 8051 Microcontroller with Resonant Transducers”.

	MCS® 51 Microcontroller Family User's Manual
	Table of Contents
	Chapter 1: MCS 51 Family of Microcontrollers Architectural Overview
	Introduction
	Memory Organization
	Instruction Set
	CPU Timing
	Additional References

	Chapter 2: Programmer's Guide and Instruction Set
	Memory Organization
	Program Memory
	Indirect Address Area
	Special Function Registers
	What do the SFRs Contain Just After Power-on or a Reset
	SFR Memory Map
	PSW: Program Status Word. Bit Addressable
	PCON: Power Control Register. Not Bit Addressable
	Interrupts
	IE: Interrupt Enable Register. Bit Addressable.
	Assigning Higher Priority to One or More Interrupts
	Priority Within Level
	IP: Interrupt Priority Register. Bit Addressable
	TCON: Timer/Counter Control Register. Bit Addressable.
	TMOD: Timer/Counter Mode Control Register. Not Bit Addressable.
	Timer Set-Up
	Timer/Counter 0
	Timer/Counter 1
	T2CON: Timer/Counter 2 Control Register. Bit Addressable.
	Timer/Counter 2 Set-Up
	SCON: Serial Port Control Register. Bit Addressable.
	Generating Baud Rates
	Using Timer/Counter 1 to Generate Baud Rates
	Using Timer/Counter 2 to Generate Baud Rates
	Serial Port in Mode 2
	Serial Port in Mode 3
	MCS-51 Instruction Set
	Instruction Definitions

	Chapter 3: 8051, 8052, 80C51 Hardware Description
	Introduction
	Port Structures and Operation
	Accessing External Memory
	Timer/Counters
	Serial Interface
	Interrupts
	Single-Step Operation
	Reset
	Power-On Reset
	Power-Saving Modes of Operation
	EPROM Versions
	The On-Chip Oscillators
	Internal Timing

