
Chapter 15:
File System Internals

3423 Operating Systems
Fall 2019

National Tsing Hua University

1

Types of File Systems
• General-purpose file systems vs Special Purpose

• Example: Solaris
• tmpfs – memory-based volatile FS for fast, temporary I/O

• objfs – interface into kernel memory to get kernel symbols for
debugging

• ctfs – "contract" file system for managing daemons - i.e., processes
that are started on boot up and continue running

• lofs – loopback file system allows one FS to be accessed in place
of another

• procfs – kernel interface to process structures as a file system

• ufs,	zfs – general purpose file systems

2

A Typical File-system
Organization

3

��� $IBQUFS �� 'JMF�4ZTUFN *OUFSOBMT

Figure 15.1 A typical storage device organization.

• UNQGT—a “temporary” !le system that is created in volatile main memory
and has its contents erased if the system reboots or crashes

• PCKGT—a “virtual” !le system (essentially an interface to the kernel that
looks like a !le system) that gives debuggers access to kernel symbols

• DUGT—a virtual !le system that maintains “contract” information to man-
age which processes start when the system boots andmust continue to run
during operation

• MPGT—a “loop back” !le system that allows one !le system to be accessed
in place of another one

• QSPDGT—a virtual !le system that presents information on all processes as
a !le system

• VGT
 [GT—general-purpose !le systems

The !le systems of computers, then, can be extensive. Even within a !le
system, it is useful to segregate !les into groups and manage and act on those
groups. This organization involves the use of directories (see Section 14.3).

15.2 File-System Mounting

Just as a !le must be opened before it can be used, a !le system must be
mounted before it can be available to processes on the system.More speci!cally,
the directory structure may be built out of multiple !le-system-containing
volumes, which must be mounted to make them available within the !le-
system name space.

Themount procedure is straightforward. The operating system is given the
name of the device and theNPVOU QPJOU—the location within the !le structure
where the !le system is to be attached. Some operating systems require that a
!le-system type be provided, while others inspect the structures of the device

File System Mounting
• A file system must be mounted before it can be

accessed

• A unmounted file system (i.e., Fig. 11-11(b)) is
mounted at a mount point

4

Mount Point

5

Partitions
• Partition can be

• volume containing a file system ("cooked") or

• raw – just a sequence of blocks with no file system

• Root partition
• contains the OS

• Mounted at boot time

• other partitions
• can hold other OSs, other file systems, or raw

• can mount automatically or manually

6

Mounting
• Boot block can

• point to boot volume or

• contain boot loader = set of blocks that contain enough
code to know how to load the kernel from the file
system

• Or a boot management program for multi-OS booting

• At mount time, file system consistency checked

• if not all metadata correct, fix it, try again

• If all correct, add to mount table, allow access

7

Virtual File Systems
• Virtual File Systems (VFS) on Unix

• provide an object-oriented way of implementing file systems

• Same system call API for different types of file systems
• Separates file-system generic operations from implementation

details

• Implementation can be a file system or network file system

• Implements vnodes which hold either inodes (for a local file
system) or network file details (for network file system)

• Then dispatches operation to appropriate file system
implementation routines

8

Virtual File Systems (Cont.)
• The API is to the VFS interface, rather than

any specific type of file system

9

��� $IBQUFS �� 'JMF�4ZTUFN *OUFSOBMT

local file system
type 1

disk

local file system
type 2

disk

remote file system
type 1

network

file-system interface

VFS interface

Figure 15.5 Schematic view of a virtual !le system.

The second layer is called the WJSUVBM !MF TZTUFN (7'4) layer. The VFS layer
serves two important functions:

�� It separates !le-system-generic operations from their implementation by
de!ning a clean VFS interface. Several implementations for the VFS inter-
face may coexist on the same machine, allowing transparent access to
different types of !le systems mounted locally.

�� It provides amechanism for uniquely representing a!le throughout a net-
work. The VFS is based on a !le-representation structure, called a WOPEF,
that contains a numerical designator for a network-wide unique !le.
(UNIX inodes are unique within only a single !le system.) This network-
wide uniqueness is required for support of network !le systems. The
kernel maintains one vnode structure for each active node (!le or direc-
tory).

Thus, the VFS distinguishes local !les from remote ones, and local !les are
further distinguished according to their !le-system types.

The VFS activates !le-system-speci!c operations to handle local requests
according to their !le-system types and calls the NFS protocol procedures (or
other protocol procedures for other network !le systems) for remote requests.
File handles are constructed from the relevant vnodes and are passed as argu-
ments to these procedures. The layer implementing the !le-system type or the
remote-!le-system protocol is the third layer of the architecture.

Let’s brie"y examine the VFS architecture in Linux. The four main object
types de!ned by the Linux VFS are:

For object types in Linux VFS
• inode object:

• an individual file

• file object:
• an open file

• superblock:
• entire file system

• dentry:
• "directory entry"

10

File Sharing on Distributed
Systems

• Several approaches
• Manually via FTP, anonymous or authenticated

• Automatically using distributed file systems

• Via the world wide web, anonymous

• If distributed systems, shared across a network
• Network File System (NFS) is a common distributed file-

sharing method

• trickier to authenticate across machines! Same user may
have different user IDs on different machines. how to trust
them?

11

File Sharing – Remote File
Systems

• Client-server model

• allows clients to mount remote file systems from servers

• Client and user-on-client identification is insecure or complicated

• Standard operating system file calls are translated into remote calls

• NFS (network file system) on UNIX

• server must trust client; user IDs must match

• uses NIS (network info. service) to authenticate. NIS+ secure.

• CIFS (common Internet file system) on Windows

• creates network login

• Active Directory for distributed naming structure

12

Distributed Naming Service
• Examples

• DNS, NIS, Active Directory

• implement unified access to information needed
for remote computing

• Trend: moving towards LDAP
• LDAP = lightweight directory-access protocol

• single sign-on for an organization

• Active Directory is based on LDAP

13

File Sharing – Failure Modes
• All file systems have failure modes

• Local file system
• corruption of directory structures or metadata

• Remote file systems
• new failure modes, due to network failure, server failure

• Recovery from failure
• involve state information about status of each remote request

• Stateless protocols such as NFS v3 include all information in
each request, allowing easy recovery, but less security

14

File Sharing – Consistency
Semantics

• Specify simultaneous access to file by multiple users
• Similar to process synchronization algorithms

• Unix file system (UFS) implements:
• Writes to an open file visible immediately to other users

• Sharing file pointer to allow multiple users to read and write
concurrently

• Andrew File System (AFS)
• implemented complex remote file sharing semantics

• session semantics: writes only visible to sessions after the file is closed

• advantage: local access speed; but multiple versions exist!

15

Network File System (NFS)
by Sun Microsystems

• NFS

• an implementation

• a specification of a software system

• Purpose

• for accessing remote files across LANs (or WANs)

• The implementation

• part of the Solaris and SunOS operating systems running
on Sun workstations

• uses unreliable datagram (UDP/IP protocol) and Ethernet

16

NFS Architecture
• Interconnected workstations

• a set of independent machines with independent file systems

• allows sharing among these file systems in a transparent manner

• Remote directory is mounted over a local FS directory

• mounted directory looks like an integral subtree of the local FS

• mount operation needs the host name of the remote directory

• Subject to access-rights accreditation,

• potentially any FS (or directory within a FS), can be mounted
remotely on top of any local directory

17

NFS (Cont.)
• Heterogeneous environment

• independent of machines, OSs, and network architectures

• mechanism: RPC primitives

• built on top of an External Data Representation (XDR)
protocol used between two implementation-independent
interfaces

• NFS specification distinguishes between

• the services provided by a mount mechanism and

• the actual remote-file-access services

18

