
Chapter 14:
File System

Implementation
CS 3423 Operating Systems

Fall 2019
National Tsing Hua University

1

 Outline: File System
Implementation

• File-System Structure

• File-System Implementation

• Directory Implementation

• Allocation Methods

• Free-Space Management

• Efficiency and Performance

• Recovery

• NFS

• Example: WAFL File System

2

File-System Structure
• File system (FS)

• Resides on secondary storage (disks)

• Provides mapping logical storage to physical storage

• Provides efficient implementation and convenient API to disk

• One OS may support multiple types of FS (e.g., FAT32, NTFS)

• Disk
• provides in-place rewrite and random access to storage

• I/O transfers in units of blocks (=one or more sectors)

• one sector usually 512 bytes

3

Two design problems in FS
• interface to user programs

• API for user programs open(), read(), write(),

• mostly independent of file system

• interface to physical storage (disk)

• API for accessing disk

• mostly independent of actual disk, isolated by I/O
control layer

4

Layered File System
read(fh, buf, size)

manages metadata (fp, access)

logical <-> physical mapping

read d1, c735, t5, s10

read drive1, cylinder 72, track 2,
sector 10, into memory location 1060

retrieve block 123

manages memory buffers and
caches (allocation, freeing, replacement)

Translates logical to physical block #
Manages free space, disk allocation

5

user

logical

physical

���� 'JMF�4ZTUFN 4USVDUVSF ���

application programs

file-organization module

basic file system

I/O control

devices

logical file system

Figure 14.1 Layered !le system.

requested I/O to complete. Caches are used to hold frequently used !le-system
metadata to improve performance, so managing their contents is critical for
optimum system performance.

The GJMF�PSHBOJ[BUJP NPEVMF knows about !les and their logical blocks.
Each !le’s logical blocks are numbered from 0 (or 1) through N. The !le-
organization module also includes the free-space manager, which tracks unal-
located blocks and provides these blocks to the !le-organization module when
requested.

Finally, the MPHJDBM !MF TZTUFN manages metadata information. Metadata
includes all of the !le-system structure except the actual data (or contents of
the !les). The logical !le system manages the directory structure to provide
the !le-organization module with the information the latter needs, given a
symbolic !le name. It maintains !le structure via !le-control blocks. A GJMF
DPOUSPM CMPDL ('$#) (an JOPEF in UNIX !le systems) contains information about
the!le, including ownership, permissions, and location of the!le contents. The
logical !le system is also responsible for protection, as discussed in Chapters
13 and 17.

When a layered structure is used for !le-system implementation, duplica-
tion of code is minimized. The I/O control and sometimes the basic !le-system
code can be used by multiple !le systems. Each !le system can then have its
own logical !le-system and !le-organizationmodules. Unfortunately, layering
can introducemore operating-systemoverhead,whichmay result in decreased
performance. The use of layering, including the decision about howmany lay-
ers to use andwhat each layer should do, is amajor challenge in designing new
systems.

Many !le systems are in use today, and most operating systems support
more than one. For example, most CD-ROMs are written in the ISO 9660 for-
mat, a standard format agreed on by CD-ROM manufacturers. In addition to
removable-media !le systems, each operating system has one or more disk-
based !le systems. UNIX uses the 6/*9 GJM TZTUFN (6'4), which is based on the

Logical File System
• Manages metadata information

• Translates file name into file number, file handle,
location by maintaining file control blocks (inodes in
UNIX)

• Directory management

• Protection

• Layering

• useful for reducing complexity and redundancy

• adds overhead and can decrease performance

6

Multiple file systems within an
OS

• CD-ROM is ISO 9660

• Unix has UFS, FFS

• Windows
• FAT, FAT32, NTFS, floppy, CD, DVD Blu-ray

• Linux ext2, ext3, ext4, distributed FS

• New ones still being invented
• ZFS, GoogleFS, Oracle ASM, FUSE

7

File System
Implementation

8

On-disk structures
• Boot control block (per volume or per partition)

• contains info needed by system to boot OS from that volume

• Needed if volume contains OS, usually first block of volume

• Volume control block (also called partition control block)
• (superblock, master file table) contains volume details

• Total # of blocks, # of free blocks, block size, free block pointers or array

• Directory structure (per file system)
• Names and inode numbers, master file table

• File control block (per file)

• inode number, permissions, size, dates

• NFTS stores into in master file table using relational database structures

9

On-Disk Structure

Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

partition
(aka volume)

file control block (FCB)

10Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

Chapter11 FS Implementation

On-Disk Structure

Operating System Concepts – NTHU LSA Lab 8

Boot Control
Block (Optional)
Partition Control

Block
List of Directory
Control Blocks

Lis of File
Control Blocks

Data Blocks

Partition File Control Block (FCB)

���� 'JMF�4ZTUFN 0QFSBUJPOT ���

• Aper-!le FCB containsmany details about the !le. It has a unique identi!er
number to allow association with a directory entry. In NTFS, this informa-
tion is actually stored within the master !le table, which uses a relational
database structure, with a row per !le.

The in-memory information is used for both !le-system management and
performance improvement via caching. The data are loaded at mount time,
updated during !le-system operations, and discarded at dismount. Several
types of structures may be included.

• An in-memory NPVOU UBCMF contains information about each mounted
volume.

• An in-memory directory-structure cache holds the directory information
of recently accessed directories. (For directories at which volumes are
mounted, it can contain a pointer to the volume table.)

• The TZTUFN�XJEF PQFO�GJM UBCMF contains a copy of the FCB of each open
!le, as well as other information.

• The QFS�QSPDFTT PQFO�GJM UBCMF contains pointers to the appropriate
entries in the system-wide open-!le table, as well as other information,
for all !les the process has open.

• Buffers hold !le-system blocks when they are being read from or written
to a !le system.

To create a new !le, a process calls the logical !le system. The logical !le
system knows the format of the directory structures. To create a new !le, it
allocates a new FCB. (Alternatively, if the !le-system implementation creates
all FCBs at !le-system creation time, an FCB is allocated from the set of free
FCBs.) The system then reads the appropriate directory into memory, updates
it with the new !le name and FCB, andwrites it back to the !le system.Atypical
FCB is shown in Figure 14.2.

Some operating systems, including UNIX, treat a directory exactly the same
as a !le—one with a “type” !eld indicating that it is a directory. Other oper-

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Figure 14.2 A typical !le-control block.

In-Memory Structures
• in-memory Mount table

• stores file system mounts, mount points, file system types

• in-memory directory structure (as opposed to on-disk)
• recently accessed directories

• system-wide open-file table

• contains a copy of each open file's FCB

• per-process open-file table

• file handle (pointer) to corresponding entry in systemwide table

• buffers that hold data blocks from secondary storage

11

open(file name)

12

���� %JSFDUPSZ *NQMFNFOUBUJPO ���

directory structure

directory structure
open (file name)

kernel memoryuser space

index

(a)

file-control block

secondary storage

data blocks

per-process
open-file table

system-wide
open-file table

read (index)

kernel memoryuser space
(b)

file-control block

secondary storage

Figure 14.3 In-memory !le-system structures. (a) File open. (b) File read.

14.3.1 Linear List

The simplest method of implementing a directory is to use a linear list of !le
names with pointers to the data blocks. This method is simple to program
but time-consuming to execute. To create a new !le, we must !rst search the
directory to be sure that no existing !le has the same name. Then, we add a new
entry at the end of the directory. To delete a !le, we search the directory for the
named !le and then release the space allocated to it. To reuse the directory
entry, we can do one of several things. We can mark the entry as unused (by
assigning it a special name, such as an all-blank name, assigning it an invalid
inode number (such as 0), or by including a used–unused bit in each entry), or
we can attach it to a list of free directory entries. A third alternative is to copy
the last entry in the directory into the freed location and to decrease the length
of the directory. A linked list can also be used to decrease the time required to
delete a !le.

The real disadvantage of a linear list of directory entries is that !nding a
!le requires a linear search. Directory information is used frequently, and users
will notice if access to it is slow. In fact, many operating systems implement
a software cache to store the most recently used directory information. A
cache hit avoids the need to constantly reread the information from secondary
storage. A sorted list allows a binary search and decreases the average search
time. However, the requirement that the list be kept sorted may complicate
creating and deleting !les, since we may have to move substantial amounts of

search directory structure for file by name
if not in memory already,
 add entry to system-wide open file table, fill with FCB and initialize count
add per-process open file table to point to system-wide open file table entry

���� %JSFDUPSZ *NQMFNFOUBUJPO ���

directory structure

directory structure
open (file name)

kernel memoryuser space

index

(a)

file-control block

secondary storage

data blocks

per-process
open-file table

system-wide
open-file table

read (index)

kernel memoryuser space
(b)

file-control block

secondary storage

Figure 14.3 In-memory !le-system structures. (a) File open. (b) File read.

14.3.1 Linear List

The simplest method of implementing a directory is to use a linear list of !le
names with pointers to the data blocks. This method is simple to program
but time-consuming to execute. To create a new !le, we must !rst search the
directory to be sure that no existing !le has the same name. Then, we add a new
entry at the end of the directory. To delete a !le, we search the directory for the
named !le and then release the space allocated to it. To reuse the directory
entry, we can do one of several things. We can mark the entry as unused (by
assigning it a special name, such as an all-blank name, assigning it an invalid
inode number (such as 0), or by including a used–unused bit in each entry), or
we can attach it to a list of free directory entries. A third alternative is to copy
the last entry in the directory into the freed location and to decrease the length
of the directory. A linked list can also be used to decrease the time required to
delete a !le.

The real disadvantage of a linear list of directory entries is that !nding a
!le requires a linear search. Directory information is used frequently, and users
will notice if access to it is slow. In fact, many operating systems implement
a software cache to store the most recently used directory information. A
cache hit avoids the need to constantly reread the information from secondary
storage. A sorted list allows a binary search and decreases the average search
time. However, the requirement that the list be kept sorted may complicate
creating and deleting !les, since we may have to move substantial amounts of

read(index)
file handle, aka
file descriptor

13

per-process open-file table[index] => entry in system-wide open-file table
advance file pointer by number of bytes read

File Creation Procedure
• OS allocates a new FCB

• OS updates directory structure
• OS reads the directory structure into memory

• OS updates dir structure with new name & FCB

• OS writes dir structure back to disk upon file
close

• The file appears in user's directory

14

Directory Implementation
options

• Linear list
• List of file names with pointer to the data blocks

• Simple to program but poor performance to execute

• Linear search time

• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure
• Search time is constant time in most cases

• Collisions => requires probing

• Hash table good for fixed number of entries

15

Allocation Methods:
• how disk blocks are allocated for files

Contiguous allocation
Linked allocation
Indexed allocation

16

Contiguous Allocation
• File occupies contiguous blocks

•

17

LA/512

Q

R

Block to be accessed = Q + starting
address
Displacement into block = R

���� "MMPDBUJPO .FUIPET ���

directory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

count

f

tr

mail

list

start
0

14
19
28
6

length
2
3
6
4
2

file
count
tr
mail
list
f

Figure 14.4 Contiguous allocation of disk space.

minimal (assuming blocks with close logical addresses are close physically), as
is seek time when a seek is !nally needed.

Contiguous allocation of a !le is de!ned by the address of the !rst block
and length (in block units) of the !le. If the !le is n blocks long and starts at
location b, then it occupies blocks b, b + 1, b + 2, ..., b + n − 1. The directory entry
for each !le indicates the address of the starting block and the length of the area
allocated for this !le (Figure 14.4). Contiguous allocation is easy to implement
but has limitations, and is therefore not used in modern !le systems.

Accessing a !le that has been allocated contiguously is easy. For sequential
access, the !le system remembers the address of the last block referenced and,
when necessary, reads the next block. For direct access to block i of a !le that
starts at block b, we can immediately access block b + i. Thus, both sequential
and direct access can be supported by contiguous allocation.

Contiguous allocation has some problems, however. One dif!culty is !nd-
ing space for a new !le. The system chosen to manage free space determines
how this task is accomplished; these management systems are discussed in
Section 14.5. Any management system can be used, but some are slower than
others.

The contiguous-allocation problem can be seen as a particular application
of the general EZOBNJD TUPSBHF�BMMPDBUJPO problem discussed in Section 9.2,
which involves how to satisfy a request of size n from a list of free holes. First
!t and best !t are the most common strategies used to select a free hole from
the set of available holes. Simulations have shown that both !rst !t and best !t
are more ef!cient than worst !t in terms of both time and storage utilization.
Neither !rst !t nor best !t is clearly best in terms of storage utilization, but !rst
!t is generally faster.

All these algorithms suffer from the problemof FYUFSOBM GSBHNFOUBUJPO. As
!les are allocated and deleted, the free storage space is broken into little pieces.

Contiguous Allocation
• Pros

• Best performance in most cases

• Simple – only starting location (block #) and length
(number of blocks) are required

• Cons
• Problems finding space for file

• have to know size in advance, not easy to change

• external fragmentation

• need for compaction off-line (downtime) or on-line

18

Extent-Based Systems
• An extent = a contiguous sequence of

blocks on disk

• starting block#, length, pointer to next extent

• an extent file => a linked list of extends

• Example: Veritas File System (replacement for UFS)

• Issues:
• random access more costly

• both internal & external fragmentation

19

Linked Allocation
• Each file is a linked list of blocks

• Each block contains pointer to next block till nil

• Improve efficiency by clustering blocks into groups

• Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
• Displacement into block = R + 1

20

pointerblock =

LA/511

Q

R

Linked Allocation
• Each file is a linked list of disk blocks:

• blocks may be scattered anywhere on the disk

•

21

���� "MMPDBUJPO .FUIPET ���

fragmentation can still be a problem if the extents are too large, and external
fragmentation can become a problem as extents of varying sizes are allocated
and deallocated. The commercial Symantec Veritas !le system uses extents
to optimize performance. Veritas is a high-performance replacement for the
standard UNIX UFS.

14.4.2 Linked Allocation

-JOLFE BMMPDBUJPO solves all problems of contiguous allocation. With linked
allocation, each !le is a linked list of storage blocks; the blocksmay be scattered
anywhere on the device. The directory contains a pointer to the !rst and last
blocks of the !le. For example, a !le of !ve blocks might start at block 9 and
continue at block 16, then block 1, then block 10, and !nally block 25 (Figure
14.5). Each block contains a pointer to the next block. These pointers are not
made available to the user. Thus, if each block is 512 bytes in size, and a block
address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

To create a new !le, we simply create a new entry in the directory. With
linked allocation, each directory entry has a pointer to the !rst block of the
!le. This pointer is initialized to null (the end-of-list pointer value) to signify
an empty !le. The size !eld is also set to 0. A write to the !le causes the free-
space management system to !nd a free block, and this new block is written
to and is linked to the end of the !le. To read a !le, we simply read blocks by
following the pointers from block to block. There is no external fragmentation
with linked allocation, and any free block on the free-space list can be used to
satisfy a request. The size of a !le need not be declared when the !le is created.
A !le can continue to grow as long as free blocks are available. Consequently,
it is never necessary to compact disk space.

Linked allocation does have disadvantages, however. The major problem
is that it can be used effectively only for sequential-access !les. To !nd the ith

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

file
jeep

start
9

directory

end
25

Figure 14.5 Linked allocation of disk space.

Linked Allocation
• Pros

• No external fragmentation

• Good for sequential access

• Cons
• Reliability can be a problem: one missing link

breaks whole file!

• Random access may take many I/Os and disk
seeks

22

FAT (File Allocation Table)
• Used in Windows, USB drive, MS DOS

• Beginning of
volume has
table of all links
• indexed by block number

• FAT32: 32 bits per table entry

• Conceptually still a linked list
• all links consolidated in one place

23

���� "MMPDBUJPO .FUIPET ���

• • •

directory entry

test 217

start blockname
0

217 618

339

618 339

number of disk blocks –1

FAT

Figure 14.6 File-allocation table.

14.4.3 Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration prob-
lems of contiguous allocation. However, in the absence of a FAT, linked alloca-
tion cannot support ef!cient direct access, since the pointers to the blocks are
scattered with the blocks themselves all over the disk and must be retrieved
in order. *OEFYFE BMMPDBUJPO solves this problem by bringing all the pointers
together into one location: the JOEFY CMPDL.

Each !le has its own index block, which is an array of storage-block
addresses. The ith entry in the index block points to the ith block of the !le.
The directory contains the address of the index block (Figure 14.7). To !nd and
read the ith block, we use the pointer in the ith index-block entry. This scheme
is similar to the paging scheme described in Section 9.3.

When the !le is created, all pointers in the index block are set to null.
When the ith block is !rst written, a block is obtained from the free-space
manager, and its address is put in the ith index-block entry.

Indexed allocation supports direct access, without suffering from external
fragmentation, because any free block on the storage device can satisfy a
request for more space. Indexed allocation does suffer from wasted space,
however. The pointer overhead of the index block is generally greater than the
pointer overhead of linked allocation. Consider a common case in which we
have a !le of only one or two blocks. With linked allocation, we lose the space
of only one pointer per block. With indexed allocation, an entire index block
must be allocated, even if only one or two pointers will be non-null.

This point raises the question of how large the index block should be. Every
!le must have an index block, so we want the index block to be as small as

File-Allocation Table
• Pros:

• Simple for new block allocation

• FAT can be cached

• Potential cons:
• flash memory: FAT blocks get more wear-and-tear

=> need wear-leveling (SD cards do this
automatically)

• if FAT is corrupted => lose links

24

Indexed Allocation
• Each file has its own index

• index = table of pointers to its data blocks

• Logical view

25

Indexed Allocation
• Pros

• more efficient random access: look into table

• no external fragmentation

• easy to create a file (no allocation problem)

• Cons
• overhead space taken by index table

• unclear how large the index table should be

• linked scheme, multilevel index

• combined scheme (BSD Unix inode)

26

Example of Indexed Allocation

27

��� $IBQUFS �� 'JMF�4ZTUFN *NQMFNFOUBUJPO

directory

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

9
16

1
10
25
–1
–1
–1

file
jeep

index block
19

19

Figure 14.7 Indexed allocation of disk space.

possible. If the index block is too small, however, it will not be able to hold
enough pointers for a large !le, and a mechanism will have to be available to
deal with this issue. Mechanisms for this purpose include the following:

• -JOLFE TDIFNF. An index block is normally one storage block. Thus, it can
be read and written directly by itself. To allow for large !les, we can link
together several index blocks. For example, an index blockmight contain a
small header giving the name of the !le and a set of the !rst 100 disk-block
addresses. The next address (the last word in the index block) is null (for
a small !le) or is a pointer to another index block (for a large !le).

• .VMUJMFWFM JOEFY. Avariant of linked representationuses a!rst-level index
block to point to a set of second-level index blocks, which in turn point to
the !le blocks. To access a block, the operating system uses the !rst-level
index to !nd a second-level index block and then uses that block to !nd the
desired data block. This approach could be continued to a third or fourth
level, depending on the desiredmaximum !le size.With 4,096-byte blocks,
we could store 1,024 four-byte pointers in an index block. Two levels of
indexes allow 1,048,576 data blocks and a !le size of up to 4 GB.

• $PNCJOFE TDIFNF. Another alternative, used in UNIX-based !le systems,
is to keep the !rst, say, 15 pointers of the index block in the !le’s inode.
The !rst 12 of these pointers point to EJSFDU CMPDLT; that is, they contain
addresses of blocks that contain data of the !le. Thus, the data for small
!les (of no more than 12 blocks) do not need a separate index block. If the
block size is 4 KB, then up to 48 KB of data can be accessed directly. The next
three pointers point to JOEJSFDU CMPDLT. The !rst points to a TJOHMF JOEJSFDU
CMPDL, which is an index block containing not data but the addresses of
blocks that do contain data. The second points to a EPVCMF JOEJSFDU CMPDL,
which contains the address of a block that contains the addresses of blocks
that contain pointers to the actual data blocks. The last pointer contains the
address of a USJQMF JOEJSFDU CMPDL. (A UNIX inode is shown in Figure 14.8.)

Indexed Allocation Example
• Max file size = 256 KB

• Block size = 512 words
• a word is enough to

address block space

• => need only 1 block
for index table

LA/512
Q

R

Logical Address (LA) divmod 512

quotient Q = displacement into index table
remainder R = displacement into block

28

Indexed Allocation – Mapping
(Cont.)

• block size = 512
words

• assuming word size is
large enough for block
space

• Linked scheme:
• Link blocks of index

table

• no limit on size

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

29

two-level index scheme
• 4K blocks could store 1,024 four-byte

pointers in outer index
• 1,048,567 data blocks and file size of up to 4GB

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

30

Combined Scheme: UNIX inodes

• File pointer: 4 bytes (32 bits) => 4GB

• 4KB block size direct size: 12 x 4KB = 48 KB
single indirect size: 210 x 4KB = 4MB

double indirect: 210 x 210 x 4KB = 4GB
12

direct
entries

210 entries for
single or double indirect table

31

���� "MMPDBUJPO .FUIPET ���

direct blocks

!le
metadata

single indirect
blocks

double indirect
blocks

triple indirect
blocks

data

data

data

data

. . .

data

data

data

data

. . .

. . .

. . .
.

.

. . .

data

data

data

data

data

data

data

data

Figure 14.8 The UNIX inode.

Under this method, the number of blocks that can be allocated to a !le
exceeds the amount of space addressable by the 4-byte !le pointers used
by many operating systems. A 32-bit !le pointer reaches only 232 bytes,
or 4 GB. Many UNIX and Linux implementations now support 64-bit !le
pointers, which allows !les and !le systems to be several exbibytes in size.
The ZFS !le system supports 128-bit !le pointers.

Indexed-allocation schemes suffer from some of the same performance
problems as does linked allocation. Speci!cally, the index blocks can be cached
in memory, but the data blocks may be spread all over a volume.

14.4.4 Performance

The allocation methods that we have discussed vary in their storage ef!ciency
and data-block access times. Both are important criteria in selecting the proper
method or methods for an operating system to implement.

Before selecting an allocation method, we need to determine how the
systems will be used. A system with mostly sequential access should not use
the same method as a system with mostly random access.

For any type of access, contiguous allocation requires only one access to
get a block. Since we can easily keep the initial address of the !le in memory,
we can calculate immediately the address of the ith block (or the next block)
and read it directly.

For linked allocation, we can also keep the address of the next block in
memory and read it directly. Thismethod is !ne for sequential access; for direct
access, however, an access to the ith block might require i block reads. This

Combined Scheme: UNIX inodes

• File pointer: 4 bytes (32 bits) => 4GB

• 4KB block size direct size: 12 x 4KB = 48 KB
single indirect size: 210 x 4KB = 4MB

double indirect: 210 x 210 x 4KB = 4GB

12
entries

210 entries for
single or double indirect table

32

Performance
• Contiguous

• great for sequential and random access (aka "direct" access)

• Linked

• good for sequential, not random access

• OS approaches
• may be hybrid: contiguous for direct, linked for sequential

• Declare access type at creation
-> select either contiguous or linked, and OS will do
conversion to the matching allocation.

33

Performance (cont'd)
• Indexed more complex

• Single block access could require 2 index block
reads then data block read => caching helps

• Clustering can help improve throughput, reduce
CPU overhead

• Hybrid index and contiguous
• contiguous for small files

• switch to indexed allocation as file grows large

34

Free Space
Management

35

Free-Space list
• Needed to track available blocks or clusters

• (Using term "block" for simplicity)

• Options

• Bit vector or bit map (n blocks)

• Linked list (same as linked allocation)

• Grouping (same as linked indexed allocation)

• Counting (same as contiguous allocation)

• OS usually manage free space same way as file

36

Bit Vector
• Example:

• block size = 4KB

• disk size = 240 bytes (1 TB)

• n = 240/212 = 228 bits (or 32MB)

• clusters of 4 blocks = 8MB of memory

• Pro

• Easy to get contiguous files

• Con

• bitmap must be cached for performance

• 1TB disk requires 32MB bitmap

…
0 1 2 n-1

bit[i] =

!
"
1 ⇒ block[i] free

0 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to return
offset within word of first “1” bit

37

��� $IBQUFS �� 'JMF�4ZTUFN *NQMFNFOUBUJPO

0 1 2 3

4 5 7

8 9 10 11

12 13 14

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

15

6

free-space list head

Figure 14.9 Linked free-space list on disk.

the operating system simply needs a free block so that it can allocate that block
to a !le, so the !rst block in the free list is used. The FAT method incorporates
free-block accounting into the allocation data structure. No separate method is
needed.

14.5.3 Grouping

A modi!cation of the free-list approach stores the addresses of n free blocks
in the !rst free block. The !rst n−1 of these blocks are actually free. The last
block contains the addresses of another n free blocks, and so on. The addresses
of a large number of free blocks can now be found quickly, unlike the situation
when the standard linked-list approach is used.

14.5.4 Counting

Another approach takes advantage of the fact that, generally, several contigu-
ous blocks may be allocated or freed simultaneously, particularly when space
is allocated with the contiguous-allocation algorithm or through clustering.
Thus, rather than keeping a list of n free block addresses, we can keep the
address of the !rst free block and the number (n) of free contiguous blocks that
follow the !rst block. Each entry in the free-space list then consists of a device
address and a count. Although each entry requires more space than would a
simple disk address, the overall list is shorter, as long as the count is generally
greater than 1. Note that this method of tracking free space is similar to the
extent method of allocating blocks. These entries can be stored in a balanced
tree, rather than a linked list, for ef!cient lookup, insertion, and deletion.

Linked Free Space List on Disk
• Same as linked allocation

• keep the first free block pointer in a special
location on disk and cache in memory

• Pro
• No waste of space

• No need to traverse the entire list (if # free
blocks recorded); put all link pointers in a
table (FAT)

• Con:
• Cannot get contiguous space easily

38

Grouping and Counting
in Linked free list

• Grouping (same as linked-index allocation)
• Modify linked list to store in the first block:

• address of next (n-1) free blocks in first free block,

• a pointer to next block that contains free-block-pointers
(like this one)

• Counting (same as contiguous allocation)
• Keep address of first free block and count of following free

blocks

• Free space list then has entries containing addresses and
counts

39

TRIM and Unallocate
• New mechanisms for informing storage

devices of pages that can be erased
• Storage device optimizes erasure by scheduling its

own erase operation

• especially important for NVM

• commands
• TRIM - for ATA drives

• Unallocate - for NVMe-based

40

Efficiency: depends on
• Disk allocation and directory algorithms

• Types of data kept in file's directory entry
• e.g., last access date, last modified date

• Metadata structures
• Pre-allocation or

• as-needed allocation

• Fixed-size or varying-size data structures
• FAT-16 => max size of partition = 32 MB. (PC XT HD 10MB)

• FAT-32: 4 GB per file limit, 16TB max partition size

41

Performance: depends on
• Whether data and metadata are close

• Buffer cache
• separate section of main memory for frequently used

blocks

• No buffering / caching => writes must hit disk before ack

• Buffer cache + Page cache: unified or separate?

• Optimizations
• Synchronous or asynchronous writes

• for sequential access

42

Buffer cache vs Page cache
• Buffer Cache

• caches disk blocks
for file system

• Works with read()
and write() calls

• Page Cache
• caches file data as

pages

• Memory-mapped I/O
goes to page cache

43

��� $IBQUFS �� 'JMF�4ZTUFN *NQMFNFOUBUJPO

memory-mapped I/O I/O using
read() and write()

page cache

buffer cache

file system

Figure 14.10 I/O without a uni!ed buffer cache.

for opening and accessing a !le. One approach is to use memory mapping
(Section 13.5); the second is to use the standard system calls read() and
write(). Without a uni!ed buffer cache, we have a situation similar to Figure
14.10. Here, the read() and write() system calls go through the buffer cache.
The memory-mapping call, however, requires using two caches—the page
cache and the buffer cache. A memory mapping proceeds by reading in disk
blocks from the !le system and storing them in the buffer cache. Because the
virtualmemory system does not interface with the buffer cache, the contents of
the !le in the buffer cache must be copied into the page cache. This situation,
known as EPVCMF DBDIJOH, requires caching !le-system data twice. Not only
does this waste memory but it also wastes signi!cant CPU and I/O cycles due
to the extra datamovementwithin systemmemory. In addition, inconsistencies
between the two caches can result in corrupt !les. In contrast, when a uni!ed
buffer cache is provided, both memory mapping and the read() and write()
system calls use the same page cache. This has the bene!t of avoiding double
caching, and it allows the virtual memory system to manage !le-system data.
The uni!ed buffer cache is shown in Figure 14.11.

Regardless of whether we are caching storage blocks or pages (or both),
least recently used (LRU) (Section 10.4.4) seems a reasonable general-purpose
algorithm for block or page replacement. However, the evolution of the Solaris
page-caching algorithms reveals the dif!culty in choosing an algorithm. Solaris
allows processes and the page cache to share unused memory. Versions earlier
than Solaris 2.5.1 made no distinction between allocating pages to a process
and allocating them to the page cache. As a result, a system performing many
I/O operations used most of the available memory for caching pages. Because
of the high rates of I/O, the page scanner (Section 10.10.3) reclaimed pages
from processes—rather than from the page cache—when free memory ran
low. Solaris 2.6 and Solaris 7 optionally implemented priority paging, in which
the page scanner gave priority to process pages over the page cache. Solaris 8
applied a !xed limit to process pages and the !le-system page cache, prevent-

double caching
if page& buffer caches
are separate

Unified Buffer Cache
• Uses the same page cache to cache both

• memory-mapped pages and

• ordinary file system I/O

• i.e., Virtual Memory system manages
file-system data

• Purpose
• avoid double caching

• Issues
• which caches get priority?

• what replacement algorithms to use?

44

���� &GGJDJFOD BOE 1FSGPSNBODF ���

memory-mapped I/O I/O using
read() and write()

buffer cache

file system

Figure 14.11 I/O using a uni!ed buffer cache.

ing either from forcing the other out of memory. Solaris 9 and 10 again changed
the algorithms to maximize memory use and minimize thrashing.

Another issue that can affect the performance of I/O is whether writes to
the !le system occur synchronously or asynchronously. 4ZODISPOPVT XSJUFT
occur in the order in which the storage subsystem receives them, and the
writes are not buffered. Thus, the calling routine must wait for the data to
reach the drive before it can proceed. In an BTZODISPOPVT XSJUF, the data
are stored in the cache, and control returns to the caller. Most writes are
asynchronous. However, metadata writes, among others, can be synchronous.
Operating systems frequently include a "ag in the open system call to allow
a process to request that writes be performed synchronously. For example,
databases use this feature for atomic transactions, to assure that data reach
stable storage in the required order.

Some systems optimize their page cache by using different replacement
algorithms, depending on the access type of the !le. A!le being read or written
sequentially should not have its pages replaced in LRU order, because the
most recently used page will be used last, or perhaps never again. Instead,
sequential access can be optimized by techniques known as free-behind and
read-ahead. 'SFF�CFIJOE removes a page from the buffer as soon as the next
page is requested. The previous pages are not likely to be used again and
waste buffer space. With SFBE�BIFBE, a requested page and several subsequent
pages are read and cached. These pages are likely to be requested after the
current page is processed. Retrieving these data from the disk in one transfer
and caching them saves a considerable amount of time. One might think that
a track cache on the controller would eliminate the need for read-ahead on a
multiprogrammed system.However, because of the high latency and overhead
involved inmakingmany small transfers from the track cache tomainmemory,
performing a read-ahead remains bene!cial.

The page cache, the !le system, and the device drivers have some interest-
ing interactions. When small amounts of data are written to a !le, the pages
are buffered in the cache, and the storage device driver sorts its output queue
according to device address. These two actions allow a disk driver to minimize
disk-head seeks. Unless synchronous writes are required, a process writing to
disk simply writes into the cache, and the system asynchronously writes the

Optimization with Page Cache
for sequential access

• LRU is a bad idea for page replacement
• most recently used unlikely to be used again soon

• Instead: use Free-behind
• remove a page from buffer upon accessing next

page

• Read-ahead
• idea of prefetch - next page is likely to be needed

soon, want to get started early to save latency

45

I/O Synchrony and impact on
performance

• Asynchronous writes
• more common, buffer-able, faster

• small writes may appear fast => actual I/O much
slower

• larger writes might not be faster if out of buffer

• Synchronous or asynchronous Reads
• frequently slower than asynchronous writes

• only prefetching may help, not synchrony

46

Consistency among multiple on-
disk data structures

• On-disk data structures
• directory structure, free-block pointers, free FCB

pointers

• Cause of inconsistency:
• system crash before changes get fully flushed to

disk

• pull USB drive without doing "Safely remove"

•

47

Recovery
• Consistency checking (e.g., unix fsck)

• compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

• Can be slow and sometimes fails

• Back up data from disk to A storage
device
• magnetic tape, other magnetic disk, optical

• Recover lost file by restoring data from backup

48

Log-Structured
File Systems (Journaling)

• Journaling to a log (separate disk or section on disk)
• FS records each metadata update to the file system as a transaction

• A transaction is committed once it is written to the log

• Transactions in the log are asynchronous to the file system
• The file system may not have been updated yet

• When FS structures are modified, the transaction is removed from log

• If FS crashes => remaining transactions in log must still be performed

• Advantages
• Faster recovery from crash

• removes chance of inconsistency of metadata

49

Example: WAFL File System
• Used on Network Appliance “Filers”

• distributed file system appliances

• WAFL = "Write-Anywhere File Layout"

• Serves up NFS, CIFS, http, ftp

• Random I/O optimized, write optimized
• NVRAM for write caching

• Key feature: Snapshots

50

Snapshots in WAFL
• Snapshot

• keep old inode

• make new inode that points
to new

• Update to snapshot
• don't write over existing

block - write to new and
point

• useful for versioning

• Does not require copy on
write - automatic!

51

���� &YBNQMF� 5IF 8"'- 'JMF 4ZTUFN ���

An important change frommore standard !le systems is that the free-block
map has more than one bit per block. It is a bitmap with a bit set for each
snapshot that is using the block. When all snapshots that have been using the
block are deleted, the bitmap for that block is all zeros, and the block is free to
be reused. Used blocks are never overwritten, so writes are very fast, because
a write can occur at the free block nearest the current head location. There are
many other performance optimizations in WAFL as well.

Many snapshots can exist simultaneously, so one can be taken each hour
of the day and each day of the month, for example. A user with access to
these snapshots can access !les as they were at any of the times the snapshots
were taken. The snapshot facility is also useful for backups, testing, versioning,
and so on. WAFL’s snapshot facility is very ef!cient in that it does not even
require that copy-on-write copies of each data block be taken before the block
is modi!ed. Other !le systems provide snapshots, but frequently with less
ef!ciency. WAFL snapshots are depicted in Figure 14.13.

Newer versions of WAFL actually allow read–write snapshots, known as
DMPOFT. Clones are also ef!cient, using the same techniques as shapshots. In
this case, a read-only snapshot captures the state of the !le system, and a clone
refers back to that read-only snapshot. Any writes to the clone are stored in
new blocks, and the clone’s pointers are updated to refer to the new blocks.
The original snapshot is unmodi!ed, still giving a view into the !le system as

block A B C D E

root inode

(a) Before a snapshot.

block A B C D E

root inode

(b) After a snapshot, before any blocks change.

new snapshot

block A B C D D´E

root inode

(c) After block D has changed to D´.

new snapshot

Figure 14.13 Snapshots in WAFL.

