Chapter 14:
File System
Implementation

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

Outline: File System
Implementation

File-System Structure

File-System Implementation
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
Recovery

NFS

Example: WAFL File System

File-System Structure

* File system (FS)
 Resides on secondary storage (disks)
 Provides mapping logical storage to physical storage
 Provides efficient implementation and convenient API to disk
* One OS may support multiple types of FS (e.g., FAT32, NTFS)
e Disk
* provides in-place rewrite and random access to storage

e |/O transfers in units of blocks (=one or more sectors)

* one sector usually 512 bytes

Two design problems in FS

e interface to user programs

 API for user programs open(), read(), write(),
» mostly independent of file system

* interface to physical storage (disk)

 API for accessing disk

« mostly independent of actual disk, isolated by I/O
control layer

Layered File System

user

logical

physical

application programs read(th, buf, size)

!

logical file system manages metadata (fp, access)
manages memory buffers and
Jl caches (allocation, freeing, replacement)
file-organization module logical <-> physical mapping
Translates logical to physical block #
Manages free space, disk allocation
basic file system read d1, c735, t5, s10
0 Jl - read drivel, cylinder 72, track 2,
contro sector 10, into memory location 1060
JJ’ retrieve block 123

devices

Logical File System

* Manages metadata information

* Translates file name into file number, file handle,

location by maintaining file control blocks (inodes in
UNIX)

* Directory management
* Protection
* Layering
« useful for reducing complexity and redundancy

 adds overhead and can decrease performance

Multiple file systems within an

OS
« CD-ROM is 1SO 9660

 Unix has UFS, FFS

e Windows
+ FAT, FAT32, NTFS, floppy, CD, DVD Blu-ray
e Linux ext2, ext3, ext4, distributed FS

« New ones still being invented
« ZFS, GoogleFS, Oracle ASM, FUSE

File System
Implementation

On-disk structures

Boot control block (per volume or per partition)
e contains info needed by system to boot OS from that volume

« Needed if volume contains OS, usually first block of volume

Volume control block (also called partition control block)
* (superblock, master file table) contains volume details

« Total # of blocks, # of free blocks, block size, free block pointers or array

Directory structure (per file system)
 Names and inode numbers, master file table
File control block (per file)

* inode number, permissions, size, dates

« NFTS stores into in master file table using relational database structures

On-Disk Structure

partition
(aka volume)

Boot Control

Block (Optional)
Partition Control

Block
List of Directory

Control Blocks
List of File

Control Blocks

Data Blocks

file control block (FCB)

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

10

In-Memory Structures

in-memory Mount table

» stores file system mounts, mount points, file system types

in-memory directory structure (as opposed to on-disk)

» recently accessed directories

system-wide open-file table

 contains a copy of each open file's FCB

per-process open-file table

» file handle (pointer) to corresponding entry in systemwide table

buffers that hold data blocks from secondary storage

11

open(file name)

open (file name)

directory structure

directory structure

user space kernel memory

search directory structure for file by name
if not in memory already,

>

file-control block

secondary storage

add entry to system-wide open file table, fill with FCB and initialize count
add per-process open file table to point to system-wide open file table entry

12

read(index)

iIndex
\ file handle, aka
file d ipt
N lle descriptor //
7 data blocks
—
read (index) T
per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

per-process open-file table[index] => entry in system-wide open-file table
advance file pointer by number of bytes read

13

File Creation Procedure

e OS allocates a new FCB

« OS updates directory structure

* OS reads the directory structure into memory

* OS updates dir structure with new name & FCB

» OS writes dir structure back to disk upon file
close

* The file appears in user's directory

14

Directory Implementation
options

Linear list

List of file names with pointer to the data blocks
Simple to program but poor performance to execute
e Linear search time

Could keep ordered alphabetically via linked list or use B+ tree

ash Table — linear list with hash data structure
Search time is constant time in most cases
Collisions => requires probing

Hash table good for fixed number of entries

15

Allocation Methods:

 how disk blocks are allocated for files

Contiguous allocation
Linked allocation
Indexed allocation

16

* File occupies contiguous blocks

Contiguous Allocation

Q
/

LA/512

AN
R

Block to be accessed = Q + starting
address
Displacement into block = R

T
N

count

o1 1] 2[] 3[]
f

al 1 51 el 7[]

sl | ol 110l J11[]
tr

12[113 114 115[]

16[_117[_J18[_119[]

mail

20l _l21[l22[]23[]
24 l25[26l 127[]

list

directory

file start length

count 0 2
tr 14 3
mail 19 6
list 28 4
f 6 2

o8l 129[130l 131[]
\/

17

Contiguous Allocation

e Pros

* Best performance in most cases

« Simple — only starting location (block #) and length
(number of blocks) are required

e Cons

 Problems finding space for file

* have to know size in advance, not easy to change
« external fragmentation

 need for compaction off-line (downtime) or on-line

18

Extent-Based Systems

* An extent = a contiguous sequence of

blocks on disk

e starting block#, length, pointer to next extent

e an extent file => a linked list of extends

« Example: Veritas File System (replacement for UFS)

* Issues:
« random access more costly

* both internal & external fragmentation

19

Linked Allocation

 Fach file is a linked list of blocks

 Each block contains pointer to next block till nil

* Improve efficiency by clustering blocks into groups

block = pointer

/ N\

LA/511

* Block to be accessed is the Qth block in the linked chain of
blocks representing the file.

* Displacement into block = R + 1

Linked Allocation

e Each file is a linked list of disk blocks:

 blocks may be scattered anywhere on the disk

R directory
¢ ~ @ file start end

jeep 9 25

1213 114/ {15

161711819

20 21_j42 23

24| 1251 |26 |27

281291 _|30[_|31

Linked Allocation

* Pros
* No external fragmentation

» Good for sequential access

e Cons

 Reliability can be a problem: one missing link
breaks whole file!

* Random access may take many 1/Os and disk
seeks

22

FAT (File Allocation Table)

e Used in Windows, USB drive, MS DOS

* Beginning of drecoreny
VOlume has name start block ;

table of all links

— 217 618

* indexed by block number

« FAT32: 32 bits per table entry 339 -

* Conceptually still a linked list 618335

« all links consolidated in one place

number of disk blocks -1

FAT

23

File-Allocation Table

* Pros:
» Simple for new block allocation
* FAT can be cached
 Potential cons:

* flash memory: FAT blocks get more wear-and-tear
=> need wear-leveling (SD cards do this
automatically)

* if FAT is corrupted => lose links

24

Indexed Allocation

e Fach file has its own index

* index = table of pointers to its data blocks

\4

 Logical view

\%

\2

V

N
7

index table

Indexed Allocation

e Pros
e« more efficient random access: look into table
* no external fragmentation

* easy to create a file (no allocation problem)

* Cons
 overhead space taken by index table
 unclear how large the index table should be
* |linked scheme, multilevel index

e« combined scheme (BSD Unix inode)

26

Example of Indexed Allocation
/_\ directory

file index block
jeep 19

Indexed Allocation Example

e Max file size =256 KB

e Block size =512 words

* a word is enough to

address block space 5

~
« => need only 1 block LABIZ

R
for index table

Logical Address (LA) divmod 512

qguotient Q = displacement into index table
remainder R = displacement into block

28

Indexed Allocation — Mapping
(Cont.)

e block size =512
words

* assuming word size is
large enough for block
space

e Linked scheme:

* Link blocks of index
table

e no limit on size

Q;
LA/(512x511)<

R,

Q. = block of index table
R, is used as follows:

R, /512<

R,

Q;

Q, = displacement into block of index table
R, displacement into block of file:

29

two-level index scheme

« 4K blocks could store 1,024 four-byte
pointers in outer index

* 1,048,567 data blocks and file size of up to 4GB

| | | _— Q
Q, = displacement into outer-index LA/Z(512x512) <__

R, is used as follows: R;

Q, = displacement into block of index table

. : . R, /512
R, displacement into block of file: 1

/\

30

Combined Scheme: UNIX inodes

* File pointer: 4 bytes (32 bits) => 4GB
direct size: 12 x 4KB = 48 KB

e 4KB block size

12
direct
entries

file
metadata

direct blocks

single indirect
blocks

double indirect
blocks

size: 210 x 4KB = 4MB

double indirect: 210 x 210 x 4KB = 4GB

210 entries for
or double indirect table

triple indirect
blocks

data

data

— , |data
)[’ data [‘_gata
s . data
[_’ [—> data
— data = |data
— . data
*[—> 3 data
L. .. data
E — data
*[—> . data

31

Combined Scheme: UNIX inodes

* File pointer: 4 bytes (32 bits) => 4GB

» 4KB block size jiject size: 12 x 4KB = 48 KB
mode Size: 210 X 4KB = 4MB
owners (2) double indirect: 210 x 210 x 4KB = 4GB

timestamps (3)

» data

size block count

—» data

- 210 entries for
19 . or double indirect table

direct blocks .

entries . > data

o> data
single indirect ——>{

A ——»{ data __,:
double indirect - —+—{ data

triple indirect = g > data

s _”| data

=——{ data 32

Performance

« Contiguous

» great for sequential and random access (aka "direct" access)

e Linked

 good for sequential, not random access

« OS approaches

* may be hybrid: contiguous for direct, linked for sequential

« Declare access type at creation
-> select either contiguous or linked, and OS will do
conversion to the matching allocation.

33

Performance (cont'd)

* Indexed more complex

* Single block access could require 2 index block
reads then data block read => caching helps

 Clustering can help improve throughput, reduce
CPU overhead

« Hybrid index and contiguous

* contiguous for small files

* switch to indexed allocation as file grows large

34

Free Space
Management

Free-Space list

« Needed to track available blocks or clusters
 (Using term "block" for simplicity)

* Options
* Bit vector or bit map (n blocks)
* Linked list (same as linked allocation)

* Grouping (same as linked indexed allocation)

« Counting (same as contiguous allocation)

» OS usually manage free space same way as file

36

« Example:

Bit Vect(0)1r |

n-1

block size = 4KB)
disk size = 240 bytes (1 TB) bit[i] = <
n = 240/212 = 228 hits (or 32MB)

clusters of 4 blocks = 8MB of memory Block number calculation

1 = block[1] free

| 0 = blockli] occupied

e Pro

(number of bits per word) *

Easy to get contiguous files (number of 0-value words) +
offset of first 1 bit

e (Con

bitmap must be cached for performance

, . . CPUs have instructions to return
1B disk requires 32MB bitmap offset within word of first “1” bit

37

Linked Free Space List on Disk

e Same as linked allocation

free-space list head
keep the first free block pointer in a special

location on disk and cache in memory

* Pro

No waste of space

No need to traverse the entire list (if # free

blocks recorded); put all link pointers in a
table (FAT)

e Con:

Cannot get contiguous space easily

0 1 2L 1 3

. \

4?67

0

9 11
12 113L 1415
17 18L 19

!

16
20 121 |22/ 123
24| |25 i26 o7l T

28 1291 _|30[_I31

]
1
]
3

~

38

Grouping and Counting
in Linked free list

» Grouping (same as linked-index allocation)

* Modity linked list to store in the first block:
e address of next (n-1) free blocks in first free block,

* a pointer to next block that contains free-block-pointers
(like this one)

» Counting (same as contiguous allocation)

 Keep address of first free block and count of following free

blocks

* Free space list then has entries containing addresses and
counts

39

TRIM and Unallocate

« New mechanisms for informing storage
devices of pages that can be erased

» Storage device optimizes erasure by scheduling its
own erase operation

 especially important for NVM

e commands

e TRIM - for ATA drives
e Unallocate - for NVMe-based

40

Efficiency: depends on

Disk allocation and directory algorithms

Types of data kept in file's directory entry

* e.g., last access date, last modified date

Metadata structures

e Pre-allocation or

e as-needed allocation

Fixed-size or varying-size data structures
e FAT-16 => max size of partition = 32 MB. (PC XT HD 10MB)
« FAT-32: 4 GB per file limit, 16TB max partition size

41

Performance: depends on

« Whether data and metadata are close

e Buffer cache

* separate section of main memory for frequently used

blocks

* No buffering / caching => writes must hit disk before ack

 Buffer cache + Page cache: unified or separate?
* Optimizations
 Synchronous or asynchronous writes

« for sequential access

42

Buffer cache vs Page cache

 Buffer Cache » Page Cache
* caches disk blocks » caches file data as
for file system pages
* Works with read() * Memory-mapped I/O
and write() calls goes to page cache

I/O using
read() and write()

/

g e / double caching
\ if page& buffer caches

buffer cache a re Sepa rate

memory-mapped I/O

file system

43

Unified Buffer Cache

Uses the same page cache to cache both

* memory-mapped pages and

* ordinary file system 1/O

i.e., Virtual Memory system manages
file-system data

Purpose
* avoid double caching

Issues
* which caches get priority?

* what replacement algorithms to use?

/0O using

memory-mapped 1/O read() and write()

N/

buffer cache

|

file system

44

Optimization with Page Cache

for sequential access
e LRU is a bad idea for page replacement

« most recently used unlikely to be used again soon

e |Instead: use Free-behind

e remove a page from buffer upon accessing next

Page
e Read-ahead

* idea of prefetch - next page is likely to be needed
soon, want to get started early to save latency

45

/0 Synchrony and impact on

performance
* Asynchronous writes

 more common, buffer-able, faster

 small writes may appear fast => actual I/O much
slower

* larger writes might not be faster if out of buffer
 Synchronous or asynchronous Reads

» frequently slower than asynchronous writes

 only prefetching may help, not synchrony

46

Consistency among multiple on-

disk data structures
 On-disk data structures

* directory structure, free-block pointers, free FCB
pointers

 Cause of inconsistency:

* system crash before changes get fully flushed to
disk

 pull USB drive without doing "Safely remove"

47

Recovery

 Consistency checking (e.g., unix fsck)

» compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

e Can be slow and sometimes fails

» Back up data from disk to A storage
device

* magnetic tape, other magnetic disk, optical

» Recover lost file by restoring data from backup

48

Log-Structured
File Systems (Journaling)

* Journaling to a log (separate disk or section on disk)
* FS records each metadata update to the file system as a transaction

* A transaction is committed once it is written to the log

 Transactions in the log are asynchronous to the file system

* The file system may not have been updated yet

* When FS structures are modified, the transaction is removed from log
* If FS crashes => remaining transactions in log must still be performed
* Advantages

* Faster recovery from crash

* removes chance of inconsistency of metadata

49

Example: WAFL File System

« Used on Network Appliance “Filers”

» distributed file system appliances

« WAFL = "Write-Anywhere File Layout"
 Serves up NFS, CIFS, http, ftp

« Random I/O optimized, write optimized
* NVRAM for write caching

 Key feature: Snapshots

Snapshots in WAFL

* Snapshot

 keep old inode

« make new inode that points
to new

» Update to snapshot

 don't write over existing
block - write to new and
point

« useful for versioning

* Does not require copy on
write - automatic!

root inode

(a) Before a snapshot.

root inode new snapshot

/ A\

block A||B||C||D||E

(b) After a snapshot, before any blocks change.

root inode new snapshot

/

block A||B||C||D||E D’

(c) After block D has changed to D".

51

