Chapter 13
File System Interface

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

Outline

File Concept

Access Methods

Disk and Directory Structure
File-System Mounting

File Sharing

Protection

File Concept

* Different meanings
« User's view: unit of data they can store and move

e OS's view: unit of named data on some nonvolatile
storage

 Logical vs. Physical storage unit

» File: logically contiguous space

* physical: disk sector, track, platter, ..

 Contents defined by file's creator

e Consider text file, source file, executable file

File Attributes (1/2)

* Name * Location
» human-readable string, » pointer to file location
not part of content on device
* |dentifier Size
 unique tag (#) identifies « current file size, in
file within file system #bytes, #words, #blocks,
ossibly max
. Type P Y
 Protection
» for systems that support
different types » controls who can read,

write, execute

File Attributes (2/2)

 Access info (Timestamps & User ID)

 Time, date, and user identification
— data for protection, security, and usage
monitoring

« Keeping metadata
* In the directory structure, maintained on disk
 extended file attributes such as file checksum

* Could also be kept in a registry or metadata file

File info Window

Extended file attributes

 Apps that can open the file

« URL the file was downloaded from

« User label, File icon
e File's Checksum

File info may be lost when file is
transmitted (e.g., emalil
attachment)

* Some file info is stored in directory,
rather than as part file content

(macO9)

00 * 11.tex Info
i~ 1.tex 94 KB
44 Modified: Thursday, October 20, 2016 at 5:30 PM
General
Kind: TeX source file
Size: 93,655 bytes (94 KB on disk)
ir » text-dir

Where: imacfusion » Users » pbg » imp » book » 0s10-d

Created: Sunday, March 22, 2015 at 3:25 PM
Meodified: Thursday, October 20, 2016 at 5:30 PM

Stationery pad
Locked

More Info:

Where from:
11.tex
Last opened: Thursday, October 20, 2016 at 5:31 PM

Name & Extension:
Comments:

Open with:
I Z,' Coda 2 il

Use this application to open all documents like this one.

Change All..
Preview:
Sharing & Permissions:
Y n read and t
Name Privilege
X pbha (Me) C Read & Write
n staff ¢ Read onlv
! evervone ¢ No Access
-+ v

Open File attributes

e Per-Process

« Open-file table: tracks open files
» File pointer: pointer to last read/write location in file

« Access rights: per-process access mode information

« OS System-Wide

* File-open count: # times a file is open

* when last processes closes the file (count=0), allows
removal of data from the open-file table

e Disk location of the file: cache of data access information

File Operations

Create
Write — at write pointer location
Read — at read pointer location

Reposition within file - seek

Delete -- from directory; reclaim space when no more directory
contains the file

Truncate -- write over file & update (instead of recreate) attributes

Open(F;) — search the directory structure on disk for entry F;, and
move the content of entry to memory

Close (Fj) — move the content of entry F; in memory to directory
structure on disk

Locking of Open Files

 Provided by some operating systems and file systems
 Similar to reader-writer locks

» Shared lock similar to reader lock — several processes can
acquire concurrently

* Exclusive lock similar to writer lock

* Mandatory or advisory file-locking mechanisms

* Mandatory — access is denied depending on locks held and
requested

* Advisory — processes can find status of locks and decide what
to do

File types

e could be in file attribute

e creator attribute => let the app figure out. OS just
launches the app with file as argument

* Magic number

 beginning of some binary files, esp. media

 image, audio, PDF,
« Unix "file" command guesses file type

* based on name, header/magic number, content sample

10

File Types — Name, Extension

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, o compiled, machine

language, not linked

source code

C, CC, java, perl,
asm

source code in various
languages

mp4, avi

batch bat, sh commands to the command
interpreter

markup xml, html, tex textual data, documents

word processor|xml, rif, various word-processor

docx formats

library lib, a, so, dll libraries of routines for
programmers

print or view gif, pdf, jpg ASCII or binary file in a
format for printing or
viewing

archive rar, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

multimedia mpeg, mov, mp3,| binary file containing

audio or A/V information

11

File Structure

None - sequence of words, bytes

Simple record structure

* Lines (entries), fixed length or variable length

Complex Structure

S

 Formatted document

 Relocatable load file

Can simulate last two with first method by inserting
appropriate control characters

File structure may

be decidec

by OS or application program

e Bad idea for OS to d

Ictate more t

han a few file structure!

12

Access Methods

 Sequential Access
e read next, write next
* reset (to beginning)
 no read after last write (rewrite)
 Direct Access — file is fixed-length logical records

* read n, write n, position to n

» read next record, write next record

» rewrite n, where n = relative block number

13

Sequential-access File

fh.seek(9)

fh.tell()

move to beginning| |# get cure pos

beginning

v
current position

fh.seek(0,

whence=2)

move to end

end

rewind

——read or write ==

fh.seek(delta, whence=1)
move relative to current position

14

Simulation of Sequential Access
on Direct-access File

sequential access iImplementation for direct access
reset cp = 0;
read_next read cp;
cp=cp + 1;
write_next write cp;
cp =cp + 1;

Other Access Methods: index

* Purpose

« for fast determination of location of data to be operated on
* (consider UPC code plus record of data about that item)

* If too large, index (in memory) of the index (on disk)

* IBM indexed sequential-access method (ISAM) - by OS

« Small master index, points to disk blocks of secondary index

* File kept sorted on a defined key

* VMS provides index and relative files

* as another example (see next slide)

16

Example of Index and Relative
Files

logical record
last name number

Adams

Arthur

Asher

smith, john |social-security| age

Smith /

Index file relative file

Directory Structure

* A collection of nodes containing
information about all files

Directory @Q Q Q Q

\\

\\

F”es \'4 \'4 \'4
F2 Fa
F1 F3 v
Fn

Both the directory structure and the files reside on disk

Directories

e "Folders" - containers of other files (and directories)
* Objective
« Efficiency — locating a file quickly
* Functions
« Naming — convenient to users
* Two users can have same name for different files

e The same file can have several different names

» Grouping — logical grouping of files by properties, (e.g., all
Java programs, all games, ...)

19

Operations Performed on

Directory
Search for a file

Create a file
Delete a file
List a directory
Rename a file

Traverse the file system

Single-Level Directory

A single directory for all users

¢ (e.g. Tst Mac file system)

directory

test

data

maill

cont

records

LTI

« Naming problem

* Grouping problem

Two-Level Directory

 Separate directory for each user

master file
directory

user 1 |user 2 |user 3 |user4

user file

directory test data test data

ST sssTTTs

e Path name

 Can have the same file name for different user

« Efficient searching

» No grouping capability

Tree-Structured Directories

root

spell bin programs

at mail dist | | find | count | hex |reorder e mail

I \\@mw/ 5

prog | copy | prt | exp | | reorder

AR 348]

spell

90 A P S O

Tree-Structured Directories

(Cont'd)

Absolute or relative path name

Creating a new file is done in current directory

Delete a file

e rm <file-name>

Creating a new subdirectory

mail

prog

Copy

prt

exp

count

e mkdir <dir-name>

Removing a directory

* rmdir <dir-name>: directory must be empty

24

Acyclic-Graph Directories

e Have shared subdirectories and files
root

dict spell

N

list all w | count count |words | list

o | & |o
|

—> [ist | rade

006

Acyclic-Graph Directories
(Cont.)

« Deletion
 If 1ist file is deleted = dict directory /

now contains a dangling pointer! list | all | w |count

* need to preserve file until all ‘ T~

references to file have been deleted.

» Solution 1: Backpointer

* but how many? Variable size records
can be a problem A

all w | count

» Backpointers using a daisy chain *
organization

...-l‘

backpointer(s)
* Solution 2 (simpler): count #refs

26

General Graph Directory

Vi tc Jim
text | mail | count| book book | mail {unhex| hyp

é o \ 5

count un ex

General Graph Directory (Cont.)

* Issues with cycles book book | mail
* refer count 0 doesn't imply file accessible / CB
« Same problem as garbage collection |

* Solutions i COI"f

Garbage collection: 2 passes needed (mark and sweep)
=> expensive, rarely used

Allowing only (hard) links to file, not to directories => acyclic

Every time a new link is added, use a cycle detection
algorithm to determine whether it is OK => expensive

When traversing directories, skip links => simpler

28

Protection vs. Reliability

* Protection
* Owner of file controls what operations, by whom
* Ops: Read, Write, Execute, Append, Delete, List
 Reliability

» Backup copies, extra bits for error correction and
detection

 Physical isolation on ditfferent disks

29

Access Control

 Control access to file and directory based
on

* user name, type(s) of access
 possibly also time and location allowed

 possibly password protection, per-file or per-
directory

* Most file systems use Access Control List

» users and allowed operations per file

30

Access Control List (ACL)

e Content of ACL:

e List of users

* allowed modes of access: read, write, execute

e Problem:

* too complex to specify!

« Unix Solution: condensed version

» owner-group-public ACL

31

Protection Schemes when sharing
Files on Multi-user system

e User ID (owner)

o identify users, allowing permissions and protections of
files & directories to be per-user

* Group ID

» group = set of users (e.g., students, admin, faculty, ...)
=> only sysadmin can create group!!

» permitting each file & dir to define group-access rights

» Permission for a file or directory is defined for

« an Owner, a Group, and Others

32

A Sample UNIX Directory Listing

-FW-rw-r-- 1 pbg
Arwx------ 5 pbg
drwxrwxr-x 2 pbg
drwxrwx--- 2 jwg
-TW-f--I-- 1 pbg
-rWXF-Xr-X 1 pbg
Arwx--X--X 4 tag

G

G

rwx------ 3 pbg
rwXrwxrwx 3 pbg

staff 31200
staff 512
staff 512
student 512
staff 9423
staff 20471
faculty 512
staff 1024
staff 512

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13
Feb 24 2017
Feb 24 2017
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

r : "read" (read file content, or read directory listing!)
w : "write" (write file content, or modify directory -- add, delete, mv file)
x : "execute" a file or "enter" a directory (but might not be able to read)

d : "directory"

Intro.ps
private/

doc/
student-proj/
orogram.c
orogram

ib/

mail/

test/

33

Setting file access in Unix

» Setting group
* $ chgrp groupName f{ileOrDir

* Setting mode
e $ chmod modebits fileOrDir

e eg., $ chmod 761 myFile

RWX
a) owner access 7 = 111 (RWX)
b) group access 6 = 110 (RW)
c) public access 1 = 001 (X

e Can also do chmod +r, chmod -r, chmod a+r, etc

34

