
Chapter 13 
File System Interface

CS 3423 Operating Systems 
Fall 2019 

National Tsing Hua University

1



Outline
• File Concept 

• Access Methods 

• Disk and Directory Structure 

• File-System Mounting 

• File Sharing 

• Protection

2



File Concept
• Different meanings 

• User's view:  unit of data they can store and move  

• OS's view:  unit of named data on some nonvolatile 
storage 

• Logical vs. Physical storage unit 

• File: logically contiguous space 

• physical: disk sector, track, platter, .. 

• Contents defined by file's creator 
• Consider text file, source file, executable file

3



File Attributes (1/2)
• Name 

• human-readable string, 
not part of content 

• Identifier 

• unique tag (#) identifies 
file within file system 

• Type 

• for systems that support 
different types 

• Location 

• pointer to file location 
on device 

• Size 

• current file size, in 
#bytes, #words, #blocks, 
possibly max 

• Protection 

• controls who can read, 
write, execute

4



File Attributes (2/2)
• Access info (Timestamps & User ID) 

• Time, date, and user identification  
– data for protection, security, and usage 
monitoring 

• Keeping metadata 
• In the directory structure, maintained on disk 

• extended file attributes such as file checksum 

• Could also be kept in a registry or metadata file

5



���� 'JMF $PODFQU ���

• 4J[F. The current size of the !le (in bytes, words, or blocks) and possibly
the maximum allowed size are included in this attribute.

• 1SPUFDUJPO. Access-control information determines who can do reading,
writing, executing, and so on.

• 5JNFTUBNQT BOE VTFS JEFOUJGJDBUJP . This information may be kept for
creation, last modi!cation, and last use. These data can be useful for pro-
tection, security, and usage monitoring.

Some newer !le systems also support FYUFOEFE !MF BUUSJCVUFT, including char-
acter encoding of the !le and security features such as a !le checksum. Figure
13.1 illustrates a GJM JOGP XJOEPX on macOS that displays a !le’s attributes.

The information about all !les is kept in the directory structure, which
resides on the same device as the !les themselves. Typically, a directory entry
consists of the !le’s name and its unique identi!er. The identi!er in turn
locates the other !le attributes. It may take more than a kilobyte to record
this information for each !le. In a system with many !les, the size of the
directory itselfmay bemegabytes or gigabytes. Because directoriesmustmatch
the volatility of the !les, like !les, they must be stored on the device and are
usually brought into memory piecemeal, as needed.

Figure 13.1 A !le info window on macOS.

File info Window (macOS)
• Extended file attributes 

• Apps that can open the file 

• URL the file was downloaded from 

• User label, File icon 

• File's Checksum 

• File info may be lost when file is 
transmitted (e.g., email 
attachment) 

• Some file info is stored in directory, 
rather than as part file content

6



Open File attributes
• Per-Process 

• Open-file table: tracks open files 

• File pointer:  pointer to last read/write location in file 

• Access rights:  per-process access mode information 

• OS System-Wide 

• File-open count: # times a file is open  

• when last processes closes the file (count=0), allows 
removal of data from the open-file table 

• Disk location of the file:  cache of data access information

7



File Operations
• Create 

• Write – at write pointer location 

• Read – at read pointer location 

• Reposition within file - seek 

• Delete -- from directory; reclaim space when no more directory 
contains the file 

• Truncate -- write over file & update (instead of recreate) attributes 

• Open(Fi) – search the directory structure on disk for entry Fi, and 
move the content of entry to memory 

• Close (Fi) – move the content of entry Fi in memory to directory 
structure on disk

8



Locking of Open Files
• Provided by some operating systems and file systems 

• Similar to reader-writer locks 

• Shared lock similar to reader lock – several processes can 
acquire concurrently 

• Exclusive lock similar to writer lock 

• Mandatory or advisory file-locking mechanisms 

• Mandatory – access is denied depending on locks held and 
requested 

• Advisory – processes can find status of locks and decide what 
to do

9



File types
• could be in file attribute 

• creator attribute => let the app figure out. OS just 
launches the app with file as argument 

• Magic number 

• beginning of some binary files, esp. media 

• image, audio, PDF,  

• Unix "file" command guesses file type  

• based on name, header/magic number, content sample

10



File Types – Name, Extension

11

���� 'JMF $PODFQU ���

file type usual extension function

ready-to-run machine-
language program 

executable exe, com, bin
or none 

compiled, machine
language, not linked 

object obj, o

binary file containing
audio or A/V information   

multimedia mpeg, mov, mp3,
mp4, avi

related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

archive rar, zip, tar

ASCII or binary file in a
format for printing or
viewing

print or view gif, pdf, jpg

libraries of routines for
programmers

library lib, a, so, dll

various word-processor
formats

word processor
docx

commands to the command
interpreter

batch bat, sh

textual data, documentsmarkup xml, html, tex

source code in various
languages

source code c, cc, java, perl,
asm

xml, rtf,

Figure 13.3 Common !le types.

containing the name of the program that created it. This attribute is set by
the operating system during the create() call, so its use is enforced and
supported by the system. For instance, a !le produced by a word processor
has the word processor’s name as its creator. When the user opens that !le, by
double-clicking themouse on the icon representing the !le, the word processor
is invoked automatically, and the !le is loaded, ready to be edited.

The UNIX system uses a NBHJD OVNCFS stored at the beginning of some
binary !les to indicate the type of data in the !le (for example, the format
of an image !le). Likewise, it uses a text magic number at the start of text
!les to indicate the type of !le (which shell language a script is written in)
and so on. (For more details on magic numbers and other computer jargon,
see http://www.catb.org/esr/jargon/.) Not all !les have magic numbers, so
system features cannot be based solely on this information. UNIX does not
record the name of the creating program, either. UNIX does allow !le-name-
extension hints, but these extensions are neither enforced nor depended on by
the operating system; they are meant mostly to aid users in determining what
type of contents the !le contains. Extensions can be used or ignored by a given
application, but that is up to the application’s programmer.

13.1.4 File Structure

File types also can be used to indicate the internal structure of the !le. Source
and object !les have structures that match the expectations of the programs
that read them. Further, certain !les must conform to a required structure that



File Structure
• None - sequence of words, bytes 

• Simple record structure 
• Lines (entries), fixed length or variable length 

• Complex Structures 
• Formatted document 

• Relocatable load file  

• Can simulate last two with first method by inserting 
appropriate control characters 

• File structure may be decided by OS or application program 
• Bad idea for OS to dictate more than a few file structure!

12



Access Methods
• Sequential Access 

• read next, write next  

• reset (to beginning) 

• no read after last write (rewrite) 

• Direct Access – file is fixed-length logical records 

• read n, write n, position to n 

• read next record, write next record 

• rewrite n, where n = relative block number

13



Sequential-access File

14

���� "DDFTT .FUIPET ���

Because disk space is always allocated in blocks, some portion of the last
block of each !le is generally wasted. If each blockwere 512 bytes, for example,
then a !le of 1,949 bytes would be allocated four blocks (2,048 bytes); the last
99 bytes would be wasted. The waste incurred to keep everything in units
of blocks (instead of bytes) is internal fragmentation. All !le systems suffer
from internal fragmentation; the larger the block size, the greater the internal
fragmentation.

13.2 Access Methods

Files store information. When it is used, this information must be accessed and
read into computer memory. The information in the !le can be accessed in
several ways. Some systems provide only one access method for !les. Others
(such as mainframe operating systems) support many access methods, and
choosing the right one for a particular application is a major design problem.

13.2.1 Sequential Access

The simplest access method is TFRVFOUJBM BDDFTT. Information in the !le is
processed in order, one record after the other. This mode of access is by far
the most common; for example, editors and compilers usually access !les in
this fashion.

Reads and writes make up the bulk of the operations on a !le. A read
operation—read next()—reads the next portion of the!le and automatically
advances a !le pointer, which tracks the I/O location. Similarly, the write
operation—write next()—appends to the end of the!le and advances to the
end of the newly written material (the new end of !le). Such a !le can be reset
to the beginning, and on some systems, a programmay be able to skip forward
or backward n records for some integer n—perhaps only for n = 1. Sequential
access, which is depicted in Figure 13.4, is based on a tape model of a !le and
works as well on sequential-access devices as it does on random-access ones.

13.2.2 Direct Access

Another method is EJSFDU BDDFTT (or SFMBUJWF BDDFTT). Here, a !le is made up
of !xed-length MPHJDBM SFDPSET that allow programs to read and write records
rapidly in no particular order. The direct-access method is based on a disk
model of a !le, since disks allow random access to any !le block. For direct
access, the !le is viewed as a numbered sequence of blocks or records. Thus,

beginning end
current position

rewind
read or write

Figure 13.4 Sequential-access !le.

fh.seek(0)	
#	move	to	beginning

fh.seek(0,	
								whence=2)	
#	move	to	end

fh.tell()	
#	get	cure	pos

fh.seek(delta,	whence=1)	
#	move	relative	to	current	position



Simulation of Sequential Access 
on Direct-access File

15

���� %JSFDUPSZ 4USVDUVSF ���

sequential access

reset

read_next

write_next

cp  0;

read cp;
cp  cp  1;

write cp;
cp  cp  1;

implementation for direct access

Figure 13.5 Simulation of sequential access on a direct-access !le.

For example, a retail-price!lemight list the universal product codes (UPCs)
for items, with the associated prices. Each record consists of a 10-digit UPC and
a 6-digit price, for a 16-byte record. If our disk has 1,024 bytes per block, we
can store 64 records per block. A !le of 120,000 records would occupy about
2,000 blocks (2 million bytes). By keeping the !le sorted by UPC, we can de!ne
an index consisting of the !rst UPC in each block. This index would have 2,000
entries of 10 digits each, or 20,000 bytes, and thus could be kept in memory. To
!nd the price of a particular item, we can make a binary search of the index.
From this search, we learn exactly which block contains the desired record and
access that block. This structure allows us to search a large !le doing little I/O.

With large !les, the index !le itself may become too large to be kept in
memory. One solution is to create an index for the index !le. The primary index
!le contains pointers to secondary index !les, which point to the actual data
items.

For example, IBM’s indexed sequential-access method (ISAM) uses a small
master index that points to disk blocks of a secondary index. The secondary
index blocks point to the actual !le blocks. The !le is kept sorted on a de!ned
key. To !nd a particular item,we !rst make a binary search of themaster index,
which provides the block number of the secondary index. This block is read
in, and again a binary search is used to !nd the block containing the desired
record. Finally, this block is searched sequentially. In this way, any record can
be located from its key by at most two direct-access reads. Figure 13.6 shows a
similar situation as implemented by OpenVMS index and relative !les.

13.3 Directory Structure

The directory can be viewed as a symbol table that translates !le names into
their !le control blocks. If we take such a view, we see that the directory itself
can be organized in many ways. The organization must allow us to insert
entries, to delete entries, to search for a named entry, and to list all the entries
in the directory. In this section, we examine several schemes for de!ning the
logical structure of the directory system.

When considering a particular directory structure,we need to keep inmind
the operations that are to be performed on a directory:

• 4FBSDI GPS B GJM . We need to be able to search a directory structure to !nd
the entry for a particular !le. Since !les have symbolic names, and similar



Other Access Methods: index
• Purpose 

• for fast determination of location of data to be operated on  

• (consider UPC code plus record of data about that item) 

• If too large, index (in memory) of the index (on disk) 

• IBM indexed sequential-access method (ISAM)  - by OS 
• Small master index, points to disk blocks of secondary index 

• File kept sorted on a defined key 

• VMS provides index and relative files  
• as another example (see next slide)

16



Example of Index and Relative 
Files

17

��� $IBQUFS �� 'JMF�4ZTUFN *OUFSGBDF

index file relative file

Smith

last name

smith, john social-security age

logical record
number

Adams
Arthur
Asher

•
•
•

Figure 13.6 Example of index and relative !les.

names may indicate a relationship among !les, we may want to be able to
!nd all !les whose names match a particular pattern.

• $SFBUF B GJM . New !les need to be created and added to the directory.

• %FMFUF B !MF. When a !le is no longer needed,wewant to be able to remove
it from the directory. Note a delete leaves a hole in the directory structure
and the !le system may have a method to defragement the directory
structure.

• -JTU B EJSFDUPSZ. We need to be able to list the !les in a directory and the
contents of the directory entry for each !le in the list.

• 3FOBNF B !MF. Because the name of a !le represents its contents to its users,
we must be able to change the name when the contents or use of the !le
changes. Renaming a !le may also allow its position within the directory
structure to be changed.

• 5SBWFSTF UIF !MF TZTUFN. We may wish to access every directory and every
!le within a directory structure. For reliability, it is a good idea to save the
contents and structure of the entire !le system at regular intervals. Often,
we do this by copying all !les tomagnetic tape, other secondary storage, or
across a network to another system or the cloud. This technique provides
a backup copy in case of system failure. In addition, if a !le is no longer in
use, the !le can be copied the backup target and the disk space of that !le
released for reuse by another !le.

In the following sections, we describe the most common schemes for de!ning
the logical structure of a directory.

13.3.1 Single-Level Directory

The simplest directory structure is the single-level directory. All !les are con-
tained in the same directory, which is easy to support and understand (Figure
13.7).



Directory Structure
• A collection of nodes containing 

information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

18



Directories
• "Folders" - containers of other files (and directories) 

• Objective 

• Efficiency – locating a file quickly 

• Functions 

• Naming – convenient to users 

• Two users can have same name for different files 

• The same file can have several different names 

• Grouping – logical grouping of files by properties, (e.g., all 
Java programs, all games, …)

19



Operations Performed on 
Directory

• Search for a file 

• Create a file 

• Delete a file 

• List a directory 

• Rename a file 

• Traverse the file system

20



Single-Level Directory
• A single directory for all users  

• (e.g. 1st Mac file system) 

• Naming problem 

• Grouping problem

21

���� %JSFDUPSZ 4USVDUVSF ���

cat

files

directory bo a test data mail cont hex records

Figure 13.7 Single-level directory.

A single-level directory has signi!cant limitations, however, when the
number of !les increases or when the system has more than one user. Since all
!les are in the same directory, they must have unique names. If two users call
their data !le test.txt, then the unique-name rule is violated. For example,
in one programming class, 23 students called the program for their second
assignment prog2.c; another 11 called it assign2.c. Fortunately, most !le
systems support !le names of up to 255 characters, so it is relatively easy to
select unique !le names.

Even a single user on a single-level directorymay !nd it dif!cult to remem-
ber the names of all the!les as the number of!les increases. It is not uncommon
for a user to have hundreds of !les on one computer system and an equal
number of additional !les on another system. Keeping track of so many !les is
a daunting task.

13.3.2 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of !le names
among different users. The standard solution is to create a separate directory
for each user.

In the two-level directory structure, each user has his own VTFS GJM EJSFD�
UPSZ (6'%). The UFDs have similar structures, but each lists only the !les of
a single user. When a user job starts or a user logs in, the system’s NBTUFS
GJM EJSFDUPSZ (.'%) is searched. The MFD is indexed by user name or account
number, and each entry points to the UFD for that user (Figure 13.8).

When a user refers to a particular !le, only his own UFD is searched. Thus,
different users may have !les with the same name, as long as all the !le names
within each UFD are unique. To create a !le for a user, the operating system
searches only that user’s UFD to ascertain whether another !le of that name

cat bo a test x data aa

user 1 user 2 user 3 user 4

data a testuser file
directory

master file
directory

Figure 13.8 Two-level directory structure.



Two-Level Directory
• Separate directory for each user 

• Path name 

• Can have the same file name for different user 

• Efficient searching 

• No grouping capability

22

���� %JSFDUPSZ 4USVDUVSF ���

cat

files

directory bo a test data mail cont hex records

Figure 13.7 Single-level directory.

A single-level directory has signi!cant limitations, however, when the
number of !les increases or when the system has more than one user. Since all
!les are in the same directory, they must have unique names. If two users call
their data !le test.txt, then the unique-name rule is violated. For example,
in one programming class, 23 students called the program for their second
assignment prog2.c; another 11 called it assign2.c. Fortunately, most !le
systems support !le names of up to 255 characters, so it is relatively easy to
select unique !le names.

Even a single user on a single-level directorymay !nd it dif!cult to remem-
ber the names of all the!les as the number of!les increases. It is not uncommon
for a user to have hundreds of !les on one computer system and an equal
number of additional !les on another system. Keeping track of so many !les is
a daunting task.

13.3.2 Two-Level Directory

As we have seen, a single-level directory often leads to confusion of !le names
among different users. The standard solution is to create a separate directory
for each user.

In the two-level directory structure, each user has his own VTFS GJM EJSFD�
UPSZ (6'%). The UFDs have similar structures, but each lists only the !les of
a single user. When a user job starts or a user logs in, the system’s NBTUFS
GJM EJSFDUPSZ (.'%) is searched. The MFD is indexed by user name or account
number, and each entry points to the UFD for that user (Figure 13.8).

When a user refers to a particular !le, only his own UFD is searched. Thus,
different users may have !les with the same name, as long as all the !le names
within each UFD are unique. To create a !le for a user, the operating system
searches only that user’s UFD to ascertain whether another !le of that name

cat bo a test x data aa

user 1 user 2 user 3 user 4

data a testuser file
directory

master file
directory

Figure 13.8 Two-level directory structure.

files



Tree-Structured Directories

23

���� %JSFDUPSZ 4USVDUVSF ���

require 5 MB, then supporting 12 users would require 5 × 12 = 60 MB just for
copies of the system !les.)

The standard solution is to complicate the search procedure slightly. A
special user directory is de!ned to contain the system !les (for example, user
0). Whenever a !le name is given to be loaded, the operating system !rst
searches the local UFD. If the !le is found, it is used. If it is not found, the system
automatically searches the special user directory that contains the system !les.
The sequence of directories searched when a !le is named is called the TFBSDI
QBUI. The search path can be extended to contain an unlimited list of directories
to search when a command name is given. This method is the one most used
in UNIX and Windows. Systems can also be designed so that each user has his
own search path.

13.3.3 Tree-Structured Directories

Once we have seen how to view a two-level directory as a two-level tree,
the natural generalization is to extend the directory structure to a tree of
arbitrary height (Figure 13.9). This generalization allows users to create their
own subdirectories and to organize their !les accordingly. A tree is the most
common directory structure. The tree has a root directory, and every !le in the
system has a unique path name.

A directory (or subdirectory) contains a set of !les or subdirectories. In
many implementations, a directory is simply another !le, but it is treated in
a special way. All directories have the same internal format. One bit in each
directory entry de!nes the entry as a !le (0) or as a subdirectory (1). Special

list obj spell

!nd count hex reorderstat mail dist

root

spell bin programs

p e mail

reorder list !ndprog copy prt exp

last !rst

hex count

all

Figure 13.9 Tree-structured directory structure.



Tree-Structured Directories 
(Cont'd)

• Absolute or relative path name 

• Creating a new file is done in current directory 

• Delete a file 

• rm <file-name> 

• Creating a new subdirectory 

• mkdir <dir-name> 

• Removing a directory 

• rmdir <dir-name>:  directory must be empty

24



Acyclic-Graph Directories
• Have shared subdirectories and files

25

���� %JSFDUPSZ 4USVDUVSF ���

is issued in error, a large number of !les and directorieswill need to be restored
(assuming a backup exists).

With a tree-structured directory system, users can be allowed to access, in
addition to their !les, the !les of other users. For example, user B can access a
!le of user Aby specifying its path name. User B can specify either an absolute
or a relative path name. Alternatively, user B can change her current directory
to be user A’s directory and access the !le by its !le name.

13.3.4 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The !les asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and !les of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in their
own directories. In this situation, the common subdirectory should be shared.
A shared directory or !le exists in the !le system in two (or more) places at
once.

A tree structure prohibits the sharing of !les or directories. An BDZDMJD
HSBQI—that is, a graph with no cycles—allows directories to share subdirec-
tories and !les (Figure 13.10). The same !le or subdirectory may be in two
different directories. The acyclic graph is a natural generalization of the tree-
structured directory scheme.

It is important to note that a shared !le (or directory) is not the same as two
copies of the !le. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the !le, the changes will not
appear in the other’s copy. With a shared !le, only one actual !le exists, so any
changes made by one person are immediately visible to the other. Sharing is

list all w count words list

list rade w7

count

root

dict spell

Figure 13.10 Acyclic-graph directory structure.



���� %JSFDUPSZ 4USVDUVSF ���

is issued in error, a large number of !les and directorieswill need to be restored
(assuming a backup exists).

With a tree-structured directory system, users can be allowed to access, in
addition to their !les, the !les of other users. For example, user B can access a
!le of user Aby specifying its path name. User B can specify either an absolute
or a relative path name. Alternatively, user B can change her current directory
to be user A’s directory and access the !le by its !le name.

13.3.4 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The !les asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and !les of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in their
own directories. In this situation, the common subdirectory should be shared.
A shared directory or !le exists in the !le system in two (or more) places at
once.

A tree structure prohibits the sharing of !les or directories. An BDZDMJD
HSBQI—that is, a graph with no cycles—allows directories to share subdirec-
tories and !les (Figure 13.10). The same !le or subdirectory may be in two
different directories. The acyclic graph is a natural generalization of the tree-
structured directory scheme.

It is important to note that a shared !le (or directory) is not the same as two
copies of the !le. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the !le, the changes will not
appear in the other’s copy. With a shared !le, only one actual !le exists, so any
changes made by one person are immediately visible to the other. Sharing is

list all w count words list

list rade w7

count

root

dict spell

Figure 13.10 Acyclic-graph directory structure.

���� %JSFDUPSZ 4USVDUVSF ���

is issued in error, a large number of !les and directorieswill need to be restored
(assuming a backup exists).

With a tree-structured directory system, users can be allowed to access, in
addition to their !les, the !les of other users. For example, user B can access a
!le of user Aby specifying its path name. User B can specify either an absolute
or a relative path name. Alternatively, user B can change her current directory
to be user A’s directory and access the !le by its !le name.

13.3.4 Acyclic-Graph Directories

Consider two programmers who are working on a joint project. The !les asso-
ciated with that project can be stored in a subdirectory, separating them from
other projects and !les of the two programmers. But since both programmers
are equally responsible for the project, both want the subdirectory to be in their
own directories. In this situation, the common subdirectory should be shared.
A shared directory or !le exists in the !le system in two (or more) places at
once.

A tree structure prohibits the sharing of !les or directories. An BDZDMJD
HSBQI—that is, a graph with no cycles—allows directories to share subdirec-
tories and !les (Figure 13.10). The same !le or subdirectory may be in two
different directories. The acyclic graph is a natural generalization of the tree-
structured directory scheme.

It is important to note that a shared !le (or directory) is not the same as two
copies of the !le. With two copies, each programmer can view the copy rather
than the original, but if one programmer changes the !le, the changes will not
appear in the other’s copy. With a shared !le, only one actual !le exists, so any
changes made by one person are immediately visible to the other. Sharing is

list all w count words list

list rade w7

count

root

dict spell

Figure 13.10 Acyclic-graph directory structure.

Acyclic-Graph Directories 
(Cont.)

• Deletion 
• If list file is deleted ⇒ dict directory 

now contains a dangling pointer! 

• need to preserve file until all 
references to file have been deleted. 

• Solution 1: Backpointer  
• but how many? Variable size records 

can be a problem 

• Backpointers using a daisy chain 
organization 

• Solution 2 (simpler): count #refs

26

backpointer(s)



General Graph Directory

27

��� $IBQUFS �� 'JMF�4ZTUFN *OUFSGBDF

text mail

avi count unhex hex

count book book mail unhex hyp

root

avi tc jim

Figure 13.11 General graph directory.

scheme to determine when the last reference has been deleted and the disk
space can be reallocated. Garbage collection involves traversing the entire !le
system, marking everything that can be accessed. Then, a second pass collects
everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or searchwill cover everything
in the !le system once and only once.) Garbage collection for a disk-based !le
system, however, is extremely time consuming and is thus seldom attempted.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure ismuch easier toworkwith. The dif!culty is to
avoid cycles as new links are added to the structure. How do we knowwhen a
new link will complete a cycle? There are algorithms to detect cycles in graphs;
however, they are computationally expensive, especially when the graph is on
disk storage. A simpler algorithm in the special case of directories and links
is to bypass links during directory traversal. Cycles are avoided, and no extra
overhead is incurred.

13.4 Protection

When information is stored in a computer system, we want to keep it safe
from physical damage (the issue of reliability) and improper access (the issue
of protection).

Reliability is generally provided by duplicate copies of !les.Many comput-
ers have systems programs that automatically (or through computer-operator
intervention) copy disk !les to tape at regular intervals (once per day or week
or month) to maintain a copy should a !le system be accidentally destroyed.
File systems can be damaged by hardware problems (such as errors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes,



General Graph Directory (Cont.)
• Issues with cycles 

• refer count 0 doesn't imply file accessible 

• Same problem as garbage collection 

• Solutions 
• Garbage collection: 2 passes needed (mark and sweep)  

=> expensive, rarely used 

• Allowing only (hard) links to file, not to directories => acyclic 

• Every time a new link is added, use a cycle detection 
algorithm to determine whether it is OK => expensive 

• When traversing directories, skip links => simpler

28

��� $IBQUFS �� 'JMF�4ZTUFN *OUFSGBDF

text mail

avi count unhex hex

count book book mail unhex hyp

root

avi tc jim

Figure 13.11 General graph directory.

scheme to determine when the last reference has been deleted and the disk
space can be reallocated. Garbage collection involves traversing the entire !le
system, marking everything that can be accessed. Then, a second pass collects
everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or searchwill cover everything
in the !le system once and only once.) Garbage collection for a disk-based !le
system, however, is extremely time consuming and is thus seldom attempted.

Garbage collection is necessary only because of possible cycles in the graph.
Thus, an acyclic-graph structure ismuch easier toworkwith. The dif!culty is to
avoid cycles as new links are added to the structure. How do we knowwhen a
new link will complete a cycle? There are algorithms to detect cycles in graphs;
however, they are computationally expensive, especially when the graph is on
disk storage. A simpler algorithm in the special case of directories and links
is to bypass links during directory traversal. Cycles are avoided, and no extra
overhead is incurred.

13.4 Protection

When information is stored in a computer system, we want to keep it safe
from physical damage (the issue of reliability) and improper access (the issue
of protection).

Reliability is generally provided by duplicate copies of !les.Many comput-
ers have systems programs that automatically (or through computer-operator
intervention) copy disk !les to tape at regular intervals (once per day or week
or month) to maintain a copy should a !le system be accidentally destroyed.
File systems can be damaged by hardware problems (such as errors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes,



Protection vs. Reliability
• Protection 

• Owner of file controls what operations, by whom 

• Ops: Read, Write, Execute, Append, Delete, List 

• Reliability 
• Backup copies, extra bits for error correction and 

detection 

• Physical isolation on different disks

29



Access Control
• Control access to file and directory based 

on 
• user name, type(s) of access 

• possibly also time and location allowed 

• possibly password protection, per-file or per-
directory 

• Most file systems use Access Control List 
• users and allowed operations per file

30



Access Control List (ACL)
• Content of ACL: 

• List of users  

• allowed modes of access:  read, write, execute 

• Problem: 
• too complex to specify! 

• Unix Solution: condensed version 
• owner-group-public ACL

31



Protection Schemes when sharing 
Files on Multi-user system

• User ID (owner) 

• identify users, allowing permissions and protections of 
files & directories to be per-user 

• Group ID 

• group = set of users (e.g., students, admin, faculty, ...) 
=> only sysadmin can create group!! 

• permitting each file & dir to define group-access rights 

• Permission for a file or directory is defined for  

• an Owner, a Group, and Others

32



A Sample UNIX Directory Listing

33

���� 1SPUFDUJPO ���

PERMISSIONS IN AUNIX SYSTEM

In the UNIX system, directory protection and !le protection are handled
similarly. Associated with each !le and directory are three !elds—owner,
group, and universe—each consisting of the three bits rwx, where r controls
Sead access, w controlsXrite access, and x controls eYecution. Thus, a user can
list the content of a subdirectory only if the r bit is set in the appropriate !eld.
Similarly, a user can change his current directory to another current directory
(say, foo) only if the x bit associated with the foo subdirectory is set in the
appropriate !eld.

A sample directory listing from a UNIX environment is shown in below:

-rw-rw-r--
drwx------
drwxrwxr-x
drwxrwx---
-rw-r--r--
-rwxr-xr-x
drwx--x--x
drwx------
drwxrwxrwx

1 pbg
5 pbg
2 pbg 
2 jwg 
1 pbg 
1 pbg 
4 tag 
3 pbg 
3 pbg

sta!
sta!
sta!
student
sta!
sta!
faculty
sta!
sta!

intro.ps
private/
doc/
student-proj/
program.c
program
lib/
mail/
test/

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13
Feb 24 2017
Feb 24 2017
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

31200
512
512
512 

9423
20471 

512 
1024 

512

The !rst !eld describes the protection of the !le or directory. A d as the !rst
character indicates a subdirectory. Also shown are the number of links to the
!le, the owner’s name, the group’s name, the size of the !le in bytes, the date
of last modi!cation, and !nally the !le’s name (with optional extension).

To achieve such protection, we must create a new group—say, text—
with members Jim, Dawn, and Jill. The name of the group, text, must then
be associated with the !le book.tex, and the access rights must be set in
accordance with the policy we have outlined.

Now consider a visitor to whom Sara would like to grant temporary access
to Chapter 1. The visitor cannot be added to the text group because thatwould
give him access to all chapters. Because a !le can be in only one group, Sara
cannot add another group to Chapter 1. With the addition of access-control-
list functionality, though, the visitor can be added to the access control list of
Chapter 1.

For this scheme towork properly, permissions and access listsmust be con-
trolled tightly. This control can be accomplished in several ways. For example,
in the UNIX system, groups can be created and modi!ed only by the manager
of the facility (or by any superuser). Thus, control is achieved through human
interaction. Access lists are discussed further in Section 17.6.2.

With themore limited protection classi!cation, only three !elds are needed
to de!ne protection. Often, each !eld is a collection of bits, and each bit either
allows or prevents the access associated with it. For example, the UNIX system
de!nes three !elds of three bits each—rwx, where r controls read access, w
controls write access, and x controls execution. A separate !eld is kept for the

r : "read"  (read file content, or read directory listing!) 
w : "write"  (write file content, or modify directory -- add, delete, mv file) 
x : "execute" a file or "enter" a directory (but might not be able to read) 
d : "directory"



Setting file access in Unix
• Setting group 

• $	chgrp  groupName  fileOrDir 

• Setting mode 
• $	chmod  modebits  fileOrDir 

• e.g., $	chmod	761	myFile 

RWX
a) owner access 7 ⇒ 1 1 1   (RWX)
b) group access 6  ⇒ 1 1 0   (RW  )
c) public access 1  ⇒ 0 0 1   (      X)

• Can also do chmod	+r, chmod	-r, chmod	a+r, etc

34


