
Chapter 12:
I/O Systems

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

1

Outline
• I/O Hardware

• Application I/O Interface

• Kernel I/O Subsystem

• Transforming I/O Requests to Hardware
Operations

• Performance

2

I/O Hardware

3

I/O Management
• I/O devices vary greatly

• Types: Storage, Transmission, Human-interface

• Connect via ports, busses, device controllers

• Various methods to control them

• Performance management

• Device drivers encapsulate device details
• Present uniform device-access interface to I/O

subsystem

4

I/O Interfaces
• Port: connection point for device

• Bus: shared (group of) wires for
connecting ports
• daisy chain or shared direct access

• Controller:
• operates on port, bus, device

• Sometimes separate circuit board (host
bus adapter - HBA)

• Contains own "processor", microcode,
memory, bus controller

• Some talk to per-device controller with
bus controller, microcode, memory, etc

5

host adapter
port

shared bus

device

device
controller

device

device devicedevice

Daisy chain (e.g., SCSI)

A Typical PC Bus Structure

6

CPU
���� *�0)BSEXBSF ���

expansion bus

PCIe bus

disk disk

cache

memory

processor

bridge/memory
controller

monitor

SAS controller expansion bus
interface

graphics
controller

keyboard

USB
port

USB
port

disk disk

Figure 12.1 A typical PC bus structure.

lane is used as a full-duplex byte stream, transporting data packets in an eight-
bit byte format simultaneously in both directions. Physically, PCIe links may
contain 1, 2, 4, 8, 12, 16, or 32 lanes, as signi!ed by an “x” pre!x. A PCIe card or
connector that uses 8 lanes is designated x8, for example. In addition, PCIe has
gone through multiple “generations,” with more coming in the future. Thus,
for example, a card might be “PCIe gen3 x8”, which means it works with gen-
eration 3 of PCIe and uses 8 lanes. Such a device has maximum throughput of
8 gigabytes per second. Details about PCIe can be found at https://pcisig.com.

A DPOUSPMMFS is a collection of electronics that can operate a port, a bus, or
a device. A serial-port controller is a simple device controller. It is a single chip
(or portion of a chip) in the computer that controls the signals on the wires
of a serial port. By contrast, a GJCS DIBOOFM ('$) bus controller is not simple.
Because the FC protocol is complex and used in data centers rather than on
PCs, the FC bus controller is often implemented as a separate circuit board
—or a IPTU CVT BEBQUFS ()#")—that connects to a bus in the computer. It
typically contains a processor, microcode, and some private memory to enable
it to process the FC protocol messages. Some devices have their own built-in
controllers. If you look at a disk drive, you will see a circuit board attached
to one side. This board is the disk controller. It implements the disk side of
the protocol for some kinds of connection—SAS and SATA, for instance. It has
microcode and a processor to do many tasks, such as bad-sector mapping,
prefetching, buffering, and caching.

12.2.1 Memory-Mapped I/O

Howdoes the processor give commands and data to a controller to accomplish
an I/O transfer? The short answer is that the controller has one ormore registers
for data and control signals. The processor communicates with the controller
by reading and writing bit patterns in these registers. One way in which
this communication can occur is through the use of special I/O instructions

• PCI bus is common in PCs
and servers, parallel
connection, 5 devices max,
not hot pluggable (Intel,
1990's)

• PCIe = PCI Express, serial
connection, switched, hot
plugging, 32 devices max
(Intel, 2001)

• expansion bus connects
relatively slow devices

• SAS = serial-attached SCSI
example of host-bus adapter
(HBA) or just host adapter

• was IDE

Device registers
• Registers on devices (not processor)

• each register may have its own address (in device's own
space)

• registers may be written to or read from

• Device registers can cause I/O to happen
• data-in (to be read by host)

• data-out (to be written by host)

• status (read by host to find I/O status, error, etc)

• control (e.g., full/half duplex, parity, baud rate, etc)

7

I/O Instructions (on CPU)
• Instructions for processor to control I/O

• Direct I/O instructions (part of ISA)

• Cause waveform to be generated for I/O

• example: SPI, I2C, UART, ...

• Memory-mapped I/O

• Map device-control registers into mem. address space of CPU

• Load/store instructions like regular memory, but effect is to
access device data and command registers

• Especially for large address spaces (graphics)

8

Memory-mapped addresses of
Device I/O Ports on PCs (partial)

9

��� $IBQUFS �� *�0 4ZTUFNT

I/O address range (hexadecimal)

000–00F

020–021

040–043

200–20F

2F8–2FF

320–32F

378–37F

3D0–3DF

3F0–3F7

3F8–3FF

device

DMA controller

interrupt controller

timer

game controller

serial port (secondary)

hard-disk controller

parallel port

graphics controller

diskette-drive controller

serial port (primary)

Figure 12.2 Device I/O port locations on PCs (partial).

that specify the transfer of a byte or a word to an I/O port address. The I/O
instruction triggers bus lines to select the proper device and tomove bits into or
out of a device register. Alternatively, the device can supportNFNPSZ�NBQQFE
*�0. In this case, the device-control registers are mapped into the address
space of the processor. The CPU executes I/O requests using the standard data-
transfer instructions to read and write the device-control registers at their
mapped locations in physical memory.

In the past, PCs often used I/O instructions to control some devices and
memory-mapped I/O to control others. Figure 12.2 shows the usual I/O port
addresses for PCs. The graphics controller has I/O ports for basic control
operations, but the controller has a large memory-mapped region to hold
screen contents. A thread sends output to the screen by writing data into
the memory-mapped region. The controller generates the screen image based
on the contents of this memory. This technique is simple to use. Moreover,
writing millions of bytes to the graphics memory is faster than issuing mil-
lions of I/O instructions. Therefore, over time, systems have moved toward
memory-mapped I/O. Today,most I/O is performedbydevice controllers using
memory-mapped I/O.

I/O device control typically consists of four registers, called the status,
control, data-in, and data-out registers.

• The EBUB�JO SFHJTUFS is read by the host to get input.

• The EBUB�PVU SFHJTUFS is written by the host to send output.

• The TUBUVT SFHJTUFS contains bits that can be read by the host. These bits
indicate states, such as whether the current command has completed,
whether a byte is available to be read from the data-in register, andwhether
a device error has occurred.

• The DPOUSPM SFHJTUFS can be written by the host to start a command or
to change the mode of a device. For instance, a certain bit in the control
register of a serial port chooses between full-duplex and half-duplex com-

Polling vs. Interrupt
• Different ways to check if I/O is ready

• Polling: busy wait
• loop until I/O hardware sets a flag value

• simple to code, but not doing useful work while polling

• Interrupt
• processor can do useful work

• processor saves state before jumping to ISR

• processor can do useful work or sleep (to save power)

10

Polling: sending vs receiving
• Sending

• processor poll busy bit (from I/O status register).

• I/O hardware clears busy bit on completing previous I/O.

• processor makes sure I/O not busy before writing

• Receiving
• processor polls data-ready bit (from I/O status register)

• I/O hardware sets data-ready bit upon successful receiving

• processor makes sure data is ready before trying to read it
(or else getting garbage)

11

Issue with Polling
• Pros

• Reasonable if device is fast

• Con

• But inefficient if device slow

• CPU switches to other tasks?

• But if miss a cycle data overwritten / lost

• Polling can happen in 3 instruction cycles

• Read status, logical-and to extract status bit, branch if not zero

• How to be more efficient if non-zero infrequently?

12

Interrupts
• CPU's Interrupt-request (IRQ) line

• triggered by I/O device (usually pulled down)

• Checked by CPU (hardware) after each instruction

• Interrupt handler (interrupt service routine)
"receives interrupts"
• Some interrupts are maskable => ignore or delay interrupts

• Processor saves state of regular execution, switches
context, jumps to ISR

• Context switch at start and end

13

Vectored Interrupt vs
Interrupt Chaining

• Q: How many IRQ lines does the CPU have?

• Ideally, one per device => Vectored interrupt

• often there are many more devices than IRQ lines

• Vectored interrupt

• IRQ# => index into interrupt vector to dispatch interrupt

• Each device gets its own ISR

• High overhead if table is huge

• Interrupt Chaining

• Multiple devices share an IRQ => share ISR

• Once invoked, the ISR must query each of shared device

14

Interrupt-Driven I/O Cycle

15

��� $IBQUFS �� *�0 4ZTUFNT

In many computer architectures, three CPU-instruction cycles are suf!cient
to poll a device: read a device register, logical-and to extract a status bit,
and branch if not zero. Clearly, the basic polling operation is ef!cient. But
polling becomes inef!cient when it is attempted repeatedly yet rarely !nds a
device ready for service, while other useful CPU processing remains undone. In
such instances, it may be more ef!cient to arrange for the hardware controller
to notify the CPU when the device becomes ready for service, rather than
to require the CPU to poll repeatedly for an I/O completion. The hardware
mechanism that enables a device to notify the CPU is called an JOUFSSVQU.

12.2.3 Interrupts

The basic interrupt mechanism works as follows. The CPU hardware has a
wire called the JOUFSSVQU�SFRVFTU MJOF that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on
the interrupt-request line, the CPU performs a state save and jumps to the
JOUFSSVQU�IBOEMFS SPVUJOF at a !xed address in memory. The interrupt han-
dler determines the cause of the interrupt, performs the necessary processing,
performs a state restore, and executes a return from interrupt instruction
to return the CPU to the execution state prior to the interrupt. We say that
the device controller raises an interrupt by asserting a signal on the interrupt
request line, the CPU catches the interrupt and dispatches it to the interrupt

device driver initiates I/O

CPU receiving interrupt,
transfers control to
interrupt handler

CPU resumes
processing of

interrupted task

CPU

1

I/O controller

CPU executing checks for
interrupts between instructions

5

interrupt handler
processes data,

returns from interrupt

initiates I/O

3

2

4

7

input ready, output
complete, or error

generates interrupt signal

6

Figure 12.3 Interrupt-driven I/O cycle.

Intel Pentium Processor Event-
Vector Table

16

��� $IBQUFS �� *�0 4ZTUFNT

the execution of critical instruction sequences thatmust not be interrupted. The
maskable interrupt is used by device controllers to request service.

The interrupt mechanism accepts an BEESFTT—a number that selects a
speci!c interrupt-handling routine from a small set. In most architectures, this
address is an offset in a table called the JOUFSSVQU WFDUPS. This vector contains
the memory addresses of specialized interrupt handlers. The purpose of a
vectored interrupt mechanism is to reduce the need for a single interrupt
handler to search all possible sources of interrupts to determine which one
needs service. In practice, however, computers have more devices (and, hence,
interrupt handlers) than they have address elements in the interrupt vector.
A common way to solve this problem is to use JOUFSSVQU DIBJOJOH, in which
each element in the interrupt vector points to the head of a list of interrupt
handlers. When an interrupt is raised, the handlers on the corresponding list
are called one by one, until one is found that can service the request. This
structure is a compromise between the overhead of a huge interrupt table and
the inef!ciency of dispatching to a single interrupt handler.

Figure 12.5 illustrates the design of the interrupt vector for the Intel Pen-
tium processor. The events from 0 to 31, which are nonmaskable, are used
to signal various error conditions (which cause system crashes), page faults
(needing immediate action), and debugging requests (stopping normal opera-
tion and jumping to a debugger application). The events from 32 to 255, which
are maskable, are used for purposes such as device-generated interrupts.

descriptionvector number

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19–31
32–255

divide error
debug exception
null interrupt
breakpoint
INTO-detected overflow
bound range exception
invalid opcode
device not available
double fault
coprocessor segment overrun (reserved)
invalid task state segment
segment not present
stack fault
general protection
page fault
(Intel reserved, do not use)
floating-point error
alignment check
machine check
(Intel reserved, do not use)
maskable interrupts

Figure 12.5 Intel Pentium processor event-vector table.

Interrupts mechanism used for
Exceptions and Traps

• Exceptions
• Divide by zero, memory access violation, insufficient privilege,

page fault, etc

• ISR for OS to decide how to handle

• Trap

• to trigger kernel for system calls

• Split interrupt management
• first-level interrupt handler (FLIH) - actual ISR to do I/O

• second-level interrupt handler (SLIH) - separately scheduled
routine to process the data (without I/O) for the OS

17

Direct Memory Access (DMA)
• Controller that offloads bulk I/O from CPU

• Avoids programmed I/O (one byte at a time) for large data
movement

• Bypasses CPU to transfer data directly between I/O device
and memory

• CPU can do more useful work, or sleep to save power!

• OS writes DMA command block to DMA controller
• Source and destination addresses of data

• Read or write mode

• Count of bytes

18

Direct Memory Access (DMA)
• Bus mastering of DMA controller

• CPU & DMA can't use same memory at same time

• DMA controller grabs bus from CPU
=> Cycle stealing from CPU, some slowdown, but still much more
efficient than programmed I/O

• When done, interrupts to signal completion

• Memory buffer?
• default: kernel space, but wasteful to copy to user buffer (double buffering)

• better to do memory mapping to map buffer to user address space

• DVMA
• aware of virtual addresses, even more efficient

19

Steps in a DMA Transfer

20

���� *�0)BSEXBSF ���

Note that it is most straightforward for the target address to be in kernel
address space. If it were in user space, the user could, for example, modify the
contents of that space during the transfer, losing some set of data. To get the
DMA-transferred data to the user space for thread access, however, a second
copy operation, this time from kernel memory to user memory, is needed. This
EPVCMF CVGGFSJOH is inef!cient. Over time, operating systems have moved to
using memory-mapping (see Section 12.2.1) to perform I/O transfers directly
between devices and user address space.

Handshaking between the DMA controller and the device controller is
performed via a pair of wires called %."�SFRVFTU and %."�BDLOPXMFEHF.
The device controller places a signal on the DMA-request wire when a word of
data is available for transfer. This signal causes the DMA controller to seize the
memory bus, place the desired address on thememory-addresswire, and place
a signal on the DMA-acknowledgewire.When the device controller receives the
DMA-acknowledge signal, it transfers theword of data tomemory and removes
the DMA-request signal.

When the entire transfer is !nished, the DMA controller interrupts the CPU.
This process is depicted in Figure 12.6. When the DMA controller seizes the
memory bus, the CPU is momentarily prevented from accessing main mem-
ory, although it can still access data items in its caches. Although this DZDMF
TUFBMJOH can slow down the CPU computation, of"oading the data-transfer
work to a DMA controller generally improves the total system performance.
Some computer architectures use physical memory addresses for DMA, but

drive 1 drive 2

Figure 12.6 Steps in a DMA transfer.

Application I/O
Interface

21

Application I/O Interface
• I/O system calls

• encapsulate device behaviors in generic classes

• Device-driver layer
• hides differences among I/O controllers from kernel

• New devices
• talking already-implemented protocols need no extra work

• Each OS has
• its own I/O subsystem structures and device driver

frameworks

22

Types of Device I/O
• Data Transfer Mode

• Character stream: one byte at a time (e.g., terminal, keyboard)

• Block device: one whole block of data (e.g., disk)

• Access Method
• Sequential: (e.g., webcam, modem, network card)

• Random access: (e.g., USB drive, CD-ROM)

• Transfer Schedule
• Synchronous: (e.g., display, tape drive)

• Asynchronous: (e.g., keyboard, mouse)

23

Types of I/O devices (cont'd)
• Sharing (at a given moment)

• Sharable among several processes: (e.g., keyboard)

• Dedicated: (e.g., printer, tape drive)

• Speed of operation
• latency, seek time, transfer rate, delay between operations

• I/O direction
• read-write (e.g., disk)

• read-only (e.g., CD-ROM, DVD-ROM, etc)

• write-only (e.g., graphics controller, actuator)

24

A Kernel I/O Structure

25

���� "QQMJDBUJPO *�0 *OUFSGBDF ���

kernel

ha
rd

w
ar

e
so

ft
w

ar
e

SAS
device
driver

keyboard
device
driver

mouse
device
driver

• • •

• • •

• • •

PCIe bus
device
driver

802.11
device
driver

USB
device
driver

SAS
device

controller

keyboard
device

controller

mouse
device

controller

PCIe bus
device

controller

802.11
device

controller

USB
device

controller

SAS
devices keyboard mouse PCIe bus

802.11
devices

USB
devices
(disks,
tapes,
drives)

kernel I/O subsystem

Figure 12.7 A kernel I/O structure.

knowing what kind of disk it is and how new disks and other devices can be
added to a computer without disruption of the operating system.

Like other complex software-engineering problems, the approach here
involves abstraction, encapsulation, and software layering. Speci!cally, we can
abstract away the detailed differences in I/O devices by identifying a few gen-
eral kinds. Each general kind is accessed through a standardized set of func-
tions—an JOUFSGBDF. The differences are encapsulated in kernelmodules called
device drivers that internally are custom-tailored to speci!c devices but that
export one of the standard interfaces. Figure 12.7 illustrates how the I/O-related
portions of the kernel are structured in software layers.

The purpose of the device-driver layer is to hide the differences among
device controllers from the I/O subsystem of the kernel, much as the I/O sys-
tem calls encapsulate the behavior of devices in a few generic classes that hide
hardware differences from applications. Making the I/O subsystem indepen-
dent of the hardware simpli!es the job of the operating-system developer. It
also bene!ts the hardware manufacturers. They either design new devices to
be compatible with an existing host controller interface (such as SATA), or they
write device drivers to interface the new hardware to popular operating sys-
tems. Thus, we can attach new peripherals to a computer without waiting for
the operating-system vendor to develop support code.

Unfortunately for device-hardware manufacturers, each type of operating
system has its own standards for the device-driver interface. A given device
may ship with multiple device drivers—for instance, drivers for Windows,
Linux, AIX, and macOS. Devices vary on many dimensions, as illustrated in
Figure 12.8.

Characteristics of I/O Devices
• Subtleties of devices handled by device drivers

• Broadly I/O devices can be grouped by the OS into
• Block I/O

• Character I/O (Stream)

• Memory-mapped file access

• Network sockets

• For direct manipulation of I/O device specific
characteristics, usually an escape / back door
• Unix ioctl() call to send arbitrary bits to a device control

register and data to device data register

26

Block and Character Devices
• Block devices e.g., disk drives

• Commands include read(),	write(),	seek()

• Raw I/O, direct I/O, or file-system access

• Memory-mapped file access possible

• File mapped to virtual memory and clusters brought via demand
paging

• DMA

• Character devices e.g., keyboard, mouse, serial ports, printer
• Commands include get(),	put()

• Libraries layered on top allow line editing (arrow keys, backspace)

27

Network Devices
• Higher level than block and character

• socket interface
• Separates network protocol from network operation

• Includes select() functionality - returns

• which socket has packet waiting to be received,

• which sockets have room to accept a packet to send

• eliminates polling and busy waiting

• Approaches vary widely
• pipes, FIFOs, streams, queues, mailboxes

28

Clocks and Timers
• Provide current time, elapsed time, timer to trigger

• Normal resolution about 1/60 second

• Some systems provide higher-resolution timers

• Programmable interval timer
• used for timings, periodic interrupts

• ioctl() (on Unix, for "I/O Control")

• purpose: "backdoor" to pass command & pointer to driver

• covers odd aspects of I/O such as clocks and timers

• NTP - network time protocol
• to correct timer drift, uses latency calculation

29

Nonblocking and Asynchronous
I/O

• Blocking - process suspended until I/O completed

• Easy to use and understand

• Insufficient for some needs

• Nonblocking - I/O call returns as much as available
• User interface, data copy (buffered I/O)

• Implemented via multi-threading

• Returns quickly with count of bytes read or written

• select() to find if data ready then read() or write() to transfer

• Asynchronous - process runs while I/O executes

• Difficult to use

• I/O subsystem signals process when I/O completed

30

Two I/O Methods

Synchronous Asynchronous

31

���� "QQMJDBUJPO *�0 *OUFSGBDF ���

Figure 12.9 Two I/O methods: (a) synchronous and (b) asynchronous.

long they will buffer a request. Some versions of UNIX !ush their secondary
storage buffers every 30 seconds, for example, or each request is !ushedwithin
30 seconds of its occurrence. Systems provide a way to allow applications to
request a !ush of some buffers (like secondary storage buffers) so the data can
be forced to secondary storage without waiting for the buffer !ush interval.
Data consistency within applications is maintained by the kernel, which reads
data from its buffers before issuing I/O requests to devices, ensuring that data
not yet written are nevertheless returned to a requesting reader. Note that mul-
tiple threads performing I/O to the same "le might not receive consistent data,
depending on how the kernel implements its I/O. In this situation, the threads
may need to use locking protocols. Some I/O requests need to be performed
immediately, so I/O system calls usually have a way to indicate that a given
request, or I/O to a speci"c device, should be performed synchronously.

A good example of nonblocking behavior is the select() system call for
network sockets. This system call takes an argument that speci"es a maxi-
mum waiting time. By setting it to 0, a thread can poll for network activity
without blocking. But using select() introduces extra overhead, because
the select() call only checks whether I/O is possible. For a data transfer,
select() must be followed by some kind of read() or write() command.
A variation on this approach, found in Mach, is a blocking multiple-read call.
It speci"es desired reads for several devices in one system call and returns as
soon as any one of them completes.

12.3.5 Vectored I/O

Some operating systems provide another major variation of I/O via their appli-
cation interfaces. 7FDUPSFE *�0 allows one system call to perform multiple I/O
operations involving multiple locations. For example, the UNIX readv sys-
tem call accepts a vector of multiple buffers and either reads from a source
to that vector or writes from that vector to a destination. The same transfer

Vectored I/O
• "Vector" => think "array" of commands

• Allows one system call to perform multiple I/O operations
• Example: Unix system call readv() accepts a vector of multiple

buffers to read into or write from

• This is called "scatter-gather" method
• better than multiple individual I/O calls

• Decreases context switching and system call overhead

• Some versions provide atomicity
• for example, avoid worrying about multiple threads changing data as

reads / writes occurring

32

Kernel I/O Subsystem

33

Kernel I/O Subsystem
• First-come-first-serve usually not good

• Different I/O speeds, seek/rotational latency

• transfer sizes, types

• Scheduling
• Some I/O request ordering via per-device queue

• Some OSs try fairness, priority,

• Some implement Quality Of Service (i.e. IPQOS)

34

Device-status Table

35

���� ,FSOFM *�0 4VCTZTUFN ���

device: keyboard
status: idle

device: laser printer
status: busy

device: mouse
status: idle

device: disk unit 1
status: idle

device: disk unit 2
status: busy

...

request for
laser printer
address: 38546
length: 1372

request for
disk unit 2

file: xxx
operation: read
address: 43046
length: 20000

request for
disk unit 2

file: yyy
operation: write
address: 03458
length: 500

Figure 12.10 Device-status table.

idle, or busy). If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.

Scheduling I/O operations is oneway inwhich the I/O subsystem improves
the ef!ciency of the computer. Another way is by using storage space in main
memory or elsewhere in the storage hierarchy via buffering, caching, and
spooling.

12.4.2 Buffering

ACVGGFS, of course, is amemory area that stores data being transferred between
two devices or between a device and an application. Buffering is done for three
reasons. One reason is to cope with a speed mismatch between the producer
and consumer of a data stream. Suppose, for example, that a !le is being
received via Internet for storage on an SSD. The network speed may be a
thousand times slower than the drive. So a buffer is created in main memory
to accumulate the bytes received from the network. When an entire buffer of
data has arrived, the buffer can be written to the drive in a single operation.
Since the drivewrite is not instantaneous and the network interface still needs a
place to store additional incoming data, two buffers are used.After the network
!lls the !rst buffer, the drive write is requested. The network then starts to !ll
the second buffer while the !rst buffer is written to storage. By the time the
network has !lled the second buffer, the drive write from the !rst one should
have completed, so the network can switch back to the !rst buffer while the
drive writes the second one. This EPVCMF CVGGFSJOH decouples the producer of
data from the consumer, thus relaxing timing requirements between them. The
need for this decoupling is illustrated in Figure 12.11, which lists the enormous
differences in device speeds for typical computer hardware and interfaces.

A second use of buffering is to provide adaptations for devices that
have different data-transfer sizes. Such disparities are especially common in
computer networking, where buffers are used widely for fragmentation and

Needed for keeping track of asynchronous I/O status

Buffering in Kernel I/O
• Between devices or

between device and application

• Purposes: to cope with

1. mismatched device speed between producer
and consumer

2. device transfer size: disassemble data into
packets, reassemble

3. copy semantics

36

Buffering - for speed mismatch
• Example

• receive data on modem, save data to disk

• modem: slower; buffer up before writing to disk

• Double Buffering
• allows producer and consumer to buffer simultaneously

without conflict

• example use: bitmapped display
graphics card fills up one frame buffer while display
controller renders pixels from previous frame
(saves jitter or incomplete frame)

37

Interface speeds for devices

38

��� $IBQUFS �� *�0 4ZTUFNT

Figure 12.11 Common PC and data-center I/O device and interface speeds.

reassembly of messages. At the sending side, a large message is fragmented
into small network packets. The packets are sent over the network, and the
receiving side places them in a reassembly buffer to form an image of the source
data.

A third use of buffering is to support copy semantics for application I/O.
An example will clarify the meaning of “copy semantics.” Suppose that an
application has a buffer of data that it wishes to write to disk. It calls the
write() systemcall, providing a pointer to the buffer and an integer specifying
the number of bytes to write. After the system call returns, what happens
if the application changes the contents of the buffer? With DPQZ TFNBOUJDT,
the version of the data written to disk is guaranteed to be the version at the
time of the application system call, independent of any subsequent changes
in the application’s buffer. A simple way in which the operating system can
guarantee copy semantics is for the write() system call to copy the application
data into a kernel buffer before returning control to the application. The disk
write is performed from the kernel buffer, so that subsequent changes to the
application buffer have no effect. Copying of data between kernel buffers and
application data space is common in operating systems, despite the overhead
that this operation introduces, because of the clean semantics. The same effect
can be obtained more ef!ciently by clever use of virtual memory mapping and
copy-on-write page protection.

12.4.3 Caching

A DBDIF is a region of fast memory that holds copies of data. Access to the
cached copy is more ef!cient than access to the original. For instance, the
instructions of the currently running process are stored on disk, cached in
physicalmemory, and copied again in the CPU’s secondary andprimary caches.

Buffering - for different transfer
sizes

• Example: network interfaces
• Application: payload can be arbitrary size

• TCP/IP packet: 64KB

• Ethernet: 1500 bytes

• Buffer is needed for size matching
• Packetize application data to IP packets for TCP/IP

• Packetize IP packets over Ethernet

• Assemble Ethernet packets into IP packets on receiving end

• Assemble IP packets for application to read

39

Buffering - copy-semantics
• Buffer in user space vs kernel space

• example: write(buf) => buf is user space

• write() returns before I/O completes

• What if you modify buf before I/O completes??

• Copy-semantics
• buf data is copied before write() returns

=> does not matter if you modify buf, because the kernel
already made a copy!

• it helps to implement it with copy-on-write.

40

Caching in Kernel I/O
• Distinct concept from Buffering

• Caching is a faster, redundant copy of a slower
original

• Always just a copy, Key to performance

• buffer: app is aware; cache: app not aware

• Sometimes combined with buffering
• especially disk access, avoid physical I/O

41

Kernel I/O Subsystem
Spooling vs. Device Reservation
• Spooling

• hold output for a device

• If device can serve only one request at a time e.g.,
Printing

• OS prints to spool file, queues print jobs

• Device reservation
• provides exclusive access to a device

• System calls for allocation and de-allocation

• Watch out for deadlock

42

Error Handling
• Errors in I/O

• disk read, device unavailable, transient write failures

• Most return an error number or code when I/O request
fails

• System error logs hold problem reports

• Handling
• Retry a read or write, for example

• Some systems more advanced – Solaris FMA, AIX
=> Track error frequencies, stop using device with
increasing frequency of retry-able errors

43

I/O Protection
• Types of disruption

• accidental (program bug)

• purposeful (external attack - infected virus)

• OS Protects against illegal I/O instructions
• All I/O instructions defined to be privileged

• I/O must be performed via system calls

• Protect Memory-mapped and I/O port locations

44

Kernel Data Structures
• State of I/O components

• open file tables

• network connections

• character device state

• Buffers, memory allocation, “dirty” blocks

• Object-oriented methods and message passing for I/O
• example: Windows uses message passing

• Message with I/O information passed from user mode into kernel

• Message modified as it flows through to device driver and back to
process

45

UNIX I/O Kernel Structure

46

��� $IBQUFS �� *�0 4ZTUFNT

active-inode
table

network-
information

table

per-process
open-file table

user-process memory

system-wide open-file table

kernel memory

•
•
•

•
•
•

file-system record

inode pointer
pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function

networking (socket) record

pointer to network info
pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function

file descriptor

Figure 12.13 UNIX I/O kernel structure.

12.4.8 Power Management

Computers residing in data centers may seem far removed from issues of
power use, but as power costs increase and the world becomes increasingly
troubled about the long-term effects of greenhouse gas emissions, data cen-
ters have become a cause for concern and a target for increased ef!ciencies.
Electricity use generates heat, and computer components can fail due to high
temperatures, so cooling is part of the equation as well. Consider that cool-
ing a modern data center may use twice as much electricity as powering the
equipment does. Many approaches to data-center power optimization are in
use, ranging from interchanging data-center air without side air, chilling with
natural sources such as lake water, and solar panels.

Operating systems play a role in power use (and therefore heat gener-
ation and cooling). In cloud computing environments, processing loads can
be adjusted by monitoring and management tools to evacuate all user pro-
cesses from systems, idling those systems and powering them off until the
load requires their use. An operating system could analyze its load and, if suf-
!ciently low and hardware-enabled, power off components such as CPUsand
external I/O devices.

CPU cores can be suspended when the system load does not require them
and resumed when the load increases and more cores are needed to run the
queue of threads. Their state, of course, needs to be saved on suspend and
restored on resume. This feature is needed in servers because a data center full

Power Management
• CPU speed and voltage

• Dynamic Voltage/Frequency Scaling (DVFS)

• Sprint-and-halt CPU mode setting

• I/O Devices

• Dynamic Power Management (DPM): device on/off, mode setting.

• OS supports power management at different levels

• One computing system (mobile, laptop, server, ...)

• Cloud computing environments

• move virtual machines between servers

• Can control and shutting down whole systems

47

Power Management
in Mobile OS

• Component-level power management

• Understands relationship between components

• OS builds device tree representing physical device
topology

• System bus -> I/O subsystem -> {flash, USB storage}

• Device driver tracks state of device use

• Unused component – turn it off

• All devices in tree branch unused – turn off branch

48

Power Management "knobs"
in Mobile OS

• Wake locks
• like other locks but prevent sleep of device when lock is held

• example: screen dimming while doing slide show

• Power collapse
• put a device into very deep sleep, marginal power use

• Only awake enough to respond to external stimuli

• e.g., button press, incoming call

• ACPI - Advanced Configuration & Power Interface
• industry standard firmware code callable from kernel to manage

device power

49

I/O Requests to Hardware
Operations

• Consider reading a file from disk for a process

1. Determine device holding file

• [OS queries table filled with data from hardware]

2. Translate name to device representation

• [OS invokes driver]

3. Physically read data from disk into buffer

• [OS invokes driver for hardware operation]

4. Make data available to requesting process

5. Return control to process

50

Life Cycle of An I/O Request

51

��� $IBQUFS �� *�0 4ZTUFNT

can prompt the kernel to inspect the device details and load an appropri-
ate device driver dynamically. Of course, dynamic loading (and unloading)
is more complicated than static loading, requiring more complex kernel algo-
rithms, device-structure locking, error handling, and so forth.

Wenext describe the typical life cycle of a blocking read request, as depicted
in Figure 12.14. The !gure suggests that an I/O operation requires a greatmany
steps that together consume a tremendous number of CPU cycles.

�� Aprocess issues a blocking read() system call to a !le descriptor of a !le
that has been opened previously.

�� The system-call code in the kernel checks the parameters for correctness.
In the case of input, if the data are already available in the buffer cache,
the data are returned to the process, and the I/O request is completed.

�� Otherwise, a physical I/O must be performed. The process is removed
from the run queue and is placed on thewait queue for the device, and the
I/O request is scheduled. Eventually, the I/O subsystem sends the request
to the device driver. Depending on the operating system, the request is
sent via a subroutine call or an in-kernel message.

Figure 12.14 The life cycle of an I/O request.

Performance
• I/O a major factor in system performance

• OS is impacted by
• Code execution of

• device driver

• kernel I/O code

• Context switches due to interrupts

• Data copying

• In general, need to balance
• CPU, memory, bus, I/O performance

52

Intercomputer Communications

53

��� $IBQUFS �� *�0 4ZTUFNT

Figure 12.16 Intercomputer communications.

Some systems use separate GSPOU�FOE QSPDFTTPST for terminal I/O to reduce
the interrupt burden on the main CPU. For instance, a UFSNJOBM DPODFOUSBUPS
can multiplex the traf!c from hundreds of remote terminals into one port on a
large computer. An *�0 DIBOOFM is a dedicated, special-purpose CPU found in
mainframes and in other high-end systems. The job of a channel is to of"oad
I/Owork from themainCPU. The idea is that the channels keep the data"owing
smoothly, while the main CPU remains free to process the data. Like the device
controllers and DMA controllers found in smaller computers, a channel can
process more general and sophisticated programs, so channels can be tuned
for particular workloads.

We can employ several principles to improve the ef!ciency of I/O:

• Reduce the number of context switches.

• Reduce the number of times that data must be copied in memory while
passing between device and application.

• Reduce the frequency of interrupts by using large transfers, smart con-
trollers, and polling (if busy waiting can be minimized).

• Increase concurrency by using DMA-knowledgeable controllers or chan-
nels to of"oad simple data copying from the CPU.

• Move processing primitives into hardware, to allow their operation in
device controllers to be concurrent with CPU and bus operation.

• Balance CPU, memory subsystem, bus, and I/O performance, because an
overload in any one area will cause idleness in others.

I/O devices vary greatly in complexity. For instance, a mouse is simple. The
mousemovements and button clicks are converted into numeric values that are
passed from hardware, through the mouse device driver, to the application.
By contrast, the functionality provided by the Windows disk device driver is
complex. It not onlymanages individual disks but also implements RAID arrays

Improving Performance - CPU
• Reduce number of context switches

• e.g.,: front-end processor, terminal concentrator

• Move user-mode processes / daemons to
kernel threads
• e.g.,: Solaris uses in-kernel thread for telnet

daemon

• Reduce data copying
• e.g.,: copy-on-write for I/O buffer

54

Improving Performance -
Controller

• Large transfers by DMA
• DMA controller is often built-in to processors

• Small transfers by polling
• assuming busy-waiting can be minimized

• Smart controllers in device and on
computer system
• e.g., RAID controller

55

Device-Functionality Progression

56

���� 1FSGPSNBODF ���

(Section 11.8). To do so, it converts an application’s read or write request into a
coordinated set of disk I/O operations. Moreover, it implements sophisticated
error-handling and data-recovery algorithms and takesmany steps to optimize
disk performance.

Where should the I/O functionality be implemented—in the device hard-
ware, in the device driver, or in application software? Sometimes we observe
the progression depicted in Figure 12.17.

• Initially, we implement experimental I/O algorithms at the application
level, because application code is!exible and application bugs are unlikely
to cause system crashes. Furthermore, by developing code at the applica-
tion level, we avoid the need to reboot or reload device drivers after every
change to the code. An application-level implementation can be inef"cient,
however, because of the overhead of context switches and because the
application cannot take advantage of internal kernel data structures and
kernel functionality (such as ef"cient in-kernel messaging, threading, and
locking). The FUSE system interface, for example, allows "le systems to be
written and run in user mode.

• When an application-level algorithm has demonstrated its worth, we may
reimplement it in the kernel. This can improve performance, but the devel-
opment effort is more challenging, because an operating-system kernel
is a large, complex software system. Moreover, an in-kernel implementa-
tion must be thoroughly debugged to avoid data corruption and system
crashes.

• The highest performance may be obtained through a specialized imple-
mentation in hardware, either in the device or in the controller. The disad-
vantages of a hardware implementation include the dif"culty and expense
of making further improvements or of "xing bugs, the increased devel-

application code

kernel code

device-driver code

device-controller code (hardware)

device code (hardware)

new algorithm

in
cr

ea
se

d
fle

xi
bi

lit
y

in
cr

ea
se

d
ab

st
ra

ct
io

n

in
cr

ea
se

d
de

ve
lo

pm
en

t c
os

t

in
cr

ea
se

d
ef

fic
ie

nc
y

in
cr

ea
se

d
tim

e
(g

en
er

at
io

ns
)

Figure 12.17 Device functionality progression.

I/O Performance of Storage and
Network latency

57

��� $IBQUFS �� *�0 4ZTUFNT

Figure 12.18 I/O performance of storage (and network latency).

opment time (months rather than days), and the decreased !exibility. For
instance, a hardware RAID controller may not provide any means for the
kernel to in!uence the order or location of individual block reads and
writes, even if the kernel has special information about the workload that
would enable it to improve the I/O performance.

Over time, as with other aspects of computing, I/O devices have been
increasing in speed. Nonvolatile memory devices are growing in popularity
and in the variety of devices available. The speed of NVM devices varies from
high to extraordinary,with next-generationdevices nearing the speedof DRAM.
These developments are increasing pressure on I/O subsystems as well as
operating system algorithms to take advantage of the read/write speeds now
available. Figure 12.18 shows CPU and storage devices in two dimensions:
capacity and latency of I/O operations. Added to the "gure is a representation
of networking latency to reveal the performance “tax” networking adds to I/O.

12.8 Summary

• The basic hardware elements involved in I/O are buses, device controllers,
and the devices themselves.

• Thework ofmoving data between devices andmainmemory is performed
by the CPU as programmed I/O or is of!oaded to a DMA controller.

• The kernel module that controls a device is a device driver. The system-
call interface provided to applications is designed to handle several basic
categories of hardware, including block devices, character-stream devices,
memory-mapped "les, network sockets, and programmed interval timers.
The system calls usually block the processes that issue them, but nonblock-
ing and asynchronous calls are used by the kernel itself and by applications
that must not sleep while waiting for an I/O operation to complete.

