Chapter 12:
/0O Systems

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

Outline

/O Hardware
Application 1/O Interface
Kernel 1/0O Subsystem

Transforming 1/O Requests to Hardware
Operations

Performance

/0 Hardware

/O Management

* /O devices vary greatly
* Types: Storage, Transmission, Human-interface
» Connect via ports, busses, device controllers
* Various methods to control them

 Performance management

 Device drivers encapsulate device details

 Present uniform device-access interface to I/O
subsystem

/0 Interfaces

« Port: connection point for device

 Bus: shared (group of) wires for
connecting ports

* daisy chain or shared direct access

 Controller:
* operates on port, bus, device

* Sometimes separate circuit board (host
bus adapter - HBA)

* Contains own "processor", microcode,
memory, bus controller

* Some talk to per-device controller with
bus controller, microcode, memory, etc

J
shared bus Ll

device

device

host adapter

port \]J

I

controller

device

Daisy chain (e.g., SCSI)

device

device

device

I

I

[\1J

A Typical PC Bus Structure

* PCl bus is common in PCs
CPU and servers, parallel

monitor orocessor connection, 5 devices max,
not hot pluggable (Intel,
e 1990's)
graphics bridge/memory memory
e e * PCle = PCl Express, serial
] — /)connection, switched, hot

plugging, 32 devices max
(Intel, 2001)

expansion bus
interface

SAS controller keyboard

006 | pmmns

SAS = serial-attached SCSI port port
example of host-bus adapter

(HBA) or just host adapter

expansion bus)

>
—

¢ expansion bus connects
relatively slow devices

e was IDE

Device registers

* Registers on devices (not processor)

* each register may have its own address (in device's own
space)

* registers may be written to or read from

 Device registers can cause I/O to happen

» data-in (to be read by host)

» data-out (to be written by host)
e status (read by host to find I/O status, error, etc)

« control (e.g., full/half duplex, parity, baud rate, etc)

/0 Instructions (on CPU)

* Instructions for processor to control /0O

 Direct I/O instructions (part of ISA)

 Cause waveform to be generated for 1/0

» example: SPI, 12C, UART, ...

* Memory-mapped I/O

* Map device-control registers into mem. address space of CPU

 Load/store instructions like regular memory, but effect is to
access device data and command registers

» Especially for large address spaces (graphics)

Memory-mapped addresses of
Device 1/0 Ports on PCs (partial)

|/O address range (hexadecimal) device
000—-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8—2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3FO0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

Polling vs. Interrupt

Different ways to check i
Polling: busy wait

loop until I/O hardware sets

f 1/0O is ready

a flag value

simple to code, but not doing useful work while polling

Interrupt

processor can do useful work

processor saves state before j

umping to ISR

processor can do useful wor

< or sleep (to save power)

10

Polling: sending vs receiving

« Sending
» processor poll busy bit (from I/O status register).
* 1/O hardware clears busy bit on completing previous I/O.
« processor makes sure 1/0O not busy before writing
* Recelving
» processor polls data-ready bit (from I/O status register)
» 1/O hardware sets data-ready bit upon successful receiving

« processor makes sure data is ready before trying to read it
(or else getting garbage)

11

Issue with Polling

Pros

e Reasonable if device is fast

Con

 But inefficient if device slow

CPU switches to other tasks?

* But if miss a cycle data overwritten / lost

Polling can happen in 3 instruction cycles

Read status, logical-and to extract status bit, branch if not zero

How to be more efficient if non-zero infrequently?

12

Interrupts

« CPU's Interrupt-request (IRQ) line
« triggered by I/0O device (usually pulled down)
» Checked by CPU (hardware) after each instruction

* Interrupt handler (interrupt service routine)
'receives Interrupts’

* Some interrupts are maskable => ignore or delay interrupts

* Processor saves state of regular execution, switches
context, jJumps to ISR

o Context switch at start and end

13

Vectored Interrupt vs
Interrupt Chaining

« Q: How many IRQ lines does the CPU have?

* Ideally, one per device => Vectored interrupt

» often there are many more devices than IRQ lines

 Vectored interrupt
« IRQ# => index into interrupt vector to dispatch interrupt
* Each device gets its own ISR

« High overhead if table is huge

* Interrupt Chaining
» Multiple devices share an IRQ => share ISR

* Once invoked, the ISR must query each of shared device

14

Interrupt- Drlven 1/0 Cycle

I/O controller

Y

device driver initiates 1/0 \
initiates 1/0O

CPU executing checks for
interrupts between instructions

| 3
1
1
4
CPU receiving interrupt, 4 input ready, output
transfers control to < complete, or error
interrupt handler generates interrupt signal
7
5
Y

interrupt handler
processes data,
returns from interrupt

6

Y

CPU resumes
processing of
interrupted task

Intel Pentium Processor Event-

Vector Table

vector number

description

© 00 NO O b WODN =+ O

—_ 4 . 4 4 A A _4 -
0o NO O b WD =2 O

19-31
32-255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow
bound range exception
invalid opcode

device not available
double fault

coprocessor segment overrun (reserved)
invalid task state segment
segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)
floating-point error
alignment check

machine check

(Intel reserved, do not use)
maskable interrupts

16

Interrupts mechanism used for
Exceptions and Traps

* Exceptions

 Divide by zero, memory access violation, insufficient privilege,
nage fault, etc

e [SR for OS to decide how to handle

e Irap

* to trigger kernel for system calls

e Split interrupt management
» first-level interrupt handler (FLIH) - actual ISR to do I/O

 second-level interrupt handler (SLIH) - separately scheduled
routine to process the data (without 1/O) for the OS

17

Direct Memory Access (DMA)

e Controller that offloads bulk IO from CPU

 Avoids programmed I/O (one byte at a time) for large data
movement

» Bypasses CPU to transfer data directly between 1/0O device
and memory

» CPU can do more useful work, or sleep to save power!

e OS writes DMA command block to DMA controller

* Source and destination addresses of data
 Read or write mode

» Count of bytes

18

Direct Memory Access (DMA)

» Bus mastering of DMA controller

* CPU & DMA can't use same memory at same time

* DMA controller grabs bus from CPU
=> Cycle stealing from CPU, some slowdown, but still much more

efficient than programmed 1/0

* When done, interrupts to signal completion

* Memory buffer?
* default: kernel space, but wasteful to copy to user buffer (double buffering)

* better to do memory mapping to map buffer to user address space

« DVMA

e aware of virtual addresses, even more efficient

19

Steps in a DMA Transfer

1. device driver is told to transfer drive2
data W to buffer at address “x” CPU

cache

2. device driver tells drive
controller to transfer “c” bytes to
buffer at address “x”

5. when ¢ = 0, DMA interrupts
CPU to signal transfer
completion

1 3. drive controller initiates DMA transfer
SAS drive controller 1

: 4. DMA controller transfers bytes to buffer

; “x”, increasing memory address and

. decreasing “c” untilc=0

1

20

Application 1/0
Interface

Application I/O Interface

/O system calls

 encapsulate device behaviors in generic classes

Device-driver layer

* hides differences among I/O controllers from kernel

New devices

» talking already-implemented protocols need no extra work

Each OS has

e its own I/O subsystem structures and device driver
frameworks

22

Types of Device 1/0

e Data Transfer Mode

» Character stream: one byte at a time (e.g., terminal, keyboard)

 Block device: one whole block of data (e.g., disk)

e Access Method

* Sequential: (e.g., webcam, modem, network card)

* Random access: (e.g., USB drive, CD-ROM)

 Transfer Schedule
* Synchronous: (e.g., display, tape drive)

* Asynchronous: (e.g., keyboard, mouse)

23

Types of 1/0 devices (cont'd)

 Sharing (at a given moment)

 Sharable among several processes: (e.g., keyboard)

» Dedicated: (e.g., printer, tape drive)
 Speed of operation

* latency, seek time, transfer rate, delay between operations
* /O direction

 read-write (e.g., disk)

 read-only (e.g., CD-ROM, DVD-ROM, etc)

« write-only (e.g., graphics controller, actuator)

24

A Kernel 1/0 Structure

kernel

software

hardware

kernel I/0O subsystem

SAS keyboard mouse PCle bus 802.11 USB
device device device oo device device device
driver driver driver driver driver driver

SAS keyboard mouse PCle bus 802.11 USB
device device device oo device device device

controller | controller | controller controller | controller | controller
USB
SAS 802.11 devices
devices keyboard mouse PCle bus devices (disks,
tapes,
drives)

25

Characteristics of 1/0 Devices

* Subtleties of devices handled by device drivers

* Broadly I/O devices can be grouped by the OS into
Block 1/0O
e Character I/O (Stream)

* Memory-mapped file access

e Network sockets

* For direct manipulation of I/O device specific
characteristics, usually an escape / back door

« Unix ioctl() call to send arbitrary bits to a device control
register and data to device data register

26

Block and Character Devices

 Block devices e.g., disk drives

« Commands include read(), write(), seek()

« Raw /O, direct I/O, or file-system access
e Memory-mapped file access possible

e File mapped to virtual memory and clusters brought via demand
paging
« DMA

« Character devices e.g., keyboard, mouse, serial ports, printer
 Commands include get(), put()

* Libraries layered on top allow line editing (arrow keys, backspace)

27

Network Devices

Higher level than block and character

socket interface
 Separates network protocol from network operation

* Includes select() functionality - returns

 which socket has packet waiting to be received,

« which sockets have room to accept a packet to send

e eliminates polling and busy waiting

Approaches vary widely

 pipes, FIFOs, streams, queues, mailboxes

28

Clocks and Timers

Provide current time, elapsed time, timer to trigger
« Normal resolution about 1/60 second

« Some systems provide higher-resolution timers

Programmable interval timer

* used for timings, periodic interrupts
ioctl() (on Unix, for "I/O Control")

 purpose: "backdoor" to pass command & pointer to driver

» covers odd aspects of /0O such as clocks and timers

NTP - network time protocol

* to correct timer drift, uses latency calculation

29

Nonblocking and Asynchronous
1/0

* Blocking - process suspended until I/O completed

* Easy to use and understand

e Insufficient for some needs
» Nonblocking - 1/0O call returns as much as available
 User interface, data copy (buffered I/O)

 Implemented via multi-threading

 Returns quickly with count of bytes read or written

* select() to find if data ready then read() or write() to transfer

 Asynchronous - process runs while I/0O executes

e Difficult to use

* |/O subsystem signals process when 1/O completed

30

user land

Two 1/0 Methods

requesting process
waiting-------------

(a)
Synchronous

|]

requesting process

(b)
Asynchronous

31

Vectored 1/0

"Vector" => think "array" of commands

Allows one system call to perform multiple I/O operations

* Example: Unix system call readv () accepts a vector of multiple
buffers to read into or write from

This is called "scatter-gather" method

* better than multiple individual 1/0O calls

 Decreases context switching and system call overhead

Some versions provide atomicity

* for example, avoid worrying about multiple threads changing data as
reads / writes occurring

32

Kernel 1/0 Subsystem

Kernel 1/0 Subsystem

* First-come-first-serve usually not good

* Different I/O speeds, seek/rotational latency

* transfer sizes, types

 Scheduling

» Some I/O request ordering via per-device queue
» Some OSs try fairness, priority,

» Some implement Quality Of Service (i.e. IPQOS)

34

Device-status Table

Needed for keeping track of asynchronous 1/0O status

device: keyboard
status: idle

device: laser printer
status: busy

request for

device: mouse
status: idle

device: disk unit 1
status: idle

device: disk unit 2
status: busy

> laser printer
address: 38546
length: 1372

request for _—

disk unit 2

file: xxx
operation: read
address: 43046
length: 20000

request for
disk unit 2

file: yyy
operation: write

address: 03458
length: 500

35

Buffering in Kernel 1/0

« Between devices or
between device and application

 Purposes: to cope with

1. mismatched device speed between producer
and consumer

2. device transfer size: disassemble data into
packets, reassemble

3. copy semantics

36

Buffering - for speed mismatch

» Example
e receive data on modem, save data to disk

« modem: slower; buffer up before writing to disk

* Double Buffering

» allows producer and consumer to buffer simultaneously
without conflict

» example use: bitmapped display
graphics card fills up one frame buffer while display
controller renders pixels from previous frame
(saves jitter or incomplete frame)

37

Interface speeds for devices

GB/s
16.000
16 1
14 A
12.500
12.000
12 1
10 A
8.000
8 -
6 5.000 5.000
4
2.000
1 1.250 1.250 1.250
2 O 625 0.750
0.001 0.002 0.006 0.060 0.125 0.204 . ' '
0 — ey e e a5 -

Y A FF e & 2 SR
éoo § ?3“0& § & ¢ Q®Q N f—,vl\v. qu} Q‘:@Q} 0"’% G@(\ e,OQ% Q‘:@é (g@"\% 5‘29% Q‘:é\é @(\")+
A Q¥ & QQQ‘ & &S & o R = gz

N N Q < Q S Z X o >
' i X & L Q Q S &
5" NS NN e X
o ™ L i
2
device / Interface

38

Buffering - for different transfer
sizes

« Example: network interfaces

 Application: payload can be arbitrary size

» TCP/IP packet: 64KB
 Ethernet: 1500 bytes

 Buffer is needed for size matching

* Packetize application data to IP packets for TCP/IP

 Packetize IP packets over Ethernet

« Assemble Ethernet packets into IP packets on receiving end

* Assemble IP packets for application to read

39

Buffering - copy-semantics

 Buffer in user space vs kernel space
« example: write(buf) => buf is user space
« write() returns before I/O completes

« What if you modify buf before I/O completes??

» Copy-semantics

 buf data is copied before write() returns
=> does not matter if you modify buf, because the kernel

already made a copy!

* it helps to implement it with copy-on-write.

40

Caching in Kernel 1/0

* Distinct concept from Buffering

» Caching is a faster, redundant copy of a slower
original

* Always just a copy, Key to performance
* buffer: app is aware; cache: app not aware
» Sometimes combined with buffering

 especially disk access, avoid physical 1/0

41

Kernel 1/0 Subsystem

Spooling vs. Device Reservation
» Spooling
* hold output for a device

* If device can serve only one request at a time e.g.,
Printing

 OS prints to spool file, queues print jobs
* Device reservation

* provides exclusive access to a device
 System calls for allocation and de-allocation

« Watch out for deadlock

42

Error Handling

* Errors in I/O

» disk read, device unavailable, transient write failures

* Most return an error number or code when 1/O request
fails

* System error logs hold problem reports

« Handling

* Retry a read or write, for example

« Some systems more advanced — Solaris FMA, AlX
=> Track error frequencies, stop using device with
increasing frequency of retry-able errors

43

1/0 Protection

 Types of disruption

* accidental (program bug)

 purposeful (external attack - infected virus)

« OS Protects against illegal I/O instructions
 All I/O instructions defined to be privileged
* /O must be performed via system calls

* Protect Memory-mapped and 1/O port locations

44

Kernel Data Structures

» State of /O components
» open file tables
* network connections

e character device state

* Buffers, memory allocation, “dirty” blocks

 Object-oriented methods and message passing for 1/0
» example: Windows uses message passing
« Message with I/O information passed from user mode into kernel

« Message modified as it flows through to device driver and back to
process

45

UNIX 1/0 Kernel Structure

system-wide open-file table

per-process
file descriptorj>{open-file table

4

usSer-process memory

<

file-system record

inode pointer

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

active-inode
table

networking (socket) record

pointer to network info

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

network-
information
table

kernel memory

46

Power Management

» CPU speed and voltage

* Dynamic Voltage/Frequency Scaling (DVFS)
* Sprint-and-halt CPU mode setting

e |/O Devices

» Dynamic Power Management (DPM): device on/off, mode setting.

« OS supports power management at different levels
« One computing system (mobile, laptop, server, ...)
* Cloud computing environments
« move virtual machines between servers

 Can control and shutting down whole systems

47

Power Management
in Mobile OS

» Component-level power management

» Understands relationship between components

* OS builds device tree representing physical device
topology

 System bus -> I/O subsystem -> {flash, USB storage}

 Device driver tracks state of device use
« Unused component — turn it off

e All devices in tree branch unused — turn off branch

48

Power Management "knobs"
in Mobile OS

« Wake locks

* like other locks but prevent sleep of device when lock is held

« example: screen dimming while doing slide show

» Power collapse

 put a device into very deep sleep, marginal power use

* Only awake enough to respond to external stimuli

* e.g., button press, incoming call

» ACPI - Advanced Configuration & Power Interface

e industry standard firmware code callable from kernel to manage
device power

49

/0 Requests to Hardware
Operations

» Consider reading a file from disk for a process
1. Determine device holding file

 [OS queries table filled with data from hardware]
2. Translate name to device representation

* [OS invokes driver]

3. Physically read data from disk into buffer

 [OS invokes driver for hardware operation]

4. Make data available to requesting process

5. Return control to process

50

Life Cycle of An 1/0 Request

request I/O I/O complete, input data available or

user land : output cczmpleted
... System ca" GsussssesscsnEassdsEsNERERbRERREs R sRsanEdEnGE NN aNERREEREROOEE return from System ca" basssansansananansi
kernel

kernel I/O

subsystem

yes

device driver

device controller

Performance

/O a major factor in system performance

OS is impacted by

e Code execution of

e device driver
e kernel I/O code

 Context switches due to interrupts

» Data copying

In general, need to balance

« CPU, memory, bus, I/0O performance

52

Intercomputer Communications

S
sent

interrupt generated across interrupt generated
network
statefsave kernel statefsave kernel
interrupt received interrupt received

-t
context switch

context switch

character received send character return from packet received

system call network daemon
user process user process

sending system receiving system

Improving Performance - CPU

e Reduce number of context switches

 e.g.,: front-end processor, terminal concentrator

* Move user-mode processes / daemons to
kernel threads

* e.g.,: Solaris uses in-kernel thread for telnet
daemon

* Reduce data copying

* e.g.,: copy-on-write for I/O buffer

54

Improving Performance -

Controller
o Large transfers by DMA

* DMA controller is often built-in to processors
« Small transfers by polling
* assuming busy-waiting can be minimized

 Smart controllers in device and on
computer system

* e.g., RAID controller

55

Device-Functionality Progression

iIncreased time (generations)

increased efficiency
Increased development cost

¢
¢
¢

Increased abstraction

¢

new algorithm

7

application code

kernel code

device-driver code

device-controller code (hardware)

device code (hardware)

4

increased flexibility

56

1/0 Performance of Storage and
Network latency

Memory Storage
Load/Store Read/Write

Capacity

\% 1 -

N

100 —
I I I I
1 10 100 1
< =

