Chapter 11:
Mass Storage
Structure

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

Outline

Overview of Mass Storage Structure
Disk Structure

Disk Attachment

Disk Scheduling

Disk Management

Swap-Space Management

RAID Structure

Stable-Storage Implementation

Objectives

To describe the physical structure of
secondary storage devices and its effects
on the uses of the devices

To explain the performance characteristics
of mass-storage devices

To evaluate disk scheduling algorithms

To discuss operating-system services
provided for mass storage, including RAID

Overview of Mass Storage

Structure
Magnetic disks, hard disk drives (HDD)

 bulk of secondary storage of modern computers

Solid State Drive (SSD)

* uses nonvolatile memory (NVM) for bulk storage

Storage Arrays
* Multiple HDD or SSDs forming an array

Storage Area Networks

The First Commercial Disk Drive

1956
IBM RAMDAC computer included
the IBM Model 350 disk storage
system

5M (7 bit) characters
50 x 24" platters
Access time = < 1 second

Common HDDs

"39) 3 :
h— w3l
- "
N, e
) N . 800
@ f CE £ CL
\EO:'. 1" j'; ::‘\‘ g ~
1.8inch 2.5 inch 3.5 inch

Platters range from .85" to 14" (historically)
e Commonly 3.5", 2.5", and 1.8"

Drives rotate at 60 to 250 times per second
* 5400, 7200, 1000, 15000 RPM

Range from 30GB to >8TB per drive

oo

)
a) < e) ‘j\>
A"- .’Q

track < <~—h)
sector b) | :
cylinder | '.
platter i i

C) —)

s
L

)

Moving-head Disk Mechanism

rotation
read-write head
arm

arm assembly

HDD Mechanism

» Read/write heads gliding over both sides of platter surface

* Several microns over thin air (helium)

 Disk head contacting disk surface => head crash
 Disk organization
* tracks = Concentric rings on a given platter
* cylinder = set of tracks on all platters at a given arm position (radius)
* atrack is divided into multiple sectors = minimum transfer unit
* Random access requires

* seek: moving read/write head in or out to target cylinder
(all arms move in and out together as one unit)

* rotation: disk spins to the target sector within a track

Hard Disk Performance

* Positioning (random-access) time
= seek time +rotational latency

» seek time = time to move disk arm to desired cylinder

* from 3ms to 12ms — 9ms common for desktop drives

 Average seek time measured or calculated based on 1/3 of

tracks

« rotational latency = time to rotate to desired sector

* Average latency =

e 1/(RPM/60)=60/

atency

RPM

Spindle [rpm] Average latency [ms]

4200 7.14
5400 5.56
7200 4.17
10000 3
15000 2

(From Wikipedia)

Hard Disk Performance

Access Latency = Average access time

» = average seek time + average latency
* For fastest disk 3 ms + 2 ms =5 ms
e For slow disk 9 ms + 5.56 ms = 14.56 ms
e Transfer Rate —
« theoretical — 6 Gb/sec

e Effective Transfer Rate — real — 1Gb/sec

* Average I/O time

« = average access time + (amount to transfer / transfer rate) +
controller overhead

10

Example of HDD Performance

 Configuration

* 4KB block, 7200 RPM, 5ms seek

e 1Gb/sec transfer rate, .1ms controller overhead

e Transfer time for 1 GB

« = 4KB/1Gb/s * 8Gb / GB * 1GB / 10242KB = 32 / (10242) =

0.031T ms

* Average I/O time

e 5ms (seek) + 4.17ms (read) + 0.1ms (overhead) + transfer time

 Average I/O time for 4KB

block =9.27ms + .031Tms = 9.30Tms

11

Nonvolatile Memory
Technologies: NAND flash

* Flash memory

 "block" = minimum erase unit, contains several page
 "page" = minimum read/write unit.

* Erase (set to all 1's) , Write (change bits from 1 to 0)
* Issues with Flash: Writing

* high power, long latency, increases flash's wear & tear

* => flash translation layer (FTL) for tracking logical-to-physical
mapping and erase state

 Limited rewrite cycles (~100,000 cycles)

« => wear leveling to even out wear on some "hot" blocks

12

Forms of Solid State Storage

Devices
« Removable storage

» USB thumb drives, SD card, Compact Flash

» contains controller and FTL and wear leveling

e Solid state disks

* drop-in replacement for HDD

» controller + buffer is for performance optimization

* hybrid = SSD as cache for HDD

13

Solid-State Disks (SSD)

* Pros (relative to hard disk drives, HDD)

 more robust (mobile) and much faster

» No moving parts, so no seek time or rotational latency

e Cons (relative to HDD)
* More expensive per MB, lower capacity

« Maybe have shorter life span

* Busses can be too slow -> connect directly to
PCI for example

14

RAM Drives

e Use DRAM instead of NVM

* Need to be powered!

* Doesn't actually have to be a separate device;
could be just RAM implemented as file system

e Why?

 much faster than flash or other NVM, useful for
temporary file system

* e.g., /tmp, of type tmpfs (RAM drive)

15

Computer-Disk Interface

» Host talks through 1/0 ports to 1/0O busses to disk

« Host controller (on computer) talks to
Disk controller in drive or storage array

« HDD attached to computer via I/O bus

« EIDE, ATA, SATA, USB, Fibre Channel, SCSI, SAS,
Firewire, Thunderbolt

« SSD may be attached directly to system bus
» PCl bus, NVMe (NVM express) => faster!

« could also attach to HDD interface for compatibility

16

Logical block

e basic unit of transfer

* maps to a physical sector or a flash page
 HDD

» Sector O = first sector of the first track on outermost cylinder

 Sequential thru tracks on a cylinder from outer to inner track

» Bad sectors => skip
 Constant angular velocity (CAV) vs. constant linear velocity (CLV)

* 5SD
« map (chip, block, page) => (array of logical blocks)

17

HDD Scheduling

 OS objectives for disk access

e fast access time

e disk bandwidth
e What OS can do

e minimize seek time = seek distance

e Disk bandwidth is

« total number of bytes transferred +
total time from first request to completion of last transfer

18

HDD Scheduling (Cont.)

* Disk I/O requests can be made by

* OS, System processes, User processes
» Parameters to 1/O requests
* input/ output mode
 disk address, memory address
* number of sectors to transfer
« OS maintains queue of requests (per disk or device)

* Idle disk can immediately work on I/O request

* busy disk means work must queue

« Optimization algorithms for when a queue exists

19

Disk Scheduling (Cont.)

 Drive controllers have small buffers

 For managing I/O requests of varying "depth"

 For one or many platters

 Scheduling algorithm servicing disk /0O requests
e First-come first serve (FCFS)
* Shortest Seek Time First (SSTF)
» Elevator algorithm (SCAN) and LOOK
« C-SCAN and C-LOOK

20

FCFS

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
14 37 536567 08 122124 183 199
I |1 I Ll I I

0
|
|

‘\\

lllustration shows total head movement of 640 cylinders

21

SSTF

e Shortest Seek Time First

* selects request w/ min seek time from current
head position

* a form of SJF scheduling

e |ssue

» tends to favor middle cylinders over innermost
and outermost ones

* may cause starvation of some requests

22

SCAN (elevator algorithm)

« Head moves from one end to other end,

then reverse direction
queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53
0 14 37 536567 08 122124 183199
[I I

[llustration
shows total head

movement of
208 cylinders

23

C-SCAN

Head moves from one end of disk to the other,

immediately wraps to beginning and start over

e think 'C' = "circular"
Properties
 Provides a more uniform wait time than SCAN

 No starvation

Treats the cylinders as a circular list that wraps
around from the last cylinder to the first one

24

C-SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0O 14 37 536567 08 122124 183199
I L I L I I
I

‘\"a.

25

C-LOOK

e LOOK a version of SCAN

C-LOOK a version of C-SCAN

* Disk arm goes only as far as the last request in each
direction (instead of end of disk)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
| T | 1 |

o

C-SCAN (to extremes)

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 B536567 98 122124 183199
[| | [1l | 1 | I
I |
%
““\
\\\\“\\\

q}\ﬁfﬁf “““““ ﬁ)

C-LOOK (to actual request) =

Selecting a Disk-Scheduling
Algorithm

* SSTF

« common, has a natural appeal

* SCAN and C-SCAN

 good for systems that place a heavy load on disk

e |ess starvation

* Performance depends on

« number and types of requests
* the file-allocation method

» metadata layout

27

Selecting a Disk-Scheduling
Algorithm

* Separating policy from mechanism

* disk-scheduling algorithm as a separate module of OS

e Default choice
e SSTF or LOOK is reasonable

* Issues
 Rotational latency is difficult for OS to calculate

 Disk-based queueing affecting OS queue ordering
efforts?

28

NVM Scheduling

» No seek or ration => FCFS type works

e Need to minimize write

Writing is much slower than reading, need erase

actually, read page, modify in memory, erase
block, write page

also need garbage collection, wear leveling

need to avoid write-amplification

29

Error Detection and Correction

* Bit errors happen to disk

* Error Detection

* Parity (even or odd), checksum

« CRC (cyclic redundancy check)
* ECC

* Error Correction Code / Error Correctable Code
not only detects but also corrects errors

* examples: Hamming code

30

Disk Management:

Low-Level Formatting
 Also called physical formatting

 Dividing a disk into sectors
e 5o that the disk controller can read and write

« Usually 512 bytes of data but can be selectable

* Each sector can hold
 header and trailer
* sector or page number, checksum or ECC

e data area

31

Disk Management:
Logical formatting

e Partition

» divide the disk into one or more groups of cylinders

* each treated as a logical disk

 Logical formatting

* means "making a file system" (ch. 13-15)
* To increase efficiency, most FS group blocks into clusters

e Disk I/O done in blocks

* File I/O done in clusters = group of blocks

32

Block Management

e Some apps can do own block management

 e.g., databases, keep OS out of the way
* Boot block

e initializes the system

* Bootstrap loader (bootloader) stored in boot blocks
of boot partition

 Bad blocks handling

* sector sparing

33

Booting from a Disk in Windows

master boot record

partition 1
partition 2
partition 3

partition 4

MBR

<€

boot
code

N partition
A \ table

boot partition

34

Bad Blocks and Spare Sectors

e Defective sectors

e some bits cannot be saved reliably (stuck O, 1, etc)

 found during low-level formatting or disk check

* Spare sectors

» set-aside by low level formatter to replace defective
sectors over time

* sector slipping

e shift sector contents so the spare preserves contiguity

35

sector slipping

becomes available
defective spare
al/b|lc|..|w|Xx .
\\\ \\yopy
alblcl|..|w|x]|..
marked use

bad sector spare

36

Swap-Space Management

* Virtual memory uses swap space on disk

* as an extension of main memory

* Less common now due to memory capacity increases
* Swap-space options

* be carved out of the normal file system,

* (more common) a separate disk partition (raw)
* |ssues

« What if a system runs out of swap space?

» Some systems allow multiple swap spaces

37

Ways of Swap-Space
Management

» Swap space allocation

* allocates swap space when process starts (4.3 BSD. original Unix)

« allocates swap space only when a dirty page is forced out of physical
memory (Solaris 2)

* Swap space usage
* holds text segment (the program) and data segment (4.3 BSD)

* swap space for anonymous memory only (Solaris, Linux);
text segment pages thrown out and reread from the file system as needed

« Swap map = array of counters for each page slot in swap area

Swap area

e Linux, 4.3BSD Lpageﬂ

slot

swap partition
or swap file

< >

swap map 1 0 3 0 1

38

Storage Attachment

host-attached storage

« storage is attached to computer's 1/O ports

network-attached storage (NAS)

e storage on (mainly local) network via RPC interface

cloud storage

« storage over wide area network

storage-area networks and storage arrays

39

Interface for
Host-Attached Storage

e Ports for HDD

* SATA (Serial ATA) - most common today
* IDE - popular before

* Plug-and-play
 USB, FireWire, Thunderbolt, ...
« SCSI: ("skuzzy") Small Computer System
* bus, up to 16 devices on one cable
« SCSI initiator (host) requests operation
« SCSI targets (device) perform tasks

* target's device controller can control up to 8 logical units (disks)

40

Network-Attached Storage (NAS)

* Storage made availab

« Remotely attaching to fi

e over a network rather local bus

e systems

« Examples: NFS (Unix, Linux) and CIFS (Windows)

 Implementation:

 remote procedure calls (RPCs) between host and storage

e TCP or UDP on IP network

* iSCSI protocol uses IP network to carry the SCSI protocol

NAS

NAS

client

client

client

41

Storage Area Network

« Common in large storage environments

« Multiple hosts attached to multiple storage
arrays - flexible

client
server
client
storage
array server .
client
storage
array data-processing
center
tape web content
library provider

Storage Area Network (Cont.)

e Pros

 Easy to add or remove storage

 Easy to add new host and allocate it storage

e Storage networks vs. communications
networks

» Storage networks: (low-latency) Fibre Channel
fabric

e Combined storage+communication: iSCSI, FCOE

43

Interface for Storage Area
Network

e Most common: Fiber Channel

« high-speed serial architecture

» Can be switched fabric with 24-bit
address space —

* many hosts to many storage units

* /O directed to bus ID, device ID, logical
unit (LUN)

* iSCSI gaining popularity - simplicity

e InfiniBand - special-purpose bus
architecture

44

Storage Array

* A unit between hosts and arrays of disks
* Ports to connect hosts to array
* From a few disks to thousands of disks

« Memory, controlling software (sometimes NVRAM, etc)

e Features

* RAID, hot spares, hot swap
 Shared storage -> more efficiency

 Snapshots, clones, thin provisioning, replication,
deduplication, etc

45

RAID Structure

 RAID

» Organize multiple disk drives as one logical disk

» Redundant Array of Independent Disks

* (previously, | = Inexpensive)
* Two goals:

« Redundancy: Improves reliability

e Striping: Improves performance

* Commentary

» This is more computer architecture, rather than OS topic!

46

RAID: improving reliability

e Mean time to failure of disks:

* say 100K hours (11.4 years)
* However, 1 out of 100 disks fail in T00K/100 hours => 41.67 days!
* Solution: mirroring
« Make exact copy of disk: every write => write same data to multiple disks

* One disk fails => can get data from other disks

* Mean time to repair

* average time to (discover and) repair or replace+restore the failed disk

* => vulnerable, because mirror failure could cause data loss

e Mean time to data loss

47

Example

Mean time to data loss
 Disk assumptions

* Mirrored disks fail independently
e Disk with 100,000 hour mean time to failure
 Disk has 10 hour mean time to repair

e Mean time to data loss

* 100,0002 /(2 = 10)
= 500 = 106 hours,
or 57,000 years!

48

Mirroring Issues

* Mirrored disks not always fail
independently

» power failure => affect both disks
* disks from same batch => may fail for same defect

» as disks age => likelihood of failure both increase

e Potential solutions
e Write to NVRAM or SSD as write-back cache

49

RAID: Improving Performance
by data striping

« Observation: multiple disks => parallelism!

 Data striping = split data onto multiple disks, access
in parallel

* Bit-level striping

« access different bits on different disks
e.g., 8 disks: each disk i access bit[i] of a given byte
=> 8x throughput! (though latency about same)

 Block-level striping (more common)

e access different blocks on different disks

50

RAID 0: non-redundant striping H‘Pﬂﬁ

RAID Levels

» performance: minimum 2 disks (or else no parallelism!)

RAID 1: Mirroring or shadowing

 redundancy:

* Mminimu

wlus

keeps duplicate of each disk

m 2 disk (or else no redundancy!)

RAID 1+0: Striped mirrors

e better choice than 0+1

RAID O-

-1:mirrored stripes

e |ess fau

t tolerant than 1+0

51

RAID (0 + 1) and (1 + 0)

O+1
mirrored stripes

1+0
striped mirrors

stripe H
X
stripe ﬁ

—

—

L
ﬁ

3 «C

1 with a si

mirror

fffff

RAID Levels (cont'd)

¢ RAID 2: SSE8EEE

« memory-style error-correcting codes (ECC)
* bit-level striping w/ dedicated disk for Hamming code
* saves one disk compared to mirroring

* not common now, since drives have own ECC

* RAID 3: bit-interleaving parity SeSSS
* use parity instead of ECC => save even more disks
« why? disks have own ECC and knows which disk fails

 construct failed bit from parity

53

Hamming [7,4] code

"payload": 4 data bits d1..d4
total: 7 bits

3 "parity" bits: p1..p3

e pl1 = parity for {d1,d2,d4}
e p2 = parity for {d1,d3,d4}
e p3 = parity {d2,d3,d4}

detect and correct single-bit error

54

RAID Levels (cont'd)

block-level interleaving
* RAID 4:

* block-interleaving parity on separate disk S99

e like RAID 3 but block level instead of bit

* RAID 5: SEREE

 block-interleaved distributed parity on each dis

* parity bit goes with data, not separate disk

* RAID 6: P+Q Redundancy SF
e store more bits to be able to recover from multi-disk
failure

55

Trade-offs of RAID Levels

» Performance and Reliability, but use more space
« => RAID 0+1 or RAID 140
» provides high performance and high reliability

* Less redundancy
 Block interleaved parity (RAID 4, 5, 6)

* RAID within a storage array can still fail if the array fails
« => automatic replication of the data between arrays is common

* hot-spare disks:

 automatically replacing a failed disk and having data rebuilt onto
them

56

Other Features of
Disk Management

 Snapshot

* a view of file system before a set of changes take place
» Replication

 automatic duplication of writes between separate sites

 For redundancy and disaster recovery

* Can be synchronous or asynchronous

» Hot spare disk

« Normally unused, automatically used by RAID production if a disk fails
* replaces the failed disk and rebuild the RAID set if possible

* Decreases mean time to repair

57

Preventing or detecting

data corruption
 handled mainly by OS or FS
* RAID mainly handles disk failures

* Solaris ZFS adds checksums of all data,metadata

» Checksums kept with pointer to object

« to detect if object is the right one and whether it changed

 Can detect and correct data and metadata corruption

» ZFS also removes volumes, partitions

e Disks a

¢ use and

located in pools, shared by Filesystems

release space

ike malloc() and free()

58

ZFS Checksums All Metadata and

Data
l

metadata block 1

metadata block 2

address

address 1 address 2
checksum MB2 checksum
address

checksum D1

checksum D2

|

data 1

|

data 2

59

Traditional and Pooled Storage

FS FS FS

volume volume volume

10 00 O3

(a) Traditional volumes and file systems.

ZFS ZFS ZFS

(b) ZFS and pooled storage.

