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Outline
• Overview of Mass Storage Structure 
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Objectives
• To describe the physical structure of 

secondary storage devices and its effects 
on the uses of the devices 

• To explain the performance characteristics 
of mass-storage devices 

• To evaluate disk scheduling algorithms 

• To discuss operating-system services 
provided for mass storage, including RAID
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Overview of Mass Storage 
Structure

• Magnetic disks, hard disk drives (HDD) 
• bulk of secondary storage of modern computers 

• Solid State Drive (SSD) 
• uses nonvolatile memory (NVM) for bulk storage 

• Storage Arrays 
• Multiple HDD or SSDs forming an array 

• Storage Area Networks
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The First Commercial Disk Drive

1956
IBM RAMDAC computer included 
the IBM Model 350 disk storage 

system

5M (7 bit) characters
50 x 24” platters

Access time = < 1 second
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Common HDDs

• Platters range from .85" to 14" (historically) 

• Commonly 3.5", 2.5", and 1.8" 

• Drives rotate at 60 to 250 times per second 
• 5400, 7200, 1000, 15000 RPM 

• Range from 30GB to >8TB per drive
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Figure 11.2 A 3.5-inch HDD with cover removed.

desired sector to rotate to the disk head, called the SPUBUJPOBM MBUFODZ. Typical
disks can transfer tens to hundreds of megabytes of data per second, and they
have seek times and rotational latencies of several milliseconds. They increase
performance by having DRAM buffers in the drive controller.

The disk head !ies on an extremely thin cushion (measured in microns) of
air or another gas, such as helium, and there is a danger that the headwill make
contact with the disk surface. Although the disk platters are coated with a thin
protective layer, the head will sometimes damage the magnetic surface. This
accident is called a IFBE DSBTI. A head crash normally cannot be repaired; the
entire disk must be replaced, and the data on the disk are lost unless they were
backed up to other storage or RAID protected. (RAID is discussed in Section
11.8.)

HDDs are sealed units, and some chassis that hold HDDs allow their
removal without shutting down the system or storage chassis. This is helpful
when a system needs more storage than can be connected at a given time or
when it is necessary to replace a bad drive with a working one. Other types of
storage media are also SFNPWBCMF, including CDs, DVDs, and Blu-ray discs.

DISK TRANSFER RATES

As with many aspects of computing, published performance numbers for
disks are not the same as real-world performance numbers. Stated transfer
rates are always higher than FGGFDUJWF USBOTGFS SBUFT, for example. The transfer
rate may be the rate at which bits can be read from themagnetic media by the
disk head, but that is different from the rate at which blocks are delivered to
the operating system.

1.8 inch 2.5 inch 3.5 inch



Moving-head Disk Mechanism
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Figure 11.1 HDD moving-head disk mechanism.

we describe the basic mechanisms of these devices and explain how operat-
ing systems translate their physical properties to logical storage via address
mapping.

11.1.1 Hard Disk Drives

Conceptually, HDDs are relatively simple (Figure 11.1). Each disk QMBUUFS has
a !at circular shape, like a CD. Common platter diameters range from 1.8 to
3.5 inches. The two surfaces of a platter are covered with a magnetic material.
We store information by recording it magnetically on the platters, and we read
information by detecting the magnetic pattern on the platters.

A read–write head “!ies” just above each surface of every platter. The
heads are attached to a EJTL BSN that moves all the heads as a unit. The surface
of a platter is logically divided into circular USBDLT, which are subdivided into
TFDUPST. The set of tracks at a given arm position make up a DZMJOEFS. There
may be thousands of concentric cylinders in a disk drive, and each track may
contain hundreds of sectors. Each sector has a "xed size and is the smallest
unit of transfer. The sector size was commonly 512 bytes until around 2010.
At that point, many manufacturers start migrating to 4KB sectors. The storage
capacity of common disk drives is measured in gigabytes and terabytes. Adisk
drive with the cover removed is shown in Figure 11.2.

Adisk drivemotor spins it at high speed.Most drives rotate 60 to 250 times
per second, speci"ed in terms of rotations per minute (31.). Common drives
spin at 5,400, 7,200, 10,000, and 15,000 RPM. Some drives power down when
not in use and spin up upon receiving an I/O request. Rotation speed relates
to transfer rates. The USBOTGFS SBUF is the rate at which data !ow between the
drive and the computer. Another performance aspect, the QPTJUJPOJOH UJNF, or
SBOEPN�BDDFTT UJNF, consists of two parts: the time necessary to move the disk
arm to the desired cylinder, called the TFFL UJNF, and the time necessary for the
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HDD Mechanism
• Read/write heads gliding over both sides of platter surface 

• Several microns over thin air (helium) 

• Disk head contacting disk surface => head crash 

• Disk organization 
• tracks =  Concentric rings on a given platter 

• cylinder = set of tracks on all platters at a given arm position (radius) 

• a track is divided into multiple sectors = minimum transfer unit 

• Random access requires 
• seek: moving read/write head in or out to target cylinder  

(all arms move in and out together as one unit) 

• rotation: disk spins to the target sector within a track
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Hard Disk Performance
• Positioning (random-access) time 

=  seek time +rotational latency 

• seek time = time to move disk arm to desired cylinder 

• from 3ms to 12ms – 9ms common for desktop drives  

• Average seek time measured or calculated based on 1/3 of 
tracks  

• rotational latency = time to rotate to desired sector 

• Average latency = ½ latency 

• 1 / (RPM / 60) = 60 / RPM

(From Wikipedia) 9



Hard Disk Performance
• Access Latency = Average access time 

• = average seek time + average latency
• For fastest disk 3 ms + 2 ms = 5 ms 

• For slow disk 9 ms + 5.56 ms = 14.56 ms 

• Transfer Rate –  
• theoretical – 6 Gb/sec 

• Effective Transfer Rate – real – 1Gb/sec 

• Average I/O time  
• = average access time + (amount to transfer / transfer rate) + 

controller overhead
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Example of HDD Performance
• Configuration 

• 4KB block, 7200 RPM, 5ms seek 

• 1Gb/sec transfer rate, .1ms controller overhead  

• Transfer time for 1 GB 

• = 4KB / 1Gb/s * 8Gb / GB * 1GB / 10242KB = 32 / (10242) = 
0.031 ms  

• Average I/O time  
• 5ms (seek) + 4.17ms (read) + 0.1ms (overhead) + transfer time 

• Average I/O time for 4KB block = 9.27ms + .031ms = 9.301ms
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Nonvolatile Memory 
Technologies: NAND flash

• Flash memory 
• "block" = minimum erase unit, contains several page 

• "page" = minimum read/write unit.  

• Erase (set to all 1's) , Write (change bits from 1 to 0) 

• Issues with Flash: Writing  
• high power, long latency, increases flash's wear & tear 

• => flash translation layer (FTL) for tracking logical-to-physical 
mapping and erase state 

• Limited rewrite cycles (~100,000 cycles) 
• => wear leveling to even out wear on some "hot" blocks
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Forms of Solid State Storage 
Devices

• Removable storage 

• USB thumb drives, SD card, Compact Flash 

• contains controller and FTL and wear leveling 

• Solid state disks 

• drop-in replacement for HDD 

• controller + buffer is for performance optimization  

• hybrid = SSD as cache for HDD
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Solid-State Disks (SSD)
• Pros (relative to hard disk drives, HDD) 

• more robust (mobile) and much faster 

• No moving parts, so no seek time or rotational latency 

• Cons (relative to HDD) 

• More expensive per MB, lower capacity 

• Maybe have shorter life span  

• Busses can be too slow -> connect directly to 
PCI for example
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RAM Drives
• Use DRAM instead of NVM 

• Need to be powered! 

• Doesn't actually have to be a separate device; 
could be just RAM implemented as file system 

• Why? 
• much faster than flash or other NVM, useful for 

temporary file system 

• e.g., /tmp, of type tmpfs (RAM drive)
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Computer-Disk Interface
• Host talks through I/O ports to I/O busses to disk 

• Host controller (on computer) talks to  
Disk controller in drive or storage array 

• HDD attached to computer via I/O bus 

• EIDE, ATA, SATA, USB, Fibre Channel, SCSI, SAS, 
Firewire, Thunderbolt 

• SSD may be attached directly to system bus 
• PCI bus, NVMe (NVM express) => faster! 

• could also attach to HDD interface for compatibility

16



Logical block
• basic unit of transfer 

• maps to a physical sector or a flash page 

• HDD 

• Sector 0 = first sector of the first track on outermost cylinder 

• Sequential thru tracks on a cylinder from outer to inner track 

• Bad sectors => skip 

• Constant angular velocity (CAV) vs. constant linear velocity (CLV) 

• SSD 
• map (chip, block, page) => (array of logical blocks)
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HDD Scheduling
• OS objectives for disk access 

• fast access time 

• disk bandwidth 

• What OS can do 

• minimize seek time ≈ seek distance 

• Disk bandwidth is  

• total number of bytes transferred ÷  
total time from first request to completion of last transfer

18



HDD Scheduling (Cont.)
• Disk I/O requests can be made by 

• OS, System processes, User processes 

• Parameters to I/O requests 

• input / output mode 

• disk address, memory address 

• number of sectors to transfer 

• OS maintains queue of requests (per disk or device) 

• Idle disk can immediately work on I/O request 

• busy disk means work must queue 

• Optimization algorithms for when a queue exists

19



Disk Scheduling (Cont.)
• Drive controllers have small buffers 

• For managing I/O requests of varying "depth" 

• For one or many platters 

• Scheduling algorithm servicing disk I/O requests 
• First-come first serve (FCFS) 

• Shortest Seek Time First (SSTF) 

• Elevator algorithm (SCAN) and LOOK 

• C-SCAN and C-LOOK

20



FCFS

Illustration shows total head movement of 640 cylinders

21
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queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

Figure 11.6 FCFS disk scheduling.

the direction of head movement in addition to the head’s current position.
Assuming that the disk arm is moving toward 0 and that the initial head
position is again 53, the head will next service 37 and then 14. At cylinder 0,
the arm will reverse and will move toward the other end of the disk, servicing
the requests at 65, 67, 98, 122, 124, and 183 (Figure 11.7). If a request arrives in
the queue just in front of the head, it will be serviced almost immediately; a
request arriving just behind the head will have to wait until the arm moves to
the end of the disk, reverses direction, and comes back.

Assuming a uniform distribution of requests for cylinders, consider the
density of requests when the head reaches one end and reverses direction. At
this point, relatively few requests are immediately in front of the head, since
these cylinders have recently been serviced. The heaviest density of requests
is at the other end of the disk. These requests have also waited the longest, so
why not go there !rst? That is the idea of the next algorithm.

0 14 37 536567 98 122124 183199

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

Figure 11.7 SCAN disk scheduling.



SSTF
• Shortest Seek Time First 

• selects request w/ min seek time from current 
head position 

• a form of SJF scheduling 

• Issue 
• tends to favor middle cylinders over innermost 

and outermost ones 

• may cause starvation of some requests
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SCAN (elevator algorithm)
• Head moves from one end to other end, 

then reverse direction

• Illustration 
shows total head 
movement of 
208 cylinders
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C-SCAN
• Head moves from one end of disk to the other,  

• immediately wraps to beginning and start over 

• think 'C' = "circular" 

• Properties 
• Provides a more uniform wait time than SCAN 

• No starvation 

• Treats the cylinders as a circular list that wraps 
around from the last cylinder to the first one

24



C-SCAN (Cont.)

25
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11.2.3 C-SCAN Scheduling

$JSDVMBS 4$"/ 	$�4$"/
 TDIFEVMJOH is a variant of SCAN designed to provide
a more uniformwait time. Like SCAN, C-SCANmoves the head from one end of
the disk to the other, servicing requests along the way. When the head reaches
the other end, however, it immediately returns to the beginning of the disk
without servicing any requests on the return trip.

Let’s return to our example to illustrate. Before applying C-SCAN to sched-
ule the requests on cylinders 98, 183, 37, 122, 14, 124, 65, and 67, we need to
know the direction of head movement in which the requests are scheduled.
Assuming that the requests are scheduled when the disk arm is moving from
0 to 199 and that the initial head position is again 53, the request will be served
as depicted in Figure 11.8. The C-SCAN scheduling algorithm essentially treats
the cylinders as a circular list that wraps around from the !nal cylinder to the
!rst one.

11.2.4 Selection of a Disk-Scheduling Algorithm

There are many disk-scheduling algorithms not included in this coverage,
because they are rarely used. But how do operating system designers decide
which to implement, anddeployers chose the best to use? For any particular list
of requests, we can de!ne an optimal order of retrieval, but the computation
needed to !nd an optimal schedule may not justify the savings over SCAN.
With any scheduling algorithm, however, performance depends heavily on the
number and types of requests. For instance, suppose that the queue usually
has just one outstanding request. Then, all scheduling algorithms behave the
same, because they have only one choice of where to move the disk head: they
all behave like FCFS scheduling.

SCAN and C-SCAN perform better for systems that place a heavy load on the
disk, because they are less likely to cause a starvation problem. There can still
be starvation though, which drove Linux to create the EFBEMJOF scheduler. This
scheduler maintains separate read and write queues, and gives reads priority
because processes are more likely to block on read than write. The queues are

0 14 37 53 65 67 98 122124 183199

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

Figure 11.8 C-SCAN disk scheduling.
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C-LOOK
• LOOK a version of SCAN 

• C-LOOK a version of C-SCAN 

• Disk arm goes only as far as the last request in each 
direction (instead of end of disk)

C-SCAN (to extremes) C-LOOK (to actual request) 26



Selecting a Disk-Scheduling 
Algorithm

• SSTF  

• common, has a natural appeal 

• SCAN and C-SCAN 
• good for systems that place a heavy load on disk 

• Less starvation 

• Performance depends on  
• number and types of requests 

• the file-allocation method 

• metadata layout
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Selecting a Disk-Scheduling 
Algorithm

• Separating policy from mechanism 

• disk-scheduling algorithm as a separate module of OS 

• Default choice 

• SSTF or LOOK is reasonable 

• Issues 

• Rotational latency is difficult for OS to calculate 

• Disk-based queueing affecting OS queue ordering 
efforts?

28



NVM Scheduling
• No seek or ration => FCFS type works 

• Need to minimize write 
• Writing is much slower than reading, need erase 

• actually, read page, modify in memory, erase 
block, write page 

• also need garbage collection, wear leveling 

• need to avoid write-amplification
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Error Detection and Correction
• Bit errors happen to disk 

• Error Detection 
• Parity (even or odd), checksum 

• CRC (cyclic redundancy check) 

• ECC  
• Error Correction Code / Error Correctable Code 

not only detects but also corrects errors 

• examples: Hamming code

30



Disk Management: 
Low-Level Formatting

• Also called physical formatting 

• Dividing a disk into sectors  
• so that the disk controller can read and write 

• Usually 512 bytes of data but can be selectable 

• Each sector can hold  
• header and trailer 

• sector or page number, checksum or ECC 

• data area

31



Disk Management: 
Logical formatting

• Partition  
• divide the disk into one or more groups of cylinders 

• each treated as a logical disk 

• Logical formatting  
• means "making a file system" (ch. 13-15) 

• To increase efficiency, most FS group blocks into clusters 

• Disk I/O done in blocks 

• File I/O done in clusters = group of blocks
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Block Management
• Some apps can do own block management 

• e.g., databases, keep OS out of the way 

• Boot block  

• initializes the system 

• Bootstrap loader (bootloader) stored in boot blocks 
of boot partition 

• Bad blocks handling 
• sector sparing

33



Booting from a Disk in Windows

34
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Figure 11.10 Booting from a storage device in Windows.

SFDPSE, or.#3. Booting begins by running code that is resident in the system’s
!rmware. This code directs the system to read the boot code from the MBR,
understanding just enough about the storage controller and storage device to
load a sector from it. In addition to containing boot code, the MBR contains a
table listing the partitions for the drive and a "ag indicating which partition
the system is to be booted from, as illustrated in Figure 11.10. Once the system
identi!es the boot partition, it reads the !rst sector/page from that partition
(called the CPPU TFDUPS), which directs it to the kernel. It then continues with the
remainder of the boot process, which includes loading the various subsystems
and system services.

11.5.3 Bad Blocks

Because disks have moving parts and small tolerances (recall that the disk
head "ies just above the disk surface), they are prone to failure. Sometimes the
failure is complete; in this case, the disk needs to be replaced and its contents
restored from backup media to the new disk. More frequently, one or more
sectors become defective. Most disks even come from the factory with CBE
CMPDLT. Depending on the disk and controller in use, these blocks are handled
in a variety of ways.

On older disks, such as some disks with IDE controllers, bad blocks are
handled manually. One strategy is to scan the disk to !nd bad blocks while
the disk is being formatted. Any bad blocks that are discovered are "agged as
unusable so that the !le system does not allocate them. If blocks go bad during
normal operation, a special program (such as the Linux badblocks command)
must be runmanually to search for the bad blocks and to lock them away. Data
that resided on the bad blocks usually are lost.

More sophisticated disks are smarter about bad-block recovery. The con-
troller maintains a list of bad blocks on the disk. The list is initialized during
the low-level formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the operating
system. The controller can be told to replace each bad sector logically with one
of the spare sectors. This scheme is known as TFDUPS TQBSJOH or GPSXBSEJOH.

A typical bad-sector transaction might be as follows:

• The operating system tries to read logical block 87.



Bad Blocks and Spare Sectors
• Defective sectors 

• some bits cannot be saved reliably (stuck 0, 1, etc) 

• found during low-level formatting or disk check 

• Spare sectors 
• set-aside by low level formatter to replace defective 

sectors over time 

• sector slipping 
• shift sector contents so the spare preserves contiguity
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sector slipping
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Swap-Space Management
• Virtual memory uses swap space on disk 

• as an extension of main memory 

• Less common now due to memory capacity increases 

• Swap-space options 
• be carved out of the normal file system, 

• (more common) a separate disk partition (raw) 

• Issues 
• What if a system runs out of swap space? 

• Some systems allow multiple swap spaces
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Ways of Swap-Space 
Management

• Swap space allocation 
• allocates swap space when process starts (4.3 BSD. original Unix) 

• allocates swap space only when a dirty page is forced out of physical 
memory (Solaris 2) 

• Swap space usage 
• holds text segment (the program) and data segment (4.3 BSD) 

• swap space for anonymous memory only (Solaris, Linux); 
text segment pages thrown out and reread from the file system as needed 

• Swap map = array of counters for each page slot in swap area 

• Linux, 4.3BSD

38
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Figure 11.11 The data structures for swapping on Linux systems.

11.7.1 Host-Attached Storage

)PTU�BUUBDIFE TUPSBHF is storage accessed through local I/O ports. These ports
use several technologies, the most common being SATA, as mentioned earlier.
A typical system has one or a few SATA ports.

To allow a system to gain access to more storage, either an individual
storage device, a device in a chassis, or multiple drives in a chassis can be
connected via USB FireWire or Thunderbolt ports and cables.

High-end workstations and servers generally need more storage or need
to share storage, so use more sophisticated I/O architectures, such as GJCS
DIBOOFM ('$), a high-speed serial architecture that can operate over optical!ber
or over a four-conductor copper cable. Because of the large address space and
the switched nature of the communication, multiple hosts and storage devices
can attach to the fabric, allowing great "exibility in I/O communication.

A wide variety of storage devices are suitable for use as host-attached
storage. Among these are HDDs; NVM devices; CD, DVD, Blu-ray, and tape
drives; and storage-area networks (4"/T) (discussed in Section 11.7.4). The
I/O commands that initiate data transfers to a host-attached storage device are
reads andwrites of logical data blocks directed to speci!cally identi!ed storage
units (such as bus ID or target logical unit).

11.7.2 Network-Attached Storage

/FUXPSL�BUUBDIFE TUPSBHF (/"4) (Figure 11.12) provides access to storage
across a network.AnNAS device can be either a special-purpose storage system
or a general computer system that provides its storage to other hosts across
the network. Clients access network-attached storage via a remote-procedure-
call interface such as NFS for UNIX and Linux systems or CIFS for Windows
machines. The remote procedure calls (RPCs) are carried via TCP or UDP over
an IP network—usually the same local-area network (LAN) that carries all data
traf!c to the clients. The network-attached storage unit is usually implemented
as a storage array with software that implements the RPC interface.

CIFS and NFS provide various locking features, allowing the sharing of !les
betweenhosts accessing aNASwith those protocols. For example, a user logged
in tomultipleNAS clients can access her homedirectory fromall of those clients,
simultaneously.



Storage Attachment
• host-attached storage 

• storage is attached to computer's I/O ports 

• network-attached storage (NAS) 

• storage on (mainly local) network via RPC interface 

• cloud storage 
• storage over wide area network  

• storage-area networks and storage arrays

39



Interface for  
Host-Attached Storage

• Ports for HDD 

• SATA (Serial ATA) - most common today 

• IDE - popular before 

• Plug-and-play  

• USB, FireWire, Thunderbolt, ... 

• SCSI: ("skuzzy") Small Computer System Interface 

• bus, up to 16 devices on one cable 

• SCSI initiator (host) requests operation  

• SCSI targets (device) perform tasks  

• target's device controller can control up to 8 logical units (disks)

40



Network-Attached Storage (NAS)
• Storage made available over a network rather local bus 

• Remotely attaching to file systems 

• Examples: NFS (Unix, Linux) and CIFS (Windows) 

• Implementation: 
• remote procedure calls (RPCs) between host and storage  

• TCP or UDP on IP network 

• iSCSI protocol uses IP network to carry the SCSI protocol

41
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Figure 11.12 Network-attached storage.

Network-attached storage provides a convenient way for all the computers
on a LAN to share a pool of storage with the same ease of naming and access
enjoyed with local host-attached storage. However, it tends to be less ef!cient
and have lower performance than some direct-attached storage options.

J4$4* is the latest network-attached storage protocol. In essence, it uses the
IP network protocol to carry the SCSI protocol. Thus, networks—rather than
SCSI cables—can be used as the interconnects between hosts and their storage.
As a result, hosts can treat their storage as if it were directly attached, even if
the storage is distant from the host. Whereas NFS and CIFS present a !le system
and send parts of !les across the network, iSCSI sends logical blocks across the
network and leaves it to the client to use the blocks directly or create a !le
system with them.

11.7.3 Cloud Storage

Section 1.10.5 discussed cloud computing. One offering from cloud providers
is DMPVE TUPSBHF. Similar to network-attached storage, cloud storage provides
access to storage across a network. Unlike NAS, the storage is accessed over the
Internet or another WAN to a remote data center that provides storage for a fee
(or even for free).

Another difference between NAS and cloud storage is how the storage is
accessed and presented to users. NAS is accessed as just another !le system if
the CIFS orNFS protocols are used, or as a rawblock device if the iSCSI protocol is
used.Most operating systems have these protocols integrated and present NAS
storage in the sameway as other storage. In contrast, cloud storage is API based,
and programs use the APIs to access the storage. Amazon S3 is a leading cloud
storage offering. Dropbox is an example of a company that provides apps to
connect to the cloud storage that it provides. Other examples includeMicrosoft
OneDrive and Apple iCloud.

One reason that APIs are used instead of existing protocols is the latency
and failure scenarios of a WAN. NAS protocols were designed for use in LANs,
which have lower latency thanWANs and aremuch less likely to lose connectiv-
ity between the storage user and the storage device. If a LAN connection fails,
a system using NFS or CIFS might hang until it recovers. With cloud storage,
failures like that are more likely, so an application simply pauses access until
connectivity is restored.



Storage Area Network
• Common in large storage environments 

• Multiple hosts attached to multiple storage 
arrays - flexible
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Figure 11.13 Storage-area network.

11.7.4 Storage-Area Networks and Storage Arrays

One drawback of network-attached storage systems is that the storage I/O
operations consume bandwidth on the data network, thereby increasing the
latency of network communication. This problem can be particularly acute
in large client–server installations—the communication between servers and
clients competes for bandwidth with the communication among servers and
storage devices.

ATUPSBHF�BSFB OFUXPSL (4"/) is a private network (using storage protocols
rather than networking protocols) connecting servers and storage units, as
shown in Figure 11.13. The power of a SAN lies in its !exibility. Multiple hosts
and multiple storage arrays can attach to the same SAN, and storage can be
dynamically allocated to hosts. The storage arrays can be RAID protected or
unprotected drives (+VTU B #VODI PG %JTLT (+#0%)). A SAN switch allows or
prohibits access between the hosts and the storage. As one example, if a host is
running low on disk space, the SAN can be con"gured to allocate more storage
to that host. SANs make it possible for clusters of servers to share the same
storage and for storage arrays to include multiple direct host connections.
SANs typically have more ports—and cost more—than storage arrays. SAN
connectivity is over short distances and typically has no routing, so a NAS can
have many more connected hosts than a SAN.

A storage array is a purpose-built device (see Figure 11.14) that includes
SANports, networkports, or both. It also contains drives to store data and a con-
troller (or redundant set of controllers) to manage the storage and allow access
to the storage across the networks. The controllers are composed of CPUs,
memory, and software that implement the features of the array, which can
include network protocols, user interfaces, RAID protection, snapshots, repli-
cation, compression, deduplication, and encryption. Some of those functions
are discussed in Chapter 14.

Some storage arrays include SSDs. An array may contain only SSDs, result-
ing in maximum performance but smaller capacity, or may include a mix of
SSDs and HDDs, with the array software (or the administrator) selecting the
best medium for a given use or using the SSDs as a cache and HDDs as bulk
storage.



Storage Area Network (Cont.)
• Pros 

• Easy to add or remove storage 

• Easy to add new host and allocate it storage 

• Storage networks vs. communications 
networks 
• Storage networks: (low-latency) Fibre Channel 

fabric 

• Combined storage+communication: iSCSI, FCOE
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Interface for Storage Area 
Network

• Most common: Fiber Channel  

• high-speed serial architecture 

• Can be switched fabric with 24-bit 
address space – 

• many hosts to many storage units 

• I/O directed to bus ID, device ID, logical 
unit (LUN) 

• iSCSI gaining popularity - simplicity 

• InfiniBand  - special-purpose bus 
architecture
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Storage Array
• A unit between hosts and arrays of disks 

• Ports to connect hosts to array 

• From a few disks to thousands of disks 

• Memory, controlling software (sometimes NVRAM, etc) 

• Features 
• RAID, hot spares, hot swap 

• Shared storage -> more efficiency 

• Snapshots, clones, thin provisioning, replication, 
deduplication, etc
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RAID Structure
• RAID 

• Organize multiple disk drives as one logical disk 

• Redundant Array of Independent Disks 

• (previously, I = Inexpensive ) 

• Two goals: 
• Redundancy: Improves reliability 

• Striping:        Improves performance 

• Commentary 

• This is more computer architecture, rather than OS topic!
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RAID: improving reliability
• Mean time to failure of disks: 

• say 100K hours (11.4 years) 

• However, 1 out of 100 disks fail in 100K/100 hours => 41.67 days! 

• Solution: mirroring 
• Make exact copy of disk: every write => write same data to multiple disks 

• One disk fails => can get data from other disks 

• Mean time to repair  
• average time to (discover and) repair or replace+restore the failed disk 

• => vulnerable, because mirror failure could cause data loss 

• Mean time to data loss
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Example 
Mean time to data loss

• Disk assumptions 
• Mirrored disks fail independently 

• Disk with 100,000 hour mean time to failure  

• Disk has 10 hour mean time to repair 

• Mean time to data loss  

• 100,0002 / (2 ∗ 10)  
= 500 ∗ 106 hours,  
  or 57,000 years! 
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Mirroring Issues
• Mirrored disks not always fail 

independently 
• power failure => affect both disks 

• disks from same batch => may fail for same defect 

• as disks age => likelihood of failure both increase 

• Potential solutions 
• Write to NVRAM or SSD as write-back cache
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RAID: Improving Performance 
by data striping

• Observation: multiple disks => parallelism! 
• Data striping = split data onto multiple disks, access 

in parallel 

• Bit-level striping 
• access different bits on different disks 

e.g., 8 disks: each disk i access bit[i] of a given byte 
=> 8x throughput! (though latency about same) 

• Block-level striping (more common) 
• access different blocks on different disks
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• RAID 0: non-redundant striping 

• performance: minimum 2 disks (or else no parallelism!) 

• RAID 1: Mirroring or shadowing 
• redundancy: keeps duplicate of each disk  

• minimum 2 disk (or else no redundancy!) 

• RAID 1+0: Striped mirrors 
• better choice than 0+1 

• RAID 0+1:mirrored stripes 
• less fault tolerant than 1+0

RAID Levels
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RAID (0 + 1) and (1 + 0)
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0+1 
mirrored stripes

1+0 
striped mirrors



• RAID 2:  
• memory-style error-correcting codes (ECC) 

• bit-level striping w/ dedicated disk for Hamming code 

• saves one disk compared to mirroring 

• not common now, since drives have own ECC 

• RAID 3: bit-interleaving parity 
• use parity instead of ECC => save even more disks 

• why? disks have own ECC and knows which disk fails 

• construct failed bit from parity

RAID Levels (cont'd)
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Hamming [7,4] code
• "payload":  4 data bits d1..d4 

• total: 7 bits 

• 3 "parity" bits: p1..p3 

• p1 = parity for {d1,d2,d4} 

• p2 = parity for {d1,d3,d4} 

• p3 = parity {d2,d3,d4} 

• detect and correct single-bit error
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• RAID 4: 

• block-interleaving parity on separate disk 

• like RAID 3 but block level instead of bit 

• RAID 5: 

• block-interleaved distributed parity on each disk 

• parity bit goes with data, not separate disk 

• RAID 6: P+Q Redundancy 
• store more bits to be able to recover from multi-disk 

failure

RAID Levels (cont'd) 
block-level interleaving
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Trade-offs of RAID Levels
• Performance and Reliability, but use more space 

• => RAID 0+1 or RAID 1+0  

• provides high performance and high reliability  

• Less redundancy 
• Block interleaved parity (RAID 4, 5, 6)  

• RAID within a storage array can still fail if the array fails 
• => automatic replication of the data between arrays is common 

• hot-spare disks: 
• automatically replacing a failed disk and having data rebuilt onto 

them
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Other Features of  
Disk Management

• Snapshot  
• a view of file system before a set of changes take place 

• Replication  
• automatic duplication of writes between separate sites 

• For redundancy and disaster recovery 

• Can be synchronous or asynchronous 

• Hot spare disk  
• Normally unused, automatically used by RAID production if a disk fails 

• replaces the failed disk and rebuild the RAID set if possible 

• Decreases mean time to repair
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Preventing or detecting  
data corruption

• handled mainly by OS or FS 

• RAID mainly handles disk failures 

• Solaris ZFS adds checksums of all data,metadata 
• Checksums kept with pointer to object 

• to detect if object is the right one and whether it changed 

• Can detect and correct data and metadata corruption 

• ZFS also removes volumes, partitions 
• Disks allocated in pools, shared by Filesystems 

• use and release space like malloc() and free()
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ZFS Checksums All Metadata and 
Data
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units. Commonly, tape-drive robots containing multiple tape drives will stripe
data across all the drives to increase throughput and decrease backup time.

11.8.6 Problems with RAID

Unfortunately, RAID does not always assure that data are available for the
operating system and its users. Apointer to a !le could be wrong, for example,
or pointers within the !le structure could be wrong. Incomplete writes (called
“torn writes”), if not properly recovered, could result in corrupt data. Some
other process could accidentally write over a !le system’s structures, too. RAID
protects against physical media errors, but not other hardware and software
errors. A failure of the hardware RAID controller, or a bug in the software RAID
code, could result in total data loss. As large as is the landscape of software
and hardware bugs, that is how numerous are the potential perils for data on
a system.

The 4PMBSJT ;'4 !le system takes an innovative approach to solving these
problems through the use of checksums. ZFS maintains internal checksums
of all blocks, including data and metadata. These checksums are not kept
with the block that is being checksummed. Rather, they are stored with the
pointer to that block. (See Figure 11.17.) Consider an JOPEF—a data structure
for storing !le system metadata—with pointers to its data. Within the inode
is the checksum of each block of data. If there is a problem with the data,
the checksum will be incorrect, and the !le system will know about it. If the
data are mirrored, and there is a block with a correct checksum and one with
an incorrect checksum, ZFS will automatically update the bad block with the
good one. Similarly, the directory entry that points to the inode has a check-
sum for the inode. Any problem in the inode is detected when the directory
is accessed. This checksumming takes places throughout all ZFS structures,
providing a much higher level of consistency, error detection, and error cor-

metadata block 1

address 1

checksum MB2 checksum

address 2

metadata block 2

address

checksum D1 checksum D2

data 1 data 2

address

Figure 11.17 ZFS checksums all metadata and data.



Traditional and Pooled Storage
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FS
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ZFS ZFS

storage pool

ZFS

volume volume

FS FS

(a) Traditional volumes and file systems.

(b) ZFS and pooled storage.

Figure 11.18 Traditional volumes and !le systems compared with the ZFS model.

Object storage management software, such as the )BEPPQ GJM TZTUFN
()%'4) and $FQI, determines where to store the objects and manages object
protection. Typically, this occurs on commodity hardware rather than RAID
arrays. For example, HDFS can store N copies of an object on N different com-
puters. This approach can be lower in cost than storage arrays and can provide
fast access to that object (at least on thoseN systems). All systems in a Hadoop
cluster can access the object, but only systems that have a copy have fast access
via the copy. Computations on the data occur on those systems, with results
sent across the network, for example, only to the systems requesting them.
Other systems neednetwork connectivity to read andwrite to the object. There-
fore, object storage is usually used for bulk storage, not high-speed random
access. Object storage has the advantage of IPSJ[POUBM TDBMBCJMJUZ. That is,
whereas a storage array has a !xed maximum capacity, to add capacity to an
object store, we simply add more computers with internal disks or attached
external disks and add them to the pool. Object storage pools can be petabytes
in size.

Another key feature of object storage is that each object is self-describing,
including description of its contents. In fact, object storage is also known as
DPOUFOU�BEESFTTBCMF TUPSBHF, because objects can be retrieved based on their
contents. There is no set format for the contents, so what the system stores is
VOTUSVDUVSFE EBUB.

While object storage is not common on general-purpose computers, huge
amounts of data are stored in object stores, including Google’s Internet search
contents, Dropbox contents, Spotify’s songs, and Facebook photos. Cloud com-
puting (such as Amazon AWS) generally uses object stores (in Amazon S3) to
hold !le systems as well as data objects for customer applications running on
cloud computers.


