
Chapter 10:
Virtual Memory

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

1

Background
• No need to load entire program into mem. all at once

• Error code, unusual routines, large data structures

• Partially-loaded program
• Program no longer constrained by limits of physical memory

• Each program takes less memory while running
=> more programs can run at the same time

• Increased CPU utilization and throughput with no increase
in response time or turnaround time

• Less I/O needed to load or swap programs into memory
=> each user program runs faster

2

Background (Cont.)
• Virtual address space – logical view of how

process is stored in memory

• Usually start at address 0, contiguous addresses until
end of space

• Meanwhile, physical memory organized in page frames

• MMU must map logical to physical

• Virtual memory can be implemented via:

• Demand paging

• Demand segmentation

3

Virtual Memory advantages
• Partial code loading

• More programs running concurrently

• Less I/O needed to load or swap processes

• Allows for more efficient process creation

• Larger logical address space than physical

• Allows several processes to share memory

4

Virtual Memory that is Larger
than Physical Memory

5

Virtual-address Space
• Maximizes address space use

• Stack grows "down"

• Heap grows "up"

• Unused address space between the two is hole

• No physical memory needed until heap or stack grows to a
given new page

• Enables sparse address spaces with holes left for growth,
dynamically linked libraries, etc

• Shared memory by mapping pages read-write into
virtual address space

• System libraries shared via mapping into virtual address
space

• Pages can be shared during fork(), speeding process creation

6

text ("code")

Shared Library Using Virtual
Memory

7

 text

Review: Swapper vs. Pager
• Swap out:

• move process memory to
disk

• Swap in:
• move saved process from

disk to memory

• Swapper that deals
with pages is a pager
• Page-in, Page-out instead

of Swap-in, Swap-out

8

Demand Paging
• A way of implementing virtual memory

=> bring page into memory only when needed

• page could be program code (read-only) or user data

• Benefits

• Less I/O needed, no unnecessary I/O

• Less memory needed

• Faster response

• More users

9

Basic Concepts
• Need new MMU functionality to implement

demand paging

• If pages needed are already memory resident

• No difference from non-demand-paging

• If page needed but not memory resident

• Need to detect and load the page into memory from storage

• Abstraction provided by paging

• Without changing program behavior

• Without programmer needing to change code

10

Valid-Invalid Bit
• Bit associated with each page table entry

• 'v' means in-memory
• proceed

• 'i': two possibilities:
• invalid reference => abort

• not-in-memory => page fault, bring to memory

11

Valid-Invalid Bit
• Initialized to 'i' on all

entries

• During MMU address
translation, if valid-invalid
bit in page table entry is i
⇒ page fault

12

Page table when some pages are
not in main memory

13

Page Fault
• First reference to a page causes page fault

• trap to OS

• OS looks at another table (usually in PCB) to decide:
• Invalid reference (outside process's address space) => abort

• Nonresident page => handle as page fault

• Page fault handling for loading nonresident page from disk:
• OS finds free frame (e.g, from free-frame list, or kick out some)

• OS reads page into frame via scheduled disk operation

• OS updates tables to indicate page now in memory
Set valid bit = 'v'

• OS restarts the instruction that caused the page fault

14

Steps in Handling a Page Fault

15

3a3bpage not in
address space

=> abort

Aspects of Demand Paging
• Pure demand paging always get page faults when...

• First instruction of process

• First access of any page of the process

• One instruction could cause multiple page faults!
• Example: add 2 numbers from memory, stores result back to memory

• Pain decreased because of locality of reference

• Hardware support needed for demand paging
• Page table in hardware with valid / invalid bit

• Secondary memory (swap device with swap space)

• Instruction restart after OS has loaded page into frame

16

Instruction Restart
• Consider an instruction that could access

several different locations
• block move

• auto increment/decrement location

• Restart the whole operation?
• What if source and destination overlap?

17

Stages in Demand Paging
(worst case)

1. Page fault traps to the OS

2. OS saves the user registers and process state

3. OS checks if legal reference, determines location of page on disk

4. OS issues a read from disk to a free frame:

5. While waiting, OS allocates the CPU to some other user

6. OS gets interrupt from the disk on completion of transfer

7. OS updates the page table

8. OS allocates CPU to this process again

9. OS restores the user registers, process state, and new page table,
and then resume the interrupted instruction

18

Non-Demand Paging vs.
Demand Paging

• Non-demand paging
• entirely transparent to process

• mechanism between CPU and memory

• page fault (bit == 'i') is a fatal error!

• Demand paging
• CPU must support instruction restart after fault

handling

• page fault (bit == 'i') fatal only if outside address
space, but not fatal if on-disk and not memory resident

19

Free-Frame List
• pool of free frames

• uses linked list structure

• Zero-fill-on-demand
• upon allocation, initialize entire page to 0

• reason: privacy protection - don't want previous
process's data to be seen by another process

20

Performance of Demand Paging
• Page fault overhead, excluding swapping

• Service the interrupt

• Restart the process

• Most time spent on disk transfer: swap-in and swap-out

• Page Fault Rate 0 ≤ p ≤ 1

• Effective Access Time (EAT)

 EAT = (1 – p) x memory access

 + p (page fault overhead

 + swap page out

 + swap page in)

21

Demand Paging Example
• Memory access time = 200 ns

• Average page-fault service time = 8 ms

• EAT = (1 – p) x 200 + p x (8 ms)
 = (1 – p x 200 + p x 8,000,000
 = 200 + p x 7,999,800

• If 1 in 1000 accesses causes a page fault, then
 EAT = 8.2 µs. => slowdown by a factor of 40!!

• If want performance degradation < 10%
• 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p => p < .0000025

• < 1 in 400,000 memory accesses per page fault

22

p = page fault rate

Copy-on-Write
• Allows both parent and child processes to initially

share the same pages in memory when fork()
• If either process modifies a shared page => OS makes copy of

page first

• but if no write => no need to copy!

• In general, OS allocates free pages from a pool of
zero-fill-on-demand pages

• Pool should always have free frames for fast demand page
execution

• Don't want to have to "free a frame" or do other processing
upon page fault

23

Copy-on-write

24

alternative to copy-on-write:
vfork()

• vfork()

• OS suspends parent while child uses parent's resources

• Does NOT use copy-on-write!!!

• child changes will be visible to parent!

• child needs to be very careful not to modify parent space

• sharing stops when exec() is called.

• Purpose
• useful for implementing command-line shells

=> child calls exec() immediately after creation.

25

Page Replacement

26

Page Replacement
• Need frame but no free frame available

• find a victim page in memory to page out, free the frame

• hardware dirty-bit (aka modify bit) to track modification
=> if dirty when page out, need to save to disk;
=> if not dirty, no need to save to disk (already on disk)

• Two problems in demand paging
• Frame allocation: determine how many frames to

allocate to a process

• Page replacement: pick which frame to replace

27

Need For Page Replacement

28

��� $IBQUFS �� 7JSUVBM .FNPSZ

Figure 10.9 Need for page replacement.

contents to swap space and changing the page table (and all other tables) to
indicate that the page is no longer in memory (Figure 10.10). We can now use
the freed frame to hold the page for which the process faulted. We modify the
page-fault service routine to include page replacement:

�� Find the location of the desired page on secondary storage.

�� Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select
a WJDUJN GSBNF.

c. Write the victim frame to secondary storage (if necessary); change
the page and frame tables accordingly.

�� Read the desired page into the newly freed frame; change the page and
frame tables.

�� Continue the process from where the page fault occurred.

Notice that, if no frames are free, two page transfers (one for the page-out
and one for the page-in) are required. This situation effectively doubles the
page-fault service time and increases the effective access time accordingly.

We can reduce this overhead by using aNPEJGZ CJU (or EJSUZ CJU).When this
scheme is used, each page or frame has a modify bit associated with it in the
hardware. The modify bit for a page is set by the hardware whenever any byte
in the page is written into, indicating that the page has been modi!ed. When
we select a page for replacement, we examine its modify bit. If the bit is set,

Steps in Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:

• If there is a free frame, use it

• If no free frame, page replacement algorithm selects a victim frame

• Write victim frame to disk if dirty

3. Bring desired page (from disk) into free frame (step2);
update the page and frame tables

4. Restart the instruction that caused the trap

Note: potentially 2 page transfers for page fault – increasing
EAT

29

Page Replacement

30

Page and Frame Replacement
Algorithms

• Frame-allocation algorithm determines
• How many frames to give each process

• Page-replacement algorithm
• Which frames to replace

• Objective:
• want lowest page-fault rate on both first access

and re-access

31

Evaluation of replacement
algorithms

• Run on a particular string of memory
references (reference string)
• String is just page numbers, not full addresses

• Repeated access to the same page does not cause a
page fault

• example: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• Computing the number of page faults on that
string
• Results depend on number of frames available

32

Page Faults vs. # Frames

33

���� 1BHF 3FQMBDFNFOU ���
nu

m
be

r
of

 p
ag

e
fa

ul
ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6

Figure 10.11 Graph of page faults versus number of frames.

page is brought in. We can create a FIFO queue to hold all pages in memory.We
replace the page at the head of the queue.When a page is brought intomemory,
we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
!rst three references (7, 0, 1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
!rst. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The !rst reference to 3 results in replacement of page 0, since
it is now !rst in line. Because of this replacement, the next reference, to 0, will
fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 10.12. Every time a fault occurs, we show which pages are in our three
frames. There are !fteen faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new

7 7

0

7

0

1

page frames

reference string

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

7

1

2

7

0

2

7

0

1

0

1

3

0

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

1

2

Figure 10.12 FIFO page-replacement algorithm.

First-In-First-Out (FIFO)
Algorithm

• Reference string:
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

• To track ages of pages => Just use a FIFO queue

15 page faults

34

���� 1BHF 3FQMBDFNFOU ���

nu
m

be
r

of
 p

ag
e

fa
ul

ts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6

Figure 10.11 Graph of page faults versus number of frames.

page is brought in. We can create a FIFO queue to hold all pages in memory.We
replace the page at the head of the queue.When a page is brought intomemory,
we insert it at the tail of the queue.

For our example reference string, our three frames are initially empty. The
!rst three references (7, 0, 1) cause page faults and are brought into these empty
frames. The next reference (2) replaces page 7, because page 7 was brought in
!rst. Since 0 is the next reference and 0 is already in memory, we have no fault
for this reference. The !rst reference to 3 results in replacement of page 0, since
it is now !rst in line. Because of this replacement, the next reference, to 0, will
fault. Page 1 is then replaced by page 0. This process continues as shown in
Figure 10.12. Every time a fault occurs, we show which pages are in our three
frames. There are !fteen faults altogether.

The FIFO page-replacement algorithm is easy to understand and program.
However, its performance is not always good. On the one hand, the page
replaced may be an initialization module that was used a long time ago and is
no longer needed. On the other hand, it could contain a heavily used variable
that was initialized early and is in constant use.

Notice that, even if we select for replacement a page that is in active use,
everything still works correctly. After we replace an active page with a new

7 7

0

7

0

1

page frames

reference string

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

7

1

2

7

0

2

7

0

1

0

1

3

0

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

1

2

Figure 10.12 FIFO page-replacement algorithm.

Belady's Anomaly
• Adding more frames can

cause more page faults!
• common in FIFO-based

algorithms

• Bélády's /bε'leidi/
• Hungarian Computer Scientist

• IBM; then President & CEO of
Mitsubishi Electric Research
Labs

• Known for OPT page
replacement algorithm

35

Optimal page-replacement
algorithm (OPT, aka MIN)

• Replace page that will not be used for
longest period of time
• 9 is optimal for the example

• Does not have Belady's anomaly

• However, can't read the future...

36

���� 1BHF 3FQMBDFNFOU ���

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

7

0

1

2

0

1

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 10.14 Optimal page-replacement algorithm.

page 0 will be used at 5, and page 1 at 14. The reference to page 3 replaces
page 1, as page 1 will be the last of the three pages in memory to be referenced
again. With only nine page faults, optimal replacement is much better than
a FIFO algorithm, which results in !fteen faults. (If we ignore the !rst three,
which all algorithms must suffer, then optimal replacement is twice as good as
FIFO replacement.) In fact, no replacement algorithm can process this reference
string in three frames with fewer than nine faults.

Unfortunately, the optimal page-replacement algorithm is dif!cult to
implement, because it requires future knowledge of the reference string.
(We encountered a similar situation with the SJF CPU-scheduling algorithm in
Section 5.3.2.) As a result, the optimal algorithm is usedmainly for comparison
studies. For instance, it may be useful to know that, although a new algorithm
is not optimal, it is within 12.3 percent of optimal at worst and within 4.7
percent on average.

10.4.4 LRU Page Replacement

If the optimal algorithm is not feasible, perhaps an approximation of the opti-
mal algorithm is possible. The key distinction between the FIFO and OPT algo-
rithms (other than looking backward versus forward in time) is that the FIFO
algorithm uses the time when a page was brought into memory, whereas the
OPT algorithm uses the timewhen a page is to be used. If we use the recent past
as an approximation of the near future, then we can replace the page that has
not been used for the longest period of time. This approach is the MFBTU SFDFOUMZ
VTFE 	-36
 BMHPSJUIN.

LRU replacement associates with each page the time of that page’s last use.
When a page must be replaced, LRU chooses the page that has not been used
for the longest period of time. We can think of this strategy as the optimal
page-replacement algorithm looking backward in time, rather than forward.
(Strangely, if we let SR be the reverse of a reference string S, then the page-fault
rate for the OPT algorithm on S is the same as the page-fault rate for the OPT
algorithm on SR. Similarly, the page-fault rate for the LRU algorithm on S is the
same as the page-fault rate for the LRU algorithm on SR.)

The result of applying LRU replacement to our example reference string is
shown in Figure 10.15. The LRU algorithm produces twelve faults. Notice that
the !rst !ve faults are the same as those for optimal replacement. When the
reference to page 4 occurs, however, LRU replacement sees that, of the three
frames in memory, page 2 was used least recently. Thus, the LRU algorithm
replaces page 2, not knowing that page 2 is about to be used.When it then faults

Least Recently Used (LRU)
Algorithm

• Use past knowledge rather than future

• Replace page that has not been used in
the most amount of time
• Associate time of last use with each page

• "use" can be read or write

• Generally good algorithm and frequently
used

37

LRU Example

• 12 faults – better than FIFO but worse than OPT

38

��� $IBQUFS �� 7JSUVBM .FNPSZ

page frames

reference string

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

7 0 1 2 0 3 0 4 2 3 0 7 11 02 1 20 3

Figure 10.15 LRU page-replacement algorithm.

for page 2, the LRU algorithm replaces page 3, since it is now the least recently
used of the three pages in memory. Despite these problems, LRU replacement
with twelve faults is much better than FIFO replacement with !fteen.

The LRU policy is often used as a page-replacement algorithm and is con-
sidered to be good. The major problem is how to implement LRU replacement.
An LRU page-replacement algorithm may require substantial hardware assis-
tance. The problem is to determine an order for the frames de!ned by the time
of last use. Two implementations are feasible:

• $PVOUFST. In the simplest case, we associate with each page-table entry a
time-of-use !eld and add to the CPU a logical clock or counter. The clock is
incremented for every memory reference. Whenever a reference to a page
is made, the contents of the clock register are copied to the time-of-use
!eld in the page-table entry for that page. In this way, we always have
the “time” of the last reference to each page. We replace the page with the
smallest time value. This scheme requires a search of the page table to !nd
the LRU page and a write to memory (to the time-of-use !eld in the page
table) for each memory access. The times must also be maintained when
page tables are changed (due to CPU scheduling). Over"ow of the clock
must be considered.

• 4UBDL. Another approach to implementing LRU replacement is to keep a
stack of page numbers. Whenever a page is referenced, it is removed from
the stack and put on the top. In this way, the most recently used page is
always at the top of the stack, and the least recently used page is always
at the bottom (Figure 10.16). Because entries must be removed from the
middle of the stack, it is best to implement this approach by using a doubly
linked list with a head pointer and a tail pointer. Removing a page and
putting it on the top of the stack then requires changing six pointers at
worst. Each update is a little more expensive, but there is no search for
a replacement; the tail pointer points to the bottom of the stack, which is
the LRU page. This approach is particularly appropriate for software or
microcode implementations of LRU replacement.

Like optimal replacement, LRU replacement does not suffer from Belady’s
anomaly. Both belong to a class of page-replacement algorithms, called TUBDL
BMHPSJUINT, that can never exhibit Belady’s anomaly. A stack algorithm is an
algorithm for which it can be shown that the set of pages in memory for n
frames is always a subset of the set of pages that would be in memory with n

LRU implementation: Counter
• Every page entry has a "counter" ("time stamp")

• a clock is incremented for every memory
reference

• every time page is referenced through this entry,
copy the clock into the counter

• When a page needs to be changed

• look at the counters to find smallest value

• Search through table needed

39

LRU implementation:
Stack Algorithms

• Keep a stack of page numbers in a double link form:

• Page referenced: move it to the top

• Requires 6 pointers to be changed

• each update more expensive

• No search for replacement

• Stack algorithms don't have Belady's
Anomaly!
• Examples: LRU and OPT

40

Use Of A Stack to Record Most
Recent Page References

41

LRU Approximation Algorithms
• LRU needs special hardware

• and still slow

• Variations
• Single Reference bit

• Additional Reference Bits

• Second Chance

42

Single Reference Bit
• Single Reference Bit

• With each page associate a bit, initially = 0

• When page is referenced bit set to 1

• Replace any with reference bit = 0 (if one exists)

• Rough approximation

• We don't know the order of use

• Serves as basis for other algorithms

43

Additional Reference Bits
• e.g., 8 bits (unsigned) of history per page

• Sampled update (e.g., every 100 ms)
• OS shifts reference bit for each page into 8-bit

history (into most significant bit), shift right

• e.g.,: 0000_0000 => has not been used 8 times

• 1100_0100 more recent than 0111_0111

• Page with smallest value is picked as victim
• multiple pages may have same history value...

44

LRU Approximation:
Second-Chance Algorithm

• Generally FIFO, plus hardware-provided reference bit

• Clock replacement

• Algorithm maintains a pointer in circular order

• If page to be replaced has

• reference bit = 0 -> found victim, replace it

• reference bit = 1 then:

• set reference bit = 0, leave page in memory

• pointer++ % MEMSIZE, and check again

45

Second-Chance (clock) Page-
Replacement Algorithm

46

���� 1BHF 3FQMBDFNFOU ���

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

Figure 10.17 Second-chance (clock) page-replacement algorithm.

�� (1, 1) recently used andmodi!ed—probablywill be used again soon, and
the page will be need to be written out to secondary storage before it can
be replaced

Each page is in one of these four classes. When page replacement is called
for, we use the same scheme as in the clock algorithm; but instead of examining
whether the page to which we are pointing has the reference bit set to 1,
we examine the class to which that page belongs. We replace the !rst page
encountered in the lowest nonempty class. Notice that wemay have to scan the
circular queue several times before we !nd a page to be replaced. The major
difference between this algorithm and the simpler clock algorithm is that here
we give preference to those pages that have been modi!ed in order to reduce
the number of I/Os required.

10.4.6 Counting-Based Page Replacement

There are many other algorithms that can be used for page replacement. For
example, we can keep a counter of the number of references that have been
made to each page and develop the following two schemes.

• The MFBTU GSFRVFOUMZ VTFE (-'6) page-replacement algorithm requires that
the pagewith the smallest count be replaced. The reason for this selection is
that an actively used page should have a large reference count. A problem
arises, however, when a page is used heavily during the initial phase of

Enhanced Second-Chance
Algorithm

• Use both reference bit and modify bit (if available) in concert

• Take ordered pair (reference, modify)

1. (0, 0) neither recently used nor modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must write out
before replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again soon and
need to write out before replacement

• When page replacement called for, use the clock scheme but
use the four classes to replace page in lowest non-empty class
• Might need to search circular queue several times

47

Counting-based Algorithms
• Keep a counter of the number of references that have

been made to each page
• Not common

• Lease Frequently Used (LFU) Algorithm:
• replaces page with smallest count

• problem: access may be heavy on startup but rarely used after =>
large count, can't get replaced easily.

• Solution: shift count over time = exponential decaying average

• Most Frequently Used (MFU) Algorithm:
• based on the argument that the page with the smallest count was

probably just brought in and has yet to be used

48

Page-Buffering Algorithms
• Keep a pool of free frames, always

• frame available when needed, not found at fault time

• Read page into free frame and select victim to evict and add to free pool

• When convenient, evict victim, not at the time of victim selection

• Extended idea 1: keep list of modified pages
• When backing store idle, write pages there and set to non-dirty

• Extended idea 2: Keep free frame contents intact even when
on free list and note what is in them

• If referenced again before reused, no need to load contents again from
disk

• Generally useful to reduce penalty if wrong victim frame selected

49

Applications knowledge in
optimizing Page Replacement

• Want to take advantage of application knowledge in
paging
• OS is just guessing about future page access

• Some applications have better knowledge – i.e. databases

• Memory intensive applications can cause double buffering
• OS keeps copy of page in memory as I/O buffer

• Application keeps page in memory for its own work

• OS has direct access to the disk, getting out of the way of
the applications
• Raw disk mode - bypasses buffering, locking, etc

50

Allocation of Frames
• Each process needs minimum number of frames

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:
• instruction is 6 bytes, might span 2 pages

• 2 pages to handle from
• 2 pages to handle to

• Maximum = total frames in the system

• Two major allocation schemes
• fixed allocation

• priority allocation

• Many variations

51

Fixed Allocation
• Equal allocation

• For example, if there are 100 frames (after allocating frames for the OS)
and 5 processes, give each process 20 frames

• Keep some as free frame buffer pool

• Proportional allocation
• Allocate according to size of process

• Dynamic as degree of multiprogramming, process sizes change

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=

∑=

=

 for allocation

frames of number total

 process of size m= 64
s1=10
s2 =127

a1 =
10
137

× 62 ≈ 4

a2 =
127
137

× 62 ≈ 57

52

Priority Allocation
• Could work with equal or proportional

allocation

• Define priority on process for allocation
• higher priority process => likely to get more frames

• lower priority process => likely to get replaced

• Upon page fault by a process
• OS may need to select a frame for replacement, if no

free frame available

• => select victim from a process with lower priority

53

Global vs. Local Allocation
upon page fault

• Global replacement
• A process can take a frame of another process

• Advantage: greater throughput, better utilization
=> more common

• Disadvantage: less predictable execution time

• Local replacement
• A process replaces its own set of allocated frames

• Advantage: More consistent per-process performance

• Disadvantage: possibly underutilized memory

54

Major vs. Minor Page Faults
• Major fault

• page is not in memory

• need reading from backing store into free frame

• Minor fault
• page is in memory but process does not have mapping

• shared library - just update table

• page on free frame list but not yet assigned to another
page - content still intact!!

55

Reapers
• kernel routines that

reclaim pages

• triggered when amount of
free memory drops below
some threshold

• adds frames to free frame list

• May use different
replacement policies

• e.g., normally second
chance, but when very low,
switches to FIFO

56

���� "MMPDBUJPO PG 'SBNFT ���

a c

b d

time

maximum
threshold

minimum
threshold

kernel resumes
reclaiming

pages

fre
e

m
em

or
y

kernel suspends
reclaiming

pages

Figure 10.18 Reclaiming pages.

below this threshold, a kernel routine is triggered that begins reclaiming pages
from all processes in the system (typically excluding the kernel). Such kernel
routines are often known as SFBQFST, and they may apply any of the page-
replacement algorithms covered in Section 10.4. When the amount of free
memory reaches themaximum threshold, the reaper routine is suspended, only
to resume once free memory again falls below the minimum threshold.

In Figure 10.18, we see that at point a the amount of free memory drops
below the minimum threshold, and the kernel begins reclaiming pages and
adding them to the free-frame list. It continues until the maximum threshold is
reached (point b). Over time, there are additional requests for memory, and at
point c the amount of free memory again falls below the minimum threshold.
Page reclamation resumes, only to be suspended when the amount of free
memory reaches the maximum threshold (point d). This process continues as
long as the system is running.

As mentioned above, the kernel reaper routine may adopt any page-
replacement algorithm, but typically it uses some form of LRU approximation.
Consider what may happen, though, if the reaper routine is unable to maintain
the list of free frames below the minimum threshold. Under these circum-

Thrashing
• a process is busy swapping pages in and out

• not getting real work done!

• Cause
• a process does not have "enough" frames => high page-fault rate

• Page fault to get page => Replace existing frame => need
replaced frame back

• Potentially vicious cycle
• Low CPU utilization

=> OS thinks it needs to increase the degree of multiprogramming
=> Another process added to the system

57

Thrashing (Cont.)

58

��� $IBQUFS �� 7JSUVBM .FNPSZ

tion is too low, we increase the degree of multiprogramming by introducing
a new process to the system. A global page-replacement algorithm is used;
it replaces pages without regard to the process to which they belong. Now
suppose that a process enters a new phase in its execution and needs more
frames. It starts faulting and taking frames away from other processes. These
processes need those pages, however, and so they also fault, taking frames from
other processes. These faulting processes must use the paging device to swap
pages in and out. As they queue up for the paging device, the ready queue
empties. As processes wait for the paging device, CPU utilization decreases.

The CPU scheduler sees the decreasing CPU utilization and increases the
degree ofmultiprogramming as a result. The new process tries to get started by
taking frames from running processes, causing more page faults and a longer
queue for the paging device. As a result, CPU utilization drops even further,
and the CPU scheduler tries to increase the degree of multiprogramming even
more. Thrashing has occurred, and system throughput plunges. The page-
fault rate increases tremendously. As a result, the effectivememory-access time
increases. Nowork is getting done, because the processes are spending all their
time paging.

This phenomenon is illustrated in Figure 10.20, in which CPU utilization
is plotted against the degree of multiprogramming. As the degree of multi-
programming increases, CPU utilization also increases, although more slowly,
until a maximum is reached. If the degree of multiprogramming is increased
further, thrashing sets in, and CPU utilization drops sharply. At this point, to
increase CPU utilization and stop thrashing, we must decrease the degree of
multiprogramming.

We can limit the effects of thrashing by using a MPDBM SFQMBDFNFOU BMHP�
SJUIN (or QSJPSJUZ SFQMBDFNFOU BMHPSJUIN). Asmentioned earlier, local replace-
ment requires that each process select from only its own set of allocated frames.
Thus, if one process starts thrashing, it cannot steal frames from another pro-
cess and cause the latter to thrash as well. However, the problem is not entirely
solved. If processes are thrashing, they will be in the queue for the paging
device most of the time. The average service time for a page fault will increase

thrashing

degree of multiprogramming

CP
U

 u
til

iz
at

io
n

Figure 10.20 Thrashing.

Demand Paging and Thrashing
• Demand paging depends on Locality

• Process migrates from one locality to another

• Localities may overlap

• Why does thrashing occur?

• Σ size of locality > total memory size

• Limit effects by using local or priority page
replacement

59

Locality in a Mem.-Ref. Pattern

60

���� 5ISBTIJOH ���

because of the longer average queue for the paging device. Thus, the effective
access time will increase even for a process that is not thrashing.

To prevent thrashing, we must provide a process with as many frames as
it needs. But how do we know how many frames it “needs”? One strategy
starts by looking at howmany frames a process is actually using. This approach
de!nes the MPDBMJUZ NPEFM of process execution.

The locality model states that, as a process executes, it moves from locality
to locality. A locality is a set of pages that are actively used together. A running
program is generally composed of several different localities, which may over-
lap. For example, when a function is called, it de!nes a new locality. In this

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

execution time
(a) (b)

Figure 10.21 Locality in a memory-reference pattern.

Working-Set Model
• Δ ≡ working-set window

 ≡ a fixed #of page references in a time window

• Example: 10,000 instructions

• WSSi (working set of Process Pi)

• = total #distinct pages referenced in the most recent Δ
(varies in time)

• if Δ too small => will not encompass entire locality

• if Δ too large => will encompass several localities

• if Δ = ∞ ⇒ will encompass entire program

61

Working-Set Model (cont'd)
• D = Σ WSSi ≡ total demand frames

• Approximation of locality

• if D > m ⇒ Thrashing (m = #avail. frames)

• Policy:

• if D > m, suspend or swap out a process

62

��� $IBQUFS �� 7JSUVBM .FNPSZ

page reference table
. . . 2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4 1 3 2 3 4 4 4 3 4 4 4 . . .

Δ

t1
WS(t1) = {1,2,5,6,7}

Δ

t2
WS(t2) = {3,4}

Figure 10.22 Working-set model.

locality, memory references are made to the instructions of the function call, its
local variables, and a subset of the global variables. When we exit the function,
the process leaves this locality, since the local variables and instructions of the
function are no longer in active use. We may return to this locality later.

Figure 10.21 illustrates the concept of locality and how a process’s
locality changes over time. At time (a), the locality is the set of pages
{18, 19, 20, 21, 22, 23, 24, 29, 30, 33}. At time (b), the locality changes to
{18, 19, 20, 24, 25, 26, 27, 28, 29, 31, 32, 33}. Notice the overlap, as some pages
(for example, 18, 19, and 20) are part of both localities.

Thus, we see that localities are de!ned by the program structure and its
data structures. The locality model states that all programs will exhibit this
basic memory reference structure. Note that the locality model is the unstated
principle behind the caching discussions so far in this book. If accesses to any
types of data were random rather than patterned, caching would be useless.

Suppose we allocate enough frames to a process to accommodate its cur-
rent locality. It will fault for the pages in its locality until all these pages are
in memory; then, it will not fault again until it changes localities. If we do
not allocate enough frames to accommodate the size of the current locality,
the process will thrash, since it cannot keep in memory all the pages that it is
actively using.

10.6.2 Working-Set Model

The XPSLJOH�TFU NPEFM is based on the assumption of locality. This model
uses a parameter,Δ, to de!ne theXPSLJOH�TFU XJOEPX. The idea is to examine
the most recent Δ page references. The set of pages in the most recent Δ page
references is theXPSLJOH TFU (Figure 10.22). If a page is in active use, it will be in
the working set. If it is no longer being used, it will drop from the working set
Δ time units after its last reference. Thus, the working set is an approximation
of the program’s locality.

For example, given the sequence of memory references shown in Figure
10.22, if Δ = 10 memory references, then the working set at time t1 is {1, 2, 5,
6, 7}. By time t2, the working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of Δ. If Δ is too
small, it will not encompass the entire locality; if Δ is too large, it may overlap
several localities. In the extreme, if Δ is in!nite, the working set is the set of
pages touched during the process execution.

The most important property of the working set, then, is its size. If we
compute the working-set size, WSSi, for each process in the system, we can
then consider that

Transition from one working set
to another

63

���� 5ISBTIJOH ���

D =
∑

WSSi,

whereD is the total demand for frames. Each process is actively using the pages
in its working set. Thus, process i needs WSSi frames. If the total demand is
greater than the total number of available frames (D >m), thrashing will occur,
because some processes will not have enough frames.

Once Δ has been selected, use of the working-set model is simple. The
operating system monitors the working set of each process and allocates to
that working set enough frames to provide it with its working-set size. If there
are enough extra frames, another process can be initiated. If the sum of the
working-set sizes increases, exceeding the total number of available frames,
the operating system selects a process to suspend. The process’s pages are
written out (swapped), and its frames are reallocated to other processes. The
suspended process can be restarted later.

This working-set strategy prevents thrashing while keeping the degree of
multiprogramming as high as possible. Thus, it optimizes CPU utilization. The
dif!culty with the working-set model is keeping track of the working set. The

WORKING SETS AND PAGE-FAULT RATES

There is a direct relationship between the working set of a process and its
page-fault rate. Typically, as shown in Figure 10.22, the working set of a
process changes over time as references to data and code sections move from
one locality to another. Assuming there is suf!cient memory to store the
working set of a process (that is, the process is not thrashing), the page-fault
rate of the process will transition between peaks and valleys over time. This
general behavior is shown below:

1

0
time

working set

page
fault
rate

Apeak in the page-fault rate occurs whenwe begin demand-paging a new
locality. However, once the working set of this new locality is in memory, the
page-fault rate falls. When the processmoves to a newworking set, the page-
fault rate rises toward a peak once again, returning to a lower rate once the
new working set is loaded into memory. The span of time between the start
of one peak and the start of the next peak represents the transition from one
working set to another.

start of one peak start of next peak

Page-Fault Frequency
• More direct approach than WSS

• Establish "acceptable" page-fault frequency (PFF)
rate and use local replacement policy

• If actual rate too low, OS takes frames from process

• If actual rate too high, OS adds free frames to process

64

Allocating Kernel
Memory

(physically contiguous)

65

Allocating Kernel Memory
• Some kernel memory needs to be contiguous

• i.e., for device I/O, hardware DMA

• user process: logically contiguous, but not physically

• Often allocated from a free-memory pool
• Kernel requests memory for structures of varying sizes

• Strategies

• buddy system

• slab allocation

66

Buddy System
• using power-of-2 allocator

• from fixed-size segment, physically-contiguous memory

• Properties

• in units sized as power of 2

• request rounded up to next highest power of 2

• When smaller allocation needed than is available

• split current chunk into two buddies of next-lower
power of 2

• Continue until appropriate sized chunk available

67

Buddy System - example
• 256KB chunk available,

kernel requests 21KB

• Split into AL and AR of 128KB each

• One further divided into BL and
BR of 64KB

• One further into CL and CR of
32KB each – one just large
enough used to satisfy request

• Advantage: quickly coalesce
unused chunks into larger
chunk

• Disadvantage: fragmentation

68

��� $IBQUFS �� 7JSUVBM .FNPSZ

physically contiguous pages

256 KB

128 KB
AL

64 KB
BR

64 KB
BL

32 KB
CL

32 KB
CR

128 KB
AR

Figure 10.26 Buddy system allocation.

of one or more slabs. There is a single cache for each unique kernel data struc-
ture—for example, a separate cache for the data structure representing process
descriptors, a separate cache for !le objects, a separate cache for semaphores,
and so forth. Each cache is populated with PCKFDUT that are instantiations of the
kernel data structure the cache represents. For example, the cache represent-
ing semaphores stores instances of semaphore objects, the cache representing
process descriptors stores instances of process descriptor objects, and so forth.
The relationship among slabs, caches, and objects is shown in Figure 10.27. The
!gure shows two kernel objects 3 KB in size and three objects 7 KB in size, each
stored in a separate cache.

3-KB
objects

7-KB
objects

kernel objects caches slabs

physically
contiguous
pages

Figure 10.27 Slab allocation.

Slab Allocator
• Slab = one or more physically contiguous pages

• Big enough to contain one or more instances of a given
type of kernel data structure

• Cache = one or more slabs

• One cache for each unique type of kernel data structure

• e.g., PCB, semaphores, file descriptors, ...

• Objects = instantiations of the data structure

• Initially, cache is filled with objects marked as free

• When structures stored, objects marked as used

69

Slab Allocation

70

Slab Allocation
• Allocation

• if slab of given type is full of used objects, allocate
next object from empty slab

• If no empty slabs, allocate new slab

• Benefits
• no fragmentation - granularity is object, not page or

buddy chunk

• fast memory request satisfaction - recycle object
memory through cache

71

SLAB, SLOB, SLUB in Linux
• SLOB: (list of simple objects)

• K&R allocator (1991-1999)

• small, medium, and large objects, first-fit

• SLAB (in Linux)

• Solaris type allocator (1999-2008)

• SLAB: As cache friendly as possible. Benchmark friendly.

• SLUB: (Linux 2.6.24) - replaces SLAB

• Unqueued allocator (2008-today)

• Simple and instruction cost counts.

• Superior Debugging. Defragmentation. Execution time friendly.

72

Other Issues – Program Structure
• Program structure

• int[128,128]	data;

• Each row is stored in one page

• Program 1
• 													for	(j	=	0;	j	<128;	j++)	

														for	(i	=	0;	i	<	128;	i++)	
																								data[i,j]	=	0;

• 128 x 128 = 16,384 page faults

• Program 2
• 													for	(i	=	0;	i	<	128;	i++)	

															for	(j	=	0;	j	<	128;	j++)	
																					data[i,j]	=	0;	

• 128 page faults

73

