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Background

* No need to load entire program into mem. all at once

 Error code, unusual routines, large data structures

* Partially-loaded program

* Program no longer constrained by limits of physical memory

 Each program takes less memory while running
=> more programs can run at the same time

* Increased CPU utilization and throughput with no increase
in response time or turnaround time

* Less I/O needed to load or swap programs into memory
=> each user program runs faster



Background (Cont.)

Virtual address space — logical view of how
process is stored in memory

« Usually start at address 0, contiguous addresses until
end of space

* Meanwhile, physical memory organized in page frames
* MMU must map logical to physical
Virtual memory can be implemented via:

* Demand paging

* Demand segmentation



Virtual Memory advantages

e Partial code loading

* More programs running concurrently
* Less I/O needed to load or swap processes

 Allows for more efficient process creation

* Larger logical address space than physical

 Allows several processes to share memory



Virtual Memory that is Larger
than Physical Memory
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Virtual-address Space

* Maximizes address space use
e Stack grows "down"
* Heap grows "up"

« Unused address space between the two is hole

No physical memory needed until heap or stack grows to a
given new page

Enables sparse address spaces with holes left for growth,
dynamically linked libraries, etc

 Shared memory by mapping pages read-write into
virtual address space

* System libraries shared via mapping into virtual address
space

 Pages can be shared during fork(), speeding process creation
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Shared Library Using Virtual
Memory
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Review: Swapper vs. Pager

* Swap out:

* MOove pProcess memaory to

disk
* Swap In:

e move saved process from
disk to memory

» Swapper that deals
with pages is a pager

* Page-in, Page-out instead
of Swap-in, Swap-out
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Demand Paging

* A way of implementing virtual memory
=> bring page into memory only when needed

 page could be program code (read-only) or user data

» Benefits
* Less I/O needed, no unnecessary 1/O
« Less memory needed
* Faster response

* More users



Basic Concepts

Need new MMU functionality to implement
demand paging

If

If

nages needed are already memory resident

No difference from non-demand-paging

nage needed but not memory resident

Need to detect and load the page into memory from storage

Abstraction provided by paging

» Without changing program behavior

« Without programmer needing to change code
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Valid-Invalid Bit

* Bit associated with each page table entry
* 'V’ means In-memory

* proceed
* 'i': two possibilities:

e invalid reference => abort

* not-in-memory => page fault, bring to memory
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Valid-Invalid Bit

e |nitialized to 'i' on all
entries

e During MMU address
translation, if valid-invalid
bit in page table entry is |
= page fault




Page table when some pages are
not in main memory
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Page Fault

« First reference to a page causes page fault

* trap to OS
« OS looks at another table (usually in PCB) to decide:

* Invalid reference (outside process's address space) => abort

« Nonresident page => handle as page fault

» Page fault handling for loading nonresident page from disk:

 OS finds free frame (e.g, from free-frame list, or kick out some)

 OS reads page into frame via scheduled disk operation

 OS updates tables to indicate page now in memory
Set valid bit = 'v'

 OS restarts the instruction that caused the page fault
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Steps in Handling a Page Fault
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Aspects of Demand Paging

« Pure demand paging always get page faults when...
» First instruction of process
* First access of any page of the process
« One instruction could cause multiple page faults!
* Example: add 2 numbers from memory, stores result back to memory

* Pain decreased because of locality of reference

» Hardware support needed for demand paging

 Page table in hardware with valid / invalid bit

« Secondary memory (swap device with swap space)

* Instruction restart after OS has loaded page into frame
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Instruction Restart

« Consider an instruction that could access
several different locations

e block move

e auto increment/decrement location

 Restart the whole operation?

« What if source and destination overlap?
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Stages in Demand Paging
(worst case)

. Page fault traps to the OS
. OS saves the user registers and process state
. OS checks if legal reference, determines location of page on disk

. OS issues a read from disk to a free frame:

. While waiting, OS allocates the CPU to some other user

. OS gets interrupt from the disk on completion of transfer

. OS updates the page table
. OS allocates CPU to this process again

. OS restores the user registers, process state, and new page table,

and then resume the interrupted instruction
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Non-Demand Paging vs.
Demand Paging

» Non-demand paging
* entirely transparent to process
« mechanism between CPU and memory
 page fault (bit =="i') is a fatal error!

* Demand paging

« CPU must support instruction restart after fault
handling

 page fault (bit =="i') fatal only if outside address
space, but not fatal if on-disk and not memory resident
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Free-Frame List

 pool of free frames

e uses linked list structure

e /ero-fill-on-demand

 upon allocation, initialize entire page to O

* reason: privacy protection - don't want previous
process's data to be seen by another process
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Performance of Demand Paging

* Page fault overhead, excluding swapping
* Service the interrupt

* Restart the process

Most time spent on disk transfer: swap-in and swap-out

Page Fault Rate 0 = p =<1
Effective Access Time (EAT)

EAT = (1T — p) X memory access
+ p (page fault overhead
+ swap page out

+ swap page in )
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Demand Paging Example

* Memory access time = 200 ns p = page fault rate

 Average page-fault service time = 8 ms
 EAT =(1 —p)x 200 + p x (8 ms)

= (1 -—p x200 + p x 8,000,000
=200 + p x 7,999,800

 If 1.in 1000 accesses causes a page fault, then
EAT = 8.2 ps. => slowdown by a factor of 40!!

» If want performance degradation < 10%

¢ 220> 200 + 7,999,800 x p
20 > 7,999,800 x p => p < .0000025

« < 1.in 400,000 memory accesses per page fault




Copy-on-Write

 Allows both parent and child processes to initially
share the same pages in memory when fork()

* If either process modifies a shared page => OS makes copy of
page first

* but if no write => no need to copy!

* In general, OS allocates free pages from a pool of
zero-fill-on-demand pages

 Pool should always have free frames for fast demand page
execution

« Don't want to have to "free a frame" or do other processing
upon page fault
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Copy-on-write

process;

—>» pageA =

- | pageB

—> page C — ]

pProcess,

physical
memory process,

physical
memory process,
page A ]
page B 1
page C ]
Copy of page C
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alternative to copy-on-write:
viork()

e viork()

« OS suspends parent while child uses parent's resources
* Does NOT use copy-on-write!!!
» child changes will be visible to parent!
 child needs to be very careful not to modity parent space
* sharing stops when exec() is called.
* Purpose

» useful for implementing command-line shells
=> child calls exec() immediately after creation.
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Page Replacement



Page Replacement

 Need frame but no free frame available

« find a victim page in memory to page out, free the frame

* hardware dirty-bit (aka modify bit) to track modification
=> if dirty when page out, need to save to disk;
=> if not dirty, no need to save to disk (already on disk)

* Two problems in demand paging

 Frame allocation: determine how many frames to
allocate to a process

* Page replacement: pick which frame to replace
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Steps in Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
 If there is a free frame, use it

* If no free frame, page replacement algorithm selects a victim frame

» Write victim frame to disk if dirty

3. Bring desired page (from disk) into free frame (step2);
update the page and frame tables

4. Restart the instruction that caused the trap

Note: potentially 2 page transfers for page fault — increasing
EAT
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Page Replacement
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Page and Frame Replacement
Algorithms

 Frame-allocation algorithm determines

* How many frames to give each process

 Page-replacement algorithm

* Which frames to replace

« Objective:

« want lowest page-fault rate on both first access
and re-access
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Evaluation of replacement
algorithms

* Run on a particular string of memory
references (reference string)

e String is just page numbers, not full addresses

» Repeated access to the same page does not cause a
page fault

- example: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

« Computing the number of page faults on that
string

« Results depend on number of frames available
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# Page Faults vs. # Frames
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First-In-First-Out (FIFO)
Algorithm

* Reference string:
/,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,

3 frames (3 pages can be in memory at a time per process)

reference string

/7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

70 17| |7] |2 2| (2] |4]| |4] |4] |0 0| |0 7| 7] |7
15 page faults 0| (0| |O 3| [3]| 3] |2 |2| |2 1| |1 1] |0| |0
1| |1 1/ [0]| |O| (O] |3] |3 3| |2 2| (2] |1

page frames

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

* To track ages of pages => Just use a FIFO queue
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Belady's Anomaly

Adding more frames can
cause more page faults!

e common in FIFO-based
algorithms

Bélady's /be'leidy/
* Hungarian Computer Scientist

e IBM; then President & CEO of
Mitsubishi Electric Research
| abs

number of page faults

* Known for OPT page
replacement algorithm

— — — —
o N ~ »
| | | |

N BN » (0]
[ [ [ [

2

3 4
number of frames
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Optimal page-replacement
algorithm (OPT, aka MIN)

 Replace page that will not be used for
longest period of time

* 9 is optimal for the example

* Does not have Belady's anomaly

 However, can't read the future...

reference string
7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

70 |7 |7] |2 2 2 2 2 7
Of (O] |O 0 4 0 0 0
1] |1 3 3 3 1 1

page frames



Least Recently Used (LRU)
Algorithm

 Use past knowledge rather than future

 Replace page that has not been used in
the most amount of time

* Associate time of last use with each page

e "use" can be read or write

 Generally good algorithm and frequently
used



LRU Example

reference string

/7 0 1 2 o0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7] 7] [7) [2] |2 4] |4] [4] [o]

1
0| (0] |0 0 o| (0] |3] |3 3 0 0
2

1] |1 3| [2] |2] |2

page frames

e 12 faults — better than FIFO but worse than OPT

38



LRU implementation: Counter

» Every page entry has a "counter" ("time stamp")

* a clock is incremented for every memory
reference

* every time page is referenced through this entry,
copy the clock into the counter

* When a page needs to be changed
e |ook at the counters to find smallest value

* Search through table needed
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LRU implementation:
Stack Algorithms

» Keep a stack of page numbers in a double link form:

 Page referenced: move it to the top

» Requires 6 pointers to be changed

* each update more expensive

* No search for replacement

e Stack algorithms don't have Belady's
Anomaly!

» Examples: LRU and OPT
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Use Of A Stack to Record Most
Recent Page References

reference string

4 ¢ 0 7 1 0 1 2 1 2 7 1 2

f |
0 1

0
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LRU Approximation Algorithms

* LRU needs special hardware

e and still slow

e Variations

* Single Reference bit
e Additional Reference Bits

e Second Chance
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Single Reference Bit

* Single Reference Bit

» With each page associate a bit, initially =0

* When page is referenced bit set to 1

* Replace any with reference bit = O (if one exists)
* Rough approximation

* We don't know the order of use

* Serves as basis for other algorithms
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Additional Reference Bits

 e.g., 8 bits (unsigned) of history per page
» Sampled update (e.g., every 100 ms)

 OS shifts reference bit for each page into 8-bit
history (into most significant bit), shift right

« e.g.,: 0000_0000 => has not been used 8 times
* 1100_0100 more recent than 0111_0111

 Page with smallest value is picked as victim

» multiple pages may have same history value...
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LRU Approximation:
Second-Chance Algorithm

* Generally FIFO, plus hardware-provided reference bit
+ Clock replacement
- Algorithm maintains a pointer in circular order
* If page to be replaced has
e reference bit = 0 -> found victim, replace it
* reference bit = 1 then:

« set reference bit = 0, leave page in memory

* pointer++ % MEMSIZE, and check again
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Second-Chance (clock) Page-
Replacement Algorithm
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Enhanced Second-Chance
Algorithm

« Use both reference bit and modity bit (if available) in concert

 Take ordered pair (reference, modity)

1. (0, 0) neither recently used nor modified — best page to replace

2. (0, 1) not recently used but modified — not quite as good, must write out
before replacement

3. (1, 0) recently used but clean — probably will be used again soon

4. (1, 1) recently used and modified — probably will be used again soon and
need to write out before replacement

« When page replacement called for, use the clock scheme but
use the four classes to replace page in lowest non-empty class

* Might need to search circular queue several times
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Counting-based Algorithms

« Keep a counter of the number of references that have
been made to each page

e Not common

* Lease Frequently Used (LFU) Algorithm:

* replaces page with smallest count

» problem: access may be heavy on startup but rarely used after =>
large count, can't get replaced easily.

* Solution: shift count over time = exponential decaying average

* Most Frequently Used (MFU) Algorithm:

 based on the argument that the page with the smallest count was
probably just brought in and has yet to be used
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Page-Buffering Algorithms

» Keep a pool of free frames, always
* frame available when needed, not found at fault time
 Read page into free frame and select victim to evict and add to free pool

 When convenient, evict victim, not at the time of victim selection

» Extended idea 1: keep list of modified pages

* When backing store idle, write pages there and set to non-dirty

» Extended idea 2: Keep free frame contents intact even when
on free list and note what is in them

* If referenced again before reused, no need to load contents again from

disk

* Generally useful to reduce penalty if wrong victim frame selected
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Applications knowledge in
optimizing Page Replacement

* Want to take advantage of application knowledge in
paging
« OS is just guessing about future page access

« Some applications have better knowledge — i.e. databases

* Memory intensive applications can cause double buffering
* OS keeps copy of page in memory as I/O buffer

* Application keeps page in memory for its own work

* OS has direct access to the disk, getting out of the way of
the applications

* Raw disk mode - bypasses buffering, locking, etc

50



Allocation of Frames

Cach process needs minimum number of frames

Fxample: IBM 370 — 6 pages to handle SS MOVE instruction:
* instruction is 6 bytes, might span 2 pages

* 2 pages to handle from

* 2 pages to handle to

Maximum = total frames in the system

Two major allocation schemes
* fixed allocation

» priority allocation

Many variations

51



Fixed Allocation

 Equal allocation

* For example, if there are 100 frames (after allocating frames for the OS)
and 5 processes, give each process 20 frames

* Keep some as free frame buffer pool

* Proportional allocation

* Allocate according to size of process

* Dynamic as degree of multiprogramming, process sizes change

— s; =size of process p; m= 64
s=10
— S=3s
S =127
— m = total number of frames 10
s a=—x62=4
— @a; =allocation for p; = L xm 113277
a=—x62=57
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Priority Allocation

» Could work with equal or proportional
allocation

* Define priority on process for allocation

* higher priority process => likely to get more frames

* lower priority process => likely to get replaced

« Upon page fault by a process

* OS may need to select a frame for replacement, if no
free frame available

* => select victim from a process with lower priority
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Global vs. Local Allocation
upon page fault

* Global replacement

A process can take a frame of another process

« Advantage: greater throughput, better utilization
=> more common

 Disadvantage: less predictable execution time

 Local replacement

* A process replaces its own set of allocated frames

 Advantage: More consistent per-process performance

 Disadvantage: possibly underutilized memory
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Major vs. Minor Page Faults

* Major fault

* page Is not In memory

 need reading from backing store into free frame

« Minor fault

« page is in memory but process does not have mapping
 shared library - just update table

 page on free frame list but not yet assigned to another
page - content still intact!!
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Reapers

* kernel routines that
reclaim pages
« triggered when amount of

free memory drops below
some threshold

e adds frames to free frame list

* May use different
replacement policies

 e.g., normally second
chance, but when very low,
switches to FIFO

kernel suspends
reclaiming

pages

free memory

maximum
threshold

minimum
threshold

T -

kernel resumes
reclaiming

pages

56



Thrashing

* a process is busy swapping pages in and out
* not getting real work done!
* Cause

* a process does not have "enough" frames => high page-fault rate

 Page fault to get page => Replace existing frame => need
replaced frame back

* Potentially vicious cycle

* Low CPU utilization
=> OS thinks it needs to increase the degree of multiprogramming
=> Another process added to the system
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CPU utilization

Thrashing (Cont.)

degree of multiprogramming



Demand Paging and Thrashing

* Demand paging depends on Locality

* Process migrates from one locality to another

* Localities may overlap
* Why does thrashing occur?

« X size of locality > total memory size

* Limit effects by using local or priority page
replacement

59



Locality in a Mem.-Ref. Pattern
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Working-Set Model

* A = working-set window
= a fixed #of page references in a time window

» Example: 10,000 instructions
« WSS (working set of Process P))

» = total #distinct pages referenced in the most recent A
(varies in time)

» if A too small => will not encompass entire locality
» if A too large => will encompass several localities

* if A = = will encompass entire program
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Working-Set Model (cont'd)

e D=2 WSS, = total demand frames

» Approximation of locality

 if D> m = Thrashing (m = #avail. frames)

* Policy:

 if D> m, suspend or swap out a process

page reference table
...2615777751623412344434344413234443444...

t t
WS(t.) = {1 2567} WS(t,) = {3,4}

2
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Transition from one working set

to another
working set
1 l l
page : |
fault : :
rate | |
0 | |
T time T g
start of one peak start of next peak

63



Page-Fault Frequency

* More direct approach than WSS

» Establish "acceptable" page-fault frequency (PFF)
rate and use local replacement policy

» If actual rate too low, OS takes frames from process

» If actual rate too high, OS adds free frames to process

increase number
of frames

upper bound

page-fault rate

lower bound

decrease number
of frames

number of frames



Allocating Kernel
Memory

(physically contiguous)



Allocating Kernel Memory

» Some kernel memory needs to be contiguous
 j.e., for device I/O, hardware DMA
« user process: logically contiguous, but not physically
 Often allocated from a free-memory pool

 Kernel requests memory for structures of varying sizes

 Strategies

* buddy system

e slab allocation
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Buddy System

* using power-of-2 allocator

* from fixed-size segment, physically-contiguous memory
* Properties

* in units sized as power of 2

* request rounded up to next highest power of 2
* When smaller allocation needed than is available

* split current chunk into two buddies of next-lower
power of 2

 Continue until appropriate sized chunk available
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Buddy System - example

e 256KB chunk available,
kernel requests 21KB

 Splitinto A, ,,4 Az of 128KB each

« One further divided into B, and
B, of 64KB

e One further into C;, and Cy, of

32KB each — one just large
enough used to satisfy request

* Advantage: quickly coalesce
unused chunks into larger

chunk

* Disadvantage: fragmentation

physically contiguous pages

256 KB

128 KB 128 KB

64 KB 64 KB
BL BR
32 KB| |32 KB
C, Cr
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Slab Allocator

Slab = one or more physically contiguous pages

 Big enough to contain one or more instances of a given
type of kernel data structure

Cache = one or more slabs

» One cache for each unique type of kernel data structure
 e.g., PCB, semaphores, file descriptors, ...

Objects = instantiations of the data structure

* Initially, cache is filled with objects marked as free

* When structures stored, objects marked as used
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Slab Allocation

Kernel objects caches slabs
— / ‘\
3-KB |
objects |
physically
B = contiguous
pages

/
7-KB v _
objects T
%
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Slab Allocation

e Allocation

« if slab of given type is full of used objects, allocate
next object from empty slab

« If no empty slabs, allocate new slab

e Benefits

« no fragmentation - granularity is object, not page or

buddy chunk

« fast memory request satisfaction - recycle object
memory through cache
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SLAB, SLOB, SLUB in Linux

« SLOB: (list of simple objects)
 K&R allocator (1991-1999)

» small, medium, and large objects, first-fit

 SLAB (in Linux)
» Solaris type allocator (1999-2008)

* SLAB: As cache friendly as possible. Benchmark friendly.
e SLUB: (Linux 2.6.24) - replaces SLAB

* Unqueued allocator (2008-today)

 Simple and instruction cost counts.

* Superior Debugging. Defragmentation. Execution time friendly.
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Other Issues — Program Structure

* Program structure
- int[128,128] data;

 Each row is stored in one page

* Program T

for (j = ©0; j <128; j++)
for (i = 0; 1 < 128; i++)
data[i,]j] = O;

* 128 x 128 = 16,384 page faults

* Program 2

for (i = ©0; i < 128; i++)
for (j = 0; j < 128; j++)
data[i,]j] = O;

* 128 page faults
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