Chapter 9:
Main Memory

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

Chapter 9: Main Memory

« Code memory loading
 Contiguous Memory Allocation

 Discontiguous memory allocation - Paging
* Hardware Support

 Page Table Structures

* Swapping

Background

e |nstruction execution

* Main memory and registers are only "storage" that a CPU
can access directly

« Memory unit only sees a stream of addresses + read
requests, or address + data and write requests

* Program must be brought (from disk) into memory
and placed within a process for it to be run

* a process may be swapped out to disk during execution

* Protection of memory required to ensure correct
operation

Base and Limit Registers

* Purpose:

» define the logical
address space

e CPU must ensure

* every memory access
oy user mode is
petween base and
imit for that user

256000

300040

420940

= base + limit

880000

1024000

operating
system
process base
< T 300040
process limit = 120920
< l 420940
process base+limit

Hardware Address Protection

base base + limit
address yes yes
CPU > > < >
no no
v \/

trap to operating system
monitor—addressing error memory

Program's location in memory

* Program code initially on disk

* input queue: code ready to be brought into
memory to execute

» Without support, code must be loaded into
address 0000

 Inconvenient to have first user process
physical address always at 0000

Address Binding in different
stages of program's life

« Compile time
e Load time

e Execution time

(SOUI‘CG program)

{
[compiler]

[other I compile
object (object file) time
files
(s ¢ _
RS > (linker } I
v
(executablefile) — load
q — 1 time
Namica
ylmked ! [loader] _T_
Lllbrarlesj exec.

—y
_(program N memory) time

Binding of Instructions and Data
to Memory: (1) Compile Time

* If memory location known a priori, absolute code can
be generated (by linker)

» Example: embedded systems, SDCC for 8051/EdSim51

« must recompile/relink code if starting location changes

* Source code addresses usually symbolic
» Compiled code addresses bind to relocatable addresses

* e.g., “14 bytes from beginning of this module”

e Linker or loader will bind relocatable addresses to
absolute addresses

 Each binding maps one address space to another

Example of compile-time address
binding: MS DOS .COM file

Compile and link Load

int data; (.BASE 0x1000) *
main() { START

data=3*7; PUSH AX PUSH AX
\ MULT AX, 7 MULT AX,7

MOVE (0x1018), AX MOVE (0x1018), AX
CALL print,@x1o18D\ox1mo CALL print, (0x1018)
POP AX POP AX
END
SPACE (4)

Source Program Disk Image Memory Content

linker adds

base address 0x1000 to
offset 0x18 and fills in
absolute address Ox1018

Load-Time Binding of

Instructions and Data to Memory
« Compiler must generate relocatable code

* if memory location is not known at compile time

 Relocatable code: loader fills in address

» starting location (.BS) changes => reload code

Compile Load
int data; START _~ base = 0x2000
main() { PUSH AX
data=3*7: MOVE AX, 3 0x2000] PUSH AX
orint(data): MULT AX,7 MOVE AX,3
\ MOVE (.BS+0x18), AX MULT AX,7
CALL print,@Bs+0x1sD MOVE __((0x2018))AX
POP AX 0x2010 | CALL print, (0x2018)
END POP AX
.SPACE (4) 0x2018

Source Program Disk Image Memory Content

Execution-Time Binding of

Instructions and Data to Memory

« Compiler-linker translates symbolic code
into logical address (=virtual address) code

 Binding delayed until run time if the process can
be moved during its execution from one memory
segment to another

* Need hardware support for address maps

* e.g., base and limit registers, MMU

* Most general-purpose OSs use this way.

11

Binding of Instructions and Data
to Memory: (3) Execution Time

» Hardware translates every reference
from virtual address to physical address

 physical = base + offset (= virtual address)

Compile .Load
int data; START d

main() { PUSH AX
data=3*7: MOVE AX, 3 0x2000) PUSH AX
orint(data): MULT AX, 7 MOVE AX, 3 y)ffset=ﬂx1 8
} MOVE (0x18), AX MULT AX,7 |
CALL print, (0x18) MOVE AX < base = AX
POP AX 0x2010 | CALL grint, (0x18)
END POP AX
SPACE (4) 0x2018

Physical {d'dr.

Source Program Disk Image Memory Content

12

Logical vs. Physical Address
Space

 Logical address

 generated by the CPU; also referred to as virtual address

 Logical address space is the set of all logical addresses
generated by a program

 Physical address

* address seen by the memory unit

* Physical address space is the set of all physical addresses
generated by a program

binding

compile time

load time

execution time

logical address

same as physical

same as physical

remapped

13

Memory-Management Unit
(MMU)

« Hardware device that at run time maps virtual to
physical address

* Simple scheme
» physical address = relocation register + logical address
 Base register now called relocation register
* Part of MMU! Set by OS
* physical address is calculated by MMU for every access!

* MS-DOS on Intel 80x86 used 4 relocation registers

« Other schemes possible

14

Dynamic Loading

* No need to load entire program into

memory in order to execute szt
e can load code into memory on demand ogical | = | physica
CPU ad;z::ss =® afj;izs » memory
* Advantages

 Better memory-space utilization; unused routine MU

is never loaded

* Useful when large amounts of code are needed to
handle infrequently occurring cases

* No special support from OS is required

* User program can all APl to load in code; or
compiler can also generate loading calls.

* OS just provides libraries for dynamic loading

Dynamic Loading example in C

« CAPI

» dlopen() opens library and prepares it for use

* dlsym(): looks up the value of a symbol in a given (opened) library

* dlclose(): closes a DL library
¢ Code

#include <dlfcn.h>
int main() A

cosine = dlsym(handle, "cos");

dlclose(handle);

double (*cosine)(double); // function pointer
void* handle=dlopen("/lib/libm.so.6", RTLD LAZY);

// load code

printf("%f\n", (*cosine)(2.0)); // call function

16

Dynamic Loading visualized

Disk image Memory content
Init After B() called After C() called After C() ends

Function C() {

Function C()

17

Dynamic Ioadmg

* Libraries are combined by loader
INto program image

« Advantage: faster during execution

 Disadvantage: wasted memory, duplicate -

code

e Static linking + dynamic loading

* saves disk image space

« however, dynamic loading
=> still could load in multiple copies!

physical)

Memory

Libc.lib

Libc.lib

main ()

Libc.lib

18

Dynamic Linking

» linking postponed until execution time

* Particularly useful for libraries

e Mechanism : Stub

» used to locate the appropriate memory-resident library routine

» Stub replaces itself with address of the routine, and executes the
routine

» OS checks if routine is in process's memory address
e If not in address space, add to address space
« Consider applicability to patching system libraries

 Versioning may be needed

19

Dynamic Linking

* One copy of code in memory and shared

e stub is included in program in-memory image for
each library reference

e Stub call:

 check if referred library is in memory
* if not, load the library

e Execute code

e DLL on Windows

20

Contiguous
Allocation

Contiguous Allocation

* Main memory usually has two partitions:

* Resident OS, usually held in low memory with interrupt vector

 User processes are held in high memory, each contained in single
contiguous section of memory

* But Windows, Linux place OS in high memory...
* Fixed partition

* each process is loaded into one partition of a fixed size

* degree of multiprogramming is bounded by the #partitions
 Variable partition

* Holes = blocks of contiguous free memory

* Holes of different sizes are scattered in memory.

22

Mechanisms for supporting

Contiguous Allocation
 Relocation registers (base, limit)

* protect user processes from each other, and

 protect OS from being changed by user code
- MMU

» maps logical address dynamically

 Can then allow actions such as kernel code being
transient and kernel changing size

23

Hardware Support for Relocation
and Limit Registers

limit relocation
register register

logical physical
address address
CPU memory

\J
trap: addressing error

logical address is in [0, limit), as unsigned
=> no need to compare if <0

Multiple-partition allocation

 Variable-sized partitions

* More efficient: sized to a given process's needs

« Holes of various size are scattered throughout memory

 Allocated memory from a hole large enough
to accommodate it

 Process exit => frees its partition, OS combines
adjacent free partitions

« OS maintains information about: (a) allocated
partitions (b) holes

25

Multi-partition allocation
example

OS OS OS OS

process 5 process 5 process 5 w

process 9 process 9

process 8 |——> / —> A —

process 2 process 2 pProcgss 2 process 2
A
process 3 process 9 process 5
terminates, arrives, terminates,
fully leaves a hole goes into leaves
utilized hole another
hole

no longer one contiguous hole but several => "fragmentation"

Dynamic Storage-Allocation
Problem: which hole to pick?

e First-fit:

 Allocate the first hole that is big enough
» Generally faster than the other schemes
* Best-fit:
 Allocate the smallest hole that is big enough

 Produces the smallest leftover hole
 Worst-fit:
 Allocate the largest hole

» Produces the largest leftover hole

generally
faster time,
better
storage
utilization

7

must search

entire list,
unless
ordered by
size

27

Fragmentation

* External Fragmentation

» total memory space exists to satisfy a request, but not contiguous

e occurs in variable-sized allocation 1kl 2K Pkl 2K

free free

want 3K but can't get

* Internal Fragmentation

e occurs in fixed-sized allocation

 free memory internal to a partition, want what's left but can't
but too small to be used (because it's some else's partition!)

* First-fit analysis reveals that

* given N blocks allocated, 0.5 N blocks lost to fragmentation

 1/3 may be unusable -> 50-percent rule

28

Compaction: way to solve
(external) Fragmentation

* Move memory to make large
hole

e Dynamic relocation

 only if binding done at execution time

» Compaction not always possible! .4,

« if relocation is not dynamic... unless
double-indirect pointers are used

* 1/O buffer may be in use

 Backing store may have same
fragmentation problems

Externa nterna

300

600
700

900

OS

0
OS

250

. P1_

P1

500

750
1570
1000= = = -

Compaction
0
OS
300
800
900 |_P1

1000

29

Non-contiguous
memory allocation by
Paging

Paging

» For supporting noncontiguous allocation
 Avoids external fragmentation,

* could still have Internal fragmentation

e Avoids problem of varying sized memory chunks
* supports shared memory
* "Frame"” vs "Pages”
* Frame: a physical memory block
* Page: a logical memory block

* Size is power of 2, between 512 bytes and 16 Mbytes

« Programmer's view is one single memory space per process!

31

OS support for Paging

» OS keeps track of all free frames

« To run a program of size N pages, OS needs to find up
to N free frames and load program

 Page table

» data structure for mapping logical to physical addresses

 Backing store
» Storage (e.g., disk) for saving unused pages (i.e., swap)

« disk likewise split into fixed-sized blocks = size of frame
or multiple frames

32

Address Translation Scheme

» Address generated by CPU is divided into:

 Page number (p) — used as an index into a page table

* page table maps virtual to physical page number

» Page offset (d) — lower part of address within a page

page number | page offset

P d

* For given

m -n n

* Logical address space size of 2m

» Page size of 27

33

CPU

Paging Hardware

logical
address

d

P

page table

frame
f-1
physica :
address <f:000> 1
l d bytes
i] ‘> frame f
<f:fff>
frame
f+1
assume size of _
page is power of 2 fnhgrf’]gg:

34

Paging Model of Logical and
Physical Memory

frame
number
O [—_—
page 1 > 1|4 1| page O
2 &S
age?2 |— 2
— 3 [
page 3 /page {ab) 3| page 2
|Ogica| 4 page 1
memory
5
6
7| page 3
physical

memory

Paging Example

0] a 0
page 0] '2 frame O
3|1d
4 | e 4 |
page 1 2|4 \o e I | |frame 1
7 | h 116 |
8 I » 2| 1 8 m
page 2 1o« 32 o | [frame 2
11 | /)vagetable P
12
13 8 e
page 3 14|9 frame 3
15| p
logical memory 16
frame 4
20 ?
c frame 5
24 | ©
f
: frame 6
28
frame 7

physical memory

n=2 and m=4 32-byte memory and 4-byte pages

Fragmentation depending on
Page Size

« Example: Page size = 2 KB
* Process size = 72,766 bytes = 35 pages + 1,086 bytes
e Internal fragmentation of 2,048 - 1,086 = 962 bytes

« Worst case fragmentation = 1 frame — 1 byte

« On average fragmentation = 1/2 frame size

« Small frame size => need more entries in page table!

 Trend: Page sizes have become bigger, multi-size

* Windows 10 supports two page sizes: 4KB and 2MB

* Linux: 4KB and architecture-dependent size ("Huge pages")
$ getconf PAGESIZE

e Solaris: 8 KB and 4 MB

37

Free Frames

free-frame list
14
13
18
20
15

e
@«

page O
page 1
page 2
page 3

new process
~. =

(a)

Before allocation

13

14

15

16

17

18

19

20

21

free-frame list
15

e N
@

page 0
page 1
page 2
page 3

Nnew process
~—

14
13
18
20

new-process page table

wWwnN = 0O

(b)

After allocation

13

14

15

16

17

18

19

20

21

page 1

page O

page 2

page 3

Page Table vs. Frame Table

 Page table

* ONe per process

* maps pages in entire logical memory space to
frames (some pages may be unallocated)

* Frame table
* one for entire system

» which frames are available, one entry per frame,
maps frame to (page, process)

39

Implementation of Page Table

» One page table per process, identified by

* Page-table base register (PTBR): pointer to page table
In men.

 Page-table length register (PTLR): size of page table
» Without hardware support

 Every data/instruction access requires two memory
accesses:

(1) look up page table entry, (2) actual memory access

« With hardware support: TLB

40

TLB, part of MMU

» Translation look-aside buffer
* associative memory (cache) for fast lookup frame#
 Typical size 32~64 to 1,024 entries
* may have multi-level TLB, just like multi-level cache!

 Lookup is part of instruction pipeline, transparent to programmer

e OnTLB miss

* OS loads page-table entry into the TLB for faster access next time

* Replacement policies must be considered, e.g., LRU

« Some entries can be wired down for permanent fast access

41

ASID in TLB

e some TLB may store ASID in each TLB entry

« Address-space identifiers (ASIDs)
=> uniquely identifies each process

« Reason: Ensures ASID matches current process

* Purpose: TLB can contain entries for different
Drocesses

e Without ASID in TLB

e OS needs to flush TLB on context switch!
=> performance hit

42

TLB as Associative Memory

 Each entry has (tag, data)

 aka Content-addressable memory like CPU caches

* like dict in Python but in hardware

» parallel tag comparison, Page #

Frame #

return data whose tag matches

 Address translation (p, d)

* p = page number, d = displacement within page

* If p matches tag, return frame #

« Otherwise (TLB miss): fetch page table entry from memory

43

Paging Hardware with TLB

logical
address
CPU » D d
page frame
number number
—
_) .
—: TLB hit ohysical
— l address
- Y
> f d >
TLB 1
P
P <
TLB miss \
» f
- physical
memory

page table

Effective Access Time

« Associative Lookup = € time unit

« Can be < 10% of memory access time
e Hit ratio =
e page number is found in the associative registers

« ratio is related to number of associative registers

e Effective Access Time (EAT)
EAT =(1T +¢)a+ (2 + ¢)(1T — a)

=2+e—-a

45

Effective Access Time examples

FAT =2 +¢—

e Consider hit ratio oo = 80%, € = 20 ns for TLB
search, 10 ns for memory access

e EAT = 80% x 10 ns
+ 20% x 20 ns
=12 ns

e Consider more realistic hit ratio o = 99%

e EAT =99% x 10 ns
+ 1% x 20 ns
= 10.T ns

* More complex calculation for multi-level TLB

46

Memory Protection

Fach

frame has associated bits (kept in page table)

* indicates if read-only or read-write

e ado

Valid

itional bits for page execute-only, and other access rights

-Invalid Bit in Page-table entry

» "valid": page is in the process's logical address space

» "invalid": page is not in the process's logical address space
e.g., dynamic memory allocation, dynamic load/unload

Page-table length register (PTLR)

 save memory when most of page table entries are unused

Any violations => trap to the kernel

47

00000

10,468
12,287

page O

page 1

page 2

page 3

page 4

page 5

Page Table

frame number\ /valid—invalid bit

N O o B 0NN =+ O
OO0 |IN| BN
—_—l- g € | €| S| |

0
page table

0

1

Valid (v) or Invalid (1) Bit In A

page O

page 1

page 2

page 3

page 4

page 5

page n

48

 Keep just one copy of read-only (reentrant) code

Shared Pages

e For shared code

shared among processes (i.e., text editors, compilers,

window systems)

* For Interprocess communication

 Sharing of read-write pages

* OS can mix shared and non-shared pages

Fach process thinks it
paging system can ma

nas own address space, but

0 them to the same copy

49

Shared Pages Example

ed 1 . 0
3
ed?2 4 1| datai
ed3 © 2| data3
1
Same
data 1 page table 3] edf h . I
for P
1 ed 1 SICa
process P, \ ; %’ 4] ed? p y
ed 2
5
ed 3 : different
/ 7 5) ed 3 I . I
az page table Og 1ICa
44 for P2 7 data 2 .
. process P, COp |ES
3 8
ed?2 4
9
ed3 8
- 10
data 3 page table
for P, 11
process P,

50

Issues with Page Table

e Straightforward page table
* can get huge!
e Solutions
» Hierarchical page tables
» special case: clustered page tables

» Hashed page tables

* Inverted page tables

51

Straightforward page table

» Example: 32-bit address space
 Page size of 4 KB (212)

 Page table would have (232 /212 = 220) > 1 million
entries

* If each entry is 4 bytes -> 4 MB of physical
address space / memory for page table alone, per
process

» => Undesirable to allocate that much contiguously
IN Main memory

52

Hierarchical Page Tables

» Break up the logical address space into

page number page offset

multiple page tables o | | G

12

* Example: 2-level page table in 32—bi‘EOspamce

» Highest order bits (e.g., 10 bits) index into outer page
table 7, to find page-table T, in the page of page-table

» Next highest order bits (e.g, next 10 bits) index into
the page table T, to find the page of data

* Finally, the remaining bits (e.g., lowest 12 bits) are
offset into the page of data to access the data itself

« => Forward-mapped page table

53

Example of two-level page table

1
A

.1
,/,/’////’ . 100
500 N

\ : v .

500

s 708
outer page \.._,_ 929 .
table 1N -
. e ,»f::><::f/” :
logical address .
page of 929
Pi [P2 | d page table
page table >
O { memory
' o
pz{
outer page d
table {
page of
page table

What about 64-bit Address

Space!
* page size 4 KB (212) => 252 entries in PT!

e Two-level scheme

* inner PT: 210 4-byte entries

» QOuter PT has 242 entries or 244 bytes => 16 TeraBytes!

e Three-level scheme:

outer page Inner page offset
P1 P2 d
42 10 12

 add a 2nd outer page table => still 234 bytes (16 GB)

* 4 memory accesses to get to one physical memory

location!

2nd outer page

outer page

inner page

offset

P

D,

Ps3

d

32

10

10

12

55

Hashed Page Tables

Common in address spaces > 32 bits

The virtual page number is hashed into a page table

* This page table contains linked list of elements hashed to same location

Each element contains
1. the virtual page number
2. the value of the mapped page frame

3. a pointer to the next element

Virtual page numbers are compared in this chain searching
for a match

* If a match is found, the corresponding physical frame is extracted

56

Hashed Page Table

logical address

P d

y

physical
address

d

—

-—>|q|8|’Th|p|r|

hash table

|

physical
memory

57

Clustered Page Tables

* A variation of hashed page table for 64-bit
addresses

* each entry refers to several pages (such as 16)
rather than just one page

 Useful for sparse address spaces

* where memory references are non-contiguous
and scattered

58

Inverted Page Table

* One (inverted) page table for whole system

* One entry per frames

* Entry consists of

* the logical address of the page
stored in that real memory location,

e process ID of page's owner

« def LookupFrame(pid, p): # p is logical page#

CPU

logical
address

> pid

P

for 1 in range(numberOfFrames):

if (IPV[i].pid == pid and

IPV[i].p == p): # logical page number
frame number

return i
else

trap pagefault # page (pid, p) not in addr sp

search l

Y

physical

address

pid

©

page table

physical
memory

59

Inverted Page Tables

» Advantages: memory size

 Less memory needed vs. each page table (straightforward or
hierarchical)

* used in PowerPC, UltraSparc 64-bit

« Disadvantages: time for search
* search table on page reference -- but only when TLB misses
* more difficult to implement shared memory

* Solutions

 Performance: Use hash table to limit search to a few page-table entries

* Shared memory: one mapping of a virtual to shared physical address

60

Example: Oracle SPARC Solaris

* 64-bit OS with tightly integrated hardware

» Goals are efficiency, low overhead

 Two hash tables

One kernel and one for all user processes

FacC

FacC

n maps memory addresses from virtual to physical memory

n entry represents a contiguous area of mapped virtual

memory (so more like clustering)

* More efficient than a separate hash-table entry for each page

Each entry has base address and span (indicating the number
of pages the entry represents)

61

Swapping

Swapping

 Original Unix term: OS swaps an entire process
between main memory and backing store

« Swap-out: move process from memory to a backing store

« Swap-in: bring process from backing store into memory
for continued execution

 Very expensive. no longer used
Exception: Solaris still uses it in extreme conditions

* Modern variation: swap pages of a process

* Linux, Windows, macQOS: page-in and page-out.

63

Swapping vs. Rolling

Why swap?
 Processes need more memory than total physical memory

 Roll out, roll in: swap out lower-priority process to let
higher-priority process run first

Bottleneck: transfer time

« total transfer time is directly proportional to the amount of
memory swapped

System maintains a ready queue

* ready-to-run processes with memory images on disk

64

Schematic View of Swapping

main memory

operating B ——
system
@ swapreit process P,
— 4
process P,
@ swap In
L e—]
|
user \ //
SPACE backing store

65

Swapping on Mobile Systems:

Not usually done

* Flash memory based => avoid swapping!

e Flash

nas limited number of write cycles

* Poor throughput between flash memory and CPU on mobile
platform

* Instead, use other methods to free memory if low

« iOS asks apps to voluntarily relinquish allocated memory

« Read-only data thrown out and reloaded from flash if needed

e Fai

lure to free can result in termination

 Android terminates apps if low free memory, but first writes
application state to flash for fast restart

66

