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Chapter 9:  Main Memory
• Code memory loading 

• Contiguous Memory Allocation 

• Discontiguous memory allocation - Paging 
• Hardware Support 

• Page Table Structures 

• Swapping
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Background
• Instruction execution 

• Main memory and registers are only "storage" that a CPU 
can access directly 

• Memory unit only sees a stream of addresses + read 
requests, or address + data and write requests 

• Program must be brought (from disk) into memory 
and placed within a process for it to be run 

• a process may be swapped out to disk during execution 

• Protection of memory required to ensure correct 
operation

3



Base and Limit Registers
• Purpose: 

• define the logical 
address space 

• CPU must ensure 
• every memory access 

by user mode is 
between base and 
limit for that user
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Hardware Address Protection
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Program's location in memory
• Program code initially on disk 

• input queue: code ready to be brought into 
memory to execute 

• Without support, code must be loaded into 
address 0000 

• Inconvenient to have first user process 
physical address always at 0000 
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Address Binding in different 
stages of program's life

• Compile time 

• Load time 

• Execution time
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Binding of Instructions and Data 
to Memory: (1) Compile Time

• If memory location known a priori, absolute code can 
be generated (by linker) 
• Example: embedded systems, SDCC for 8051/EdSim51 

• must recompile/relink code if starting location changes 

• Source code addresses usually symbolic 
• Compiled code addresses bind to relocatable addresses 

• e.g., “14 bytes from beginning of this module” 

• Linker or loader will bind relocatable addresses to 
absolute addresses 
• Each binding maps one address space to another
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Example of compile-time address 
binding: MS DOS .COM file
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� Program is written as symbolic code 
� Compiler translates symbolic code into absolute code 
� If starting location changes Î 
� Example: MS-DOS .COM format binary 

int data; 
main( ) { 
    data = 3 * 7; 
    print(data); 
} 

Source Program 

.BASE  0x1000 

.START 
PUSH AX 
MOVE AX, 3 
MULT AX, 7 
MOVE (0x1018), AX 
CALL print, (0x1018) 
POP AX 
.END 
.SPACE (4) 

Disk Image 

PUSH   AX 
MOVE  AX, 3 
MULT AX, 7 
MOVE  (0x1018), AX 
CALL print, (0x1018) 
POP AX 
 

0x1000 

0x1018 

0x1010 

Memory Content 

Address Binding – Compile Time 

Compile Load 

recompile 

9

and link

linker adds 
base address 0x1000 to 
offset 0x18 and fills in 

absolute address 0x1018



Load-Time Binding of 
Instructions and Data to Memory

• Compiler must generate relocatable code  
• if memory location is not known at compile time 

• Relocatable code: loader fills in address 
• starting location (.BS) changes => reload code
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int data; 
main( ) { 
    data = 3 * 7; 
    print(data); 
} 

Source Program 

.START 
PUSH AX 
MOVE AX, 3 
MULT AX, 7 
MOVE (.BS+0x18), AX 
CALL print, (.BS+0x18) 
POP AX 
.END 
.SPACE (4) 

Disk Image 

PUSH   AX 
MOVE  AX, 3 
MULT AX, 7 
MOVE  (0x2018), AX 
CALL print, (0x2018) 
POP AX 
 

0x2000 

0x2018 

0x2010 

Memory Content 

Address Binding – Load Time 
� Compiler translates symbolic code into relocatable code 
� Relocatable code: 

¾ Machine language that can be run from any memory location  
� If starting location changes Î reload the code 

Compile Load 
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Execution-Time Binding of 
Instructions and Data to Memory

• Compiler-linker translates symbolic code 
into logical address (=virtual address) code 

• Binding delayed until run time if the process can 
be moved during its execution from one memory 
segment to another 

• Need hardware support for address maps  

• e.g., base and limit registers, MMU 

• Most general-purpose OSs use this way.
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Binding of Instructions and Data 
to Memory: (3) Execution Time
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Address Binding – Execution Time 
� Compiler translates symbolic code into logical-address 

(i.e. virtual-address) code 
� Special hardware (i.e. MMU) is needed for this scheme 
� Most general-purpose OS use this method 

int data; 
main( ) { 
    data = 3 * 7; 
    print(data); 
} 

Source Program 

.START 
PUSH AX 
MOVE AX, 3 
MULT AX, 7 
MOVE (0x18), AX 
CALL print, (0x18) 
POP AX 
.END 
.SPACE (4) 

Disk Image 

PUSH   AX 
MOVE  AX, 3 
MULT AX, 7 
MOVE  (0x18), AX 
CALL print, (0x18) 
POP AX 
 

0x2000 

0x2018 

0x2010 

Memory Content 

Compile Load 

Virtual addr. 

Physical addr. 
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• Hardware translates every reference  
from virtual address to physical address 
• physical = base + offset (= virtual address)

base = AX

offset=0x18



Logical vs. Physical Address 
Space

• Logical address 
• generated by the CPU;  also referred to as virtual address 

• Logical address space is the set of all logical addresses 
generated by a program 

• Physical address 
• address seen by the memory unit 

• Physical address space is the set of all physical addresses 
generated by a program
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Memory-Management Unit 
(MMU)

• Hardware device that at run time maps virtual to 
physical address 

• Simple scheme  
• physical address = relocation register + logical address 

• Base register now called relocation register 

• Part of MMU!  Set by OS 

• physical address is calculated by MMU for every access! 

• MS-DOS on Intel 80x86 used 4 relocation registers 

• Other schemes possible
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Dynamic Loading
• No need to load entire program into 

memory in order to execute 
• can load code into memory on demand 

• Advantages 
• Better memory-space utilization; unused routine 

is never loaded 

• Useful when large amounts of code are needed to 
handle infrequently occurring cases 

• No special support from OS is required 
• User program can all API to load in code; or 

compiler can also generate loading calls. 

• OS just provides libraries for dynamic loading
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Dynamic Loading example in C
• C API 

• dlopen() opens library and prepares it for use 

• dlsym(): looks up the value of a symbol in a given (opened) library 

• dlclose(): closes a DL library 

• Code
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#include	<dlfcn.h>	
int	main()	{	
double	(*cosine)(double);	//	function	pointer	
void*	handle=dlopen("/lib/libm.so.6",	RTLD_LAZY);	
cosine	=	dlsym(handle,	"cos");		//	load	code	
printf("%f\n",	(*cosine)(2.0));	//	call	function	
dlclose(handle);	

}



Dynamic Loading visualized
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Dynamic Loading 

Function A() { 
   B(); 
} 

Function B() { 
   C(); 
} 

Function C() { 
   …….; 
} 

Disk image 

 

Function A() 

Init 

Function A() 

Function B() 

After B() called 

Function A() 

Function B() 

Function C() 

After C() called 

Function A() 

Function B() 

After C() ends 
Memory content 
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Dynamic loading
• Libraries are combined by loader 

into program image 

• Advantage: faster during execution 

• Disadvantage: wasted memory, duplicate 
code 

• Static linking + dynamic loading 
• saves disk image space 

• however, dynamic loading  
=> still could load in multiple copies!
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Static Linking 
� Static linking: libraries are combined 

by the loader into the program in-
memory image 
¾Waste memory: duplicated code 
¾ Faster during execution time 

*Static linking + Dynamic loading 
¾ Still can’t prevent duplicated code 

main () 

Libc.lib 

 Program A 

main () 

Libc.lib 

 Program B 

main () 

Libc.lib 

 Program C 

main () 

Libc.lib 

main () 

Libc.lib 

main () 

Libc.lib 

 Memory 
(physical)
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Dynamic Linking
• linking postponed until execution time 

• Particularly useful for libraries 

• Mechanism : Stub 
• used to locate the appropriate memory-resident library routine 

• Stub replaces itself with address of the routine, and executes the 
routine 

• OS checks if routine is in process's memory address 
• If not in address space, add to address space 

• Consider applicability to patching system libraries 

• Versioning may be needed
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Dynamic Linking
• One copy of code in memory and shared 

• stub is included in program in-memory image for 
each library reference 

• Stub call:  

• check if referred library is in memory 

• if not, load the library 

• Execute code 

• DLL on Windows
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Contiguous 
Allocation
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Contiguous Allocation
• Main memory usually has two partitions: 

• Resident OS, usually held in low memory with interrupt vector 

• User processes are held in high memory, each contained in single 
contiguous section of memory  

• But Windows, Linux place OS in high memory... 

• Fixed partition 
• each process is loaded into one partition of a fixed size 

• degree of multiprogramming is bounded by the #partitions 

• Variable partition 
• Holes = blocks of contiguous free memory 

• Holes of different sizes are scattered in memory.
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Mechanisms for supporting 
Contiguous Allocation

• Relocation registers (base, limit) 
• protect user processes from each other, and  

• protect OS from being changed by user code 

• MMU 
• maps logical address dynamically 

• Can then allow actions such as kernel code being 
transient and kernel changing size
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Hardware Support for Relocation 
and Limit Registers
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logical address is in [0, limit), as unsigned 
=> no need to compare if < 0



Multiple-partition allocation
• Variable-sized partitions 

• More efficient: sized to a given process's needs 

• Holes of various size are scattered throughout memory 

• Allocated memory from a hole large enough 
to accommodate it 
• Process exit => frees its partition, OS combines 

adjacent free partitions 

• OS maintains information about: (a) allocated 
partitions (b) holes
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Multi-partition allocation 
example
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process 9
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leaves 
another 
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no longer one contiguous hole but several => "fragmentation"



Dynamic Storage-Allocation 
Problem: which hole to pick?

• First-fit:   

• Allocate the first hole that is big enough 

• Generally faster than the other schemes 

• Best-fit:   
• Allocate the smallest hole that is big enough 

• Produces the smallest leftover hole 

• Worst-fit: 
• Allocate the largest hole 

• Produces the largest leftover hole
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must search 
entire list, 
unless 
ordered by 
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Fragmentation
• External Fragmentation 

• total memory space exists to satisfy a request, but not contiguous 

• occurs in variable-sized allocation 

• Internal Fragmentation 
• occurs in fixed-sized allocation 

• free memory internal to a partition,  
but too small to be used 

• First-fit analysis reveals that  
• given N blocks allocated, 0.5 N blocks lost to fragmentation 

• 1/3 may be unusable -> 50-percent rule
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1K 2K 
free

1K 2K 
free

2K 2K 2K 2K

want 3K but can't get

want what's left but can't 
(because it's some else's partition!)



Compaction: way to solve 
(external) Fragmentation

• Move memory to make large 
hole 
• Dynamic relocation 

• only if binding done at execution time 

• Compaction not always possible! 
• if relocation is not dynamic... unless 

double-indirect pointers are used 

• I/O buffer may be in use 

• Backing store may have same 
fragmentation problems
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Fragmentation 
� External fragmentation 

¾ Total free memory space is big enough to 
satisfy a request, but is not contiguous 

¾ Occur in variable-size allocation 
� Internal fragmentation 

¾ Memory that is internal to a partition  
 but is not being used 
¾ Occur in fixed-partition allocation 

� Solution: compaction 
¾ Shuffle the memory contents to place all 

free memory together in one large block  
 at execution time 
¾ Only if binding is done at execution time 
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Non-contiguous 
memory allocation by 

Paging
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Paging
• For supporting noncontiguous allocation 

• Avoids external fragmentation,  

• could still have Internal fragmentation 

• Avoids problem of varying sized memory chunks 

• supports shared memory 

• "Frame" vs "Pages" 

• Frame: a physical memory block 

• Page: a logical memory block 

• Size is power of 2, between 512 bytes and 16 Mbytes 

• Programmer's view is one single memory space per process!
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OS support for Paging
• OS keeps track of all free frames 

• To run a program of size N pages, OS needs to find up 
to N free frames and load program 

• Page table 

• data structure for mapping logical to physical addresses 

• Backing store 

• Storage (e.g., disk) for saving unused pages (i.e., swap) 

• disk likewise split into fixed-sized blocks = size of frame 
or multiple frames
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Address Translation Scheme
• Address generated by CPU is divided into: 

• Page number (p) – used as an index into a page table  

• page table maps virtual to physical page number 

• Page offset (d) – lower part of address within a page

• For given 

• Logical address space size of 2m  

• Page size of 2n
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Paging Hardware
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Paging Model of Logical and  
Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Fragmentation depending on 
Page Size

• Example: Page size = 2 KB 
• Process size = 72,766 bytes = 35 pages + 1,086 bytes 

• Internal fragmentation of 2,048 - 1,086 = 962 bytes 

• Worst case fragmentation = 1 frame – 1 byte 

• On average fragmentation = 1/2 frame size 

• Small frame size => need more entries in page table! 

• Trend: Page sizes have become bigger, multi-size 
• Windows 10 supports two page sizes: 4KB and 2MB 

• Linux: 4KB and architecture-dependent size ("Huge pages") 
$	getconf	PAGESIZE 

• Solaris: 8 KB and 4 MB
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Free Frames

Before allocation After allocation
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Page Table vs. Frame Table
• Page table 

• one per process 

• maps pages in entire logical memory space to 
frames (some pages may be unallocated) 

• Frame table 
• one for entire system 

• which frames are available, one entry per frame, 
maps frame to (page, process)
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Implementation of Page Table
• One page table per process, identified by 

• Page-table base register (PTBR): pointer to page table 
in men. 

• Page-table length register (PTLR): size of page table 

• Without hardware support 

• Every data/instruction access requires two memory 
accesses: 
(1) look up page table entry, (2) actual memory access 

• With hardware support: TLB 
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TLB, part of MMU
• Translation look-aside buffer 

• associative memory (cache) for fast lookup frame# 

• Typical size 32~64 to 1,024 entries 

• may have multi-level TLB, just like multi-level cache! 

• Lookup is part of instruction pipeline, transparent to programmer 

• On TLB miss 

• OS loads page-table entry into the TLB for faster access next time 

• Replacement policies must be considered, e.g., LRU 

• Some entries can be wired down for permanent fast access
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ASID in TLB
• some TLB may store ASID in each TLB entry 

• Address-space identifiers (ASIDs)  
=> uniquely identifies each process 

• Reason: Ensures ASID matches current process 

• Purpose: TLB can contain entries for different 
processes 

• Without ASID in TLB 
• OS needs to flush TLB on context switch!  

=> performance hit
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TLB as Associative Memory
• Each entry has (tag, data) 

• aka Content-addressable memory like CPU caches 

• like dict in Python but in hardware 

• parallel tag comparison, 
return data whose tag matches 

• Address translation (p, d) 
• p = page number, d = displacement within page 

• If p matches tag, return frame # 

• Otherwise (TLB miss): fetch page table entry from memory
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Paging Hardware with TLB
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Effective Access Time
• Associative Lookup = ε time unit 

• Can be < 10% of memory access time 

• Hit ratio = α
• page number is found in the associative registers 

• ratio is related to number of associative registers 

• Effective Access Time (EAT)

  EAT = (1 + ε) α + (2 + ε)(1 – α) 

   = 2 + ε – α
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Effective Access Time examples
 EAT = 2 + ε – α 

• Consider hit ratio α = 80%, ε = 20 ns for TLB 
search, 10 ns for memory access 
• EAT = 80% x 10 ns 

       + 20% x 20 ns 
       = 12 ns 

• Consider more realistic hit ratio  α = 99% 
• EAT = 99% x 10 ns 

       + 1%   x 20 ns 
       = 10.1 ns 

• More complex calculation for multi-level TLB
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Memory Protection
• Each frame has associated bits (kept in page table) 

• indicates if read-only or read-write 

• additional bits for page execute-only, and other access rights 

• Valid-Invalid Bit in Page-table entry 
• "valid": page is in the process's logical address space 

• "invalid": page is not in the process's logical address space 
e.g., dynamic memory allocation, dynamic load/unload 

• Page-table length register (PTLR) 
• save memory when most of page table entries are unused 

• Any violations => trap to the kernel
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Valid (v) or Invalid (i) Bit In A 
Page Table
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Shared Pages
• For shared code 

• Keep just one copy of read-only (reentrant) code 
shared among processes (i.e., text editors, compilers, 
window systems) 

• For interprocess communication 
• Sharing of read-write pages 

• OS can mix shared and non-shared pages 
• Each process thinks it has own address space, but 

paging system can map them to the same copy
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Shared Pages Example
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Issues with Page Table
• Straightforward page table 

• can get huge! 

• Solutions 
• Hierarchical page tables 

• special case: clustered page tables 

• Hashed page tables 

• Inverted page tables
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Straightforward page table
• Example: 32-bit address space 

• Page size of 4 KB (212) 

• Page table would have (232 / 212 = 220) > 1 million 
entries 

• If each entry is 4 bytes -> 4 MB of physical 
address space / memory for page table alone, per 
process 

• => Undesirable to allocate that much contiguously 
in main memory
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Hierarchical Page Tables
• Break up the logical address space into 

multiple page tables 

• Example: 2-level page table in 32-bit space 

• Highest order bits (e.g., 10 bits) index into outer page 
table To to find page-table Tp in the page of page-table 

• Next highest order bits (e.g, next 10 bits) index into 
the page table Tp to find the page of data 

• Finally, the remaining bits (e.g., lowest 12 bits) are 
offset into the page of data to access the data itself 

• => Forward-mapped page table
53
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Example of two-level page table
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What about 64-bit Address 
Space?

• page size 4 KB (212) => 252 entries in PT! 

• Two-level scheme 
• inner PT: 210 4-byte entries 

• Outer PT has 242 entries or 244 bytes => 16 TeraBytes!  

• Three-level scheme: 

• add a 2nd outer page table => still 234 bytes (16 GB) 

• 4 memory accesses to get to one physical memory 
location!
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Hashed Page Tables
• Common in address spaces > 32 bits 

• The virtual page number is hashed into a page table 

• This page table contains linked list of elements hashed to same location 

• Each element contains  

1. the virtual page number  

2. the value of the mapped page frame  

3. a pointer to the next element 

• Virtual page numbers are compared in this chain searching 
for a match 
• If a match is found, the corresponding physical frame is extracted
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Hashed Page Table
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Clustered Page Tables
• A variation of hashed page table for 64-bit 

addresses 
• each entry refers to several pages (such as 16) 

rather than just one page 

• Useful for sparse address spaces  
• where memory references are non-contiguous 

and scattered
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Inverted Page Table
• One (inverted) page table for whole system 

• One entry per frames 

• Entry consists of  
• the logical address of the page  

stored in that real memory location,  

• process ID of page's owner 

• def	LookupFrame(pid,	p):	#	p	is	logical	page#	
		for	i	in	range(numberOfFrames):	
				if	(IPV[i].pid	==	pid	and	
							IPV[i].p	==	p):		#	logical	page	number	
					return	i										#	frame	number	
			else		
					trap	pagefault		#	page	(pid,	p)	not	in	addr	sp
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Inverted Page Tables
• Advantages: memory size 

• Less memory needed vs. each page table (straightforward or 
hierarchical) 

• used in PowerPC, UltraSparc 64-bit 

• Disadvantages: time for search 
• search table on page reference -- but only when TLB misses 

• more difficult to implement shared memory 

• Solutions 
• Performance: Use hash table to limit search to a few page-table entries 

• Shared memory: one mapping of a virtual to shared physical address
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Example: Oracle SPARC Solaris
• 64-bit OS with tightly integrated hardware 

• Goals are efficiency, low overhead 

• Two hash tables 
• One kernel and one for all user processes 

• Each maps memory addresses from virtual to physical memory 

• Each entry represents a contiguous area of mapped virtual 
memory (so more like clustering) 

• More efficient than a separate hash-table entry for each page 

• Each entry has  base address and span (indicating the number 
of pages the entry represents)
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Swapping
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Swapping
• Original Unix term: OS swaps an entire process 

between main memory and backing store 
• Swap-out: move process from memory to a backing store 

• Swap-in: bring process from backing store into memory 
for continued execution 

• Very expensive. no longer used 
Exception: Solaris still uses it in extreme conditions 

• Modern variation: swap pages of a process 
• Linux, Windows, macOS: page-in and page-out.

63



Swapping vs. Rolling
• Why swap? 

• Processes need more memory than total physical memory 

• Roll out, roll in: swap out lower-priority process to let 
higher-priority process run first 

• Bottleneck: transfer time 

• total transfer time is directly proportional to the amount of 
memory swapped 

• System maintains a ready queue 

• ready-to-run processes with memory images on disk
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Schematic View of Swapping
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Swapping on Mobile Systems: 
Not usually done

• Flash memory based => avoid swapping! 

• Flash has limited number of write cycles 

• Poor throughput between flash memory and CPU on mobile 
platform 

• Instead, use other methods to free memory if low 

• iOS asks apps to voluntarily relinquish allocated memory 

• Read-only data thrown out and reloaded from flash if needed 

• Failure to free can result in termination 

• Android terminates apps if low free memory, but first writes 
application state to flash for fast restart
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