
Chapter 9:
Main Memory

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

1

Chapter 9: Main Memory
• Code memory loading

• Contiguous Memory Allocation

• Discontiguous memory allocation - Paging
• Hardware Support

• Page Table Structures

• Swapping

2

Background
• Instruction execution

• Main memory and registers are only "storage" that a CPU
can access directly

• Memory unit only sees a stream of addresses + read
requests, or address + data and write requests

• Program must be brought (from disk) into memory
and placed within a process for it to be run

• a process may be swapped out to disk during execution

• Protection of memory required to ensure correct
operation

3

Base and Limit Registers
• Purpose:

• define the logical
address space

• CPU must ensure
• every memory access

by user mode is
between base and
limit for that user

4

= base + limit

limit = 120920

base

base+limit

420940

Hardware Address Protection

5

Program's location in memory
• Program code initially on disk

• input queue: code ready to be brought into
memory to execute

• Without support, code must be loaded into
address 0000

• Inconvenient to have first user process
physical address always at 0000

6

Address Binding in different
stages of program's life

• Compile time

• Load time

• Execution time

7

source program

compiler

object file

linker

executable file

loader

program in memory

compile
time

load
time

exec.
time

dynamically
linked

libraries

other
object
files

Binding of Instructions and Data
to Memory: (1) Compile Time

• If memory location known a priori, absolute code can
be generated (by linker)
• Example: embedded systems, SDCC for 8051/EdSim51

• must recompile/relink code if starting location changes

• Source code addresses usually symbolic
• Compiled code addresses bind to relocatable addresses

• e.g., “14 bytes from beginning of this module”

• Linker or loader will bind relocatable addresses to
absolute addresses
• Each binding maps one address space to another

8

Example of compile-time address
binding: MS DOS .COM file

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 6

� Program is written as symbolic code
� Compiler translates symbolic code into absolute code
� If starting location changes Î
� Example: MS-DOS .COM format binary

int data;
main() {
 data = 3 * 7;
 print(data);
}

Source Program

.BASE 0x1000

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x1018), AX
CALL print, (0x1018)
POP AX
.END
.SPACE (4)

Disk Image

PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x1018), AX
CALL print, (0x1018)
POP AX

0x1000

0x1018

0x1010

Memory Content

Address Binding – Compile Time

Compile Load

recompile

9

and link

linker adds
base address 0x1000 to
offset 0x18 and fills in

absolute address 0x1018

Load-Time Binding of
Instructions and Data to Memory

• Compiler must generate relocatable code
• if memory location is not known at compile time

• Relocatable code: loader fills in address
• starting location (.BS) changes => reload code

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 7

int data;
main() {
 data = 3 * 7;
 print(data);
}

Source Program

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (.BS+0x18), AX
CALL print, (.BS+0x18)
POP AX
.END
.SPACE (4)

Disk Image

PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x2018), AX
CALL print, (0x2018)
POP AX

0x2000

0x2018

0x2010

Memory Content

Address Binding – Load Time
� Compiler translates symbolic code into relocatable code
� Relocatable code:

¾ Machine language that can be run from any memory location
� If starting location changes Î reload the code

Compile Load

10

base = 0x2000

Execution-Time Binding of
Instructions and Data to Memory

• Compiler-linker translates symbolic code
into logical address (=virtual address) code

• Binding delayed until run time if the process can
be moved during its execution from one memory
segment to another

• Need hardware support for address maps

• e.g., base and limit registers, MMU

• Most general-purpose OSs use this way.

11

Binding of Instructions and Data
to Memory: (3) Execution Time

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 8

Address Binding – Execution Time
� Compiler translates symbolic code into logical-address

(i.e. virtual-address) code
� Special hardware (i.e. MMU) is needed for this scheme
� Most general-purpose OS use this method

int data;
main() {
 data = 3 * 7;
 print(data);
}

Source Program

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x18), AX
CALL print, (0x18)
POP AX
.END
.SPACE (4)

Disk Image

PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x18), AX
CALL print, (0x18)
POP AX

0x2000

0x2018

0x2010

Memory Content

Compile Load

Virtual addr.

Physical addr.

12

• Hardware translates every reference
from virtual address to physical address
• physical = base + offset (= virtual address)

base = AX

offset=0x18

Logical vs. Physical Address
Space

• Logical address
• generated by the CPU; also referred to as virtual address

• Logical address space is the set of all logical addresses
generated by a program

• Physical address
• address seen by the memory unit

• Physical address space is the set of all physical addresses
generated by a program

13

binding compile time load time execution time

logical address same as physical same as physical remapped

Memory-Management Unit
(MMU)

• Hardware device that at run time maps virtual to
physical address

• Simple scheme
• physical address = relocation register + logical address

• Base register now called relocation register

• Part of MMU! Set by OS

• physical address is calculated by MMU for every access!

• MS-DOS on Intel 80x86 used 4 relocation registers

• Other schemes possible

14

Dynamic Loading
• No need to load entire program into

memory in order to execute
• can load code into memory on demand

• Advantages
• Better memory-space utilization; unused routine

is never loaded

• Useful when large amounts of code are needed to
handle infrequently occurring cases

• No special support from OS is required
• User program can all API to load in code; or

compiler can also generate loading calls.

• OS just provides libraries for dynamic loading

15

Dynamic Loading example in C
• C API

• dlopen() opens library and prepares it for use

• dlsym(): looks up the value of a symbol in a given (opened) library

• dlclose(): closes a DL library

• Code

16

#include	<dlfcn.h>	
int	main()	{	
double	(*cosine)(double);	//	function	pointer	
void*	handle=dlopen("/lib/libm.so.6",	RTLD_LAZY);	
cosine	=	dlsym(handle,	"cos");		//	load	code	
printf("%f\n",	(*cosine)(2.0));	//	call	function	
dlclose(handle);	

}

Dynamic Loading visualized

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 14

Dynamic Loading

Function A() {
 B();
}

Function B() {
 C();
}

Function C() {
 …….;
}

Disk image

Function A()

Init

Function A()

Function B()

After B() called

Function A()

Function B()

Function C()

After C() called

Function A()

Function B()

After C() ends
Memory content

17

Dynamic loading
• Libraries are combined by loader

into program image

• Advantage: faster during execution

• Disadvantage: wasted memory, duplicate
code

• Static linking + dynamic loading
• saves disk image space

• however, dynamic loading
=> still could load in multiple copies!

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 15

Static Linking
� Static linking: libraries are combined

by the loader into the program in-
memory image
¾Waste memory: duplicated code
¾ Faster during execution time

*Static linking + Dynamic loading
¾ Still can’t prevent duplicated code

main ()

Libc.lib

 Program A

main ()

Libc.lib

 Program B

main ()

Libc.lib

 Program C

main ()

Libc.lib

main ()

Libc.lib

main ()

Libc.lib

 Memory
(physical)

18

Dynamic Linking
• linking postponed until execution time

• Particularly useful for libraries

• Mechanism : Stub
• used to locate the appropriate memory-resident library routine

• Stub replaces itself with address of the routine, and executes the
routine

• OS checks if routine is in process's memory address
• If not in address space, add to address space

• Consider applicability to patching system libraries

• Versioning may be needed

19

Dynamic Linking
• One copy of code in memory and shared

• stub is included in program in-memory image for
each library reference

• Stub call:

• check if referred library is in memory

• if not, load the library

• Execute code

• DLL on Windows

20

Contiguous
Allocation

21

Contiguous Allocation
• Main memory usually has two partitions:

• Resident OS, usually held in low memory with interrupt vector

• User processes are held in high memory, each contained in single
contiguous section of memory

• But Windows, Linux place OS in high memory...

• Fixed partition
• each process is loaded into one partition of a fixed size

• degree of multiprogramming is bounded by the #partitions

• Variable partition
• Holes = blocks of contiguous free memory

• Holes of different sizes are scattered in memory.

22

Mechanisms for supporting
Contiguous Allocation

• Relocation registers (base, limit)
• protect user processes from each other, and

• protect OS from being changed by user code

• MMU
• maps logical address dynamically

• Can then allow actions such as kernel code being
transient and kernel changing size

23

Hardware Support for Relocation
and Limit Registers

24

logical address is in [0, limit), as unsigned
=> no need to compare if < 0

Multiple-partition allocation
• Variable-sized partitions

• More efficient: sized to a given process's needs

• Holes of various size are scattered throughout memory

• Allocated memory from a hole large enough
to accommodate it
• Process exit => frees its partition, OS combines

adjacent free partitions

• OS maintains information about: (a) allocated
partitions (b) holes

25

Multi-partition allocation
example

26

fully
utilized

process 8
terminates,

leaves a hole

process 9
arrives,

goes into
hole

process 9

process 5
terminates,

leaves
another

hole

no longer one contiguous hole but several => "fragmentation"

Dynamic Storage-Allocation
Problem: which hole to pick?

• First-fit:

• Allocate the first hole that is big enough

• Generally faster than the other schemes

• Best-fit:
• Allocate the smallest hole that is big enough

• Produces the smallest leftover hole

• Worst-fit:
• Allocate the largest hole

• Produces the largest leftover hole

27

must search
entire list,
unless
ordered by
size

generally
faster time,
better
storage
utilization

Fragmentation
• External Fragmentation

• total memory space exists to satisfy a request, but not contiguous

• occurs in variable-sized allocation

• Internal Fragmentation
• occurs in fixed-sized allocation

• free memory internal to a partition,
but too small to be used

• First-fit analysis reveals that
• given N blocks allocated, 0.5 N blocks lost to fragmentation

• 1/3 may be unusable -> 50-percent rule

28

1K 2K
free

1K 2K
free

2K 2K 2K 2K

want 3K but can't get

want what's left but can't
(because it's some else's partition!)

Compaction: way to solve
(external) Fragmentation

• Move memory to make large
hole
• Dynamic relocation

• only if binding done at execution time

• Compaction not always possible!
• if relocation is not dynamic... unless

double-indirect pointers are used

• I/O buffer may be in use

• Backing store may have same
fragmentation problems

Chapter8 Memory Management Operating System Concepts – NTHU LSA Lab 27

Fragmentation
� External fragmentation

¾ Total free memory space is big enough to
satisfy a request, but is not contiguous

¾ Occur in variable-size allocation
� Internal fragmentation

¾ Memory that is internal to a partition
 but is not being used
¾ Occur in fixed-partition allocation

� Solution: compaction
¾ Shuffle the memory contents to place all

free memory together in one large block
 at execution time
¾ Only if binding is done at execution time

P2

OS

P1

0

300

600
700

900
1000

External
0

250

500

750

1000

OS

P2

P1

P3

Internal

Compaction

P2

OS

P1

0

300

800
900

1000
29

Non-contiguous
memory allocation by

Paging

30

Paging
• For supporting noncontiguous allocation

• Avoids external fragmentation,

• could still have Internal fragmentation

• Avoids problem of varying sized memory chunks

• supports shared memory

• "Frame" vs "Pages"

• Frame: a physical memory block

• Page: a logical memory block

• Size is power of 2, between 512 bytes and 16 Mbytes

• Programmer's view is one single memory space per process!

31

OS support for Paging
• OS keeps track of all free frames

• To run a program of size N pages, OS needs to find up
to N free frames and load program

• Page table

• data structure for mapping logical to physical addresses

• Backing store

• Storage (e.g., disk) for saving unused pages (i.e., swap)

• disk likewise split into fixed-sized blocks = size of frame
or multiple frames

32

Address Translation Scheme
• Address generated by CPU is divided into:

• Page number (p) – used as an index into a page table

• page table maps virtual to physical page number

• Page offset (d) – lower part of address within a page

• For given

• Logical address space size of 2m

• Page size of 2n

33

Paging Hardware

34

frame f

<f:000>

<f:fff>

d bytes

f

frame
f-1

frame
f +1

assume size of
page is power of 2

Paging Model of Logical and
Physical Memory

35

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

36

page 0

page 1

page 2

page 3

frame 0

frame 1

frame 2

frame 3

frame 4

frame 5

frame 6

frame 7

Fragmentation depending on
Page Size

• Example: Page size = 2 KB
• Process size = 72,766 bytes = 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086 = 962 bytes

• Worst case fragmentation = 1 frame – 1 byte

• On average fragmentation = 1/2 frame size

• Small frame size => need more entries in page table!

• Trend: Page sizes have become bigger, multi-size
• Windows 10 supports two page sizes: 4KB and 2MB

• Linux: 4KB and architecture-dependent size ("Huge pages")
$	getconf	PAGESIZE

• Solaris: 8 KB and 4 MB

37

Free Frames

Before allocation After allocation

38

Page Table vs. Frame Table
• Page table

• one per process

• maps pages in entire logical memory space to
frames (some pages may be unallocated)

• Frame table
• one for entire system

• which frames are available, one entry per frame,
maps frame to (page, process)

39

Implementation of Page Table
• One page table per process, identified by

• Page-table base register (PTBR): pointer to page table
in men.

• Page-table length register (PTLR): size of page table

• Without hardware support

• Every data/instruction access requires two memory
accesses:
(1) look up page table entry, (2) actual memory access

• With hardware support: TLB

40

TLB, part of MMU
• Translation look-aside buffer

• associative memory (cache) for fast lookup frame#

• Typical size 32~64 to 1,024 entries

• may have multi-level TLB, just like multi-level cache!

• Lookup is part of instruction pipeline, transparent to programmer

• On TLB miss

• OS loads page-table entry into the TLB for faster access next time

• Replacement policies must be considered, e.g., LRU

• Some entries can be wired down for permanent fast access

41

ASID in TLB
• some TLB may store ASID in each TLB entry

• Address-space identifiers (ASIDs)
=> uniquely identifies each process

• Reason: Ensures ASID matches current process

• Purpose: TLB can contain entries for different
processes

• Without ASID in TLB
• OS needs to flush TLB on context switch!

=> performance hit

42

TLB as Associative Memory
• Each entry has (tag, data)

• aka Content-addressable memory like CPU caches

• like dict in Python but in hardware

• parallel tag comparison,
return data whose tag matches

• Address translation (p, d)
• p = page number, d = displacement within page

• If p matches tag, return frame #

• Otherwise (TLB miss): fetch page table entry from memory

43

Paging Hardware with TLB

44

Effective Access Time
• Associative Lookup = ε time unit

• Can be < 10% of memory access time

• Hit ratio = α
• page number is found in the associative registers

• ratio is related to number of associative registers

• Effective Access Time (EAT)

 EAT = (1 + ε) α + (2 + ε)(1 – α)

 = 2 + ε – α

45

Effective Access Time examples
 EAT = 2 + ε – α

• Consider hit ratio α = 80%, ε = 20 ns for TLB
search, 10 ns for memory access
• EAT = 80% x 10 ns

 + 20% x 20 ns
 = 12 ns

• Consider more realistic hit ratio α = 99%
• EAT = 99% x 10 ns

 + 1% x 20 ns
 = 10.1 ns

• More complex calculation for multi-level TLB

46

Memory Protection
• Each frame has associated bits (kept in page table)

• indicates if read-only or read-write

• additional bits for page execute-only, and other access rights

• Valid-Invalid Bit in Page-table entry
• "valid": page is in the process's logical address space

• "invalid": page is not in the process's logical address space
e.g., dynamic memory allocation, dynamic load/unload

• Page-table length register (PTLR)
• save memory when most of page table entries are unused

• Any violations => trap to the kernel

47

Valid (v) or Invalid (i) Bit In A
Page Table

48

Shared Pages
• For shared code

• Keep just one copy of read-only (reentrant) code
shared among processes (i.e., text editors, compilers,
window systems)

• For interprocess communication
• Sharing of read-write pages

• OS can mix shared and non-shared pages
• Each process thinks it has own address space, but

paging system can map them to the same copy

49

Shared Pages Example

50

same
physical

copy,
different
logical
copies

Issues with Page Table
• Straightforward page table

• can get huge!

• Solutions
• Hierarchical page tables

• special case: clustered page tables

• Hashed page tables

• Inverted page tables

51

Straightforward page table
• Example: 32-bit address space

• Page size of 4 KB (212)

• Page table would have (232 / 212 = 220) > 1 million
entries

• If each entry is 4 bytes -> 4 MB of physical
address space / memory for page table alone, per
process

• => Undesirable to allocate that much contiguously
in main memory

52

Hierarchical Page Tables
• Break up the logical address space into

multiple page tables

• Example: 2-level page table in 32-bit space

• Highest order bits (e.g., 10 bits) index into outer page
table To to find page-table Tp in the page of page-table

• Next highest order bits (e.g, next 10 bits) index into
the page table Tp to find the page of data

• Finally, the remaining bits (e.g., lowest 12 bits) are
offset into the page of data to access the data itself

• => Forward-mapped page table
53

10 10 12

Example of two-level page table

54

What about 64-bit Address
Space?

• page size 4 KB (212) => 252 entries in PT!

• Two-level scheme
• inner PT: 210 4-byte entries

• Outer PT has 242 entries or 244 bytes => 16 TeraBytes!

• Three-level scheme:

• add a 2nd outer page table => still 234 bytes (16 GB)

• 4 memory accesses to get to one physical memory
location!

55

Hashed Page Tables
• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

• This page table contains linked list of elements hashed to same location

• Each element contains

1. the virtual page number

2. the value of the mapped page frame

3. a pointer to the next element

• Virtual page numbers are compared in this chain searching
for a match
• If a match is found, the corresponding physical frame is extracted

56

Hashed Page Table

57

Clustered Page Tables
• A variation of hashed page table for 64-bit

addresses
• each entry refers to several pages (such as 16)

rather than just one page

• Useful for sparse address spaces
• where memory references are non-contiguous

and scattered

58

Inverted Page Table
• One (inverted) page table for whole system

• One entry per frames

• Entry consists of
• the logical address of the page

stored in that real memory location,

• process ID of page's owner

• def	LookupFrame(pid,	p):	#	p	is	logical	page#	
		for	i	in	range(numberOfFrames):	
				if	(IPV[i].pid	==	pid	and	
							IPV[i].p	==	p):		#	logical	page	number	
					return	i										#	frame	number	
			else		
					trap	pagefault		#	page	(pid,	p)	not	in	addr	sp

59

Inverted Page Tables
• Advantages: memory size

• Less memory needed vs. each page table (straightforward or
hierarchical)

• used in PowerPC, UltraSparc 64-bit

• Disadvantages: time for search
• search table on page reference -- but only when TLB misses

• more difficult to implement shared memory

• Solutions
• Performance: Use hash table to limit search to a few page-table entries

• Shared memory: one mapping of a virtual to shared physical address

60

Example: Oracle SPARC Solaris
• 64-bit OS with tightly integrated hardware

• Goals are efficiency, low overhead

• Two hash tables
• One kernel and one for all user processes

• Each maps memory addresses from virtual to physical memory

• Each entry represents a contiguous area of mapped virtual
memory (so more like clustering)

• More efficient than a separate hash-table entry for each page

• Each entry has base address and span (indicating the number
of pages the entry represents)

61

Swapping

62

Swapping
• Original Unix term: OS swaps an entire process

between main memory and backing store
• Swap-out: move process from memory to a backing store

• Swap-in: bring process from backing store into memory
for continued execution

• Very expensive. no longer used
Exception: Solaris still uses it in extreme conditions

• Modern variation: swap pages of a process
• Linux, Windows, macOS: page-in and page-out.

63

Swapping vs. Rolling
• Why swap?

• Processes need more memory than total physical memory

• Roll out, roll in: swap out lower-priority process to let
higher-priority process run first

• Bottleneck: transfer time

• total transfer time is directly proportional to the amount of
memory swapped

• System maintains a ready queue

• ready-to-run processes with memory images on disk

64

Schematic View of Swapping

65

Swapping on Mobile Systems:
Not usually done

• Flash memory based => avoid swapping!

• Flash has limited number of write cycles

• Poor throughput between flash memory and CPU on mobile
platform

• Instead, use other methods to free memory if low

• iOS asks apps to voluntarily relinquish allocated memory

• Read-only data thrown out and reloaded from flash if needed

• Failure to free can result in termination

• Android terminates apps if low free memory, but first writes
application state to flash for fast restart

66

