
Preemptive
Multithreading using

Timer

1

Preemptive Scheduling
• Ability to switch thread even w/out thread-yield

• Mechanism: timer interrupt
• hardware interrupts current thread, executes ISR

• ISR saves current state, picks new thread, resumes it

• Issues
• Granularity of timer (how often?)

• Auto or manual reload? fixed interval or variable?

• Other sources of interrupt? Atomic region

2

Timers on 8051
• 8051 has two timers: T0, T1

• T0 accessed as TL0 (lower), TH0 (higher)
T1 accessed as TL1, TH1 (SFRs)

• Resolution: 1/12 of crystal oscillator frequency
e.g., 12MHz XTAL => 1µs timer unit

• T1 is used as baud generator for UART
=> Use T0 for preemption timer

• Options: 8-bit, 13-bit, 16-bit

3

How to use Timer T0
• Configure Timer Mode (0, 1, 2, or 3)

• Whether to start by software or hardware trigger

• Load starting val into register pair TH0:TL0.

• To delay x cycles, load negative x

• Start running: (from software), SETB TR0

• Polling: check flag TF0 for roll-over

• Stop running: (from software): CLR TR0

4

SFRs for Timer Control
Timer 1 Timer 0 purpose

TMOD<7:4> TMOD<3:0> timer mode

TH1, TL1 TH0, TL0 high/low bytes for
timer value

TR1 (=TCON.6) TR0 (=TCON.4) start(1), stop(0)
('R' => "run")

TF1 (=TCON.7) TF0 (=TCON.5) rollover flag
('F' => "flag")

5

TCON register (timer control)
• TF1, TF0 => "flag"

• TR1, TR0 => "run"

• IE1, IE0 => "interrupt enable"

• IT1, IT0 =>

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

6

TMOD register
• gate = 0 for software control, (=1 for hw)

• set TR0 = 1 to run, = 0 to stop

• c/t = 0 for timer, (= 1 for counter)

• <M1:M0> = mode 0, 1, 2, or 3

Timer 1 Timer 0

gate c/t M1 M0 gate c/t M1 M0

TMOD.7 TMOD.0
7

<M1:M0> in TMOD
• 00: Mode 0: 13-bit timer (213 = 8192)

• 01: Mode 1: 16-bit timer (216 = 65536)

• 10: Mode 2: 8-bit auto-reload (28 = 256)

• 11: Mode 3: split timer
(two 8-bit timers or one 8-bit counter)

Timer 1 Timer 0

gate c/t M1 M0 gate c/t M1 M0

TMOD.7 TMOD.0
8

Timer-1 mode 0 or mode 1
• Mode 0: 13-bit timer; Mode 1: 16-bit timer

• loaded into TL0,TH0

• SETB TR0 to start timer

• Count-up timer
• upon rollover from FFFF (16-bit) or 1FFF (13-bit) to 0000,

hardware sets the TF0 flag (Timer Flag)

• => opportunity for interrupt!

• If polling, need to clear TF0; if interrupt, TF0 auto-cleared

• To stop running the timer, CLR TR0

9

Setting up interrupt for
Timer 0, mode 1, 10K cycles

• Configure timer-0 for mode 1

• MOV TMOD, #1

• Load the starting value into <TH0:TL0>

• to count for 10000 cycles, load 65536-10000 = 0xd8f0.
MOV TH0, #0D8H ;; need to manually reload if you want 10K
MOV TL0, #0F0H ;; or else it starts from 0 up to FFFF

• Enable timer-0 interrupt by

• MOV IE, #82H

• Start timer 0 ("run")

• SETB TR0

EA -- ET2 ES ET1 EX1 ET0 EX0
1 0 0 0 0 0 1 0

gate c/t M1 M0 gate c/t M1 M0
0 0 0 0 0 0 0 1

10

Setting up interrupt for
Timer 0, mode 0, 8192 cycles

• Configure timer-0 for mode 0

• MOV TMOD, #0

• 8192 just wraps around
• MOV TH0, #00H ;; 13-bit range, no need to reload

MOV TL0, #00H ;; wraps back to 0 after 1FFFH

• Enable timer-0 interrupt by

• MOV IE, #82H

• Start timer 0 ("run")

• SETB TR0

EA -- ET2 ES ET1 EX1 ET0 EX0
1 0 0 0 0 0 1 0

gate c/t M1 M0 gate c/t M1 M0
0 0 0 0 0 0 0 1

11

ISR for Timer 0
• Interrupt vector at 000BH

• either ISR code fits in 8 bytes or jump elsewhere
=> most likely jump elsewhere

• Interrupt => flag TF0 is auto-cleared!!

• hardware automatically clears it when calling ISR;

• but if polling => user needs to clear TF0

• May want to reload the timer if quantum is
not the full range of counter

12

How to write ISR in SDCC
• void timer0_ISR(void) __interrupt(1) { 

 { __asm  
 ljmp _myTimer0Handler 
 __endasm; } 
}
• this __interrupt(1) code must be in the same source file as your

main() function!

• Have it jump to your own ISR code
• myTimer0Handler can be a function in another .c file

=> this is where you can do the context switch!!

• it must return using RETI instruction

13

From Cooperative to Preemptive
Threading

• Cooperative thread i
• calls ThreadYield() --pushes return

address on thread i's stack

• Cooperative ThreadYield()
• save state

• switch to thread j

• restore state

• RET from ThreadYield

• Preemptible thread i
• timer0's interrupt pushes return

address on thread i's stack

• Preemptive version of
ThreadYield()
• like nonpreemptive, but

disable interrupt on entry,
reenable interrupt on exit!

• myTimer0Handler() for
preemptive threading
• version 1: same as ThreadYield,

except it must do RETI to return!

• version 2: improved version that
does context switch outside ISR

14

Issues with simple preemptive
version

• Some functions should not be preempted! (all versions)

• ThreadYield() and myTimer0Handler()
• ThreadCreate()
• ThreadExit()

• Need to minimize time spent in ISR, or time when
interrupt disabled (future version)

• could cause other critical events to be missed!

• Need to make scheduler more modular (future version)

• scheduler is currently hardwired in dispatcher, but want a more
modular structure to try different policies!

15

What about SDCC constructs for
Supporting synchronization?

• __critical directive
• annotation on either a function or statement block

• effectively same as EA = 0 on entry, EA = 1 on exit

• good for ThreadCreate, ThreadYield, etc

• but careful! If you have to do your own RETI, it may not work!

• Advice: don't use it unless you can verify what it does by looking at assembly!

• __naked directive

• suppresses register saving/restore; may be appropriate for ISR

• cancels out the __critical on function definition.

• __using(bankNumber) directive

• specifies use of register bank for the ISR... but doesn't do anything..

16

Convert to preemptive:
file: testpreempt.c

• Producer:
 while(dataAvail) { } // take out ThreadYield() 
 __critical { 
 // update your shared vars 
 }

• Consumer:

• similar, take out call to ThreadYield(), add __critical around shared update

• TMOD |= 0x20; // OR in the bits instead of writing

• void timer0_ISR(void) __interrupt(1) { 
 __asm 
 ljmp _myTimer0Handler 
 __endasm; 
} // must be in same file as main() for SDCC to work!

17

Convert to preemptive:
file: preemptive.c

• void Bootstrap(void) { 
 threadCount = 0; threadMask
= 0; 
 TMOD = 0; // timer 0 mode 0  
 IE = 0x82; // enable timer 0
interrupt, 
 TR0 = 1; // start running
timer0  
 ThreadCreate(main); 
 currentThread = 0; 
 RESTORESTATE; 
}

• ThreadID
ThreadCreate(FunctionPtr fp)
__critical { 
}

• add __critical to other Thread
related functions

• void myTimer0Handler(void) { 
 EA = 0; // don't do __critial 
 ... 
 EA = 1; 
 __asm  
 reti  
 __endasm; 
}

18

