Preemptive
Multithreading using
Timer

Preemptive Scheduling

* Ability to switch thread even w/out thread-yield

* Mechanism: timer interrupt

 hardware interrupts current thread, executes ISR

* ISR saves current state, picks new thread, resumes it

e |ssues

* Granularity of timer (how often?)
e Auto or manual reload? fixed interval or variable?

» Other sources of interrupt? Atomic region

Timers on 8051

8051 has two timers: TO, T

 TO accessed as (lower), (higher)
1 accessed as TL1, TH1 (SFRs)

» Resolution: 1/12 of crystal oscillator frequency
e.g., 12MHz XTAL => Tps timer unit

* T1 is used as baud generator for UART
=> Use TO for preemption timer

« Options: 8-bit, 13-bit, 16-bit

How to use Timer TO

Configure Timer Mode (0, 1, 2, or

3)

« Whether to start by software or hardware trigger

Load starting val into register pair

 To delay x cycles, load negative x

Start running: (from software), SETB

Polling: check flag for roll-over

Stop running: (from software): CL

q

SFRs for Timer Control

Timer 1 Timer O purpose
TMOD<7:4> <3:.0> timer mode
TH1 TL1 high/low bytes for
timer value
B B start(1), stop(0)
TR1 (=TCON.0) (=TCON.4) (R => "run™
TF1 (=TCON.7) (=TcON 5) |©lover flag

(I FI :> Ilflagll)

TCON register (timer control)

* TF1, TFO => "flag"

* TR1, TRO => "run"

 |[E1, IEOQ => "interrupt enable"
* IT1, ITO =>

TF1 | TR1 | TFO | TRO | IET | IT1 | IEO | ITO

TMOD register

» gate = O for software control, (=1 for hw)

* set =1 to run, = 0 to stop

e ¢/t =0 for timer, (= 1 for counter)

e <M1:MO>=modeO, 1, 2, or 3

Timer 1 Timer O

gate| ¢t | M1 | MO |gate| c/t | M1 | MO

TMOD.7 TMOD.0O

<M1:M0> 1in TMOD

e 00: Mode 0: 13-bit timer (213 = 8192)
e 01: Mode 1: 16-bit timer (216 = 65536)
e 10: Mode 2: 8-bit auto-reload (28 = 256)

* 11: Mode 3: split timer
(two 8-bit timers or one 8-bit counter)

Timer 1 Timer O

gate| ¢t | M1 | MO |gate| c/t | M1 | MO
TMOD.7 TMOD.O

Timer-1 mode 0 or mode 1

 Mode O: 13-bit timer; Mode 1: 16-bit timer

e |oaded into ,

e SETB to start timer

e Count-up timer

« upon rollover from FFFF (16-bit) or TFFF (13-bit) to 0000,
hardware sets the flag (Timer Flag)

* => opportunity for interrupt!

* If polling, need to clear TF0; if interrupt, auto-cleared

* To stop running the timer, CLR

Setting up interrupt for
Timer 0, mode 1, 10K cycles

Configure timer-0 for mode 1

ate| ct | M1 | MO
¢ MOV | #1 g gate| c/t | M1 | MO
0 0 0 0 0 0 0 1

Load the starting value into <!HO:TLO>

* to count for 10000 cycles, load 65536-10000 = 0xd8f0.

MOV , #0D8H ;; need to manually reload if you want 10K
MOV , #OFOH ;; or else it starts from O up to FFFF

Enable timer-0 interrupt by

e MOV IE. #82H EA| - |ET2| ES |ET1|EX1|ETO|EXO
iJo|lo|JoJo]Jo]1]o

Start timer O ("run")

« SETB

Setting up interrupt for

Timer 0, mode 0, 8192 cycles

 Configure timer-0 for mode O

¢ MOV

* 8192 just wraps arounc

, #O0OH
, #0O0H

« MOV
MOV

 Enable timer-0 interrupt by
, #32H

« MOV

e Start timer O ("run")
e SETB

, #0

gate

c/t

MO

0

0

0

EA

ET2

ES

ETT

EX1

ETO

gate | c/t | M1 | MO
0 0 0 1

. 13-bit range, no need to reload
> wraps back to 0 after 1FFFH

EXO

1

0

0

1

0

ISR for Timer 0

Interrupt vector at 0OOBH

« either ISR code fits in 8 bytes or jump elsewhere
=> most likely jump elsewhere

Interrupt => flag s auto-cleared!!

 hardware automatically clears it when calling ISR;

but if polling => user needs to clear

May want to reload the timer if quantum is
not the full range of counter

12

How to write ISR in SDCC

- void timerO_ISR(void) __interrupt(1) {
{ __asm
imp _myTimerOHandler
__endasm; }

}

* this __interrupt(1) code must be in the same source file as your
main() function!

* Have it jJump to your own ISR code

« myTimerOHandler can be a function in another .c file
=> this is where you can do the context switch!!

* it must return using RETI instruction

13

From Cooperative to Preemptive
Threading

 Cooperative thread i * Preemptible thread i
« calls ThreadYield() --pushes return * timerO's pushes return
address on thread i's stack address on thread i's stack
Cooperative ThreadYield() - Preemptive version of

ThreadYield()

* like nonpreemptive, but
disable interrupt on entry,
* restore state reenable interrupt on exit!

e RET from ThreadYield . myTimerOHandler() for
preemptive threading

* save state

* switch to thread |

e version 1: same as ThreadYield,
except it must do RETI to return!

* version 2: improved version that
does context switch outside ISR

14

Issues with simple preemptive
version

» Some functions should not be preempted! (all versions)

* ThreadYield() and myTimerOHandler()

nreadCreate()
- ThreadExit()

« Need to minimize time spent in ISR, or time when
interrupt disabled (future version)

e could cause other critical events to be missed!

 Need to make scheduler more modular (future version)

* scheduler is currently hardwired in dispatcher, but want a more
modular structure to try different policies!

15

What about SDCC constructs for
Supporting synchronization?

e critical directive

e annotation on either a function or statement block

effectively same as EA = 0 on entry, EA = 1 on exit

good for ThreadCreate, ThreadYield, etc

but careful! If you have to do your own RETI, it may not work!

Advice: don't use it unless you can verify what it does by looking at assembly!

e naked directive

* suppresses register saving/restore; may be appropriate for ISR

e cancels out the _ critical on function definition.

« __using(bankNumber) directive

* specifies use of register bank for the ISR... but doesn't do anything..

Convert to preemptive:
file: testpreempt.c

* Producer:
while(dataAvail) { } // take out ThreadYield()

__critical {
// update your shared vars

}

* Consumer:
* similar, take out call to ThreadYield(), add __critical around shared update

« TMOD |I=0x20; // OR in the bits instead of writing

- void timer0_ISR(void) __interrupt(1) {
__asm
imp _myTimerOHandler
___endasm;
} // must be in same file as main() for SDCC to work!

17

Convert to preemptive:
file: preemptive.c

- void Bootstrap(void) { - ThreadlD
threadCount = 0; threadMask ThreadCreate(FunctionPtr fp)
=0; __critical {

TMOD =0; //timer O mode O }

IE =0x82; //enable timer 0 add __critical to other Thread

interrupt, .
TRO = 1; // start running related functions
timer0 - void myTimerOHandler(void) {
ThreadCreate(main); EA=0; //don'tdo __critial
currentThread = O;
RESTORESTATE; EA=1;
} __asm
reti
__endasm;

}

