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Overview
• Basic concepts 

• Scheduling algorithms 

• Special scheduling issues 

• Case study
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Basic Concepts
• Multiprogramming 

• keep several processes in memory 

• process waits => run another process on the 
CPU 

• CPU-I/O burst cycle 
• process execution =  

interleaved CPU bursts and I/O bursts 

• I/O-bound program: more short CPU bursts 

• CPU-bound program: a few long CPU bursts
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Histogram of CPU burst times
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Preemptive vs Nonpreemptive
• CPU scheduling decision may take place when 

1. a process switches from RUNNING to WAITING state 

2. a process switches from RUNNING to READY state 

3. a process switches from WAITING to READY 

4. a process terminates 

• Nonpreemptive (also called "cooperative") 
• a process keeps CPU until either #1 (waits) or #4 (terminates) or 

until it yields ("#5" not listed in the book) 

• Preemptive 
• Scheduling under all 4 cases above
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issues with Preemptive 
Scheduling

• Race condition:  
• inconsistent state of shared data as a result of 

context switching before data modification is 
complete 

• one process could overwrite another process's 
changes 

• Solution: synchronization (Chapter 6) 
• incurs a cost associated with access to shared 

data
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Preemptive vs Nonpreemptive 
Kernel Design

• Nonpreemptive kernel 

• waits for systems call to complete or process to 
block before context switch 

• simple, poor performance, not suitable for real-time  

• Preemptive kernel (most modern OSs) 
• preemption could happen when making system call 

or when kernel is making critical changes 

• Needs extensive mutex locks
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Interrupt issues
• temporarily disabling interrupt 

• needed to prevent race condition 

• may be needed to implement atomic operations (all or none) 

• interrupts shouldn't be disabled for long 
• otherwise input may be lost, 

• otherwise output may be overwritten 

• interrupts should be disabled only for a few instructions 

• In general, ISR shouldn't be long 
• higher-priority interrupts could mask lower-priority ones!
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Dispatcher vs. scheduler
• Dispatcher  

• saving and restoring switching 

• jumping to the scheduled process 

• Scheduler 
• Determines when to dispatch which process 

• Latency breakdown: time it takes for dispatcher to stop 
one process and start another 
• scheduling time 

• interrupt-re-enabling time 

• context switching time
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Scheduling 
Algorithms
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Scheduling Criteria
• CPU Utilization 

• % time CPU is not idle.  (0-100%)  practical: 40% (light), 90% (heavy) 

• Throughput 
• number of processes completed per time unit 

• Turnaround time 
• time from submission to completion 

• Waiting time 
• total time waiting in the Ready queue 

• Response time 
• time from submission to the first response produced
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Objectives of  
Scheduling Algorithm

• Maximize 
• CPU utilization 

• throughput 

• Minimize 
• turnaround time  

• waiting time  

• response time
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Scheduling Strategies
• First-come first-served (FCFS) 

• Shortest job first (SJF) 

• Priority-based scheduling 
• static, dynamic, … 

• Round-robin  

• Multilevel queue scheduling 

• Multilevel feedback queue scheduling
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FCFS Scheduling
• Schedule a process in order of arrival 

• Effectively nonpreemptive

exec 
time

ex1 
arriva

l

ex2 
arrival

P1 24 0 2

P2 3 1 1

P3 3 2 0

P0 P1 (24)

P1 1 1 22 P2(3)

P2 2 22 3 P3(3)

P0 1 3 P1(24)

P1 1 2 P2(3)

P2 P3(3)

Example 1: Gantt chart

Example 2: Gantt chart

average waiting time:  48/3 = 16

average waiting time:  6/3 = 2
14

waiting time 
= Ready but 
   not Running!



FCFS evaluation
• (+) Simple 

• simple FIFO 

• (-) CPU-bound and I/O-bound processes don't 
mix well 
• "Convoy effect" - shorter processes (I/O-bound) wait 

for one big process (CPU-bound) to finish => low CPU 
utilization 

• (-) effectively nonpreemptive 
• bad for interactive systems
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Shortest Job First (SJF) scheduling
• Choose process with shortest next CPU burst 

• NOT process with the shortest total length!! 

• SJF is optimal for minimum waiting time 

• Two schemes 

• preemptive: = shortest remaining-time first, when new job arrives, 
if remaining burst shorter than current process, preempt and run it 

• nonpreemptive: run a process till completion, even if a new job 
arrives with shorter remaining burst. 

• Q: How do we know length of next CPU burst? 

• A: Can't know for sure (undecidable), but can use history to predict
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Nonpreemptive SJF (1/3)

burst 
time

arrv

P1 7 0
P2 4 2
P3 1 4
P4 4 5

P1 7
P2
P3
P4
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P1 7
P2 5 4
P3
P4
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P1 7
P2 5 4

P3 3 1
P4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t=0, P1 released. scheduled immediately

t=2, P2 released. Nonpreemptive => deferred till completion of P1

t=4, P3 released. deferred till completion of P1

17



Nonpreemptive SJF (2/3)

burst 
time

arrv

P1 7 0
P2 4 2
P3 1 4
P4 4 5

P1 7
P2 5 1 4

P3 3 1
P4 2 1 4 4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1 7
P2 5 4

P3 3 1
P4 2 4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t=5, P4 arrives but is blocked till P1 completes

P1 7
P2 5 1 4

P3 3 1
P4 2 1 4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t=7, P1 completes.  P3 is shortest and is scheduled.

t=8, P3 completes.  P2 is shortest and is scheduled.
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Nonpreemptive SJF (3/3)

burst 
time

arrv

P1 7 0
P2 4 2
P3 1 4
P4 4 5

P1 7
P2 5 1 4

P3 3 1
P4 2 1 4 4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t=12, P2 completes.  P4 is shortest (the only) and is scheduled.

at t=17, P4 completes.

Total waiting time = 0 + (P1) + 6 (P2) + 3 (P3) + 7 (P4) = 16 
Average waiting time = 16/4 = 4.

"Response time": P1=0, P2=6, P3=3, P4=7 
      (waiting time before it can be run for the first time)
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Preemptive SJF (1/3)

burst 
time

arrv

P1 7 0
P2 4 2
P3 1 4
P4 4 5

P1 7
P2
P3
P4
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1 2/7 5
P2 4
P3
P4
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1 2/7 2 5
P2 2/4 2

P3 1
P4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t=0, P1 released. scheduled immediately

t=2, P2 released (4), shorter than remaining time of P1 (5), 
preempts P1

t=4, P3 released (1). shorter than remaining P1 and remaining P2, 
preempts P2. 20



Preemptive SJF (2/3)

burst 
time

arrv

P1 7 0
P2 4 2
P3 1 4
P4 4 5

P1 2/7 2 1 5
P2 2/4 1 2/4

P3 1/1
P4 4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t=5, P4 arrives but is blocked because P2 (2 remaining) is shortest. 
P2 resumes.

t=7, P2 completes.  P4 (4) is shorter than P1’s remaining 5 
and is dispatched next

t=11, P4 completes.  P1 is the only remaining and is scheduled.

P1 2/7 2 1 2 5
P2 2/4 1 2/4

P3 1/1
P4 2 4/4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P1 2/7 2 1 2 4 5/7
P2 2/4 1 2/4

P3 1/1
P4 2 4/4

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Preemptive SJF (3/3)
• Response time: 

• P1=0, P2 = 0, P3 = 0, P4 = 2 

• Waiting time = completion time - arrival 
time - runtime (burst time)  
= (16-0-7)+(7-2-4)+(5-4-1)+(11-5-4) 
= 9+1+0+2=12 

• Average wait time = 12/4 = 3 
• Compared 4 in nonpreemptive case!
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Approximate Shortest-Job-First
• Difficulty with SJF: 

• no knowledge of the length of the next CPU burst 

• Solution: Approximate by prediction 
• Predict length of next burst as exponential average 

of previous CPU bursts

tn+1 = a tn +(1�a)tn (1)

= a tn +(1�a)atn�1 +(1�a)2tn�2 + · · · (2)

=

✓
1
2

◆
)tn +

✓
1
2

◆2
tn�1 +

✓
1
2

◆3
tn�2 + · · · (3)

1

// new one + history

// commonly 𝛼=1/2
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Exponential Prediction of next 
CPU burst

Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 28 

Exponential predication of next CPU burst 

2 
4 
6 
8 
10 
12 

burst length  

time 

8 6 6 5 9 11 
CPU burst tn 

guess Wn 

����������

t0        t1     t2     t3     t4     t5     t6 

10 
6 4 6 4 13 13 13 
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Round-Robin (RR) Scheduling
• Round-Robin = take turns on a regular basis 

• assumes preemption!! 

• if without preemption => essentially FCFS 

• Concept of time quantum (TQ), aka time slice 

• Unit of CPU time, usually every 10-100 ms 

• after TQ elapsed, preempt process, put back to ready 
queue so next process gets to run 

• No starvation
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Performance of Round-Robin
• if large time quantum  

• similar to FCFS 

• if small time quantum  
• context-switching overhead dominates 

• In practice:  
• 80% CPU bursts should be shorter than TQ
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RR scheduling w/ TQ=20

• Typically RR has higher turnaround than SJF, but better 
response

burst 
time

P1 53
P2 17
P3 68

P4 24

P1 20/53 20/53 13/53
P2 17/17

P3 20/68 20/68 20/68 8/68
P4 20/24 4/24

t 0 20 40 60 80 100 120 140 160

37 57 77 97 117 121 134 154 162
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Priority-based Scheduling
• Pick process w/ highest priority to run next 

• could be preemptive or nonpreemptive 

• Many possible ways to define priority 

• SJF is a priority scheme (i.e., inverse of length of next 
CPU burst) 

• FCFS: equal priority, no preemption 

• in real-time system, deadline could be priority 

• age of process 

• hybrid schemes
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Issue with some priority schemes: 
Starvation

• Starvation = "indefinite blocking"  
• i.e., process is ready but not scheduled to run for long time 

• some processes get stuck with low priority and never get 
to execute! 

• example: IBM 7094 shutdown in 1973, when a process 
from 1967 never got to run 

• Possible solution: aging 
• as time progresses, increase priority of processes 

• e.g., increase priority by 1 every 15 minutes  
(depends on number of priority level)
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Multilevel Queue Scheduling
• Ready queue is partitioned into separate queues 

• e.g., foreground (interactive) vs. background (batch) 

• Processes stay in given queue, does not move between queues 

• Each queue has its own scheduling algorithm (priority scheme) 
e.g., RR for foreground, FCFC for background 

• Example: highest to lowest priority queues 
• Real-time, System, Interactive, Batch processes 

• Scheduling is needed between queues 
• fixed priority => possible starvation 

• each queue could get a time slice
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Multilevel Feedback Queue 
Scheduling

• A process can move between queues 
• aging can be implemented this way 

• Idea: separate processes based on 
characteristic of CPU burst 
• I/O-bound and interactive processes in higher 

priority queue => short CPU burst 

• CPU-bound processes in lower priority queue => 
long CPU burst
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Multilevel Feedback Queue 
Example

• Q0, FCFS, TQ0= 8 ms 
• Job enters Q0, does not finish => move to Q1. 

• Q1 also FCFS, TQ1=16 ms 
• job does not finish => move to Q2 

• Qi executes only if Q0…Qi-1 empty 
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Multilevel Feedback Queue
• Defined by  

• number of queues 

• scheduling policy for each queue 

• condition for “upgrading” a process 

• condition for “demoting” a process 

• condition for choosing which queue for a process 
to enter
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Thread Scheduling:  
Scope of Contention

• Process-contention scope (PCS) 

• user-level scheduling competition is within process 

• for many-to-one and many-to-many models 

• Typically done via priority set by programmer 

• System-contention scope (SCS) 
• Kernel thread scheduled onto available CPU 

• Competition among all kernel threads in the 
system
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Pthread Scheduling
• API specifying PCS or SCS on thread 

creation 
• PTHREAD_SCOPE_PROCESS: PCS scheduling 

• PTHREAD_SCOPE_SYSTEM:  SCS scheduling 

• Can be limited by OS 
• Linux & macOS allow only SCS
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Multi-Processor Scheduling, 
Multi-Core Processor 

Scheduling, and 
Real-time Scheduling
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Multiprocessor Scheduling
• Asymmetric multiprocessing 

• all system activities are handled centrally by one processor 
("master server") 

• other processors only execute user code 

• scheduler is simpler (no data structure sharing), but master server 
could become bottleneck 

• Symmetric multiprocessing (SMP) 
• each processor schedules itself 

• Option1: each processor has own private queue 

• Option 2: all processors share ready queue  [Most common] 
=> need synchronization mechanism
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Two trends in  
Multicore Processors

• Multiple cores on same physical chip 

• Faster and consumes less power by running at 
lower clock rate and therefore lower voltage 

• make up performance by parallelism 

• Multiple threads per core 
• Takes advantage of memory stall to make progress 

on another thread while memory retrieve happens 

• examples: Intel Hyperthreading, IBM (1968), Tera 
MTA (1988), CDC6600
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Simultaneous Multithreading 
(SMT)

• aka hardware threads, chip multithreading 
• CPU maintains multiple PC, register set, etc ("logical 

processor") 

• Coarse-grained 
• switch thread when memory stall occurs 

• high performance cost when flushing instruction pipeline 

• Fine-grained 
• interleaving threads at instruction boundary 

• lower performance cost, since hardware supports thread 
interleaving

39



Multithreaded Scheduling on 
Multicore

• Thread scheduler needs to consider  

• cache behavior and resource sharing,  

• or else threads may run slower! 

• Processor allocation 
• select which software thread to run on each 

hardware thread (processor) 

• Intra-core threading 
• each core decides which hardware thread to run
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Load Balancing
• Keep workload evenly distributed 

• For SMP (private queue), keep all CPUs loaded for efficiency 

• shared queue => automatically load balanced! 

• Meaning of "load balanced" 

• private queues have same number of threads, or 

• equal distribution of thread priorities across all queues. 

• Push migration vs Pull migration 

• Push: overloaded CPU pushes load to less-busy (or idle) CPUs 

• Pull: idle CPU pulls waiting task from busy CPU
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Processor Affinity
• "closeness" between a process and the processor 

• data in cache memory of the processor 

• high cost to invalidate and repopulate cache when moving to 
another processor 

• nonuniform memory architecture (NUMA) 

• Two kinds of affinity policy OS can set for migration 

• soft affinity: OS tries to keep process on same processor but 
allows migration between processors 

• hard affinity: restricts process to migrate to subset of processors 

• Load balancing counteracts processor affinity
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CPU Scheduling with NUMA
• NUMA = Nonuniform Memory Access 

• for systems built with combined CPU+memory 
boards 

• local access fast; cross-board access slow 

• CPU scheduling + memory placement 
• high processor affinity 

for process whose 
memory is allocated 
to the CPU
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CPU

fast access

memory

CPU

fast access
slow access

memory

computer

Figure 6.9 NUMA and CPU scheduling.

Otherwise, one or more processors may sit idle while other processors have
high workloads, along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in an
SMP system. It is important to note that load balancing is typically necessary
only on systems where each processor has its own private queue of eligible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnable process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—if it finds an imbalance—evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 6.7.1) and the ULE scheduler
available for FreeBSD systems implement both techniques.

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 6.5.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its data
being in that processor’s cache memory. Either pulling or pushing a process
from one processor to another removes this benefit. As is often the case in
systems engineering, there is no absolute rule concerning what policy is best.
Thus, in some systems, an idle processor always pulls a process from a non-idle
processor. In other systems, processes are moved only if the imbalance exceeds
a certain threshold.

6.5.4 Multicore Processors

Traditionally, SMP systems have allowed several threads to run concurrently by
providing multiple physical processors. However, a recent practice in computer



Heterogeneous Multiprocessing 
(HMP)

• Motivation: mobile devices (smartphone) 
• Mixing high-performance and low-power 

multiprocessors 

• NOT the same as asymmetric multiprocessing! 

• example: ARM big.LITTLE architecture 
• big = high performance, saves time 

• LITTLE = energy efficient, saves power 

• same instruction set, direct migration between them 

• together => saves energy
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Real-Time Scheduling
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Real-Time CPU Scheduling
• Real-Time vs. Non-Real-Time 

• Non-Real-Time: time does not affect correctness 

• Real-Time:  timing is a key part of correctness 

• Real-Time vs. Speed 
• Real-time does not (always) mean "fast",  

though it could help 

• Real-Time means meeting timing constraints
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Hard vs Soft Real-Time
• Soft real-time systems 

• provides preferences but not guarantee in scheduling real-
time processes 

• missing deadline is undesirable but not critical 

• example: Multimedia streaming 

• Hard real-time systems 
• provides guarantees in meeting deadline  

=> once the task is accepted 

• missing deadline leads to fundamental failure 

• example: nuclear power plant controller
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Latency
• Event latency 

• amount of time from event occurring 
to time the event is serviced 

• Interrupt latency 
• amount of time from arrival of 

interrupt to start of ISR execution 

• must be bounded, not just minimized 

• Dispatch latency 
• amount of time for the dispatcher to 

switch process 

• best minimized thru preemptive 
kernel
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Conflict phase of Dispatch 
Latency

• Preemption  
• of any process running in 

kernel mode 

• Release of resources 
• by low-priority process so 

high-priority processes can 
use them
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Real-Time Scheduling Algorithms 

• Offline (pre-run-time) 
• workload is known or bounded before running 

• can perform schedulability analysis before running 

• could be done by separate algorithm; OS just 
dispatches 

• Online (runtime, dynamic) 
• actual scheduling done as the system runs 

• need admission control -- accept or reject tasks based 
on ability to meeting timing constraints
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Periodic vs Aperiodic Tasks
• Periodic 

• tasks is recurring  

• deadline d, could be same as period p 

• may have release time after start of period 

• Aperiodic 
• task is nonrecurring, or may repeat but not before some 

minimum separation
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Priority-based Scheduling
• Rate-Monotonic (RM) scheduling 

• assumes periodic tasks, deadline = end of period 

• preemptive, fixed priority based on length of 
period 

• Earliest-Deadline-First (EDF) scheduling 
• may be periodic or aperiodic 

• preemptive, dynamic priority based on time to 
deadline
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Rate Monotonic (RM) Scheduling

• by Liu and Layland (1973) 

• Shorter period => higher priority 
• assumption: period is fixed; preemptive 

• priority depends only on period, not CPU 
burst! 
(in contrast to shortest-job first) 

• Example: tasks (period, burst)  
• (4, 1), (5, 2), (20, 5)

53Chapter5 Process Scheduling Operating System Concepts – NTHU LSA Lab 47 

Rate-Monotonic (RM) Scheduling 

� Fixed-priority schedule. 
¾All jobs of the same task have same priority. 
¾ The task’s priority is fixed. 

� The shorter period, the higher priority. 
� Ex: T1=(4,1), T2=(5,2), T3=(20,5) (Period, Execution) 

¾ɻperiod: 4 < 5 < 20 
¾ɺpriority: T1 > T2 > T3 

 0      1       2       3      4      5       6      7       8      9     10     11    12    13     14     15    16    17    18    19    20 

C.L. Liu (劉炯朗) 
former President of 
NTHU, 1998-2002



Earliest Deadline First (EDF) 
Scheduling

• Dynamic priority 
• the earlier the deadline, the higher the priority 

• could be periodic or aperiodic 

• Preemptive: highest-priority task gets to preempt 
others upon release (could be periodic) 

• Example: (period, burst): (2, .9), (5, 2.3)

54
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Early Deadline First (EDF) Scheduler 

� Dynamic-priority scheduler 
¾ Task’s priority is not fixed 
¾ Task’s priority is determined by deadline. 

� Ex: T1=(2,0.9), T2=(5,2.3) 
¾ time: 

0.9 

1.1 

0.9 

1.2 

0.9 

1.0 

0.9 

1.1 

0.9 

0.2 
0             1             2            3             4            5             6            7             8            9         10 

0             1            2             3           4             5             6            7            8             9          10 

0 

T1 

T2 

0.9 2 2.9 4.1 5 6 6.9 8 8.9 
delay 



Schedulability Analysis
• RM 

• sufficient condition: Utilization ≤ about 69% = ln(2)  
(i.e., natural log of 2); actual bound may be higher 

• "optimal" for fixed-priority algorithms 

• EDF 
• Utilization ≤ 100% 

• "optimal" for dynamic-priority algorithms 

• "Optimal" for real-time scheduling 
• "if any other algorithm can schedule it, then it can schedule it" 

• different meaning of optimal for non-real-time objectives
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Virtualization and Scheduling
• Virtualization software schedules multiple 

guests onto CPU(s) 

• Each guest doing its own scheduling 
• Scheduler does not know it doesn't own the CPUs 

• Can result in poor response time 

• Can effect time-of-day clocks in guests 

• Can undo good scheduling algorithm 
efforts of guests
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Proportional Share Scheduling
• T shares are allocated among all processes 

in the system 

• An application receives N shares where N 
< T 

• This ensures each application will receive 
N / T of the total processor time

57



POSIX Real-Time Scheduling
• The POSIX.1b API for managing real-time threads 

• Defines two scheduling classes for real-time threads: 

• SCHED_FIFO - threads scheduled by FCFS with a FIFO queue. 
No time-slicing for threads of equal priority 

• SCHED_RR - similar to SCHED_FIFO except time-slicing occurs 
for threads of equal priority 

• Defines two functions for getting and setting 
scheduling policy: 
• pthread_attr_getsched_policy(pthread_attr_t	*attr,	int	

*policy)		

• pthread_attr_setsched_policy(pthread_attr_t	*attr,	int	policy)	
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POSIX Real-Time Scheduling API
#include	<pthread.h>		
#include	<stdio.h>		
#define	NUM_THREADS	5		

int	main(int	argc,	char	*argv[])	{		
			int	i,	policy;	
			pthread_t_tid[NUM_THREADS];		
			pthread_attr_t	attr;		
			/*	get	the	default	attributes	*/		
			pthread_attr_init(&attr);		

	
		/*	get	the	current	scheduling	policy	*/	
		if	(pthread_attr_getschedpolicy(&attr,	
&policy)	!=	0)		
				fprintf(stderr,	"Unable	to	get	policy.\n");		
		else	{		
				if	(policy	==	SCHED_OTHER)		
							printf("SCHED_OTHER\n");		
				else	if	(policy	==	SCHED_RR)		
							printf("SCHED_RR\n");		
				else	if	(policy	==	SCHED_FIFO)		
							printf("SCHED_FIFO\n");		
		}		
		/*	set	the	scheduling	policy		
				-	FIFO,	RR,	or	OTHER	*/		
		if	(pthread_attr_setschedpolicy(&attr,	
SCHED_FIFO)	!=	0)		

					fprintf(stderr,	"Unable	to	set	policy.
\n");		
	/*	create	the	threads	*/	
	for	(i	=	0;	i	<	NUM_THREADS;	i++)		
				pthread_create(&tid[i],&attr,runner,NULL);		
	/*	now	join	on	each	thread	*/	
	for	(i	=	0;	i	<	NUM_THREADS;	i++)		
				pthread_join(tid[i],	NULL);		
}	
/*	Each	thread	will	begin	control	in	this	
function	*/		

void	*runner(void	*param)	{		
			/*	do	some	work	...	*/		
			pthread_exit(0);		
}	
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Operating System Examples
• Linux 

• Windows 

• Solaris
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Linux Scheduling in Version 
2.6.23 +

• Completely Fair Scheduler (CFS) 

• Scheduling classes 

• Each has specific priority 

• Scheduler picks highest priority task in highest scheduling 
class 

• Rather than quantum based on fixed time allotments, based 
on proportion of CPU time 

• 2 scheduling classes included, others can be added 

• default 

• real-time
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Linux Scheduling (Cont.)
• Real-time scheduling according to POSIX.1b 

• Real-time tasks have static priorities 

• Real-time plus normal map into global priority scheme 

• Nice value of -20 maps to global priority 100 

• Nice value of +19 maps to priority 139
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Windows Scheduling
• Windows uses priority-based preemptive scheduling 

• Highest-priority thread runs next 

• Dispatcher is scheduler 

• Thread runs until (1) blocks, (2) uses time slice, (3) preempted by 
higher-priority thread 

• Real-time threads can preempt non-real-time 
• 32-level priority scheme 

• Variable class is 1-15, real-time class is 16-31 

• Priority 0 is memory-management thread 

• Queue for each priority 

• If no runnable thread, runs idle thread
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Solaris
• Priority-based scheduling 

• Six classes available 
• Time sharing (default) (TS), Interactive (IA), Real time 

(RT), System (SYS), Fair Share (FSS), Fixed priority (FP) 

• Given thread can be in one class at a time 
• Each class has its own scheduling algorithm 

• Time sharing is multi-level feedback queue 

• Loadable table configurable by sysadmin
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Solaris Scheduling (Cont.)
• Scheduler converts class-specific priorities into a 

per-thread global priority 
• Thread with highest priority runs next 

• Runs until  

• (1) blocks,  

• (2) uses time slice,  

• (3) preempted by higher-priority thread 

• Multiple threads at same priority selected via RR
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Evaluation of Scheduling Policies 
(and Mechanisms)

• Deterministic modeling 
• evaluate performance for given workload 

• Queuing model 
• by mathematical analysis 

• Simulation 
• simulate either trace from real workload or synthetic 

workload (generated using random number) 

• Implementation 
• implement the scheduler and run it for real
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