Chapter 4:
Threads

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

Overview

Introduction to Threads
Multithreading Models
Threaded Case Study

Threading Issues

Objectives

Introduce thread as a fundamental unit of
CPU utilization

Discuss APls for the Pthreads thread
libraries

Implicit threading
Case studies of Threads Libraries and OSs

Motivation

» Multiple tasks in modern applications
« Update display
* Fetch data
» Spell checking

* Answer a network request
* Process creation is heavy-weight

* Solution: thread creation is light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

Threads

« aka lightweight process:

e basic unit of CPU utilization

» All threads of a process
share

* code section, data section,
open files, signals

 EFach thread has its own

* thread ID, program counter,
register set, stack

 thread control block can be
used to save thread state,
analogous to PCB for processes

code data

files

code

data

files

registers

stack

registers

registers

reqisters

thread —» ;

stack

stack

stack

;4—- thread

single-threaded

multithreaded

Examples

* web browser
* one thread displays content

o another thread receives data from network

* web server

* spawn one process per request => too heavyweight

* use threads => lighter weight, better sharing of code and resources
* RPC server

* one RPC request per thread

(2) create new

(1) request thread to service
the request
client > server » thread
When a request is issued, U
creates (or notifies) a thread
to serve the request. (3) resume listening

for additional
Chapterd M client requests 4

Benefits of Multithreading

* Responsiveness

* one thread blocked, another thread may perform a lengthy operation

 Resource Sharing

* several threads run in the same address space, easier sharing than interprocess
shared memory or message passing

* Economy

* process-level operation is heavyweight

« Solaris: process creation is 30x as slow as thread creation
context switch with process is 5x slower than thread switching

 Threads: switch register set but not memory management

Scalability

* threads may run in parallel on multiprocessor

Why Threads

Creation Communication
Platform\ Op pthread| speed WP Pthread |speed
fork() create()| u shared Mem-CPU | u
P (GB/s) P

AMD 2.8 GHz | o o | g 4 [15.6x| 12 53 | 4.4x

Opteron
IBM 1.5 GHz

POWER 4 104.5 2.1 49.8x 2.1 4 1.9x
Intel 24 GHz | o, 5 | 16 [343x| 03 43 |14.3x

Xeon

Intel 1:4 GHz 545 20 27 3x 1.8 6.4 3.6X

Itanium2

Challenges in Multicore
Programming

Computation partitioning
e into concurrent tasks

Balancing

« evenly distribute tasks to cores
Data splitting
« data units to expose data parallelism

Data dependency

 synchronize data accesses

Testing and debugging

Concurrency vs. Parallelism

» Concurrency

« multiple tasks active at the same time
* one running at a time on single-core system

* may run in parallel on multi-core

singlecore | Ty | To | T3 | Tq4 | T4 To | T3 | T4 | Ty

e Parallelism

 running multiple tasks simultaneously

* requires a multi-core system “*" [" [" |] "] "

core 2 To Ty To T4 To

Multicore Programming

Multicore

architectures

 Cores can share same (physical) memory

Fach core

could support multiple hardware threads

« SMT (simultaneous multithreading) architectures,
e.g., Intel Hyperthreading

Multithreading good match with multicore

« Parallelism: threads can run in parallel if OS schedules them

on multip

» data paral

task parallelism

e Cores

el ism VS core 1 T4 Ta T4 Ta T4

core 2 To Ty To Ty To

11

Data Parallelism

« same task running on different data

 data may be segmented or multiple streams

» different parts can be processed in parallel

« Examples: S

.] Cij= zm:ai,k - by j
* matrix multiply

* dot-products A e
are data-parallel! :

12

Task Parallelism

* the problem can be decomposed

* into threads that have little mutual dependency

« each thread runs (potentially) different code
» Examples
* servers that serve a variety of requests
» http, ftp, cloud drive, streaming, ...

* Multimedia, games: audio, graphics, networking

 but... only up to a limit (e.g., frame), and they need to
synchronize ("fork-join" parallelism)

13

Pipeline Parallelism

 Divide a task into stages
 Each stage is executed on its own processor
« Assuming data is streamed
» Example: 3D Graphics pipeline for gaming
« application (character action, game rules)
» geometry (lighting, projection, clipping, viewport)

» rasterization (hidden surface removal, texture, shading,
alpha blending / antialiasing)

« One stage depends on previous stage for input

14

Series-Parallel parallelism

 Also called fork-join parallelism

 program starts out serial

 can spawn threads ("fork") to do work concurrently

» threads synchron

ize ("join") after they finish

« program executes in series for a while, then fork...

« Common for recursive algorithms

e "divide-and-cong

uer": MergeSort, QuickSort, etc.

« supported as "for
threads packages

k-join" constructs by some languages or

15

example: MergeSort

* MergeSort(Al])

» Divide A into two } executes in series
halves L, R

* MergeSort(L) } can run in parallel!
+ MergeSort(R) data do not overlap

* # conquer

executes In series
A = Merge(L, R) }

(linear time)

16

User thread vs. Kernel thread

e User threads

» thread management done by user-level thread library
» OS only sees processes; does not "see" user threads

« example: POSIX pthreads, Win32 threads, Java threads,
Python threads

e Kernel threads

* managed by the OS kernel directly

* does not mean "threads that run in kernel mode"! (they
could, but could switch to user mode to run the process)

* e.g.: Windows 2000 (NT), Solaris, Linux, Tru64 Unix, macOS

17

User thread vs. Kernel thread

» User thread library

» supports thread creation, scheduling, deletion
» Generally fast to create and manage

o If kernel is single threaded, when a user thread blocks =>
entire process blocks, even if some threads are ready to run

 Kernel threads
* kernel performs thread creation, scheduling, etc
* Generally slower to create and manage

 if a thread is blocked, the kernel can schedule another thread
to run

18

Multithreading Models

» Different ways of mapping user threads to
kernel threads

* Three combinations
* Many-to-one
* One-to-one
* Many-to-many

* Preemption

* cooperative vs. preemptive

19

Many-to-One

« Many user-level threads mapped to one kernel thread

* for systems that don't support kernel threads, so the process itself is
“single-threaded”

« Examples: Solaris Green threads, GNU portable threads

e Pro

o All thread management is done in user space => efficient

e Con

* if one user thread makes a blocking system call => whole process
blocks

* can’t run multiple such threads in parallel on multiprocessors
=> few systems currently use this model, as multicore is norm

20

One-to-One

Each user-level thread maps to a kernel thread

* there may be a limit on the number of kernel threads

Pro

* More concurrency than sharing one kernel thread

Con

* higher overhead: each user thread is one kernel thread

Examples
 Windows XP/NT/2000, Linux, Solaris 9 and later

Most popular model - for now

* more cores now, balances between complexity and performance gain

21

Many-to-Many

* Map multiple user threads to a number of kernel
threads

« Some user threads may share a kernel thread

» Developers can create as many user threads as Many-to-
one

e Pro

» threads mapped onto different kernel threads can run in
narallel on a multiprocessor

 |f a user thread blocks on a call, the kernel can schedule
another kernel thread for other threads of that process

22

Two-level Model of threads

« Similar to M:M, except that it allows a
user thread to be bound to kernel thread

S

« Examples

e |IRIX ;
P-UX
* True4 UNIX

¢ SOIarIS 8 al’]d eal‘llel’ @ <«— Kkernel thread

Review (1)

Benefits of multithreading

« Responsiveness, economy, resource utilization and sharing

Types of parallelism

» data parallelism, task parallelism
Challenges of multithreading programming
User threads vs Kernel threads

Thread models

* many-to-one, one-to-one, many-to-many

24

Thread concepts

e main thread

« the initial thread of control that already exists and
running when the program starts

 main thread creates other threads
e worker thread

» created thread, maybe ready to accept work or is
working

» thread pool

» pool of worker threads ready to accept work

25

Thread Primitives (1/3)

* create a thread; aka spawn a thread

* create a thread to run a function
instead of cloning the creator's thread

* may start running automatically,

or may need to call a start() explicitly to run the
created thread

* No parent-child relationship like fork()!

26

Thread Primitives (2/3)

* join a thread t

creator waits for a thread t to finish (if not already), then
release its resources

somewhat like calling wait() on a child process.

e detach a thread t

creator tells threads manager to automatically release
thread t's resources when it finishes,

otherwise, after t finishes, its resources won't be released
until creator calls join(t)

once someone detaches t, can't join t any more!!

27

Thread Primitives (3/3)

* voluntary exit

* explicitly: when a thread calls the thread-exit
function, or

 implicitly: thread returns from the function it was
asked to run

e cancel ("kill") a thread

* ask a thread to stop running, usually more of a
suggestion. Thread could decide when to actually
finish. possible to force kill (but messy)

23

Preemptive vs. Cooperative
Threads

* Default assumption: preemptive

* i.e., timer interrupt triggers context switch

A "threads manager" at user level gets timer interrupt - in the
form of a timer signal handler

» user threads package does not see system calls!

» Easier: cooperative threads

» additional primitive of "thread-yield" to other threads

* No preemption: switches context to another thread only by

thread-yield or t

e However... ifat

nreac

nread-exit

does not yield then others can starve!!

29

Shared-Memory Programming

* Threads communicate through shared memory

« No need to set up shared memory across processes!

Can use globals directly!!

e |ssues

 Synchronization, deadlock, cache coherence

* Programming techniques

* parallelizing compiler

e Threads (Pthreads, Java)

p—

soncepts — NTHU LSA Lab

thread

thread

thread

thread

Asynchronous vs Synchronous
Threading

* Asynchronous threading

« created thread runs independently and
concurrently

« little dependence, mostly for servers (thread pool)
and Ul

 Synchronous threading

o the thread creator waits for created threads to finish
and join

e analogous to fork() parent calling wait() on children

31

Implementations

Python threads
Pthreads (POSIX threads)

Java threads, Fork-Join library
OpenMP -

« compiler directive + API for shared-memory
machines

32

Python3 threads

- 1mport threading
» threads package for all thread use plus synchronization
« 1mport time

« time.sleep(t) to yield to another thread

e |ssue

* implementation runs one thread at a time, not in parallel
due to global interpreter lock (GIL)

* To run in parallel, use multiprocessing module

(processes)

33

Example Python3 thread:
Producer-Consumer

import threading
import time

False

dataAvail
sharedVar

def Producer():
import string
global dataAvail
global sharedVar

for 1 in string.ascii uppercase:

sharedVar = 1

dataAvail = True

while dataAvail:
time.sleep(1)

def Consumer():
global dataAvail
global sharedvar

while True:
while not dataAvail:
time.sleep(1)
print(sharedVar)
dataAvail = False
if name_ == "' _ main__ ":
p = threading.Thread(target=Producer)
¢ = threading.Thread(target=Consumer)
p.start()
c.start()

34

Discussion of producer-
consumer example in Python3

* easy to write - attach a function to thread

* preemptive threads!

 will context switch even if they don't sleep
* try replacing timer.sleep(1) with pass
* Note explicit .start() on created thread
» contrast to POSIX thread - automatically started when created!

 Should call either .join() or .detach() to free up
thread after it finishes

* but.. here relying on process termination to clean up threads

35

Alt. option for Python: Generator

* generator

* function yield value instead of return
=> continues execution after yield

e Styles: pull vs. push

* caller pulls data by next(g) to get data yielded
by g; or

* caller pushes value by g.send(value), so g
receives from yield as an expression

36

Python3 generator (yield) as
consumer pulling producer

def Producer():
import string
for 1 in string.ascii uppercase:
yield 1

consumer as mailn
if name_ == '_ main__ ':
for-loop instantiates
g = Producer() and calls
c = next(g) for you until done
for ¢ in Producer():
print(c)

« for loop instantiates
generator and calls next()
to pull from generator

No threads
rendezvous

shorter, easy to
understand

lower overhead

But.. this is mainly for
producer-consumer
pattern, not thread
replacement

37

Python3 send() to generator as
producer pushing to consumer

def Consumer():
while True:
Cc = yield # receive

print(c)
producer as main loop
if name_ == ' main__ ':

import string

g = Consumer()

next(g) # to kickstart consumer

for 1 in string.ascii uppercase:
g.send(1)

» g.send(val) pushes to

generator instance;
c = yield recelves val

No threads
rendezvous

slightly more code
than pull, but still
simple

strictly speaking,
this is zero-buffer
message passing

38

Thread library

» User space vs kernel space
» entirely in user space:
* no system call by user code,

 though preemptive threads manager needs to call
signal() to register callback on system events (timer)

* kernel-level library support

* make system calls to kernel for thread primitives

* Examples
« POSIX Pthreads, Java, and Windows

39

Pthreads

Pthreads = POSIX threads
POSIX = Portable Operating System Interface

» standard for portability across Unix-like systems (Solaris,
Linux, Mac)

 Pthreads = threads implemented to POSIX standard
IEEE 1003.1c APl => this is a spec, not implementation

Why Pthreads

» previously, each hardware implements its own proprietary
version, not portable

Similar concept as MPI for message passing libraries

40

Pthread creation

 pthread_create(thread, attr, routine, arg)
* thread: a unique id (token) for the new thread
o attr: thread attribute to set; NULL for default value
* routine: the function to run after thread is created

e arg: a single argument to pass to the routine

main program Nd1
func(&arg) {

pthread_create(&thread1, NULL, func1, &arg); >

—return(*status)

pthread_join(thread1, *status); €— }

41

#include <pthread.h> p
#include <stdio.h>
long threadParam[] = { 1, 8, 19, 23, 37 };
#define NUM_THREADS (sizeof(threadParam) / sizeof(long))
void *PrintHello(void *threadId) {
long *data = (long*)threadld;
printf("Hello world! I am #%1d\n", *data);
pthread exit(NULL);

} creates a new thread that runs PrintHello(threadParam]i])

int main(int argc, char*argv[]) {
pthread t threads[NUM_ THREADS];
for (int i = @; i < NUM_THREADS; i++) {v
pthread create(&threads[i], NULL, PrintHello, threadParam + i);

}
for (int 1 = ©; i < NUM THREADS; i++) {
pthread join(threads[i]; NULL);

¥ } T

wait for each thread to finish

42

Pthread join and detach

- pthread join(threadId, status)

* blocks until specified threadld thread terminates
* Once way to synchronize between threads

« Example: a pthread barrier
for (int 1 = 0; 1 < n; i++) pthread join(thread[i], NULL);

- pthread detach(threadId)

 mark a thread so when it finishes, its resources can be reclaimed
(without main thread calling join())

 once a thread is detached, it can never be joined

43

Pthread summary

e Portable

* to different machines, possibly languages too

* trivial to share data, done in familiar language

e Pitfalls

* low level code crafting, easy to get race condition

* not always natural to express code as explicit
threads

44

Thread Pool

 Create a number of threads in a pool

» standing by, ready to do work

» recycle back into pool when done
* Pros

« usually faster to service a request using thread from pool than
creating a new thread

* allows the number of threads in the application to be bound to
the pool size

« Bound on #threads

 could be #CPU cores, #expected requests, memory capacity

45

Java threads

» Two ways to define threads in Java

 extending Thread class

* implementing the Runnable interface

public interface Runnable {
public abstract void run();
}

* implemented using a thread library on the host system

 Win32 threads on Windows

* Pthreads on Unix-like systems

* Thread mapping depends on JVM implementation

* Windows 98 or NT: one-to-one Solaris2: may-to-many

46

Java Fork-Join Library

* For divide-and-conquer problems

e fork threads to do concurrent work ("divide"), usually
involving recursion

« Purpose: expose series-parallel parallelism

* Java fork-join library

 spawn a thread to do the recursive call if the subproblem
is sufficiently large; otherwise don't fork a thread.

* join the recursive calls after complete

 implementation uses thread pool ("ForkjoinPool")

47

OpenMP

e Motivation:

» want to write serial program with (few) annotation, let
compiler turn into threads

« portable, though implementation dependent

* Programmer's view
 requires compiler support: C, C++, Fortran
 program divided into serial and parallel regions

« compiler parallelizes and make threads, takes care of
race conditions

48

OpenMP pragma

* Syntax
« #pragma omp parallel

* Create as many threads as there are cores

o parallel for-loop

- #pragma omp parallel for
for (1 =0; i < N; i++) {
c[i] = a[1] + b[1];
}

« Compiler automatically manages synchronization

49

OpenMP Restrictions

» for-loop restrictions
 Loop index: signed integer
« Termination Test: <,<=,>,=> loop invariant int
* incr/decr by loop invariant int; change each iteration
« Count up for <,<=; count down for >,>=
 Basic block body: no control in/out except at top
 Synchronization

« implicit barrier before and after parallel constructs, but could
be removed (nowait)

» explicit synchronization by critical or atomic

50

Threading Issues

semantics of fork() and exec()

* duplicate threads or not?

Signal handling

» where should a signal be delivered?

Thread cancellation

* asynchronous or deferred
Thread-local Storage

Scheduler Activations

51

semantics of fork() and

exec()
« Does fork() duplicate threads?

« POSIX fork() duplicates only the thread that calls fork(),
but says fork() should be called only from single threaded!

 Solaris's own (not POSIX) fork API duplicates all threads.
Others have two versions of fork()

« execlp() only one semantic, not an issue

* replaces entire process, so no need to duplicate all threads.

PO PO ' p1 PO ' p1

1T T2 1 T 'n 1 T2 ' 1

fori<()

fork() fork)

fork() : | fork()

Signal Handling

» Signals = callback by OS to user process

* signal handler is called by OS to handle signals to
notify a process that an event has occurred

* For more information, type man signal

« Examples

 synchronous: illegal memory access

 asynchronous: user types Ctrl-C to kill a process

53

« #include <signal.h>

SIGALRM — alarm clock

SIGBUS — bus error

SIGFPE - floating point arithmetic
exception

SIGINT — interrupt (i.e., Ctrl-C)
SIGQUIT — quit (i.e., Ctrl-\)
SIGTERM — process terminated

SIGUSR1 and SIGUSR2 — user
defined signals

* Register which signal to
handle by calling signal()

Signal Programming

void my handler(int s) {

¥

void main(void) {
signal (SIGALRM, my handler);
// registers callback

//
//
//
//

//
if

}

this function is called
when SIGALRM signal

is emitted

int s is the signal #,
like a user-level ISR
(s == SIGLARM) {

54

Signal Delivery

* Single threaded:

system calls the registered callback function

* Several options for Multi-threaded

to only the thread that is applicable
to every thread in the process
to only certain threads in the process

assign a specific thread to receive all signals for
the process

55

Thread Cancellation

« What happens if a thread terminates before it
completes normally?

* e.g., user cancels web page loading

* Asynchronous cancellation

* the target thread is terminated immediately

» Deferred cancellation (default option)

» target thread periodically checks if it should be
terminated

* gets chance to clean up before termination

56

Deferred Cancellation

« Thread can enable or disable cancellation

» Thread cancellation is a requests

 Actual cancellation depends on thread state

» If disabled => cancellation remains pending until thread enables it
 Thread gets to decide cancellation point

» Thread calls pthread_testcancel() to set cancellation point

 Cancellation only occurs when thread reaches cancellation point

» Then cleanup handler is invoked

* On Linux systems, thread cancellation is handled
through signals

57

Thread-Local Storage

» The "global" data within each thread

e Not shared with other threads

« Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

o Different from local variables

* Local variables visible only during single function invocation

e TLS visible across function invocations

* Similar to static data

« TLS is unique to each thread

58

Scheduler Activations

 Kernel provides Lightweight Process (LWP)
o "virtual processors" = kernel threads

 kernel makes up call to application about events

» Example: before and after blocking

« just before blocking: upcall informs user threads
scheduler, kernel allocates another virtual processor

* right after unblocking, another upcall tells user
thread scheduler to schedule another virtual
processor

59

Threads on Linux

 Linux as OS does not support
multithreading

« Use various Pthreads implementation (user-level)

e Process creation on Linux

« fork(): creates a new process and a copy of the
data from parent

e clone(): creates a "task," which may be process
or thread depending on level of sharing.

60

Use of clone() In Linux

 Flags to clone() indicate level of sharing

* No sharing flag set => copy all => make process
(clone() == fork() in this case)

 All sharing flags set => spawns a thread

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files Is shared.

Windows XP threads

one-to-one mapping

each thread contains

e thread ID

* register set

* separate user and kernel stack

e private data storage

Primary data structures
« ETHREADS
 KTHREADS

 TEB

ETHREAD

thread start
address

pointer to
parent process

KTHREAD

scheduling
and
synchronization
information

kernel
stack

TEB

thread identifier

user
stack

thread-local
storage

kernel space

Also provides support for a fiber library => many-to-many

user space

62

