
Chapter 4:  
Threads

CS 3423 Operating Systems
Fall 2019

National Tsing Hua University

1

Overview
• Introduction to Threads

• Multithreading Models

• Threaded Case Study

• Threading Issues

2

Objectives
• Introduce thread as a fundamental unit of

CPU utilization

• Discuss APIs for the Pthreads thread
libraries

• Implicit threading

• Case studies of Threads Libraries and OSs

3

Motivation
• Multiple tasks in modern applications

• Update display

• Fetch data

• Spell checking

• Answer a network request

• Process creation is heavy-weight

• Solution: thread creation is light-weight
• Can simplify code, increase efficiency

• Kernels are generally multithreaded

4

Threads
• aka lightweight process:

• basic unit of CPU utilization

• All threads of a process
share
• code section, data section,

open files, signals

• Each thread has its own
• thread ID, program counter,

register set, stack

• thread control block can be
used to save thread state,
analogous to PCB for processes

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 3 Operating System Concepts – NTHU LSA Lab 3

Threads
� A.k.a lightweight process:

basic unit of CPU utilization

� All threads belonging to the
same process share
¾code section, data section,

and OS resources (e.g. open
files and signals)

� But each thread has its own
(thread control block)
¾ thread ID, program counter,

register set, and a stack

5

Examples
• web browser

• one thread displays content

• another thread receives data from network

• web server
• spawn one process per request => too heavyweight

• use threads => lighter weight, better sharing of code and resources

• RPC server
• one RPC request per thread

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 4

Motivation
� Example: a web browser

¾ One thread displays contents while the other thread
receives data from network

� Example: a web server
¾ One request / process: poor performance
¾ One request / thread: better performance as code and

resource sharing
� Example: RPC server

¾ One RPC request / thread

When a request is issued,
creates (or notifies) a thread
to serve the request.

6

Benefits of Multithreading
• Responsiveness

• one thread blocked, another thread may perform a lengthy operation

• Resource Sharing

• several threads run in the same address space, easier sharing than interprocess
shared memory or message passing

• Economy
• process-level operation is heavyweight

• Solaris: process creation is 30x as slow as thread creation 
context switch with process is 5x slower than thread switching

• Threads: switch register set but not memory management

• Scalability
• threads may run in parallel on multiprocessor

7

Why Threads

Platform\ Op

Creation Communication

fork()
pthread
create()

speed
up

MPI
shared
(GB/s)

Pthread
Mem-CPU

speed
up

AMD 2.4 GHz
Opteron

17.6 1.4 15.6x 1.2 5.3 4.4x

IBM 1.5 GHz
POWER 4

104.5 2.1 49.8x 2.1 4 1.9x

Intel 2.4 GHz
Xeon

54.9 1.6 34.3x 0.3 4.3 14.3x

Intel 1.4 GHz
Itanium2

54.5 2.0 27.3x 1.8 6.4 3.6x

8

Challenges in Multicore
Programming

• Computation partitioning
• into concurrent tasks

• Balancing
• evenly distribute tasks to cores

• Data splitting

• data units to expose data parallelism

• Data dependency

• synchronize data accesses

• Testing and debugging

9

Concurrency vs. Parallelism
• Concurrency

• multiple tasks active at the same time

• one running at a time on single-core system

• may run in parallel on multi-core

• Parallelism
• running multiple tasks simultaneously

• requires a multi-core system

10

Multicore Programming
• Multicore architectures

• Cores can share same (physical) memory

• Each core could support multiple hardware threads
• SMT (simultaneous multithreading) architectures, 

e.g., Intel Hyperthreading

• Multithreading good match with multicore

• Parallelism: threads can run in parallel if OS schedules them
on multiple cores

• data parallelism vs 
task parallelism

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 7

Multithcore Programming
� Multithreaded programming provides a mechanism

for more efficient use of multiple cores and
improved concurrency (threads can run in parallel)

� Multicore systems putting pressure on system
designers and application programmers
¾ OS designers: scheduling algorithms use cores to allow the

parallel execution

11

data parallelism in matrix multiplication

ci ,j =
m
∑

k=1

ai ,k · bk ,j

A C

B

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

i

✛ m ✲

j

✻

m

❄

✛ p ✲

✻

n

❄

Introduction to Supercomputing (MCS 572) Data Parallelism & Matrix Multiplication L-31 2 November 2016 4 / 32

Data Parallelism
• same task running on different data

• data may be segmented or multiple streams

• different parts can be processed in parallel

• Examples:
• matrix multiply

• dot-products 
are data-parallel!

12

Task Parallelism
• the problem can be decomposed

• into threads that have little mutual dependency

• each thread runs (potentially) different code

• Examples
• servers that serve a variety of requests

• http, ftp, cloud drive, streaming, ...

• Multimedia, games: audio, graphics, networking

• but... only up to a limit (e.g., frame), and they need to
synchronize ("fork-join" parallelism)

13

Pipeline Parallelism
• Divide a task into stages

• Each stage is executed on its own processor

• Assuming data is streamed

• Example: 3D Graphics pipeline for gaming

• application (character action, game rules)

• geometry (lighting, projection, clipping, viewport)

• rasterization (hidden surface removal, texture, shading,
alpha blending / antialiasing)

• One stage depends on previous stage for input

14

Series-Parallel parallelism
• Also called fork-join parallelism

• program starts out serial

• can spawn threads ("fork") to do work concurrently

• threads synchronize ("join") after they finish

• program executes in series for a while, then fork...

• Common for recursive algorithms

• "divide-and-conquer": MergeSort, QuickSort, etc.

• supported as "fork-join" constructs by some languages or
threads packages

15

example: MergeSort
• MergeSort(A[])

• Divide A into two
halves L, R

• MergeSort(L)

• MergeSort(R)

• # conquer 
A = Merge(L, R)

16

} can run in parallel!  
data do not overlap

executes in series  
(linear time)}

} executes in series

User thread vs. Kernel thread
• User threads

• thread management done by user-level thread library

• OS only sees processes; does not "see" user threads

• example: POSIX pthreads, Win32 threads, Java threads,
Python threads

• Kernel threads
• managed by the OS kernel directly

• does not mean "threads that run in kernel mode"! (they
could, but could switch to user mode to run the process)

• e.g.: Windows 2000 (NT), Solaris, Linux, Tru64 Unix, macOS

17

User thread vs. Kernel thread
• User thread library

• supports thread creation, scheduling, deletion

• Generally fast to create and manage

• If kernel is single threaded, when a user thread blocks =>
entire process blocks, even if some threads are ready to run

• Kernel threads
• kernel performs thread creation, scheduling, etc

• Generally slower to create and manage

• if a thread is blocked, the kernel can schedule another thread
to run

18

Multithreading Models
• Different ways of mapping user threads to

kernel threads

• Three combinations
• Many-to-one

• One-to-one

• Many-to-many

• Preemption
• cooperative vs. preemptive

19

Many-to-One
• Many user-level threads mapped to one kernel thread

• for systems that don't support kernel threads, so the process itself is
“single-threaded”

• Examples: Solaris Green threads, GNU portable threads

• Pro

• All thread management is done in user space => efficient

• Con

• if one user thread makes a blocking system call => whole process
blocks

• can’t run multiple such threads in parallel on multiprocessors 
=> few systems currently use this model, as multicore is norm

20

One-to-One
• Each user-level thread maps to a kernel thread

• there may be a limit on the number of kernel threads

• Pro
• More concurrency than sharing one kernel thread

• Con
• higher overhead: each user thread is one kernel thread

• Examples
• Windows XP/NT/2000, Linux, Solaris 9 and later

• Most popular model - for now
• more cores now, balances between complexity and performance gain

21

Many-to-Many
• Map multiple user threads to a number of kernel

threads

• Some user threads may share a kernel thread

• Developers can create as many user threads as Many-to-
one

• Pro

• threads mapped onto different kernel threads can run in
parallel on a multiprocessor

• If a user thread blocks on a call, the kernel can schedule
another kernel thread for other threads of that process

22

Two-level Model of threads
• Similar to M:M, except that it allows a

user thread to be bound to kernel thread

• Examples
• IRIX

• HP-UX

• Tru64 UNIX

• Solaris 8 and earlier

23

Review (1)
• Benefits of multithreading

• Responsiveness, economy, resource utilization and sharing

• Types of parallelism
• data parallelism, task parallelism

• Challenges of multithreading programming

• User threads vs Kernel threads

• Thread models
• many-to-one, one-to-one, many-to-many

24

Thread concepts
• main thread

• the initial thread of control that already exists and
running when the program starts

• main thread creates other threads

• worker thread

• created thread, maybe ready to accept work or is
working

• thread pool

• pool of worker threads ready to accept work

25

Thread Primitives (1/3)
• create a thread; aka spawn a thread

• create a thread to run a function  
instead of cloning the creator's thread

• may start running automatically,  
or may need to call a start() explicitly to run the
created thread

• No parent-child relationship like fork()!

26

Thread Primitives (2/3)
• join a thread t

• creator waits for a thread t to finish (if not already), then
release its resources

• somewhat like calling wait() on a child process.

• detach a thread t
• creator tells threads manager to automatically release

thread t's resources when it finishes,

• otherwise, after t finishes, its resources won't be released
until creator calls join(t)

• once someone detaches t, can't join t any more!!

27

Thread Primitives (3/3)
• voluntary exit

• explicitly: when a thread calls the thread-exit
function, or

• implicitly: thread returns from the function it was
asked to run

• cancel ("kill") a thread
• ask a thread to stop running, usually more of a

suggestion. Thread could decide when to actually
finish. possible to force kill (but messy)

28

Preemptive vs. Cooperative
Threads

• Default assumption: preemptive

• i.e., timer interrupt triggers context switch

• A "threads manager" at user level gets timer interrupt - in the
form of a timer signal handler

• user threads package does not see system calls!

• Easier: cooperative threads
• additional primitive of "thread-yield" to other threads

• No preemption: switches context to another thread only by
thread-yield or thread-exit

• However... if a thread does not yield then others can starve!!

29

Shared-Memory Programming
• Threads communicate through shared memory

• No need to set up shared memory across processes!
Can use globals directly!!

• Issues

• Synchronization, deadlock, cache coherence

• Programming techniques

• parallelizing compiler

• Threads (Pthreads, Java)

Chapter4 Multithreaded

Shared-Memory Programming

� Definition: Processes communicate or work together
with each other through a shared memory space
which can be accessed by all processes
¾ Faster & more efficient than message passing

� Many issues as well:
¾ Synchronization
¾ Deadlock
¾ Cache coherence

� Programming techniques:
¾ Parallelizing compiler
¾ Unix processes
¾ Threads (Pthread, Java)

Operating System Concepts – NTHU LSA Lab 17

30

Asynchronous vs Synchronous
Threading

• Asynchronous threading

• created thread runs independently and
concurrently

• little dependence, mostly for servers (thread pool)
and UI

• Synchronous threading
• the thread creator waits for created threads to finish

and join

• analogous to fork() parent calling wait() on children

31

Implementations
• Python threads

• Pthreads (POSIX threads)

• Java threads, Fork-Join library

• OpenMP -
• compiler directive + API for shared-memory

machines

32

Python3 threads
• import	threading	

• threads package for all thread use plus synchronization

• import	time	

• time.sleep(t) to yield to another thread

• Issue
• implementation runs one thread at a time, not in parallel

due to global interpreter lock (GIL)

• To run in parallel, use multiprocessing module
(processes)

33

Example Python3 thread:
Producer-Consumer

34

import	threading	
import	time	

dataAvail	=	False	
sharedVar	=	''	

def	Producer():	
				import	string	
				global	dataAvail	
				global	sharedVar 

				for	i	in	string.ascii_uppercase: 
								sharedVar	=	i	
								dataAvail	=	True	
								while	dataAvail:	
												time.sleep(1)

def	Consumer():	
				global	dataAvail	
				global	sharedVar 

				while	True:	
								while	not	dataAvail:	
												time.sleep(1)	
								print(sharedVar)	
								dataAvail	=	False	

if	__name__	==	'__main__':	
				p	=	threading.Thread(target=Producer)	
				c	=	threading.Thread(target=Consumer)	
				p.start()	
				c.start()	

Discussion of producer-
consumer example in Python3
• easy to write - attach a function to thread

• preemptive threads!

• will context switch even if they don't sleep

• try replacing timer.sleep(1) with pass

• Note explicit .start() on created thread

• contrast to POSIX thread - automatically started when created!

• Should call either .join() or .detach() to free up
thread after it finishes

• but.. here relying on process termination to clean up threads

35

Alt. option for Python: Generator

• generator
• function yield value instead of return 

=> continues execution after yield

• Styles: pull vs. push

• caller pulls data by next(g) to get data yielded
by g; or

• caller pushes value by g.send(value), so g
receives from yield as an expression

36

Python3 generator (yield) as
consumer pulling producer

• No threads

• rendezvous

• shorter, easy to
understand

• lower overhead

• But.. this is mainly for
producer-consumer
pattern, not thread
replacement

37

def	Producer(): 
				import	string	
				for	i	in	string.ascii_uppercase:	
								yield	i	

#	consumer	as	main	
if	__name__	==	'__main__': 
				#	for-loop	instantiates 
				#	g	=	Producer()	and	calls 
				#	c	=	next(g)	for	you	until	done	
				for	c	in	Producer():	
								print(c)

• for loop instantiates
generator and calls next()
to pull from generator

Python3 send() to generator as
producer pushing to consumer

• No threads

• rendezvous

• slightly more code
than pull, but still
simple

• strictly speaking,
this is zero-buffer
message passing

38

def	Consumer(): 
				while	True:	 
								c	=	yield	#	receive	
								print(c)	
#	producer	as	main	loop	
if	__name__	==	'__main__':	
				import	string 
				g	=	Consumer() 
				next(g)	#	to	kickstart	consumer	
				for	i	in	string.ascii_uppercase: 
							g.send(i)

• g.send(val) pushes to
generator instance;  
c	=	yield receives val

Thread library
• User space vs kernel space

• entirely in user space:

• no system call by user code,

• though preemptive threads manager needs to call
signal() to register callback on system events (timer)

• kernel-level library support

• make system calls to kernel for thread primitives

• Examples
• POSIX Pthreads, Java, and Windows

39

Pthreads
• Pthreads = POSIX threads

• POSIX = Portable Operating System Interface

• standard for portability across Unix-like systems (Solaris,
Linux, Mac)

• Pthreads = threads implemented to POSIX standard 
IEEE 1003.1c API => this is a spec, not implementation

• Why Pthreads
• previously, each hardware implements its own proprietary

version, not portable

• Similar concept as MPI for message passing libraries

40

Pthread creation
• pthread_create(thread, attr, routine, arg)

• thread: a unique id (token) for the new thread

• attr: thread attribute to set; NULL for default value

• routine: the function to run after thread is created

• arg: a single argument to pass to the routine

Chapter4 Multithreaded

Pthread Creation
� pthread_create(thread,attr,routine,arg)

¾ thread: An unique identifier (token) for the new thread
¾ attr: It is used to set thread attributes. NULL for the default values
¾ routine: The routine that the thread will execute once it is created
¾ arg: A single argument that may be passed to routine

Operating System Concepts – NTHU LSA Lab

main program

pthread_create(&thread1, NULL, func1, &arg);

pthread_join(thread1, *status);
…

…

…

…
…

thread1

func(&arg) {

 return(*status)
}

…
…

19 41

Example
#include	<pthread.h>	
#include	<stdio.h>	
long	threadParam[]	=	{	1,	8,	19,	23,	37	};	
#define	NUM_THREADS	(sizeof(threadParam)	/	sizeof(long))	
void	*PrintHello(void	*threadId)	{	
				long	*data	=	(long*)threadId;	
				printf("Hello	world!	I	am	#%ld\n",	*data);	
				pthread_exit(NULL);	
}	

int	main(int	argc,	char*argv[])	{	
				pthread_t	threads[NUM_THREADS];	
				for	(int	i	=	0;	i	<	NUM_THREADS;	i++)	{	
								pthread_create(&threads[i],	NULL,	PrintHello,	threadParam	+	i);	
				}	
				for	(int	i	=	0;	i	<	NUM_THREADS;	i++)	{	
								pthread_join(threads[i];	NULL);	
				}	
}

creates a new thread that runs PrintHello(threadParam[i])

42

wait for each thread to finish

Pthread join and detach
• pthread_join(threadId,	status)	

• blocks until specified threadId thread terminates

• Once way to synchronize between threads

• Example: a pthread barrier 
for	(int	i	=	0;	i	<	n;	i++)	pthread_join(thread[i],	NULL);

• pthread_detach(threadId)	

• mark a thread so when it finishes, its resources can be reclaimed
(without main thread calling join())

• once a thread is detached, it can never be joined

Chapter4 Multithreaded

Pthread Joining & Detaching
� pthread_join(threadId, status)

¾ Blocks until the specified threadId thread terminates
¾ One way to accomplish synchronization between threads
¾ Example: to create a pthread barrier

� pthread_detach(threadId)
¾ Once a thread is detached, it can never be joined
¾ Detach a thread could free some system resources

Operating System Concepts – NTHU LSA Lab

for (int i=0; i<n; i++) pthread_join(thread[i], NULL);

21
43

Pthread summary
• Portable

• to different machines, possibly languages too

• trivial to share data, done in familiar language

• Pitfalls
• low level code crafting, easy to get race condition

• not always natural to express code as explicit
threads

44

Thread Pool
• Create a number of threads in a pool

• standing by, ready to do work

• recycle back into pool when done

• Pros

• usually faster to service a request using thread from pool than
creating a new thread

• allows the number of threads in the application to be bound to
the pool size

• Bound on #threads

• could be #CPU cores, #expected requests, memory capacity

45

Java threads
• Two ways to define threads in Java

• extending Thread class

• implementing the Runnable interface 
 
public	interface	Runnable	{ 
			public	abstract	void	run(); 
}

• implemented using a thread library on the host system
• Win32 threads on Windows

• Pthreads on Unix-like systems

• Thread mapping depends on JVM implementation
• Windows 98 or NT: one-to-one Solaris2: may-to-many

46

Java Fork-Join Library
• For divide-and-conquer problems

• fork threads to do concurrent work ("divide"), usually
involving recursion

• Purpose: expose series-parallel parallelism

• Java fork-join library
• spawn a thread to do the recursive call if the subproblem

is sufficiently large; otherwise don't fork a thread.

• join the recursive calls after complete

• implementation uses thread pool ("ForkJoinPool")

47

OpenMP
• Motivation:

• want to write serial program with (few) annotation, let
compiler turn into threads

• portable, though implementation dependent

• Programmer's view
• requires compiler support: C, C++, Fortran

• program divided into serial and parallel regions

• compiler parallelizes and make threads, takes care of
race conditions

48

OpenMP pragma
• Syntax

• #pragma	omp	parallel		

• Create as many threads as there are cores

• parallel for-loop
• #pragma	omp	parallel	for	 
for	(i	=	0;	i	<	N;	i++)	{	 
				c[i]	=	a[i]	+	b[i];	 
}		

• Compiler automatically manages synchronization

49

OpenMP Restrictions
• for-loop restrictions

• Loop index: signed integer

• Termination Test: <,<=,>,=> loop invariant int

• incr/decr by loop invariant int; change each iteration

• Count up for <,<=; count down for >,>=

• Basic block body: no control in/out except at top

• Synchronization

• implicit barrier before and after parallel constructs, but could
be removed (nowait)

• explicit synchronization by critical or atomic

50

Threading Issues
• semantics of fork() and exec()

• duplicate threads or not?

• Signal handling
• where should a signal be delivered?

• Thread cancellation
• asynchronous or deferred

• Thread-local Storage

• Scheduler Activations

51

semantics of fork() and
exec()

• Does fork() duplicate threads?

• POSIX fork() duplicates only the thread that calls fork(),  
but says fork() should be called only from single threaded!

• Solaris's own (not POSIX) fork API duplicates all threads.
Others have two versions of fork()

• execlp() only one semantic, not an issue

• replaces entire process, so no need to duplicate all threads.

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 26

Semantics of fork() and exec()
� Does fork() duplicate only the calling thread

or all threads?
¾ Some UNIX system support two versions of fork()

� execlp() works the same; replace the entire
process
¾ If exec() is called immediately after forking, then

duplicating all threads is unnecessary

…
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 …
…

..

...
...

fork()

T1 T2 ...
...

fork()

T2
P0 P0 P0 P1 P1

52

Signal Handling
• Signals = callback by OS to user process

• signal handler is called by OS to handle signals to
notify a process that an event has occurred

• For more information, type man	signal

• Examples

• synchronous: illegal memory access

• asynchronous: user types Ctrl-C	to kill a process

53

Signal Programming
• #include	<signal.h>	

• SIGALRM – alarm clock

• SIGBUS – bus error

• SIGFPE – floating point arithmetic
exception

• SIGINT – interrupt (i.e., Ctrl-C)

• SIGQUIT – quit (i.e., Ctrl-\)

• SIGTERM – process terminated

• SIGUSR1 and SIGUSR2 – user
defined signals

• Register which signal to
handle by calling signal()

54

void	my_handler(int	s)	{	
				//	this	function	is	called 
				//	when	SIGALRM	signal	 
				//	is	emitted 
				//	int	s	is	the	signal	#, 
				//	like	a	user-level	ISR 
				if	(s	==	SIGLARM)	{ 
								... 
				} 
}	
void	main(void)	{ 
		signal(SIGALRM,	my_handler); 
		//	registers	callback 
		... 
}

Signal Delivery
• Single threaded:

• system calls the registered callback function

• Several options for Multi-threaded
• to only the thread that is applicable

• to every thread in the process

• to only certain threads in the process

• assign a specific thread to receive all signals for
the process

55

Thread Cancellation
• What happens if a thread terminates before it

completes normally?
• e.g., user cancels web page loading

• Asynchronous cancellation
• the target thread is terminated immediately

• Deferred cancellation (default option)
• target thread periodically checks if it should be

terminated

• gets chance to clean up before termination

56

Deferred Cancellation
• Thread can enable or disable cancellation

• Thread cancellation is a requests

• Actual cancellation depends on thread state

• If disabled => cancellation remains pending until thread enables it

• Thread gets to decide cancellation point

• Thread calls pthread_testcancel() to set cancellation point

• Cancellation only occurs when thread reaches cancellation point

• Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled
through signals

57

Thread-Local Storage
• The "global" data within each thread

• Not shared with other threads

• Useful when you do not have control over the thread
creation process (i.e., when using a thread pool)

• Different from local variables
• Local variables visible only during single function invocation

• TLS visible across function invocations

• Similar to static data
• TLS is unique to each thread

58

Scheduler Activations
• Kernel provides Lightweight Process (LWP)

• "virtual processors" = kernel threads

• kernel makes up call to application about events

• Example: before and after blocking
• just before blocking: upcall informs user threads

scheduler, kernel allocates another virtual processor

• right after unblocking, another upcall tells user
thread scheduler to schedule another virtual
processor

59

Threads on Linux
• Linux as OS does not support

multithreading
• Use various Pthreads implementation (user-level)

• Process creation on Linux
• fork(): creates a new process and a copy of the

data from parent

• clone(): creates a "task," which may be process
or thread depending on level of sharing.

60

Use of clone() in Linux
• Flags to clone() indicate level of sharing

• No sharing flag set => copy all => make process  
(clone() == fork() in this case)

• All sharing flags set => spawns a thread

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 24

Linux Threads
� A set of flags is used in the clone call for

indication of the level of the sharing
¾None of the flags is set Î clone = fork
¾All flags are set Î parent and child share everything

61

Windows XP threads
• one-to-one mapping

• each thread contains

• thread ID

• register set

• separate user and kernel stack

• private data storage

• Primary data structures
• ETHREADS

• KTHREADS

• TEB

• Also provides support for a fiber library => many-to-many

Chapter4 Multithreaded Operating System Concepts – NTHU LSA Lab 33

Windows XP Threads

62

