
Chapter 2
OS Structure

CS 3423 Operating Systems
National Tsing Hua University

 1

Chapter 2: OS Structures
• OS Services

• User OS Interface

• System Calls

• Types of System
Calls

• System Programs

• OS Design and
Implementation

• OS Structure

• OS Debugging

• OS Generation

• System Boot

 2

OS Services

 3

OS Services
• User interface

• program execution

• I/O operations

• file-system manipulation

• communication

• error detection

• resource allocation

• logging and accounting

• protection and security
Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 4

OS services
� User interface
� Program Execution
� I/O operations
� File-system manipulation
� Communication
� Error detection
� Resource allocation
� Accounting
� Protection and security

 4

OS Services (1/3)
• User interface

• CLI, GUI, Batch

• Program execution

• loader loads a program into memory to run

• program ends execution, either normally or abnormally
(indicating error) - gives control back to OS

• I/O operations

• file or I/O device

 5

OS Services (2/3)
• File system manipulation

• read, write, create, delete files and directories

• search them, list file info, manage permission

• Communications

• between processes on same host, or between hosts over network

• shared memory vs. message passing

• Error detection

• CPU and memory hardware, I/O devices, user program

• Debugging facilities

 6

OS Services (3/3)
• Resource allocation

• for multiple users or multiple jobs running concurrently

• including CPU cycles, main memory, file storage, I/O devices.

• Accounting

• keep track of which users use how much and what kinds of
computer resources

• Protection and security
• Protection: ensuring all access to system resources is controlled

• Security: user authentication, defending external I/O devices
from invalid access attempts

 7

A View of Operating System
Services

services

�8

User Interfaces
• CLI: Command-line Interface

• for user to type command as text and execute code  
(could be built-in command or name of program)

• shell (command-line interpreter) csh, bash,

• GUI: graphical user interface
• usually mouse, keyboard, display, now touch screen

• graphical elements to represent data object or control

• direct manipulation and visual / audio feedback

• Others:
• Gesture-based, Brain-Computer Interface (BCI), Voice

 9

Two approaches to shell
• Shell that understands all commands

• self-contained, bigger shell, but efficient per command

• to add commands => need to modify the shell!

• Shell that invokes executable file
• does not understand the command; only the syntax (e.g.,

command arg1 arg2 arg3 ...)

• invokes executable corresponding to command

• smaller shell, heavier weight per command,

• very expandable, no need to modify shell to add command

 10

Application-OS
Interface

System Calls
API

 11

System Calls
• Function calls to

request OS services

• Process control
• abort, create, terminate

process, allocate/free
memory

• File management
• create, delete, open,

close, read, write file

• Device management

• configure, read/write,
connect/disconnect
devices

• System setting and
context
• date/time, location,

proximity, authentication
service

• Communication
• send/receive data

messages

 12

Types of System Calls (1/3)
• Process Control

• Create, terminate, end, abort, load, execute

• Get and set process attributes

• Wait for time, event, signal event

• Memory: allocate, free

• Error dump, single-step for debug

• Locks for shared data

• Protection
• Get and set permissions, Allow and deny user access

�13

Example process control on
FreeBSD

• Unix variant, Multitasking

• User login

• invoke user’s choice of shell: bash, tcsh, ksh, ...

• Shell executes fork() to create process

• exec() to load program into process

• Shell waits for process to terminate or  
continues with user commands

• Process exits with:

• code = 0: no error

• code > 0: error code

�14

Types of System Calls (2/3)
• File management

• create, delete, open, close, read, write, reposition

• get and set file attributes

• Device management
• request, release device attach, detach devices

• read, write, reposition

• get device attributes, set device attributes

�15

Types of System Calls (3/3)
• Information maintenance

• get/set time, date, get/set system data

• get/set process, file, or device attributes

• Communications
• create, delete communication connection

• (Message passing) send, receive messages

• (Shared-memory)create and gain access to memory regions

• transfer status information

• attach and detach remote devices

�16

some systems calls have
corresponding function or command

$	man	-k	chown											#	keyword	search 
gchown(1),	chown(1)						-	change	file	owner	and	group  
chown(8)																	-	change	file	owner	and	group  
$	man	2	chown 
CHOWN(2)														BSD	System	Calls	Manual																		CHOWN(2)  
 
NAME 
		chown,	fchown,	lchown,	fchownat	--	change	owner	and	group	of	a	file  
 
SYNOPSIS 
		#include	<unistd.h> 
		int 
		chown(const	char	*path,	uid_t	owner,	gid_t	group);  
DESCRIPTION 
		The	owner	ID	and	group	ID	of	the	file	named	by	path	or	referenced	by  
		fildes	is	changed	as	specified	by	the	arguments	owner	and	group.		The  
		...

 17

System Calls vs. API
• System calls

• OS’s interface to user code - traps to kernel

• An explicit request to kernel made via trap 
/usr/include/sys/syscall.h

• Generally done as assembly language instructions

• API

• Set of library calls, with or without system calls  
(e.g., C library, standard-I/O library)

• e.g., malloc() and free() /* not system calls */  
both call brk() /* system call */

• many math API’s don’t need system call

 18

API-System Call-OS relationship

 19

Run-time Environment (RTE)
• suite of software to run application

• for applications written in specific language (or at
least particular calling convention)

• could include compiler, linker, interpreter, library,
loader

• RTE support for system calls
• maintains system-call numbers, provides calling

interface

 20

sys/syscall.h

 21

/*	
	*	System	call	numbers.	
	*	
	*	DO	NOT	EDIT--	this	file	is	automatically	generated.	
	*	created	from	 @(#)syscalls.master	 7.26	(Berkeley)	3/25/91	
	*/	

#define	 SYS_exit	1	
#define	 SYS_fork	2	
#define	 SYS_read	3	
#define	 SYS_write	 4	
#define	 SYS_open	5	
#define	 SYS_close	 6	
#define	 SYS_wait4	 7	
	 	 	 	 /*	8	is	old	creat	*/	
#define	 SYS_link						9	
#define	 SYS_unlink	 10	
	 	 	 	 /*	11	is	obsolete	execv	*/	
#define	 SYS_chdir	 12	
#define	 SYS_fchdir	 13	
#define	 SYS_mknod	 14	
#define	 SYS_chmod	 15	
#define	 SYS_chown	 16	
#define	 SYS_break	 17	
#define	 SYS_getfsstat	18	
#define	 SYS_lseek	 19	
#define	 SYS_getpid	 20	
#define	 SYS_mount	 21	
#define	 SYS_unmount	 22	
#define	 SYS_setuid	 23	
#define	 SYS_getuid	 24	
#define	 SYS_geteuid	 25	
#define	 SYS_ptrace	 26	
#define	 SYS_recvmsg	 27	
#define	 SYS_sendmsg	 28	
#define	 SYS_recvfrom	29	
#define	 SYS_accept	 30	

#define	 SYS_getpeername	 31	
#define	 SYS_getsockname	 32	
#define	 SYS_access					 33	
#define	 SYS_chflags				 34	
#define	 SYS_fchflags				 35	
#define	 SYS_sync							 36	
#define	 SYS_kill							 37	
#define	 SYS_stat							 38	
#define	 SYS_getppid				 39	
#define	 SYS_lstat						 40	
#define	 SYS_dup									 41	
#define	 SYS_pipe							 42	
#define	 SYS_getegid				 43	
#define	 SYS_profil					 44	
#define	 SYS_ktrace					 45	
#define	 SYS_sigaction			 46	
#define	 SYS_getgid					 47	
#define	 SYS_sigprocmask	 48	
#define	 SYS_getlogin				 49	
#define	 SYS_setlogin				 50	
#define	 SYS_acct							 51	
#define	 SYS_sigpending	 52	
#define	 SYS_sigaltstack	 53	
#define	 SYS_ioctl						 54	
#define	 SYS_reboot					 55	
#define	 SYS_revoke						 56	
#define	 SYS_symlink					 57	
#define	 SYS_readlink				 58	
#define	 SYS_execve					 59	
#define	 SYS_umask						 60	
#define	 SYS_chroot						 61	
#define	 SYS_fstat							 62	
#define	 SYS_getkerninfo	 63	
#define	 SYS_getpagesize	 64

System Call: Passing Parameters
• in registers

• (defined by the ISA)

• in Table
• Store parameter values in a table in memory,

• pass the table’s address in a register

• on stack
• User code pushes the parameters onto the stack,

• OS pops params off the stack on return

 22

Parameter Passing to System Call
via Table

 23

Example of System Calls used by
a file-copy operation

�24

Example standard API: read()
• Unix standard C library

• #include <unistd.h>

• ssize_t	read(int	fd,	void	*buf,	size_t	count);

• Parameters

• int	fd; // the file descriptor

• void	*buf; // pointer to data buffer to store read data

• size_t	cout; // max #bytes to read

• Return value:

• #bytes, 0 of EOF, -1 if error.

 25

Calls related to read()
• Open and close the file

• int	open(const	char	*path,	int	flags);	

• int	close(int	fd);	

• Reading and Writing
• ssize_t	read(int	fd,	void	*buf,	size_t	
count);	

• ssize_t	write(int	fd,	const	void	*buf,	
size_t	count);

 26

Standard C library example
• C program calls
printf()

• in stdio library

• printf not a system call

• printf() calls
write()

• write() is an actual
system call

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 17

Standard C Library Example
� C program invoking

printf() library call,
which calls write()
system call

 27

Popular APIs
• Win32 API

• defined by Microsoft for Windows UI, I/O, disk, …

• POSIX API
• Posix = Portable OS Interface for Unix

• for most Unix-based systems, incl. Linux, macOS

• Java API
• UI, I/O, … for Java virtual machine (JVM)

• many are mapped to the host OS’s API

 28

Why use API?
• Simplicity

• designed for application programmers

• Portability
• same standard API (e.g., POSIX) across different platforms

• Efficiency
• system call is more expensive; API might not need to make

system call, could be more efficient

• example: sprintf() doesn't perform I/O, just formatting

• some API are designed for convenience

 29

Review (1)
• What are the two communication models

provided by OS?

• What is the relationship between system
calls, API, and C library?

• Why use API rather than system calls
directly?

 30

System Programs
(aka system services, system utilities)

• A layer of programs above system calls, for purpose of

• Convenient for program development and execution

• Defines most users’ view of OS

• Categories

• File manipulation, Status information

• Programming language support, loading and execution

• Communications

• Background services

• Application programs

�31

System Programs (1/4)
• File management

• Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

• Status information
• Get date, time, available mem, disk space, #users

• Performance, logging, and debugging information

• Registry for configuration information

�32

System Programs (2/4)
• File search and edit

• Text editors (vim), search contents, transform text

• Programming-language support, loading,
execution

• Compilers, assemblers, debuggers (gdb) and
interpreters (python)

• Absolute loaders, relocatable loaders, linkage
editors, and overlay-loaders, debugging systems for
higher-level and machine language

�33

System Programs (3/4)
• Communications

• Creating connections among processes, users

• Interprocess vs. Network communication

• examples: Send messages, browse web pages,
send email, remote login, FTP

• Main Models of communication:

• message-passing vs. shared-memory

�34

System Programs (4/4)
• Background Services

• Launch at boot time

• Some for system startup, then terminate

• Some from system boot to shutdown

• Disk checking, process scheduling, error logging,
printing

• (bundled) Application programs

• Not typically considered part of OS

• Launched by command line, mouse click, finger poke,

�35

ABI: Application Binary Interface

• definition for executable program
• executable file format (e.g., ELF, COFF, Mach-O, EXE, PE)

• ISA of the program code (native, bytecode, etc); could be
"fat binary"

• parameter passing convention (stack, register, ..)

• data types (sizes, endian)

• Tools involved

• linker: resolves addresses of all symbols

• loader: loads linked image into memory to execute

 36

System Structure
Simple OS Architecture
More Complex OS Architecture
Layer OS Architecture
Microkernel OS
Modular OS Structure
Virtual Machine
Java Virtual Machine

 37

User Goals and System Goals
• User Goals

• OS should be easy to use and learn

• OS should be reliable, safe, and fast

• System Goals
• OS should be easy to design, implement,

maintain

• OS should be reliable, error-free, and efficient

 38

Separation of Policy and
Mechanism in OS design

• Policy
• What will be done? What is allowed? (parameterizable)

• Mechanism:
• How to do it? (implementation)

• Important principle
• it allows maximum flexibility if policy decisions are to

be changed later (example – timer)

• not always so separated in commercial OS but desirable
as good practice of OS design

 39

Simple Structure -- MS-DOS
• Goal:

• Uses the least space

• Minimal structure
• Not divided into modules

• interfaces and levels of
functionality are not well
separated

• Drawbacks
• unsafe, difficult to enhance

�40

Example: MS-DOS
• Single-tasking

• Shell invoked on booting

• Simple way to run program
• No process created

• Single memory space

• Loads program into memory, overwriting all but the
kernel

• Program exit -> shell reloaded

At system startup running a program

�41

user
program

shell

Monolithic Structure
• Two layers: users mode vs. kernel mode.

• the entire OS kernel runs in one address space

• "tightly coupled" large #functions for one level

• Examples
• traditional Unix (difficult to scale complexity)

• Linux (monolithic for performance but modular)

• Windows (also monolithic but got more modular)

�42

Traditional UNIX Structure
Beyond simple but not fully layered

�43

Layered OS Architecture
• OS divided into N layers (0..N-1)

• Layer 0 = hardware, N-1 = user interface

• Lower layers independent of upper layers

• Higher layer use services only of lower layers

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 25

Layered OS Architecture
� Lower levels independent of upper levels

¾ Nth layer can only access services provided by 0~(N-1)th layer
� Pros: Easier debugging/maintenance
� Cons:_____________________________ Less efficient, difficult to define layers

 44

Trade-offs of Layered Approach
• Pro

• easier debugging and maintenance

• successful example: TCP/IP protocol stack

• Con
• less efficient

• difficult to define layers

 45

Microkernel OS
• Approach

• Move as much from the kernel into user space

• Communication provided by message passing

• Example:
• Mach, mk-Linux

Chapter2 OS-Structure Operating System Concepts – NTHU LSA Lab 26

Microkernel OS
� Moves as much from the kernel into “user” space
� Communication is provided by message passing
� Easier for extending and porting

Applications

I/O Manager Graphics
Subsystems

Network
 Drivers

Device
Drivers

Graphics
 Drivers

Microkernel

Hardware

Applications
Processes

Processes

 46

Microkernel System Structure

�47

Trade-offs of Microkernel
• Pro:

• Easier for extending and porting to new architecture

• More reliable - less code runs in kernel mode, More secure

• Con:

• less efficient than monolithic kernel, due to more message
passing for user-to-kernel communication

• Example use:
• Linux: monolithic for performance (but modular)

• Windows NT started out microkernel, but XP became more
monolithic for performance

 48

Modular OS Architecture
• Supports loadable kernel modules (LKM)

• Kernel = core components + LKM interfaces

• LKM is loaded as needed, can be unloaded (e.g., USB
driver)

• Combines advantages of microkernel and layered

• load in modules as needed, no need to recompile

• lower overhead: no need for message passing

• Similar to layers but more flexible
• e.g., Solaris, Linux, Windows

 49

Solaris Modular Approach

�50

Hybrid Systems
• Most modern OSs are some mix of models

• Hybrid to address performance, security, usability needs

• Examples of Monolithic + loadable module
• Linux and Solaris: monolithic + modular for dynamic loading

• Windows: monolithic + µkernel for subsystem "personalities"

• Example of Microkernel + layered + loadable
• Darwin (macOS, iOS): Mach microkernel and BSD Unix (POSIX)

• I/O kit and kernel extensions (i.e. dynamically loadable modules)

• Example of Monolithic + layered
• Android: Linux kernel, somewhat layered

�51

Darwin (kernel for macOS, iOS)

 52

Mach (microkernel but with kexts)

ioKit

kexts

scheduling IPC memory management

Mach traps
scheduling, IPC, memory,  

RPC

BSD (POSIX) system calls  
CLI, file system, networking

library interface

applications

macOS and iOS

 53

kernel environment (Darwin)

application frameworks (Cocoa,
CocoaTouch UI, graphics, multimedia)

user experience (aqua)

applications

core frameworks (QuickTime, OpenGL, cloud,
database)

"layers" but not strictly... can bypass

Android
• Google acquired Android Inc. 2005

• for mobile phone with keyboard, no touch screen

• After iPhone (2007), total redesign
• changed to touch screen, Open Handset Alliance

• changes to Linux kernel to support power management

• Google Mobile Services, ported to phones, TV, watches, ...

• Mixed License
• open source for Android core

• proprietary (GooglePlay, Google Mobile Services)

�54

Android
• Runtime env. includes core set of libraries

and Dalvik VM
• Apps developed in Java plus Android API

• Java class files compiled to Java bytecode
translated to executable, runs in Dalvik VM

• Libraries
• frameworks for webkit, SQLite, multimedia,

smaller libc

�55

Android Architecture
• applications written in Java language

• not standard Java API

• ART = Android RunTime virtual
machine

• ahead-of-time (AOT) compilation
to native code

• JNI = Java native interface

• Bionic replaces standard C library
• smaller than glibc for mobile; bypasses

GPL (Gnu Public License)

• HAL = hardware abstraction layer

 56

hardware

Linux kernel (monolithic)

Bionic
HAL

native libraries 
SQLite, openGL, webkit,

surface manager, SSL,
media framework

JNI
Android

frameworks

applications

ART 
VM

Operating-System Debugging
• Failure analysis: Finding and fixing errors

• User program crash: (1) log files error info 
(2) Core dump file captures memory of the process
=> debugger reads it

• OS failure: can generate crash dump file containing
kernel memory

• Performance monitoring and tuning
• Using trace listings of activities, recorded for analysis

• Profiling = instruction trace for statistical trends

�57

Performance Monitoring &
Tuning

• Purposes
• Improve performance by

removing bottlenecks

• OS must provide
• means of computing and

displaying measures of
system behavior

• Example:
• “top” program or

Windows Task Manager

�58

Performance Monitor: Counters
• per-process

• ps: information about individual processes

• top: statistics for current processes

• system-wide
• vmstat: report memory-usage statistics

• netstat: statistics for network interfaces

• iostat: I/O usage statistics for disks

 59

Tracing
• Purpose:

• observe specific events

• Per-process

• strace: traces system calls

• gdb: GNU source-level debugger

• System-wide

• perf: collection of performance tools for Linux

• subcommands: stat, top, record, report, annotate, sched,
list

• tcpdump: traces network packets

 60

Summary of Chapter 2
• OS provides services for program execution

• System call (entry into OS); API

• System programs: linker, loader

• OS structures
• monolithic (two level, no structure)

• microkernel (minimal core, separate address spaces for each service)

• modular (dynamic loadable, same address space)

• hybrid (monolithic or microkernel, combined with modular)

• Tools
• counters, monitors, trace

 61

