
Chapter 1
Introduction

CS 3423 Operating Systems
National Tsing Hua University

 1

Chapter 1: Introduction
• What OS's Do

• System Organization

• System Architecture

• OS Structure

• OS Operations

• Process Management

• Memory
Management

• Storage Management

• Protection and
Security

• Kernel Data
Structures

• Computing
Environments

• Open-Source OS's

�2

A Computer System consists of...
• Users

• people, other computers

• Applications
• code that solves computing problems by using system resources

• e.g, word processors, compilers, browser, databases, games, ..

• OS
• controls and coordinates use of resources (both hardware and

software)

• Hardware
• tangible mechanisms for computing (CPU), storage (memory,

disk), communication, and other I/O (sensors, actuators)

 3

Four Components of a Computer
System

�4

hardware

OS

system programs (shell, loader, backup...)

application programs (editor, shell, compiler)

users

browser? 
database?

"middleware"

What an OS does - depends on
point of view

• General Users
• convenience, ease of use and good performance

• Shared computer (mainframe) users
• want responsiveness and throughput

• Mobile users
• want mobile-friendly UI, battery

• Embedded computers
• possibly timing guarantee

�5

Definition of an OS
• Resource Allocator

• manages and allocates resources: CPU time,
storage space, use of I/O devices,

• goal: ensures efficiency, fairness, and security

• Control program
• controls execution of user programs

• controls operation of I/O devices

• goals: prevent errors and improper use

 6

Multitasking OS
• Supports multiple user applications by

managing resources and processes
• Loading/unloading code, scheduling program

execution

• Provides API for user applications
• API = Application programming interfaces

• Services: use of memory, I/O devices, storage,
communication

 7

General-Purpose OS

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 8

General-Purpose Operating Systems
user

compiler

OS interface

OS

Hardware

User program Executable binary

Compiler Linker

System library

Architecture

Device drivers
Operating system

kernel
user mode

 8

Boundary of OS?
• Kernel => definitely part of OS

• the "core" part that is resident and governs OS functionality

• Boot loader? (bundled)
• ROM code executed on power up, loads the OS into memory

• System programs (bundled)

• Program loaders — for OS to start running a program

• Interpreters: CLI shell (DOS? BASIC?) GUI (X11? iOS)? Java?

• Compiler and linker? Device driver? library?

• Middleware — layer crossing the network (bundled)

• Web browser? is IE an inseparable part of Windows? ("no" -- ruled by DOJ)

• Database, multimedia, cloud drive, location service...

 9

Goals of an OS
• Convenience

• make computer system easier to use and to program

• esp. true for smaller computer systems

• desirable; technically not essential

• Efficiency
• do same work in shorter time or consuming less power

• esp. true for large, shared, multiuser systems and mobile

• The two goals are sometimes contradictory

 10

Importance of an OS
• System API (application programming interface)

• are the only interface betw. user applications and hardware

• APIs are usually designed to be general purpose, but not
performance driven

• example: standard I/O, file I/O, TCP/IP connection, ...

• OS code can't afford to contain bugs

• any crash or bug could cause downtime, data corruption,
financial loss, or loss of life

• OS and Architecture influence each other

• and programming language to some extent

 11

Computer System Organization
• One or more CPUs

• Device controllers

• Interconnect of CPUs, devices, and memory

• Goal: concurrent execution of CPU & devices
competing for memory cycles

 12

Powering up: Bootstrapping
• CPU's initial program in firmware

• ROM, EEPROM, flash, etc => nonvolatile memory

• CPU starts at a given location (hardware defined)

• Goal of bootloader: do enough to load in the OS
kernel!

• Bootloader may need

• device driver for storage of OS (disk, flash, network)

• copying OS image from storage into memory (RAM)

• some embedded systems may run directly from
flash memory, without copying OS image to RAM

• jump to starting point of OS

 13

Computer System Operation
• Device controller for a particular device type

• Status register, data register, buffer on device
controller

• read/written by both CPU and device controller

• Notification by device controller to CPU
• "data ready” signal, aka “interrupt request” (IRQ)

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 16

Computer-System Operations
� Each device controller is in charge of a

particular device type
� Each device controller has a local buffer
� I/O is from the device to controller’s local buffer
� CPU moves data from/to memory to/from local

buffers in device controllers

CPU
Device Controller

Status reg

Data reg

m
ec

ha
ni

sm

Buffer Memory

Device

Device

Device

…

I/O
BUS

 14

Polling: Busy / Wait Output
• Simplest (but inefficient) way to program device

• machine instruction to test when device is ready

• Example: 8051 serial port
• special function registers (SFR)

• RI is the receive data-ready flag bit, ==1 if a char
received

• SBUF contains the character buffer

• while (!RI) { ; } // busy wait until RI flag is set to 1  
myChar = SBUF; // read from the buffer

 15

Interrupt I/O
• Busy waiting is inefficient

• Poor CPU utilization: can't do anything else!

• Could try to interleave several I/Os, but code
becomes very messy

• Solution: interrupt I/O
• CPU can execute regular code

• upon data ready, CPU jumps to subroutine
(interrupt service routine = ISR) to handle I/O

 16

Interrupt I/O Timeline
(data from device to CPU)

device transfers
data to memory

(DMA)

CPU suspends
current program,

runs ISR

I/O controller
interrupts CPU

CPU returns from ISR,
resumes normal code

DMA

I/O controller
interrupts CPU

ISR

 17

Interrupt-Driven I/O

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 20

Interrupt-Driven I/O

CPU executing checks for
interrupts between instructions

CPU Controller

initiates I/O

2

input ready, output
complete, or error

Generates interrupt signal

3
CPU receiving interrupt,

transfers control to
Interrupt handler

4

interrupt handler
processes data,

returns from interrupt

5

CPU resumes
processing of

interrupted task

6

device driver
initiates I/O

1

7

 18

Interrupt: hardware & software
• Modern OSs are interrupt-driven

• Interrupt may be trigged from either hardware or
software

• Hardware interrupt

• someone asserting in IRQ line (setting to TRUE)

• Software interrupt, also called trap

• caused by error (e.g., divide by 0, invalid memory access)

• by user request for an OS service (system call) — pass the
trap# as a parameter

 19

Hardware Interrupt
• Interrupt vector

• array of addresses of
ISRs, indexed by the
interrupt number

• each interrupt number
is associated with a
hardware source of
IRQ

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 22

resident monitor

1

an interrupt
from device i

occurs

3 return to
user

user program
d:=3*c

service routine
for device i

2 perform the service
routine for device i

a:=b+c

1

i

2 interrupt
vector

HW Interrupt

user
program

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 22

resident monitor

1

an interrupt
from device i

occurs

3 return to
user

user program
d:=3*c

service routine
for device i

2 perform the service
routine for device i

a:=b+c

1

i

2 interrupt
vector

HW Interrupt

interrupt
from

IRQ[i]

jump to
ISR for

interrupt i

return to
user program

 20

Software Interrupt

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 23

resident monitor

system call n

read

case n

1 2

3

trap to
monitor

perform
I/O

return to
user

user program d:=3*c

SW Interrupt

 21

Common Functions of Interrupts
• CPU suspends execution of current program, transfer

control to ISR through interrupt vector
• interrupt # indexed into the table

• CPU saves address of the interrupted routine before
jumping to ISR
• so that the ISR can return to interrupted code

• Interrupts may be nested

• i.e., while executing one ISR, some architectures allow another
higher-priority interrupt to come in!

• lower-priority ones would not get processed and may get lost

 22

Review of Topics
• System organization

• Bootstrapping

• Interrupt vs. Polling

• Steps in handling an interrupt

• Trap vs. interrupt

 23

Storage Device Hierarchy

volatile memory

nonvolatile memory

 24

Storage-Device Hierarchy
• Storage systems are organized hierarchically

• by speed, cost, and volatility

• Main memory

• the only “large” temporary storage medium that the CPU
can access directly

• RAM: random access memory; SRAM, DRAM etc

• Secondary storage

• provides nonvolatile storage

• Magnetic disk, solid state disks (SSD), etc

 25

Caching
• Small but fast copy of subset of bigger (slower) memory

• Important principle, performed in hardware, OS, software

• Data copied to faster storage temporarily

• (Read) Cache is accessed first

• If so (“cache hit”), use the copy from cache first (fast)

• if not (“cache miss”), copy data from memory to cache (slow)

• Principle of locality

• temporal locality and spatial locality

• Cache size and replacement policy

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 31

Caching
� Information in use copied from slower to faster

storage temporarily

� Faster storage (cache) checked first to determine
if information is there
¾ If it is, ______________________________________
¾ If not, ______________________________

information used directly from the cache (fast)
data copied to cache and used there

�26

Direct Memory Access (DMA)
• Device controller transfers blocks of data

from buffer storage directly to main
memory without CPU intervention

• frees up CPU from copying data between device &
memory

• Completion notification
• One interrupt is generated per block (e.g., 512

bytes)

• Rather than the one interrupt per byte or per word

�27

How DMA Works

A von Neumann architecture

�28

RAM: Random-Access Memory
• SRAM: static RAM

• typically six transistors per bit

• easy interface, fast access, retains content as long as powered

• used for cache in general CPU; or main memory for embedded
MCU

• DRAM: dynamic RAM

• High density: one transistor per bit, low cost

• Organized as row/column, more complex access

• Loses value due to leakage or read => need refreshing!

• used mainly for main memory in general-purpose PC

 29

Disk Mechanism
• Spinning platters, could be

multiple

• Read/write head an arm
for each platter

• Transfer time = data size /
transfer rate

• Positioning time
• Seek time (moving head on

cylinder to the right track)

• Rotational latency (waiting for
disk to rotate to right sector)

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 29

Disk Mechanism
� Speed of magnetic disk
¾ Transfer time = data size / transfer rate
¾ Positioning time (random access time)

seek time (cylinder) + rotational latency (sector)

 30

Performance of various levels of
storage

 31

Coherency and Consistency Issue

• The same data may appear in different levels

• issue: changing the copy in cache makes it inconsistent
with the copy in memory memory!

• Uniprocessor

• use highest-level copy (assuming all changes come from
processor)

• Shared-memory multiprocessor systems

• Difficult! the processor making the change needs to
“invalidate” the other cached copies => forces a cache
miss on others, fetch from memory again

 32

Review of Topics
• Storage device hierarchy

• Caching and Issues

• DMA structure

• RAM: SRAM vs DRAM

• Disks

• Cache coherence

 33

Hardware Protection

Dual-Mode Operation
I/O Protection
Memory Protection
CPU Protection

 34

Dual-Mode Operation
• Context: multiple programs sharing

resources

• OS needs to ensure incorrect program can't disrupt
or corrupt other programs

• Hardware support using modes of operation
• User mode: execution done for user code

• Monitor mode, aka kernel mode, system mode, or
privileged mode

 35

Mode Switch and  
Privileged Instructions

• From User mode to Kernel mode

• interrupt - triggered by hardware (timer, I/O, signal)

• trap - executing a trap instruction 
(syscall instruction on MIPS)

• fault - page fault, divide by zero, etc

• Privileged instructions

• can be executed ONLY in monitor mode

• e.g., direct I/O instruction, access special registers,
instruction to return from interrupt

 36

Example: syscall instruction in
MIPS

• Instructions needed in syscall

1. Load the service number in register $v0.

2. Load args into $a0, $a1, $a2, or $f12 if any

3. Issue the syscall instruction.

4. Retrieve return values, if any, from result registers as specified.

• syscall is not a privileged instruction

• but it switches mode to privileged mode,

• ERET is a privileged instruction

• returns from a syscall, switches from privileged mode to user mode
upon return from system call

 37

Protection of I/O
• All I/O instructions must be privileged

instructions in order to offer protection
• I/O devices can be shared between users

• OS must prevent user program from
gaining control in monitor mode
• user program could gain control by overwriting an

entry in the interrupt vector

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 37

I/O Protection
� All I/O instructions are privileged instructions
¾Any I/O device is shared between users

� Must ensure that a user program could never gain
control of the computer in monitor mode (i.e., a user
program that, as part of its execution, stores a new
address in the interrupt vector)

User code
resident
monitor

system call/
interrupt

user program

interrupt
vector

malicious
program 38

Protection of Memory
• Memory to protect

• Interrupt vector and ISR (shouldn't be user writable)

• Data owned by other user processes (shouldn't be
readable or writable, unless the user allows part of it)

• Possible hardware support using registers
• Base register: starting address of legal physical men

address

• Limit registers : size of the range

• Attempt for user program to access memory outside the
defined range => caught by hardware, handled by OS

 39

Use of Base and Limit Registers

• Base: 300040

• Limit: 120900

• Ending address:
42939

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 39

Use of Base and Limit Register

 40

Hardware Address Protection
• Flowchart

Chapter1 introduction Operating System Concepts – NTHU LSA Lab 40

Hardware Address Protection

 41

Protection of CPU
• Prevent user program from hogging CPU

• infinite loop (intentional or unintentional)

• not making system calls

• Hardware support: Timer
• interrupts after a specified number of cycles

• timer can count number of clocks

• commonly used for time sharing

• Load Timer => privileged instruction

 42

OS regaining control by timer
interrupt: timer

• Timer is set to interrupt the computer after some time
• Operating system set a timer (privileged instruction)

• Counter == 0 => generate an interrupt

• OS defines the ISR for timer

• Allows scheduler/dispatcher to context switch or terminate
program

�43

Review
• Dual mode operation

• Different ways to switch to kernel mode

• Privileged instructions and uses

• Protections
• I/O access: privileged I/O instructions

• Memory access: use base and bound registers

• CPU use: hardware mechanism for OS to regain
control

 44

