Chapter 1
Introduction

CS 3423 Operating Systems
National Tsing Hua University

Chapter 1: Introduction

What OS's Do
System Organization
System Architecture
OS Structure

OS Operations
Process Management

Memory
Management

Storage Management

Protection and
Security

Kernel Data
Structures

Computing
Environments

Open-5Source OS's

A Computer System consists of...

» Users
» people, other computers
 Applications
» code that solves computing problems by using system resources

 e.g, word processors, compilers, browser, databases, games, ..
e OS

e controls and coordinates use of resources (both hardware and
software)

e Hardware

» tangible mechanisms for computing (CPU), storage (memory,
disk), communication, and other I/O (sensors, actuators)

Four Components of a Computer

I

System

I

Q

I

users

application programs (editor, shell, compiler) | browser?

database?

system programs (shell, loader, backup...)

'middleware"

OS

hardware

What an OS does - depends on
point of view

e General Users

 convenience, ease of use and good performance

» Shared computer (mainframe) users

« want responsiveness and throughput
* Mobile users

« want mobile-friendly Ul, battery

* Embedded computers

 possibly timing guarantee

Definition of an OS

e Resource Allocator

e manages and allocates resources: CPU time,
storage space, use of I/O devices,

 goal: ensures efficiency, fairness, and security

 Control program
* controls execution of user programs
» controls operation of 1/0O devices

* goals: prevent errors and improper use

Multitasking OS

 Supports multiple user applications by
managing resources and processes

* Loading/unloading code, scheduling program
execution

 Provides API for user applications

* APl = Application programming interfaces

* Services: use of memory, I/O devices, storage,
communication

General-Purpose OS

user mode .
.. SyStem llbl'al'y GSll’ltel'face

Operating system OS

Device drivers

Architecture Hardware

Boundary of OS?

Kernel => definitely part of OS

* the "core" part that is resident and governs OS functionality

Boot loader? (bundled)

« ROM code executed on power up, loads the OS into memory

System programs (bundled)

* Program loaders — for OS to start running a program

« Interpreters: CLI shell (DOS? BASIC?) GUI (X11¢ iOS)?¢ Java?
« Compiler and linker? Device driver? library?

Middleware — layer crossing the network (bundled)

* Web browser? is IE an inseparable part of Windows? ("no" -- ruled by DQO))

e Database, multimedia, cloud drive, location service...

Goals of an OS

e Convenience

* make computer system easier to use and to program

* esp. true for smaller computer systems
» desirable; technically not essential
* Efficiency
* do same work in shorter time or consuming less power

* esp. true for large, shared, multiuser systems and mobile

* The two goals are sometimes contradictory

10

Importance of an OS

 System API (application programming interface)
« are the only interface betw. user applications and hardware

 APIs are usually designed to be general purpose, but not
performance driven

« example: standard I/O, file I/O, TCP/IP connection, ...

« OS code can't afford to contain bugs

e any crash or bug could cause downtime, data corruption,
financial loss, or loss of life

e OS and Architecture influence each other

 and programming language to some extent

11

Computer System Organization

One or more CPUs

Device controllers

Interconnect of CPUs, devices, and memory

Goal: concurrent execution of CPU & devices

competing for memory cycles

CPU

disks

SIS

disk
controller

mouse

Z

keyboard printer

on-line

B

monitor

I

AN

/

——)

USB controller

graphics
adapter

memory

12

Powering up: Bootstrapping

« CPU's initial program in firmware
« ROM, EEPROM, flash, etc => nonvolatile memory Choose an operating system
« CPU starts at a given location (hardware defined)

 Goal of bootloader: do enough to load in the OS
kernel!

* Bootloader may need

» device driver for storage of OS (disk, flash, network) ___________
« copying OS image from storage into memory (RAM) | i s

« some embedded systems may run directly from
flash memory, without copying OS image to RAM

 jump to starting point of OS

13

Computer System Operation

* Device controller for a particular device type

o Status register, data register, buffer on device
controller

« read/written by both CPU and device controller

» Notification by device controller to CPU

« "data ready” signal, aka “interrupt request” (IRQ)

BUS Deuvice Controller Device

N -) N
CPU Status reg 1/0 .
— Device
Data reg .
Memory -

\) Device

Polling: Busy / Wait Output

» Simplest (but inefficient) way to program device

* machine instruction to test when device is ready

» Example: 8051 serial port
« special function registers (SFR)

Rl is the receive data-ready flag bit, ==1 if a char
received

« SBUF contains the character buffer

» while (IRI) {; } // busy wait until Rl flag is set to 1
myChar = SBUF; // read from the buffer

15

Interrupt 1/0

« Busy waiting is inefficient
* Poor CPU utilization: can't do anything else!

* Could try to interleave several 1/Os, but code
becomes very messy

e Solution: interrupt I/0O

» CPU can execute regular code

 upon data ready, CPU jumps to subroutine
(interrupt service routine = ISR) to handle I/O

16

CPU

/O
device

Interrupt 1/0O Timeline
(data from device to CPU)

CPU suspends
current program,
runs ISR

user
process
executing

CPU returns from ISR,
resumes normal code

/O interrupt
processing

/0O controller
Interrupts CPU

/O controller
interrupts CPU

idle

device transfers

data to memory
(DMA)

transferring

/0O transfer /O transfer
request done request done

17

Interrupt-Driven 1/0O

CPU Controller
1

CPU executing checks for
interrupts between instructions

18

Interrupt: hardware & software

e Modern OSs are interrupt-driven

* Interrupt may be trigged from either hardware or
software

* Hardware interrupt
« someone asserting in IRQ line (setting to TRUE)

« Software interrupt, also called trap

» caused by error (e.g., divide by 0, invalid memory access)

* by user request for an OS service (system call) — pass the
trap# as a parameter

19

Hardware Interrupt

o Interru pt vector ' | resident monitor
2
» array of addresses of i
ISRs, indexed by the @
interrupt number @ service routine
. for device i
* each interrupt number
is associated with a @
hardware source of
IRQ
a:=b+c
user d:=3%c
program

20

Software Interrupt

resident monitor

case n

@ read @ perform
I/0

trap to
monitor
system call n @ return to
user
user program d:=3*c

21

Common Functions of Interrupts

» CPU suspends execution of current program, transfer
control to ISR through interrupt vector

* interrupt # indexed into the table

» CPU saves address of the interrupted routine before
jumping to ISR

* so that the ISR can return to interrupted code
e Interrupts may be nested

* i.e., while executing one ISR, some architectures allow another
higher-priority interrupt to come in!

* lower-priority ones would not get processed and may get lost

22

Review of Topics

System organization
Bootstrapping

Interrupt vs. Polling

Steps in handling an interrupt

Trap vs. interrupt

23

Storage Device

registers
£\

YV

cache
A

V
main memory

.................................. | e S

V
solid-state disk
A

Hierarchy

volatile memory

4

hard disk

nonvolatile memory

A

A 4

optical disk

A

V

magnetic tapes

24

Storage-Device Hierarchy

» Storage systems are organized hierarchically

by speed, cost, and volatility

* Main memory

* the only “large” temporary storage medium that the CPU
can access directly

* RAM: random access memory; SRAM, DRAM etc

« Secondary storage

» provides nonvolatile storage

* Magnetic disk, solid state disks (SSD), etc

25

Caching

» Small but fast copy of subset of bigger (slower) memory
* Important principle, performed in hardware, OS, software
 Data copied to faster storage temporarily

« (Read) Cache is accessed first

e If so (“cache hit”), use the copy from cache first (fast)

* if not (“cache miss”), copy data from memory to cache (slow)

* Principle of locality
 temporal locality and spatial locality

 Cache size and replacement policy

Direct Memory Access (DMA)

* Device controller transfers blocks of data
from buffer storage directly to main
memory without CPU intervention

« frees up CPU from copying data between device &
memory

« Completion notification

* One interrupt is generated per block (e.g., 512
bytes)

 Rather than the one interrupt per byte or per word

27

How DMA Works

thread of execution

ayoes

< iNstruction execution —»
cycle

«— Jata movement —»

CPU (*N)

‘ A I
e =
— O 6
(D Q) =
= Ny -
D j=a
9

DMA

instructions
and
data

memory

A von Neumann architecture

28

RAM: Random-Access Memory

e SRAM: static RAM

* typically six transistors per bit
* easy interface, fast access, retains content as long as powered

» used for cache in general CPU; or main memory for embedded
MCU

* DRAM: dynamic RAM

* High density: one transistor per bit, low cost
* Organized as row/column, more complex access
* Loses value due to leakage or read => need refreshing!

 used mainly for main memory in general-purpose PC

29

Disk Mechanism

Spinning platters, could be
multiple

Read/write head an arm
for each platter

Transfer time = data size /
transfer rate
Positioning time

 Seek time (moving head on
cylinder to the right track)

 Rotational latency (waiting for
disk to rotate to right sector)

track ¢

sector s | I
Ay
|
|
|

|
cylinder ¢ —»:

platter

)

rotation

«— spindle

arm

read-write
head

— arm assembly

30

Performance of various levels of
storage

1 3 < 5

registers main memory solid state disk | magnetic disk

<1KB < 64GB <17TB <1078

Implementation custom memory CMOS SRAM flash memory magnetic disk
technology with multiple

ports CMOS

Access time (ns) 25,000 - 50,000 5,000,000

Bandwidth (MB/sec) | 20,000 - 100,000 | 5,000 - 10,000 20-150

Managed by compiler hardware operating system | operating system | operating system

. | +

Backed by cache main memory disk or tape

31

Coherency and Consistency Issue

» The same data may appear in different levels

* issue: changing the copy in cache makes it inconsistent
with the copy in memory memory!

* Uniprocessor

« use highest-level copy (assuming all changes come from
processor)

 Shared-memory multiprocessor systems

» Difficult! the processor making the change needs to
“invalidate” the other cached copies => forces a cache
miss on others, fetch from memory again

32

Review of Topics

Storage device hierarchy
Caching and Issues
DMA structure

RAM: SRAM vs DRAM
Disks

Cache coherence

33

Hardware Protection

Dual-Mode Operation
/O Protection
Memory Protection
CPU Protection

34

Dual-Mode Operation

 Context: multiple programs sharing
resources

« OS needs to ensure incorrect program can't disrupt
or corrupt other programs

» Hardware support using modes of operation

 User mode: execution done for user code

« Monitor mode, aka kernel mode, system mode, or
privileged mode

35

Mode Switch and
Privileged Instructions

* From User mode to Kernel mode
e interrupt - triggered by hardware (timer, 1/O, signal)

* trap - executing a trap Instruction
(syscall instruction on MIPS)

» fault - page fault, divide by zero, etc

* Privileged instructions
e can be executed ONLY in monitor mode

* e.g., direct I/O instruction, access special registers,
instruction to return from interrupt

36

Example: syscall instruction in
MIPS

* Instructions needed in syscall

1. Load the service number in register $ve.

2. Load args into $a0, $a1, $a2, or $f12 if any

3. Issue the syscall instruction.

4. Retrieve return values, if any, from result registers as specified.
e syscall is not a privileged instruction

* but it switches mode to privileged mode,

* ERET is a privileged instruction

* returns from a syscall, switches from privileged mode to user mode
upon return from system call

37

Protection of 1/0

» All I/O instructions must be privileged
instructions in order to offer protection

e |/O devices can be shared between users

* OS must prevent user program from
gaining control in monitor mode

* user program could gain control by overwriting an
entry in the interrupt vector interrupt

vector

resident
monitor

system call/ user program

interrupt malicious
program 37 38

Protection of Memory

* Memory to protect
* Interrupt vector and ISR (shouldn't be user writable)

» Data owned by other user processes (shouldn't be
readable or writable, unless the user allows part of it)

 Possible hardware support using registers

* Base register: starting address of legal physical men
address

* Limit registers : size of the range

 Attempt for user program to access memory outside the
defined range => caught by hardware, handled by OS

39

Use of Base and Limit Registers

e Base: 300040
e Limit: 120900

* Ending address:
42939

0

256000

300040

420940

monitor

job 1

300040

base register

120900

limit register

Hardware Address Protection

e Flowchart

base + limit

trap to operating system
monitor—addressing error

memory

41

Protection of CPU

 Prevent user program from hogging CPU
e infinite loop (intentional or unintentional)
« not making system calls

« Hardware support: Timer

* interrupts after a specified number of cycles
e timer can count number of clocks

« commonly used for time sharing

 Load Timer => privileged instruction

42

OS regaining control by timer
interrupt: timer

* Timer is set to interrupt the computer after some time

« Operating system set a timer (privileged instruction)

* Counter == 0 => generate an interrupt

e OS defines the IS

R for timer

e Allows scheduler/c

ispatcher to context switch or terminate

program
user process
user mode
user process executing » calls system call return from system call Uee ISR
\ 7
A 4
1 /
K | trap return
sl mode bit = 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

43

Review

* Dual mode operation
* Different ways to switch to kernel mode

e Privileged instructions and uses

* Protections
 1/O access: privileged I/O instructions
* Memory access: use base and bound registers

* CPU use: hardware mechanism for OS to regain
control

44

