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A Computer System consists of...

» Users
» people, other computers
 Applications
» code that solves computing problems by using system resources

 e.g, word processors, compilers, browser, databases, games, ..
e OS

e controls and coordinates use of resources (both hardware and
software)

e Hardware

» tangible mechanisms for computing (CPU), storage (memory,
disk), communication, and other I/O (sensors, actuators)
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What an OS does - depends on
point of view

e General Users

 convenience, ease of use and good performance

» Shared computer (mainframe) users

« want responsiveness and throughput
* Mobile users

« want mobile-friendly Ul, battery

* Embedded computers

 possibly timing guarantee



Definition of an OS

e Resource Allocator

e manages and allocates resources: CPU time,
storage space, use of I/O devices,

 goal: ensures efficiency, fairness, and security

 Control program
* controls execution of user programs
» controls operation of 1/0O devices

* goals: prevent errors and improper use



Multitasking OS

 Supports multiple user applications by
managing resources and processes

* Loading/unloading code, scheduling program
execution

 Provides API for user applications

* APl = Application programming interfaces

* Services: use of memory, I/O devices, storage,
communication



General-Purpose OS

user mode .
.......................................................................................................... SyStem llbl'al'y GSll’ltel'face

Operating system OS

Device drivers

Architecture Hardware



Boundary of OS?

Kernel => definitely part of OS

* the "core" part that is resident and governs OS functionality

Boot loader? (bundled)

« ROM code executed on power up, loads the OS into memory

System programs (bundled)

* Program loaders — for OS to start running a program

« Interpreters: CLI shell (DOS? BASIC?) GUI (X11¢ iOS)?¢ Java?
« Compiler and linker? Device driver? library?

Middleware — layer crossing the network (bundled)

* Web browser? is IE an inseparable part of Windows? ("no" -- ruled by DQO))

e Database, multimedia, cloud drive, location service...



Goals of an OS

e Convenience

* make computer system easier to use and to program

* esp. true for smaller computer systems
» desirable; technically not essential
* Efficiency
* do same work in shorter time or consuming less power

* esp. true for large, shared, multiuser systems and mobile

* The two goals are sometimes contradictory
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Importance of an OS

 System API (application programming interface)
« are the only interface betw. user applications and hardware

 APIs are usually designed to be general purpose, but not
performance driven

« example: standard I/O, file I/O, TCP/IP connection, ...

« OS code can't afford to contain bugs

e any crash or bug could cause downtime, data corruption,
financial loss, or loss of life

e OS and Architecture influence each other

 and programming language to some extent
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Computer System Organization

One or more CPUs

Device controllers

Interconnect of CPUs, devices, and memory

Goal: concurrent execution of CPU & devices

competing for memory cycles
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Powering up: Bootstrapping

« CPU's initial program in firmware
« ROM, EEPROM, flash, etc => nonvolatile memory Choose an operating system
« CPU starts at a given location (hardware defined)

 Goal of bootloader: do enough to load in the OS
kernel!

* Bootloader may need

» device driver for storage of OS (disk, flash, network) ___________
« copying OS image from storage into memory (RAM) | i s

« some embedded systems may run directly from
flash memory, without copying OS image to RAM

 jump to starting point of OS
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Computer System Operation

* Device controller for a particular device type

o Status register, data register, buffer on device
controller

« read/written by both CPU and device controller

» Notification by device controller to CPU

« "data ready” signal, aka “interrupt request” (IRQ)

BUS Deuvice Controller Device

N - ) N
CPU Status reg 1/0 .
— Device
Data reg .
Memory -

\ ) Device




Polling: Busy / Wait Output

» Simplest (but inefficient) way to program device

* machine instruction to test when device is ready

» Example: 8051 serial port
« special function registers (SFR)

Rl is the receive data-ready flag bit, ==1 if a char
received

« SBUF contains the character buffer

» while (IRI) {; } // busy wait until Rl flag is set to 1
myChar = SBUF; // read from the buffer
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Interrupt 1/0

« Busy waiting is inefficient
* Poor CPU utilization: can't do anything else!

* Could try to interleave several 1/Os, but code
becomes very messy

e Solution: interrupt I/0O

» CPU can execute regular code

 upon data ready, CPU jumps to subroutine
(interrupt service routine = ISR) to handle I/O
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Interrupt-Driven 1/0O

CPU Controller
1

CPU executing checks for
interrupts between instructions
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Interrupt: hardware & software

e Modern OSs are interrupt-driven

* Interrupt may be trigged from either hardware or
software

* Hardware interrupt
« someone asserting in IRQ line (setting to TRUE)

« Software interrupt, also called trap

» caused by error (e.g., divide by 0, invalid memory access)

* by user request for an OS service (system call) — pass the
trap# as a parameter
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Hardware Interrupt

o Interru pt vector ' | resident monitor
2
» array of addresses of i
ISRs, indexed by the @
interrupt number @ service routine
. for device i
* each interrupt number
is associated with a @
hardware source of
IRQ
a:=b+c
user d:=3%c
program
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Software Interrupt

resident monitor

case n

@ read @ perform
I/0

trap to
monitor
system call n @ return to
user
user program d:=3*c
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Common Functions of Interrupts

» CPU suspends execution of current program, transfer
control to ISR through interrupt vector

* interrupt # indexed into the table

» CPU saves address of the interrupted routine before
jumping to ISR

* so that the ISR can return to interrupted code
e Interrupts may be nested

* i.e., while executing one ISR, some architectures allow another
higher-priority interrupt to come in!

* lower-priority ones would not get processed and may get lost
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Review of Topics

System organization
Bootstrapping

Interrupt vs. Polling

Steps in handling an interrupt

Trap vs. interrupt
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Storage-Device Hierarchy

» Storage systems are organized hierarchically

by speed, cost, and volatility

* Main memory

* the only “large” temporary storage medium that the CPU
can access directly

* RAM: random access memory; SRAM, DRAM etc

« Secondary storage

» provides nonvolatile storage

* Magnetic disk, solid state disks (SSD), etc
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Caching

» Small but fast copy of subset of bigger (slower) memory
* Important principle, performed in hardware, OS, software
 Data copied to faster storage temporarily

« (Read) Cache is accessed first

e If so (“cache hit”), use the copy from cache first (fast)

* if not (“cache miss”), copy data from memory to cache (slow)

* Principle of locality
 temporal locality and spatial locality

 Cache size and replacement policy




Direct Memory Access (DMA)

* Device controller transfers blocks of data
from buffer storage directly to main
memory without CPU intervention

« frees up CPU from copying data between device &
memory

« Completion notification

* One interrupt is generated per block (e.g., 512
bytes)

 Rather than the one interrupt per byte or per word
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How DMA Works

thread of execution
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RAM: Random-Access Memory

e SRAM: static RAM

* typically six transistors per bit
* easy interface, fast access, retains content as long as powered

» used for cache in general CPU; or main memory for embedded
MCU

* DRAM: dynamic RAM

* High density: one transistor per bit, low cost
* Organized as row/column, more complex access
* Loses value due to leakage or read => need refreshing!

 used mainly for main memory in general-purpose PC

29



Disk Mechanism

Spinning platters, could be
multiple

Read/write head an arm
for each platter

Transfer time = data size /
transfer rate
Positioning time

 Seek time (moving head on
cylinder to the right track)

 Rotational latency (waiting for
disk to rotate to right sector)

track ¢

sector s | I
Ay
|
|
|

|
cylinder ¢ —»:

platter

)

rotation

«— spindle

arm

read-write
head

— arm assembly
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Performance of various levels of
storage

1 3 < 5

registers main memory solid state disk | magnetic disk

<1KB < 64GB <17TB <1078

Implementation custom memory CMOS SRAM flash memory magnetic disk
technology with multiple

ports CMOS

Access time (ns) 25,000 - 50,000 5,000,000

Bandwidth (MB/sec) | 20,000 - 100,000 | 5,000 - 10,000 20-150

Managed by compiler hardware operating system | operating system | operating system

. | +

Backed by cache main memory disk or tape
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Coherency and Consistency Issue

» The same data may appear in different levels

* issue: changing the copy in cache makes it inconsistent
with the copy in memory memory!

* Uniprocessor

« use highest-level copy (assuming all changes come from
processor)

 Shared-memory multiprocessor systems

» Difficult! the processor making the change needs to
“invalidate” the other cached copies => forces a cache
miss on others, fetch from memory again
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Review of Topics

Storage device hierarchy
Caching and Issues
DMA structure

RAM: SRAM vs DRAM
Disks

Cache coherence
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Hardware Protection

Dual-Mode Operation
/O Protection
Memory Protection
CPU Protection
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Dual-Mode Operation

 Context: multiple programs sharing
resources

« OS needs to ensure incorrect program can't disrupt
or corrupt other programs

» Hardware support using modes of operation

 User mode: execution done for user code

« Monitor mode, aka kernel mode, system mode, or
privileged mode
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Mode Switch and
Privileged Instructions

* From User mode to Kernel mode
e interrupt - triggered by hardware (timer, 1/O, signal)

* trap - executing a trap Instruction
(syscall instruction on MIPS)

» fault - page fault, divide by zero, etc

* Privileged instructions
e can be executed ONLY in monitor mode

* e.g., direct I/O instruction, access special registers,
instruction to return from interrupt
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Example: syscall instruction in
MIPS

* Instructions needed in syscall

1. Load the service number in register $ve.

2. Load args into $a0, $a1, $a2, or $f12 if any

3. Issue the syscall instruction.

4. Retrieve return values, if any, from result registers as specified.
e syscall is not a privileged instruction

* but it switches mode to privileged mode,

* ERET is a privileged instruction

* returns from a syscall, switches from privileged mode to user mode
upon return from system call
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Protection of 1/0

» All I/O instructions must be privileged
instructions in order to offer protection

e |/O devices can be shared between users

* OS must prevent user program from
gaining control in monitor mode

* user program could gain control by overwriting an
entry in the interrupt vector interrupt

vector

resident
monitor

system call/ user program

interrupt malicious
program 37 38




Protection of Memory

* Memory to protect
* Interrupt vector and ISR (shouldn't be user writable)

» Data owned by other user processes (shouldn't be
readable or writable, unless the user allows part of it)

 Possible hardware support using registers

* Base register: starting address of legal physical men
address

* Limit registers : size of the range

 Attempt for user program to access memory outside the
defined range => caught by hardware, handled by OS
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Use of Base and Limit Registers

e Base: 300040
e Limit: 120900

* Ending address:
42939

0

256000

300040

420940

monitor

job 1

300040

base register

120900

limit register




Hardware Address Protection

e Flowchart

base + limit

trap to operating system
monitor—addressing error

memory
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Protection of CPU

 Prevent user program from hogging CPU
e infinite loop (intentional or unintentional)
« not making system calls

« Hardware support: Timer

* interrupts after a specified number of cycles
e timer can count number of clocks

« commonly used for time sharing

 Load Timer => privileged instruction
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OS regaining control by timer
interrupt: timer

* Timer is set to interrupt the computer after some time

« Operating system set a timer (privileged instruction)

* Counter == 0 => generate an interrupt

e OS defines the IS

R for timer

e Allows scheduler/c

ispatcher to context switch or terminate

program
user process
user mode
user process executing » calls system call return from system call Uee ISR
\ 7
A 4
1 /
K | trap return
sl mode bit = 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)
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Review

* Dual mode operation
* Different ways to switch to kernel mode

e Privileged instructions and uses

* Protections
 1/O access: privileged I/O instructions
* Memory access: use base and bound registers

* CPU use: hardware mechanism for OS to regain
control
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