
EdSim51 I/O

Pai H. Chou

 1

Concept
• Direct, indirect, index addressing

• table lookup

• Call-return

• Serial port
• Polling vs. interrupt

• sharing of interrupt structure

• Timer interrupt

 2

Assembly Language
• Directives

• Commands to the assembler!  
e.g., starting address, allocate memory, ...

• Instructions
• Correspond to machine instructions

• Labels
• Symbolic names that mark addresses

• Comments -- started with ;; till end of line

 3

Example of directives:
DB vs. EQU

• DATA1: DB "Hello world"  
DATA2: DB 25 
;; both occupy space in code memory,  
;; because DATA1, DATA2 are labels  
;; the data is read-only.

• This is somewhat like  
const char DATA1[] = "Hello world"; /* occupies memory*/ 
const byte DATA2[1] = {25}; /* occupies memory! */

• COUNT EQU 25 ;; occupies no space
• MOV R3, #COUNT  

;; macro expansion into MOV R3,#25
• This is like #define COUNT 25 /* does not occupy memory */

 4

Back to LED example...

0x0 0x1 0x2 0x4 0x8 0x10 0x20 0x40

0xF90xC0 0xA4 0xB0 0x99 0x92 0x82 0xF8 0x80 0x90

Value to write to P1

segments to light

so.. to display digit patterns,

need to
write...

 5

Example: define a look-up table
for 7-segment LEDs!

• ORG 0H  
 CLR A ;; A = 0  
Top: PUSH ACC ;; save accumulator  
 LCALL Display  
 POP ACC ;; restore accumulator  
 INC A ;; A++  
 JMP Top  
;; Display is a subroutine 
Display: ;; assume index 0..9 is in A 
 MOV DPTR, #LEDdata  
 MOVC A, @A+DPTR ;; A = LEDdata[A]  
 MOV P1, A ;; light up LED segments 
 RET ;; return from subroutine  
 ;; data for the table  
LEDdata: DB 0C0H, 0F9H, 0A4H, 0B0H, 99H, 92H, 82H, 0F8H, 80H, 90H  
 END

 6

Run with breakpoint
After "Assm", double-click on the address 0011
(for RET instruction) => set breakpoint and click Run

output sequence

 7

LEDdata array in code memory
break point

Serial Port
• Universal Asynchronous Receiver Transmitter

• Serial: data shifted in/out serially

• Asynchronous: no clock; embedded in data

• Full duplex: Rx (receive) & Tx (transmit) are
independent controllers

• Both sides must run at the same baud rate

 8
e.g., terminal e.g., mainframe

Accessing UART on MCU
• Configuration

• Set up a timer with auto-reload to generate timing

• Enable Rx or Tx (or both)

• Access

• Reading/Writing register SBUF

• Test RI or TI flag before reading or writing SBUF!

• could be polling or interrupt driven

 9

Serial port programming on the
8051

• Easy part: send/receive

• MOV SBUF, data ;; to send 
MOV dest, SBUF ;; to receive

• Tricky part: initialize the baud rate

• (just copy the following code for now to run)

• MOV TMOD, #20H ;; to send 
MOV TH1, #-6 ;; 4800 baud 
MOV SCON, #50H ;; 8-bit 1 stop REN 
SETB TR1 ;; start timer 1

• Run EdSim51 @11.0592MHz for 4800 baud

 10

Polling before accessing SBUF
• Test RI flag before reading from SBUF

• if RI is false => no valid data has been received!

• Solution: polling RI flag

• Repeatedly checking RI until it is true

• after exiting loop, read SBUF and clear RI flag.

• PollHere: JNB RI, PollHere ;; while (!RI) ;  
 MOV A, SBUF ;; read it into A  
 CLR RI

 11

Code for reading digits from
Serial Port and display on LED

• ORG 0H  
 ;; initialize serial port  
 MOV TMOD, #20H ;; to send 
 MOV TH1, #-6 ;; 4800 baud 
 MOV SCON, #50H ;; 8-bit 1 stop REN 
 SETB TR1 ;; start timer 1 
PollHere: JNB RI, PollHere ;; polling 
 MOV A, SBUF ;; read serial port 
 CLR RI ;; clear out receive flag 
 ADD A, #-48 ;; convert ASCII to binary  
 LCALL Display  
 JMP PollHere 
Display: MOV DPTR, #LEDdata 
 MOVC A, @A+DPTR ;; A = LEDdata[A] 
 MOV P1, A ;; light up LED seg  
 RET ;; return from subroutine 
LEDdata: DB 0C0H, 0F9H, 0A4H, 0B0H, 99H, 92H, 82H, 0F8H, 80H, 90H 
 END

 12

Setting EdSim51 with proper
baud rate

 13

11.0592 MHz 100 Update Freq. may be good

Testing Serial Port
• Provide your test data in Tx box

• e.g., 0123456789 as ASCII

• data you type here are 
staged to be received by 
the 8051's Rx.

• The MCU won't receive 
anything until you click 
Tx Send to start sending

• sent characters will be "consumed" 
and removed from the Tx field

 14

type in here!!

click to start
sending

Running serial port code
• Set breakpoint at RET (address 001F)

• Click Run. PC stuck at 0x000B polling

• Click Tx Send to start sending

• On first breakpoint, shows '0' on LED

• Tx window gobbled up character 0

 15

Disadvantages with Polling
• Polling: e.g., while (TF0==0) { }

• use loop, keep testing a flag until it is set

• Problem: Wasteful=> not useful work

• Could try polling less often
• e.g., while (TF0==0) { do some work }

• Problem: potentially slow response / long latency

 16

Solution: Interrupts
• Let hardware test flag instead of software

• When the flag is set, 
automatically call a subroutine (handler)
• This means "interrupting" (suspend) the normal

software execution in handler

• Handler returns to normal software
• Software might not "know" it happened!

 17

Polling vs. Interrupt

 18

setup (e.g., timer);
while (TF0 == 0) {
} // wasted cycles!
TF0 = 0;
other code to "handle" timer

po
llin

g
lo

op
"h

an
dl

in
g"

setup (enable interrupt)
regular program code

ISR(for timer, UART, etc) {
TF0 = 0;
other code to handle..

}

vs

ISR is called
automatically when the
interrupt condition is
detected by hardware

Terminology
• Interrupt vector:

• address of an interrupt service routine

• Interrupt vector table:
• data structure of interrupt vectors

• Interrupt service routine (ISR)
• also known as interrupt handler

• called by a processor to handle an interrupt

 19

Steps in an Interrupt
• CPU finishes current instruction

• CPU pushes next PC on stack,  
save other interrupt status in internal reg

• CPU Jumps to the interrupt vector (address of
ISR)

• CPU runs until RETI (return from interrupt)  
=> don't use RET -(for regular subroutines)

• CPU restores interrupt status, pops stack into PC

 20

Interrupt types in 8051
• Reset - a special kind of interrupt

• Jump to 0000H, "reset handler"  
(or: handler is at 0H), but no RETI

• Timer 0 and 1 (jump to 000BH, 001BH)

• INT0, INT1 pins (jump to 0003H, 0013H)

• Serial (both Rx and Tx): jump to 0023H

 21

• 0000H: a jump (2 or 3 bytes) to _main
• (if you want to use interrupts)

• 0003H, 000BH, 0013H, ... (8 byte spaces)
• Handler code (if fit in 8 bytes), or 

jump to handler routine if too long

8051 Interrupt vector table

 22

Interrrupt address pin Flag clear
Reset 0000H 9 Auto
INT0 0003H P3.2 (12) Auto
TF0 0013BH Auto
TF1 0001BH P3.3 (13) Auto

UART 0023H manual

Serial port: review
• SBUF register

• write SBUF => transmit;  
read SBUF => receive

• Flags

• TI == 1 when ready for next byte

• RI == 1 when a byte has been received

• Flag could be polled or used as interrupt

 23

8051: same vector for both Tx
and Rx

• one ISR for both Tx and Rx

• User must check whether TI or RI is on

• TI on => ready to send next char

• RI on => read char from SBUF

• User is responsible for clearing the flag!

• Both could be set, but might handle just either Rx
or Tx at a time

 24

Serial port interrupts -- revisited

• Same ISR shared between RI and TI
• Both RI and TI could have triggered!

• ISR checks which of RI, TI needs servicing

• Issues

• Use of software interrupt with TI
• Shared data structure

 25

Code memory layout
• ORG 0H 

 JMP Main ;; on startup, jump to main()  
 ORG 23H ;; this is the location for the ISR for serial port  
 JMP Serial_ISR  
 ;; initialize serial port  
Main: LCALL InitUart 
 SETB ES ;; enable interrupt for serial port  
 SETB EA ;; enable all interrupts  
LoopHere: JMP LoopHere ;; infinite loop, could do useful work

• Serial_ISR: ;; make sure it's RI  
 JNB TI, Check_RI 
 CLR TI 
Check_RI: JNB RI, Serial_Done  
 MOV A, SBUF ;; read serial port 
 CLR RI ;; clear out receive flag  
 ADD A, #-48 ;; convert ASCII to binary 
 LCALL Display ;; update the display  
Serial_Done: RETI ;; return from ISR 

 26

us
er

co

de
in

te
rr

up
t

se
rv

ic
e

ro
ut

in
e

Code for Init UART and Display
• (Code continues from previous page)

• InitUart: MOV TMOD, #20H ;; to send 
 MOV TH1, #-6 ;; 4800 baud 
 MOV SCON, #50H ;; 8-bit 1 stop REN 
 SETB TR1 ;; start timer 1 
Display: MOV DPTR, #LEDdata 
 MOVC A, @A+DPTR ;; A = LEDdata[A] 
 MOV P1, A ;; light up LED seg 
 RET ;; return from subroutine 
LEDdata: DB 0C0H, 0F9H, 0A4H, 0B0H, 99H, 92H, 82H, 0F8H, 80H, 90H 
 END

• Assemble code and run with numeric characters in Tx (e.g., 246813570)

• Run and click [Tx Send] button

• PC spins at address 0x002c, which is LoopHere: JMP LoopHere

• Interrupt causes Serial_ISR to be invoked (interrupting the user loop!)

 27

library code
for UART

lib
ra

ry
 c

od
e

fo
r

LE
D

 d
is

pl
ay

Run the interrupt version of
serial-to-LED code

• As usual, set clock rate to 11.0529 MHz

• serial port at 4800 baud

• Type in digits into Tx field, click Tx Send

• Run code spin at address 0x002c

• Watch UART trigger interrupts (by invoking
the ISR, which invokes Display.

• The LED should display the consumed digit

 28

Other interrupts
• External interrupts (pins INT0, INT1)

• triggered when those pins gets pulled low

• Interrupt enable by EX0, EX1; flags INT0, INT1

• Timer interrupts (two timers)

• triggered when counter rolls over to 0000H

• interrupt enabled by ET0, ET1, flags are TF0, TF1

• Reset (power on or reset pin)

• jumps to code address 0000H

 29

