EdSim51 1/0O

Pai H. Chou

Concept

Direct, indirect, index addressing

» table lookup
Call-return

Serial port

* Polling vs. interrupt

* sharing of interrupt structure

Timer interrupt

Assembly Language

Directives

« Commands to the assembler!
e.g., starting address, allocate memory, ...

Instructions

 Correspond to machine instructions

L abels

« Symbolic names that mark addresses

Comments -- started with ;; till end of line

Example of directives:
DB vs. EQU

« DATA1. DB "Hello world”
DATAZ2: DB 25

;; both occupy space in code memory,
- because DATAT1, DATA2 are labels

;; the data is read-only.

 This is somewhat like
const char DATAT1[] = "Hello world"; /* occupies memory*/
const byte DATA2[1] = {25}; /* occupies memory! */

« COUNT EQU 25 ;; occupies no space

* MOV , #COUNT
;; macro expansion into MOV R3,#25

* This is like COUNT 25 /* does not occupy memory */

Back to LED example...

segments to light

Value toO Write to P1 OxO Ox1T 0Ox2 0x4 0x8 0x10 0x20 0x40

so.. to display digit patterns,

need to
write...

OxCO OxF9 OxA4 OxBO 0x99 0x92 0x82 OxF8 0x80 0x90

Example: define a look-up table
for 7-segment LEDs!

. ORG OH
CLR A - A=0
Top: PUSH » save accumulator
LCALL Display
POP - restore accumulator
INC A A4+
JMP Top

. Display Is a subroutine

Display: ;; assume index 0.9 isin A
MOV DPTR, #LEDdata
MOVC A, @A+DPTR ;; A = LEDdata[A]
MOV , A ;; light up LED segments
RET - return from subroutine
- data for the table

LEDdata: DB 0COH, OF9H, 0A4H, OBOH, 99H, 92H, 82H, OF8H, 80H, 90H
END

Run with breakpoint

After "Assm", double-click on the address 0011
(for RET instruction) => set breakpoint and click Run

RST| Step| Run | New| Loadl Savel Copy| Paste |X|\
System Clock (MHz) 12.0 1 v No errors ul
SBUF < [»]
R/0 W/0 THO TLO R7 0x00 B 0x00
0x00 ox00| | oxoo| oxeo] R6| 0x00 ACC| 0x00| e (C"Eg ”:
RXD TXD R5_0x00 PSW_0x00 mzml Top: PUSH ACC
1] |1 TMOD | 0x00] R4/ 0x00 IP 0x00 0093 |] LCALL Display
SCON | 0x00] TCON | 0x00] R3| 0x00 IE 0x00 0096 | POP ACC
R2| 0x00| PCON| 0x00 2008 | INC A
pins bits THL TL1 R1 0x00 DPH| 0x00 2009 | JMP Top
OxFF| oxFF|P3 | ox0o| oxeo] Re| 0x00 DPL| 0x00 P00B| Display: MOV DPTR, #LEDdata
OXFF_OxFF|P2 8051 SP|_0x07 BAQE | MOVC A, @A+DPTR
OxFF| oxFFPL ° MOV P1, A
oxFF] oxooee i|[Psw |[e]e]e]e] [e]e]e e RET
OxFF|_xFF|Po drf cod | ; Lookup table
Modi ode ’
Code Memory | addr (/)x@(/)0y0’ OxE4|value BV EED S8iily Ll LRG, L
© 123456 78 9ABCDEF
00 E4 CO E0 12 00 OB DO EQ 04 80 F6 90 00 12 93 F5
20 00 00 00 00 00 00 00 00 00 00 00 00 @& 00 00 00 break pOlnt

LEDdata array in code memory

/

output sequence

Serial Port

 Universal Asynchronous Receiver Transmitter
» Serial: data shifted in/out serially
 Asynchronous: no clock; embedded in data

 Full duplex: Rx (receive) & Tx (transmit) are
independent controllers

 Both sides must run at the same baud rate

DTE DTE
TxD TxD
RxD . RxD
e.g., terminal ground

e.g., mainframe

Accessing UART on MCU

 Configuration
* Set up a timer with auto-reload to generate timing
* Enable Rx or Tx (or both)
» Access
* Reading/Writing register
* Test Bl or [flag before reading or writing !

* could be polling or interrupt driven

Serial port programming on the

. Easy part: send/receive
¢ MOV ~data ::tosend
MOV dest, - {0 recelve

 Tricky part: initialize the baud rate

e (just copy the following code for now to run)

c MOV C#20H : to send
MOV #-0 - 4800 baud
MOV #50H ;; 8-bit 1 stop REN
SETB - start timer 1

e Run EdSim51 @11.0592MHz for 4800 baud

10

Polling before accessing SBUF

* Test H! flag before reading from

e if Bl is false => no valid data has been received!

* Solution: polling = flag

* Repeatedly checking F! until it is true

» after exiting loop, read and clear =/ flag.
 PollHere: JNB RI, PollHere :: while ('RI) ;
MOV A, - read it into A

CLR

11

Code for reading digits from
Serlal Port and display on LED

ORG OH

. Initialize serial port

MOV , #20H ;; to send

MOV , #-6 > 4800 baud

MOV , #50H ;; 8-bit 1 stop REN

SETB . start timer 1
PollHere: JNB , PollHere ;; polling

MOV A, ; read serial port

CLR ;; Clear out receive flag

ADD A, #-48 ;; convert ASCII to binary

LCALL Display

JMP PollHere

Display: MOV DPTR, #LEDdata
MOVC A, @A+DPTR ;; A = LEDdatalA]
MOV , A . light up LED seg
RET - return from subroutine
LEDdata: DB OCOH, OF9H, 0A4H, OBOH, 99H, 92H, 82H, OF8H, 80H, 90H
END

Setting EASIm51 with proper

baud rate
100 Update Freq. may be good

RST|/step| Run |New|/Load|’Savel copy| Paste |” P
System Clock (MHz)| 11.0592 100 |~ FEERCMERCWY No errors E
SBUF I | | [»]l

11.0592 MHz
—

O

O

o170 : : 7|_0x00 B|_0x00 e R
0x00 0x00 | 0x00| 0x00| Ré| 0x00 ACC| 0x00 N . —
.. 1
B0 TXD RS 000 pswl 0x00 ;3 1nitialize serl?P por
| _0x00) | 0000 | MOV TMOD, #28H ;; to |
1 1 TMOD | 0x00 R4 0x00 IP 0x00 0003 | MOV TH1, #-6 .
SCON | 0x00 TCON | 0x00 R3| 0x00 IE 0x00 0006 | MOV SCON, #5@H s 8-bi
R2| 0x00 PCON| 0x00 ﬁﬂﬂ9| SETB TR1
pins bits TH1 TL1 R1 0x00 DPH| 0x00
OxFF OxFF|P3 | 0x00| 0x00| Re| oxoe DPL| 0x00 PollHere:
OXFF‘Y OxFFlP2 8051 SP 0x07 9008 | JNB RI, PollHere HH
@XFF‘ OxFFIP1 L gﬂﬂEl MOV A, SBUF H
oot oo |[cc |pJofele] Polole] |ama| cir }
Modify Code 09012 | ADD A, #-48 ;3 conve
Code Memory| addr| 0x0000] 0x75|value ggi;: IiﬁsLL g:{.’:h:ie

0|1]2[3[4|5[/[6|7|8[9]|A|B|[CID|EJ|F
00 75 89 20 75 8D FA 75 98 50 D2 8E 30 98 FD E5 99

10 C2 98 24 DO 12 00 19 80 F2 90 00 20 93 F5 90 22 Display: ;; assume index @..9 ;

20 C0 F9 A4 B@ 99 92 82 F8 80 90 00 00 00 00 00 00 ggig' mg\‘;c A DPI\EI')PTﬁLEI-)(-Ia;t\a— |
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 mlD' ,» @ i A=
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | MOV P1, A

PO1F | RET

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Copyright ©2005-2013 James Rogers Remove All BreaKPOint5|

;3 data for ti
LEDdata:
DB 9COH, OF9H, OA4H, OBOH

EAID

< T | [»] |

W 9 v v 9 9 9 9 9999 vvv¢v U 9" %VOW WO WY WUWW WU WOV YW WO VOO

o \ L12|3 HAND Gate Disabled || |4 N Parity
EEEEEEE || dlads Key Bounce Disabled | Rx
7 8(9
eIl ol M- L
1 E—

Testing Serial Port

 Provide your test data in Tx box

e e.g., 0123456789 as ASCII

* data you type here are

staged to be received
the 8051's Rx.

e The MCU won't receive

anything until you click
Tx Send to start sending

e sent characters will be "consumed"

and removed from the

u| No Parity | 8-bit UART @| 4800 Baud |+

Rx Reset

by

T type in here!!

| No Parity | 8=bit UART @| 4800 Baud |~

Rx Rx Reset

0123456789

click to start T
X field

sending

14

Running serial port code

* Set breakpoint at RET (address 001F)
* Click Run. PC stuck at 0x000B polling

 Click Tx Send to start sending
* On first breakpoint, shows '0' on LED

* Tx window gobbled up character O

No Parity | 8=bit UART @ 4800 Baud |~

15

Disadvantages with Polling

* Polling: e.g., while (TFO==0) { }
* use loop, keep testing a flag until it is set

e Problem: Wasteful=> not useful work

« Could try polling less often
* e.g., while (TFO==0) { do some work }

* Problem: potentially slow response / long latency

16

Solution: Interrupts

 Let hardware test flag instead of software

* When the flag is set,
automatically call a subroutine (handler)

* This means "interrupting" (suspend) the normal
software execution in handler

e Handler returns to normal software

* Software might not "know" it happened!

17

polling

Polling vs. Interrupt

setup (e.qg., timer),

while (TFO == 0) {

} [/l wasted cycles!

TFO = 0;

other code to "handle" timer

loop

"handling"

ISR is called

interrupt condition is
detected by hardware

automatically when the

VS

setup (enable interrupt)

regular program code

ISR(for timer, UART, etc) {
TFO =0;
other code to handle..

18

Terminology

* [nterrupt vector:

» address of an interrupt service routine

* Interrupt vector table:

* data structure of interrupt vectors

* Interrupt service routine (ISR)

* also known as interrupt handler

* called by a processor to handle an interrupt

19

Steps in an Interrupt

CPU finishes current instruction

CPU pushes next PC on stack,
save other interrupt status in internal reg

CPU Jumps to the interrupt vector (address of

ISR)
CPU

=> C

runs until RET

(return from interrupt)

on't use RET -(

or regular subroutines)

CPU restores interrupt status, pops stack into PC

20

Interrupt types in 8051

* Reset - a special kind of interrupt

* Jump to 0000H, "reset handler"
(or: handler is at OH), but no RET]

e Timer O and 1 (jJump to 000BH, 001BH)

* INTO, INT1 pins (jump to 0003H, 0013 H)
e Serial (both Rx and Tx): jump to 0023 H

21

8051 Interrupt vector table

Interrrupt address pin Flag clear
Reset 0000H 9 Auto
INTO 0003 H P3.2 (12) Auto

TFO 0013BH Auto
TFT 000TBH P3.3 (13) Auto
UART 0023H manual

* 0000H: a jump (2 or 3 bytes) to _main

e (if you want to use interrupts)

* 0003H, 0O00BH, 0013H, ... (8 byte spaces)

« Handler code (if fit in 8 bytes), or
jump to handler routine if too long

22

Serial port: review

. register

* write => transmit;
read => receive

* Flags
* || ==1 when ready for next byte

» Rl ==1 when a byte has been received

 Flag could be polled or used as interrupt

23

8051: same vector for both Tx

and Rx
e one ISR for both Tx and Rx

e User must check whether 1! or HI is on
on => ready to send next char

on => read char from

 User is responsible for clearing the flag!

* Both could be set, but might handle just either Rx
or Ix at a time

24

Serial port interrupts -- revisited

* Same ISR shared between =! and
» Both Rl and 1! could have triggered!

* ISR checks which of R/, T| needs servicing

e |ssues

* Use of software interrupt with

e Shared data structure

25

user
code

Interrupt
service routine

Code memory layout

ORG OH

JMP Main ;; on startup, jump to main()

ORG 23H ;; this is the location for the ISR for serial port
JMP Serial_ISR

;; Initialize serial port

Main: L CALL InitUart

SETB ;; enable interrupt for serial port
SETB .; enable all interrupts
LoopHere: JMP LoopHere ; Infinite loop, could do useful work
Serial_ISR: ;; make sure it's Rl
JNB 11, Check_RlI
CLR
Check_RIl: JNB R!, Serial _Done
MOV A, > read serial port
CLR ;; clear out receive flag
ADD A, #-48 ;; convert ASCII to binary
LCALL Display ;; update the display
Serial_Done: RETI ;; return from ISR

26

Code for Init UART and Display

* (Code continues from previous page)

e| InitUart: MOV CH#20H 1o send |b d
MOV TH, #-6 + 4800 baud Ibrary code
MOV , #50H ;; 8-bit 1 stop REN for UART
SETB - start timer 1

Display: MOV DPTR, #LEDdata
MOVC A, @A+DPTR ;; A = LEDdata[A]

MOV A . light up LED seg
RET - return from subroutine

LEDdata: DB 0COH, OF9H, 0A4H, OBOH, 99H, 92H, 82H, OF8H, 80H, 90H
END

library code
for LED display

* Assemble code and run with numeric characters in Tx (e.g., 246813570)
* Run and click [Tx Send] button
* PC spins at address 0x002c, which is LoopHere: JMP LoopHere

* Interrupt causes Serial_ISR to be invoked (interrupting the user loop!)

27

Run the interrupt version of

serial-to-LED code
As usual, set clock rate to 11.0529 MHz

serial port at 4800 baud

Type in digits into Tx field, click Tx Send

Run code spin at address 0x002c

Watch UART trigger interrupts (by invoking

the ISR, which invokes

Display.

The LED should display the consumed digit

23

Other interrupts

» External interrupts (pins INTO, INTT)

» triggered when those pins gets pulled low

* Interrupt enable by , ; flags ,

* Timer Interrupts (two timers)
» triggered when counter rolls over to 0000H

* interrupt enabled by , , flags are 110,

* Reset (power on or reset pin)

 jumps to code address 0000

29

