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Prerequisites
• Hardware 

• Computer architecture, input/output, interrupts 

• Software 
• assembly programming: registers, stacks 

• system programming language (C) 

• fundamental data structures (arrays, stacks, linked 
lists, trees)
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Prerequisite: C language
• Scoping 

• global vs. (file) static, auto local vs. static local 

• Pointers 
• Pointer type, pointer expression vs. variable 

• Pointer to array, structs, function, pointer arithmetic 

• Memory allocation 

• stack allocation vs.heap allocation (malloc(), free()) 

• Bit manipulation
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Prerequisites: How C works 
under the hood

• Compiler-Assembler-Linker-Loader 
• User code, library code, system call 

• Stack 
• Stack frame 

• Parameter passing and return value 

• Function return address 

• Saving and restoring register values across calls
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Prerequisites: Unix Tools
• Unix shell (bash, csh) basic commands 

• Compiler, linker, debugger 

• Editor 

• Makefile 

• Version control 

• Scripting language
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Prerequisites: Data Structures
• Arrays 

• Linked lists 

• singly vs doubly linked, insert, delete, find 

• Stacks and Queues 

• implementation using array vs. linked list 

• Trees 
• n-ary tree, tree traversal, recursion 

• Hash tables 
• hashing, lookup, collision, deletion
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Prerequisites: Computer 
Architecture

• Instruction set architecture (ISA) 
• opcode, operand, register, addressing modes 

• assembly language, machine code,  

• Memory organization 
• memory hierarchy: cache, memory, disk 

• stack, heap, architecture support for languages 

• Control transfer 
• interrupts, trap, input/output
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Overview
• What is an OS? 

• Different kinds of OS 

• Problems solved by an OS 

• Components of an OS 

• Metrics for evaluating an OS 

• Trends in OS: multiprocessor, multicore, 
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You may have heard of
• Microsoft Windows 

• Windows XP, Vista, 7, 8, 10, … 

• Apple  
• macOS, iOS, watchOS, tvOS, … 

• Gnu/Linux 
• RedHat, Ubuntu, Debian, SUSE, … 

• Google Android 
• KitKat, Lollipop, Marshmallow, Nougat, Oreo, …
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You may not have heard of...
• Workstations 

• SunOS, Solaris, DEC VMS, Ultrix, AIX 

• Early personal computers, text mode 
• CP/M, Apple DOS, Atari DOS, PC DOS... 

• PC in 1980-90s (GUI) 
• IBM OS/2, BeOS, AmigaOS 

• Windows 3.1, 95, 98, ME, NT 

• Mobile 
• PalmOS, NewtonOS  (PDA), Windows CE 

• and may more...
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What is an OS?
• Runtime-support software 

• above hardware 

• below application software 

• Manages all aspects of computer 
• Execution of programs (scheduling, concurrency) 

• Memory usage (allocation, sharing, mapping) 

• Data Storage, input/output (network, display, keyboard, 
mouse, touch, audio, video, timing) 

• Protection and Security
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OS: the most powerful software
• Whoever controls the OS rules the world! 

• Microsoft Windows (plus Office) made Bill Gates the 
richest person on earth (until recently) 

• iOS (+iPhone) made Apple the biggest company 

• Android gives Google the widest smartphone user base 

• Why? because OS defines the “computer” 

• programmer usually can’t access underlying hardware 
w/out going through OS 

• OS provides essential service (e.g., GUI, location, …)
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But there are many types of 
“Computer Systems”

• General Purpose 
• PC, tablet, smartphone, server,  

• Embedded systems 
• dedicated purpose; normally don’t think of as computer  

e.g., iPod, DVD player, washing machine, elevator controller, .. 

• has processor, runs software / firmware 

• may have storage, communication, … 

• More units of embedded systems in use 
• example: a car may have > 100 processors! 

• more coming in the Internet of Things (IoT)
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Example: Tesla Model S or X 
65 processors!

• 1 Anti-lock Braking System 

• 2 AC Motor Inverter / 
Charger 

• 1 Active Cruise Control 

• 1 Air Suspension 

• 1 AM/FM/HD radio 

• 1 Audio 

• 1 Auto Pilot 1 Camera 

• 1 Auto Pilot 1 Processor 

• 2 Auto Pilot 2 Processors 

• 16 Battery Sub-Modules 

• 1 Bluetooth 

• 2 Charger 

• 1 Connectivity 

• 4 Door Handle Control 

• 1 Folding Mirror 

• 1 FOB receiver 

• 1 GPS 

• 1 HVAC 

• 1 Homelink 

• 1 Instrument Display 

• 1 Main Display 

• 1 Mobile charger 

• 1 Parking brake 

• 1 Parking sensor 

• 1 Power Steering 

• 1 Rear Camera 

• 2 Rear Taillight 

• 1 Safety Restraints 

• 2 Seat Controller1 Security 
module 

• 4 Side Window Controller 

• 1 Sunroof controller 

• 1 Thermal controller 

• 1 Tire Pressure Monitor  

• 1 Traction Control 

• 2 Body Control Unit 

• 1 Wiper control 

• 1 XM Satellite

https://teslatap.com/undocumented/model-s-processors-count/
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What OS do different processors 
run?

• Mobile OS 
• carOS (Apple), Android Auto, QNX, 

Windows Embedded Automotive 

• Real-time OS 
• e.g., vxWorks, FreeRTOS, QNX, mBED, ... 

• vendor-specific runtime support for 
protocol stack 
• TI OSAL, Nordic SoftDevices, ... 

• No OS ("bare metal") 
• just application code and driver!  maybe 

some library routines for memory, timing, ..
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Do you really need an OS?
• Not essential for some embedded systems 

• CPU just runs code; doesn’t really “know” it’s running an OS 

• Language or library support 
• Useful to support concurrency, timing, memory, storage, 

communication 

• Reasons to leave out the OS, esp. some embedded systems 
• Overhead: memory space, slower speed 

• Language + library already provide support 

• Determinism: ability to reproduce the behavior each time 

• But... without OS, code gets messy, hard to maintain
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Key Issues for this course
• Concurrency 

• Race conditions, Deadlocks, … 

• Resource Management 
• Arbitration vs. Virtualization 

• System Design 
• Abstraction vs. Monolith 

• Policy vs. Mechanism 

• Performance Analysis
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Appreciation for Good OS
• What makes an OS good? 

• Bug-free: OS should not have bugs! 

• Robust: OS should not crash 

• Low overhead: ideally takes no memory or time 

• Fair: all processes can run w/out waiting too long 

• Secure: protects the user and system from attacks 

• Helpful:  OS provides the right kind of service to user and 
programmer 

• OS often gets the first blame when things don’t work 
right!
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A Historical 
Perspective
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Historical Perspective
Mainframes  

Batch system 

Multiprogramming 

Time-sharing 

Computer-System Architectures 

Special-Purpose Systems
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1. Mainframe Systems
• One of the earliest 

computers 
• Slow I/O devices: card 

reader, printer, tape drives 

• Evolution: 
• Batch -> 

Multiprogramming -> 
Time-shared 

• Still in use today, but 
very different

IBM 704  
in 1957
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1.1 Mainframe - Batch Systems

• user submit jobs 

• program + data on punch cards 

• human operator sorts jobs  

• OS loads and runs one job 
at a time
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1.3 Time-sharing (multitasking) 
System: OS Tasks

• Virtual memory (ch. 10) 

• swap memory in/out  from/to  disks to support job 
demand 

• Storage (ch.11), file system (ch.13-14) 

• manages data storage and organization on disk 

• Synchronization (ch. 6-7), deadlock (ch. 8) 
• support concurrent execution of program 

• analyze, prevent, detect, and resolve deadlocks

 25



1.1 Mainframe - Batch Systems
• Advantages 

• Repeated jobs are done fast without user interaction. 

• Offline makes less stress on processor 

• Sharing system for multiple users 

• You can assign specific time for the batch jobs 

• Drawbacks 
• one job at a time 

• no interaction between users and jobs 

• CPU is often idle: I/O speed much slower than CPU speed
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1.2 Mainframe - Multipgramming

• Overlap I/O computation of jobs 
• keeps both CPU & I/O devices utilized in parallel 

• Spooling 
• “simultaneous peripheral operation online” 

• I/O spooled to disk, free up CPU to do processing 

• CPU just needs to be notified when I/O is done

Operating System Concepts – NTHU LSA Lab 

Mainframe: Multi-programming System 
� Overlaps the I/O and computation of jobs  
¾ Keeps both CPU and I/O devices  
 working at higher rates 

� Spooling (Simultaneous Peripheral Operation On-Line) 
¾ I/O is done with no CPU intervention 
¾ CPU just needs to be notified when I/O is done 

 

Line Printer CPU Card Reader 

Disk 
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1.2 Mainframe - 
Multiprogramming

• Several jobs are loaded into memory 

• CPU is multiplexed among jobs 

• I/O may be spooled or interactive

Operating System Concepts – NTHU LSA Lab 

Mainframe: Multi-programming System 

CPU 

Job Scheduling 
CPU Scheduling 

Memory 

Operating System 
Job1 
Job2 
Job3 
Job4 Job pool 

Disk 

� Several jobs are kept in main memory 
at the same time, and the CPU is 
multiplexed among them 
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1.2 Mainframe - Multiprogramming 
OS tasks

• Memory Management (ch. 10) 

• system allocates memory to multiple jobs 

• CPU scheduling (ch. 5) 

• system chooses which job to run and for how long 

• I/O system (ch. 12)  

• runtime support in terms of device drivers 

• allocation of devices to jobs
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1.3 Mainframe - Time-sharing 
(multitasking) System

• An interactive system between user & system 

• CPU switches among jobs quickly to support interaction 

• User can see result immediately (response time < 1s) 

• Usually, keyboard + text display 

• Context switch among multiple users 

• job completion 

• waiting on I/O  

• after some short execution time

 30



1. Mainframes: Summary

1.1  
Batch

1.2 
Multiprogramming

1.3 
Time-shared

System model
Single user,  
single job

multiprogramming 
Multiple user, 

multiple programs

Objective Simplicity Resource utilization
Interactivity, 

Responsiveness

OS features n/a
CPU scheduling, 

memory mgmt, I/O 
system

File system, 
virtual memory, 
synchronization 
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Historical Perspective
Mainframes 

Computer-System Architectures  

Single processor 

Tightly-coupled multiprocessor 

Loosely-coupled distributed system 

Special-Purpose Systems
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2.1 Single-Processor
• Traditional personal computers 

• Usually emphasizes interactivity 

• I/O devices: keyboard, mouse, monitor, printer, … 

• Previously OS offered no protection 

• DOS, Windows 3.1, Windows 95/98/ME, MacOS (1-9) 

• program could crash whole system, prone to virus 

• Modern PC OS’s are multitasking w/ protection 

• OS2, Windows NT/XP/…, macOS, Linux / Android
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2.1 (single-processor) ISAs
• SPARC (Sun Microsystems) (Berkeley RISC) 

• MIPS (MIPS) (Stanford MIPS) 

• Alpha (Digital Equipment Corporation) 

• PowerPC (Apple, IBM, Motorola) 

• 8086, 80286, 80386, 80486, (x86), Pentium, … 
(Intel) 

• Motorola 68000, 68030, 68040, ... 

• ARM, Thumb, Thumb-II, ... 

• RISC-V (Berkeley)
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2.2 Parallel Systems 
• Also known as 

• multiprocessor or tightly coupled systems 

• Multiple cores in close communication 

• usually communicate through shared memory 

• Purpose 

• throughput, economical, reliability, power 
efficiency

Operating System Concepts – NTHU LSA Lab 

Parallel Systems 
� A.k.a multiprocessor or tightly coupled system 
¾More than one CPU/core in close communication 
¾Usually communicate through shared memory 

� Purposes 
¾ __________,__________,__________ 

CPU 

System Bus 

MEM CPU CPU CPU 

Throughput  Economical  Reliability 
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2.2 Parallel Systems
• Symmetric multiprocessor (SMP) 

• all processors run the same OS 

• most popular today (e.g, Intel i3/i5/i7) 

• requires extensive synchronization 

• Asymmetric multiprocessor system 
• each processor is assigned a specific task 

• one master CPU and multiple slave CPUs 

• more common in very large systems
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2.2 Multi-Core Processors
• multiple CPU cores on the same chip 

• on-chip communication is faster than off-chip 

• Energy efficiency 
• running a multicore at slower clock (and voltage) 

=> same performance but much lower power!

Operating System Concepts – NTHU LSA Lab 

Multi-Core Processor 
� A CPU with multiple cores on the same die (chip) 
� On-chip communication is faster than between-chip 

communication 
� One chip with multiple cores uses significantly less 

power than multiple single-core chips 

blade servers: 
Each blade–processor board  
boots independently and run its 
own OS 

17 
 37



2.2 Many-Core Processor
• GPGPU - general-purpose graphics processing units 

• e.g., nVidia 

• 2880 thread processor, 1.43 TFlops 

• Intel Xeon Phi 
• Intel Many Integrated Core (MIC) 

• 61 cores, 1.2 TFlops 

• TILE 64 
• mesh network of 64 tiles; each tile = a general purpose 

processor

� Nvidia General-Purpose GPU 
¾ First release in Apr. 2008 
¾ Utilize a graphics processing unit (GPU) 
¾ Single Instruction Multiple Data 
¾ 2,880 thread processor, 1.43TGlops (x200 

faster than a single Intel Core i7) 
¾ 245 WATTS, Clock freq. 600~750 MHz 
¾ $3000 USD 

� Intel Xeon Phi 
¾ First release in Nov. 2012 
¾ A coprocessor computer architecture based 

on Intel Many Integrated Core (MIC) 
¾ 61 cores , 1.2TFlops, 300WATTS 

� TILE64 
¾ A mesh network of 64 "tiles“ 
¾ Each tile houses a general purpose processor 

 
 
 
 
 
 

Many-Core Processor 
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2.2 Memory Architectures

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

• Uniform Memory Architecture 
(UMA) 

• most commonly represented by SMP 
machine today (identical processors) 

• equal access times to memory 

• Nonuniform Memory Architecture 
(NUMA) 

• often made by physically linking 
multiple SMPs 

• one SMP can directly access memory 
of another SMP 

• example: IBM blade server
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2.3 Distributed Systems
• also known as loosely coupled system 

• each processor has its own local memory 

• processors communicate with each other through bus or 
network 

• easy to scale to large number of nodes 

• Purposes 

• Resource sharing, Load sharing, Reliability 

• Architecture 

• peer-to-peer or client-server
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2.3.1 Client-Server Distributed 
System

• Easier to manage and control resources 

• However 
• server becomes bottleneck  

• server becomes single point of failure 

Operating System Concepts – NTHU LSA Lab 

Client-Server Distributed System 
� Easier to manage and control resources 
� But, server becomes the bottleneck and single 

failure point 
Server 

Clients 

Network 

21 Operating System Concepts – NTHU LSA Lab 

Client-Server Distributed System 
� Easier to manage and control resources 
� But, server becomes the bottleneck and single 

failure point 
Server 

Clients 

Network 
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2.3.2 Peer-to-Peer Distributed 
System

• Every machine is identical in its role in the 
distributed system 

• Example  
• ppStream, bitTorrent, the Internet 

• Any system can play the role of client or 
server

Operating System Concepts – NTHU LSA Lab 

Peer-to-Peer Distributed System 

Network 

� Every machine is identical in its role in the 
distributed system – decentralized 

� Example: ppStream 

22 

, bitTorrent, Internet 

 42



2.3.3 Clustered Systems
• Cluster 

• shared storage 

• closely linked by high-speed LAN (InfiniBand - 300 Gb/s, 
Myrinet) 

• Examples: Beowulf, http://www.beowulf.org/overview/faq.html 

• Asymmetric clusters 

• one server runs application, other servers standby 

• Symmetric clusters 

• two or more hosts run applications and monitor each other

 43
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2. System Architecture Summary

Operating System Concepts – NTHU LSA Lab 

System Architecture Summary 

Distributed 
Cluster 
Multi 

processor 

Multi-core 
Single 
core 

Loosely coupled 

Tightly coupled 

24 
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Historical Perspective
Mainframes 

Computer-System Architectures 

Special-Purpose Systems 

Real-time systems 

Multimedia systems (“soft real-time”) 

Handheld systems
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3.1 Real-Time Systems
• ability to meet timing constraints 

• absolute or relative deadline, periodic or aperiodic 

• minimum/max time separation 

• Does not necessarily mean “fast” 
• guarantee timing constraints are met 

• Many applications 
• multimedia system, industrial control, flight or auto 

control, anti-lock brake
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3.1 Soft vs Hard Real-Time
• Soft real-time requirements 

• Undesirable to miss deadline, but not critical 

• example: multimedia streaming 

• Solution: give priority to critical real-time task until it completes 

• Hard real-time requirements 
• Missing deadline results in fundamental failure 

• example: nuclear power plant controller => meltdown 

• Solution: remedial action to minimize damage 

• OS is NOT required, but makes it more structured and 
easier to build a real-time system
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3.2 Multimedia Systems
• Mostly audio and video 

• e.g., ppstream, online TV, digital broadcast 

• Issues 

• timing constraint: 24-30 frames per second 

• on-demand & live streaming 

• compression and decompression before/after streaming 

• mostly Soft Real-Time 
• Conventional OS could work if hardware is fast enough or 

can support certain operations
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3.3 Mobile and Embedded 
Systems

• General-Purpose 
• personal digital assistants (PDA), smartwatches 

• Special-Purpose 
• Health-fitness band, smart home switches,  

• Considerations 
• Power consumption  

• Limited memory, limited processor performance
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Role of OS in different computer 
systems?

• Runtime Support 

• Do you even need an OS?  Or is language/library 
support sufficient? 

• Need for stable structure? 

• Ability to update software? 

• Which OS to use? 
• features considerations 

• compatibility considerations
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Review
• Mainframe systems 

• Batch, multiprogramming, time-sharing 

• Tightly coupled vs Loosely coupled 

• UMA vs NUMA 

• Distributed systems 

• Client-server vs. P2P 

• Real-time  

• Soft vs. Hard Real-time
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Administrative
• Instructor 

• Prof. Pai H. Chou, phchou@cs.nthu.edu.tw 

• Office: 620 Delta Building 

• TA 

• 宋瑞豐, ⽅方晟軒, 羅仕翰, 吳彥璋, 陳柏宇 

• Course website - important! 
• http://lms.nthu.edu.tw/course.php?courseID=40576
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Approach
• Topics 

• Following order in the textbook 

• Supplemental materials 

• Homework assignments 
• Word problems - write on your own 

• Implement OS algorithms in Python 

• Project: simple OS for an actual processor
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Course Materials
• Textbook: 

• Silberschatz, Galvin, and Gagne, 
Operating System Concepts, Tenth 
Edition, Asia Edition, Wiley, 2019. 
ISBN 978-1-119-58616-6 

• Course website 
• http://lms.nthu.edu.tw/course.php?

courseID=40576 

• Lecture slides 

• assignments & course projects
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Schedule by the Week
1. Welcome 

2. (Ch.1) Introduction 

3. (Ch.2) OS structure 

4. (Ch.3) Processes 

5. (Ch.4) Threads 

6. Threads (cont'd) 

7. (Ch.5) CPU scheduling 

8. (Ch.6-7) 
Synchronization 

9. (Ch.8) Deadlocks 

10. (Ch.9) Main Memory 

11. (Ch. 10) Virtual 
Memory 

12. (Ch. 11) Mass Storage 

13. (Ch. 12) I/O Systems 

14. (Ch. 13) File System 

15. (Ch. 14) Protection, 
(Ch. 15) Security
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Software
• Python 3 

• EdSim51 (requires Java) 

• SDCC (Small Device C Compiler) 

• GIT (version control) 

• Google Suite for Education
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Grading Policy
• Breakdown 

• 35% project (OS, due end of semester, demo) 

• 25% midterm 

• 35% final 

• 5% discretionary (participation, quiz, etc) 

• Problem set 

• Not graded.  Do it on your own 

• Expect questions to show on exam
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Programming Project
• To write parts of an operating system 

• write in low-level C and assembly language 

• compile and run code in an ISA simulator 

• use of hardware features (interrupt, timer etc) 

• Intermediate milestones every couple of weeks 

• tutorial in nature, self-checked but not graded 

• start from bare metal, gradually add runtime support 

• Due by the end of the semester 
• submit complete code and demo
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To Do
• Set up G Suite for Education - for submitting homework 

• https://net.nthu.edu.tw/2009/gapp 

• Set up own Unix-like environment (if not already) 
• Linux, macOS, CygWin, bash on Ubuntu on Windows 10 

• Install basic development tools if not already 
• (g)make, git client, python 3, Java 

• SDCC: (sdcc.sourceforge.net), Edsim51 (edsim51.com) 

• Alternatively, download vmware image (1.9 GB) 
• https://drive.google.com/file/d/1aYSz33AAHzHlFSzysGe00NM5jo_Td4YL/view
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Tips for this course 
• Attend lecture, read textbook before the 

lecture 

• Don’t just read the slides!  

• Internalize the concepts 
• don't just memorize - know why do each step 

• Test out your idea 
• high-level: Python 

• low-level: C/assembly, simulator, actual board...
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