
Introduction to
Operating Systems

Prof. Pai H. Chou
National Tsing Hua University

 1

Agenda
• Prerequisites

• A Historical Perspective

• Administrative
• Course Materials

• Approach

• Schedule

 2

Prerequisites

 3

Prerequisites
• Hardware

• Computer architecture, input/output, interrupts

• Software
• assembly programming: registers, stacks

• system programming language (C)

• fundamental data structures (arrays, stacks, linked
lists, trees)

 4

Prerequisite: C language
• Scoping

• global vs. (file) static, auto local vs. static local

• Pointers
• Pointer type, pointer expression vs. variable

• Pointer to array, structs, function, pointer arithmetic

• Memory allocation

• stack allocation vs.heap allocation (malloc(), free())

• Bit manipulation

 5

Prerequisites: How C works
under the hood

• Compiler-Assembler-Linker-Loader
• User code, library code, system call

• Stack
• Stack frame

• Parameter passing and return value

• Function return address

• Saving and restoring register values across calls

 6

Prerequisites: Unix Tools
• Unix shell (bash, csh) basic commands

• Compiler, linker, debugger

• Editor

• Makefile

• Version control

• Scripting language

 7

Prerequisites: Data Structures
• Arrays

• Linked lists

• singly vs doubly linked, insert, delete, find

• Stacks and Queues

• implementation using array vs. linked list

• Trees
• n-ary tree, tree traversal, recursion

• Hash tables
• hashing, lookup, collision, deletion

 8

Prerequisites: Computer
Architecture

• Instruction set architecture (ISA)
• opcode, operand, register, addressing modes

• assembly language, machine code,

• Memory organization
• memory hierarchy: cache, memory, disk

• stack, heap, architecture support for languages

• Control transfer
• interrupts, trap, input/output

 9

Overview
• What is an OS?

• Different kinds of OS

• Problems solved by an OS

• Components of an OS

• Metrics for evaluating an OS

• Trends in OS: multiprocessor, multicore,

 10

You may have heard of
• Microsoft Windows

• Windows XP, Vista, 7, 8, 10, …

• Apple
• macOS, iOS, watchOS, tvOS, …

• Gnu/Linux
• RedHat, Ubuntu, Debian, SUSE, …

• Google Android
• KitKat, Lollipop, Marshmallow, Nougat, Oreo, …

 11

You may not have heard of...
• Workstations

• SunOS, Solaris, DEC VMS, Ultrix, AIX

• Early personal computers, text mode
• CP/M, Apple DOS, Atari DOS, PC DOS...

• PC in 1980-90s (GUI)
• IBM OS/2, BeOS, AmigaOS

• Windows 3.1, 95, 98, ME, NT

• Mobile
• PalmOS, NewtonOS (PDA), Windows CE

• and may more...

 12

What is an OS?
• Runtime-support software

• above hardware

• below application software

• Manages all aspects of computer
• Execution of programs (scheduling, concurrency)

• Memory usage (allocation, sharing, mapping)

• Data Storage, input/output (network, display, keyboard,
mouse, touch, audio, video, timing)

• Protection and Security

 13

OS: the most powerful software
• Whoever controls the OS rules the world!

• Microsoft Windows (plus Office) made Bill Gates the
richest person on earth (until recently)

• iOS (+iPhone) made Apple the biggest company

• Android gives Google the widest smartphone user base

• Why? because OS defines the “computer”

• programmer usually can’t access underlying hardware
w/out going through OS

• OS provides essential service (e.g., GUI, location, …)

 14

But there are many types of
“Computer Systems”

• General Purpose
• PC, tablet, smartphone, server,

• Embedded systems
• dedicated purpose; normally don’t think of as computer  

e.g., iPod, DVD player, washing machine, elevator controller, ..

• has processor, runs software / firmware

• may have storage, communication, …

• More units of embedded systems in use
• example: a car may have > 100 processors!

• more coming in the Internet of Things (IoT)

 15

Example: Tesla Model S or X
65 processors!

• 1 Anti-lock Braking System

• 2 AC Motor Inverter /
Charger

• 1 Active Cruise Control

• 1 Air Suspension

• 1 AM/FM/HD radio

• 1 Audio

• 1 Auto Pilot 1 Camera

• 1 Auto Pilot 1 Processor

• 2 Auto Pilot 2 Processors

• 16 Battery Sub-Modules

• 1 Bluetooth

• 2 Charger

• 1 Connectivity

• 4 Door Handle Control

• 1 Folding Mirror

• 1 FOB receiver

• 1 GPS

• 1 HVAC

• 1 Homelink

• 1 Instrument Display

• 1 Main Display

• 1 Mobile charger

• 1 Parking brake

• 1 Parking sensor

• 1 Power Steering

• 1 Rear Camera

• 2 Rear Taillight

• 1 Safety Restraints

• 2 Seat Controller1 Security
module

• 4 Side Window Controller

• 1 Sunroof controller

• 1 Thermal controller

• 1 Tire Pressure Monitor

• 1 Traction Control

• 2 Body Control Unit

• 1 Wiper control

• 1 XM Satellite

https://teslatap.com/undocumented/model-s-processors-count/
 16

What OS do different processors
run?

• Mobile OS
• carOS (Apple), Android Auto, QNX,

Windows Embedded Automotive

• Real-time OS
• e.g., vxWorks, FreeRTOS, QNX, mBED, ...

• vendor-specific runtime support for
protocol stack
• TI OSAL, Nordic SoftDevices, ...

• No OS ("bare metal")
• just application code and driver! maybe

some library routines for memory, timing, ..

 17

Do you really need an OS?
• Not essential for some embedded systems

• CPU just runs code; doesn’t really “know” it’s running an OS

• Language or library support
• Useful to support concurrency, timing, memory, storage,

communication

• Reasons to leave out the OS, esp. some embedded systems
• Overhead: memory space, slower speed

• Language + library already provide support

• Determinism: ability to reproduce the behavior each time

• But... without OS, code gets messy, hard to maintain

 18

Key Issues for this course
• Concurrency

• Race conditions, Deadlocks, …

• Resource Management
• Arbitration vs. Virtualization

• System Design
• Abstraction vs. Monolith

• Policy vs. Mechanism

• Performance Analysis

 19

Appreciation for Good OS
• What makes an OS good?

• Bug-free: OS should not have bugs!

• Robust: OS should not crash

• Low overhead: ideally takes no memory or time

• Fair: all processes can run w/out waiting too long

• Secure: protects the user and system from attacks

• Helpful: OS provides the right kind of service to user and
programmer

• OS often gets the first blame when things don’t work
right!

 20

A Historical
Perspective

 21

Historical Perspective
Mainframes

Batch system

Multiprogramming

Time-sharing

Computer-System Architectures

Special-Purpose Systems

 22

1. Mainframe Systems
• One of the earliest

computers
• Slow I/O devices: card

reader, printer, tape drives

• Evolution:
• Batch ->

Multiprogramming ->
Time-shared

• Still in use today, but
very different

IBM 704
in 1957

 23

1.1 Mainframe - Batch Systems

• user submit jobs

• program + data on punch cards

• human operator sorts jobs

• OS loads and runs one job
at a time

 24

1.3 Time-sharing (multitasking)
System: OS Tasks

• Virtual memory (ch. 10)

• swap memory in/out from/to disks to support job
demand

• Storage (ch.11), file system (ch.13-14)

• manages data storage and organization on disk

• Synchronization (ch. 6-7), deadlock (ch. 8)
• support concurrent execution of program

• analyze, prevent, detect, and resolve deadlocks

 25

1.1 Mainframe - Batch Systems
• Advantages

• Repeated jobs are done fast without user interaction.

• Offline makes less stress on processor

• Sharing system for multiple users

• You can assign specific time for the batch jobs

• Drawbacks
• one job at a time

• no interaction between users and jobs

• CPU is often idle: I/O speed much slower than CPU speed

 26

1.2 Mainframe - Multipgramming

• Overlap I/O computation of jobs
• keeps both CPU & I/O devices utilized in parallel

• Spooling
• “simultaneous peripheral operation online”

• I/O spooled to disk, free up CPU to do processing

• CPU just needs to be notified when I/O is done

Operating System Concepts – NTHU LSA Lab

Mainframe: Multi-programming System
� Overlaps the I/O and computation of jobs
¾ Keeps both CPU and I/O devices
 working at higher rates

� Spooling (Simultaneous Peripheral Operation On-Line)
¾ I/O is done with no CPU intervention
¾ CPU just needs to be notified when I/O is done

Line Printer CPU Card Reader

Disk

7

 27

1.2 Mainframe -
Multiprogramming

• Several jobs are loaded into memory

• CPU is multiplexed among jobs

• I/O may be spooled or interactive

Operating System Concepts – NTHU LSA Lab

Mainframe: Multi-programming System

CPU

Job Scheduling
CPU Scheduling

Memory

Operating System
Job1
Job2
Job3
Job4 Job pool

Disk

� Several jobs are kept in main memory
at the same time, and the CPU is
multiplexed among them

8

 28

1.2 Mainframe - Multiprogramming
OS tasks

• Memory Management (ch. 10)

• system allocates memory to multiple jobs

• CPU scheduling (ch. 5)

• system chooses which job to run and for how long

• I/O system (ch. 12)

• runtime support in terms of device drivers

• allocation of devices to jobs

 29

1.3 Mainframe - Time-sharing
(multitasking) System

• An interactive system between user & system

• CPU switches among jobs quickly to support interaction

• User can see result immediately (response time < 1s)

• Usually, keyboard + text display

• Context switch among multiple users

• job completion

• waiting on I/O

• after some short execution time

 30

1. Mainframes: Summary

1.1
Batch

1.2
Multiprogramming

1.3
Time-shared

System model
Single user,  
single job

multiprogramming
Multiple user,

multiple programs

Objective Simplicity Resource utilization
Interactivity,

Responsiveness

OS features n/a
CPU scheduling,

memory mgmt, I/O
system

File system,
virtual memory,
synchronization

 31

Historical Perspective
Mainframes

Computer-System Architectures

Single processor

Tightly-coupled multiprocessor

Loosely-coupled distributed system

Special-Purpose Systems

 32

2.1 Single-Processor
• Traditional personal computers

• Usually emphasizes interactivity

• I/O devices: keyboard, mouse, monitor, printer, …

• Previously OS offered no protection

• DOS, Windows 3.1, Windows 95/98/ME, MacOS (1-9)

• program could crash whole system, prone to virus

• Modern PC OS’s are multitasking w/ protection

• OS2, Windows NT/XP/…, macOS, Linux / Android

 33

2.1 (single-processor) ISAs
• SPARC (Sun Microsystems) (Berkeley RISC)

• MIPS (MIPS) (Stanford MIPS)

• Alpha (Digital Equipment Corporation)

• PowerPC (Apple, IBM, Motorola)

• 8086, 80286, 80386, 80486, (x86), Pentium, …
(Intel)

• Motorola 68000, 68030, 68040, ...

• ARM, Thumb, Thumb-II, ...

• RISC-V (Berkeley)

 34

2.2 Parallel Systems
• Also known as

• multiprocessor or tightly coupled systems

• Multiple cores in close communication

• usually communicate through shared memory

• Purpose

• throughput, economical, reliability, power
efficiency

Operating System Concepts – NTHU LSA Lab

Parallel Systems
� A.k.a multiprocessor or tightly coupled system
¾More than one CPU/core in close communication
¾Usually communicate through shared memory

� Purposes
¾ __________,__________,__________

CPU

System Bus

MEM CPU CPU CPU

Throughput Economical Reliability

15 35

2.2 Parallel Systems
• Symmetric multiprocessor (SMP)

• all processors run the same OS

• most popular today (e.g, Intel i3/i5/i7)

• requires extensive synchronization

• Asymmetric multiprocessor system
• each processor is assigned a specific task

• one master CPU and multiple slave CPUs

• more common in very large systems

 36

2.2 Multi-Core Processors
• multiple CPU cores on the same chip

• on-chip communication is faster than off-chip

• Energy efficiency
• running a multicore at slower clock (and voltage)

=> same performance but much lower power!

Operating System Concepts – NTHU LSA Lab

Multi-Core Processor
� A CPU with multiple cores on the same die (chip)
� On-chip communication is faster than between-chip

communication
� One chip with multiple cores uses significantly less

power than multiple single-core chips

blade servers:
Each blade–processor board
boots independently and run its
own OS

17
 37

2.2 Many-Core Processor
• GPGPU - general-purpose graphics processing units

• e.g., nVidia

• 2880 thread processor, 1.43 TFlops

• Intel Xeon Phi
• Intel Many Integrated Core (MIC)

• 61 cores, 1.2 TFlops

• TILE 64
• mesh network of 64 tiles; each tile = a general purpose

processor

� Nvidia General-Purpose GPU
¾ First release in Apr. 2008
¾ Utilize a graphics processing unit (GPU)
¾ Single Instruction Multiple Data
¾ 2,880 thread processor, 1.43TGlops (x200

faster than a single Intel Core i7)
¾ 245 WATTS, Clock freq. 600~750 MHz
¾ $3000 USD

� Intel Xeon Phi
¾ First release in Nov. 2012
¾ A coprocessor computer architecture based

on Intel Many Integrated Core (MIC)
¾ 61 cores , 1.2TFlops, 300WATTS

� TILE64
¾ A mesh network of 64 "tiles“
¾ Each tile houses a general purpose processor

Many-Core Processor

Operating System Concepts – NTHU LSA Lab 18

� Nvidia General-Purpose GPU
¾ First release in Apr. 2008
¾ Utilize a graphics processing unit (GPU)
¾ Single Instruction Multiple Data
¾ 2,880 thread processor, 1.43TGlops (x200

faster than a single Intel Core i7)
¾ 245 WATTS, Clock freq. 600~750 MHz
¾ $3000 USD

� Intel Xeon Phi
¾ First release in Nov. 2012
¾ A coprocessor computer architecture based

on Intel Many Integrated Core (MIC)
¾ 61 cores , 1.2TFlops, 300WATTS

� TILE64
¾ A mesh network of 64 "tiles“
¾ Each tile houses a general purpose processor

Many-Core Processor

Operating System Concepts – NTHU LSA Lab 18

 38

2.2 Memory Architectures

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

memory

CPU CPU CPU CPU

• Uniform Memory Architecture
(UMA)

• most commonly represented by SMP
machine today (identical processors)

• equal access times to memory

• Nonuniform Memory Architecture
(NUMA)

• often made by physically linking
multiple SMPs

• one SMP can directly access memory
of another SMP

• example: IBM blade server

 39

2.3 Distributed Systems
• also known as loosely coupled system

• each processor has its own local memory

• processors communicate with each other through bus or
network

• easy to scale to large number of nodes

• Purposes

• Resource sharing, Load sharing, Reliability

• Architecture

• peer-to-peer or client-server

 40

2.3.1 Client-Server Distributed
System

• Easier to manage and control resources

• However
• server becomes bottleneck

• server becomes single point of failure

Operating System Concepts – NTHU LSA Lab

Client-Server Distributed System
� Easier to manage and control resources
� But, server becomes the bottleneck and single

failure point
Server

Clients

Network

21 Operating System Concepts – NTHU LSA Lab

Client-Server Distributed System
� Easier to manage and control resources
� But, server becomes the bottleneck and single

failure point
Server

Clients

Network

21 41

2.3.2 Peer-to-Peer Distributed
System

• Every machine is identical in its role in the
distributed system

• Example
• ppStream, bitTorrent, the Internet

• Any system can play the role of client or
server

Operating System Concepts – NTHU LSA Lab

Peer-to-Peer Distributed System

Network

� Every machine is identical in its role in the
distributed system – decentralized

� Example: ppStream

22

, bitTorrent, Internet

 42

2.3.3 Clustered Systems
• Cluster

• shared storage

• closely linked by high-speed LAN (InfiniBand - 300 Gb/s,
Myrinet)

• Examples: Beowulf, http://www.beowulf.org/overview/faq.html

• Asymmetric clusters

• one server runs application, other servers standby

• Symmetric clusters

• two or more hosts run applications and monitor each other

 43

http://www.beowulf.org/overview/faq.html

2. System Architecture Summary

Operating System Concepts – NTHU LSA Lab

System Architecture Summary

Distributed
Cluster
Multi

processor

Multi-core
Single
core

Loosely coupled

Tightly coupled

24

 44

Historical Perspective
Mainframes

Computer-System Architectures

Special-Purpose Systems

Real-time systems

Multimedia systems (“soft real-time”)

Handheld systems

 45

3.1 Real-Time Systems
• ability to meet timing constraints

• absolute or relative deadline, periodic or aperiodic

• minimum/max time separation

• Does not necessarily mean “fast”
• guarantee timing constraints are met

• Many applications
• multimedia system, industrial control, flight or auto

control, anti-lock brake

 46

3.1 Soft vs Hard Real-Time
• Soft real-time requirements

• Undesirable to miss deadline, but not critical

• example: multimedia streaming

• Solution: give priority to critical real-time task until it completes

• Hard real-time requirements
• Missing deadline results in fundamental failure

• example: nuclear power plant controller => meltdown

• Solution: remedial action to minimize damage

• OS is NOT required, but makes it more structured and
easier to build a real-time system

 47

3.2 Multimedia Systems
• Mostly audio and video

• e.g., ppstream, online TV, digital broadcast

• Issues

• timing constraint: 24-30 frames per second

• on-demand & live streaming

• compression and decompression before/after streaming

• mostly Soft Real-Time
• Conventional OS could work if hardware is fast enough or

can support certain operations

 48

3.3 Mobile and Embedded
Systems

• General-Purpose
• personal digital assistants (PDA), smartwatches

• Special-Purpose
• Health-fitness band, smart home switches,

• Considerations
• Power consumption

• Limited memory, limited processor performance

 49

Role of OS in different computer
systems?

• Runtime Support

• Do you even need an OS? Or is language/library
support sufficient?

• Need for stable structure?

• Ability to update software?

• Which OS to use?
• features considerations

• compatibility considerations

 50

Review
• Mainframe systems

• Batch, multiprogramming, time-sharing

• Tightly coupled vs Loosely coupled

• UMA vs NUMA

• Distributed systems

• Client-server vs. P2P

• Real-time

• Soft vs. Hard Real-time

 51

Administrative
• Instructor

• Prof. Pai H. Chou, phchou@cs.nthu.edu.tw

• Office: 620 Delta Building

• TA

• 宋瑞豐, ⽅方晟軒, 羅仕翰, 吳彥璋, 陳柏宇

• Course website - important!
• http://lms.nthu.edu.tw/course.php?courseID=40576

 52

http://lms.nthu.edu.tw/course.php?courseID=40576

Approach
• Topics

• Following order in the textbook

• Supplemental materials

• Homework assignments
• Word problems - write on your own

• Implement OS algorithms in Python

• Project: simple OS for an actual processor

 53

Course Materials
• Textbook:

• Silberschatz, Galvin, and Gagne,
Operating System Concepts, Tenth
Edition, Asia Edition, Wiley, 2019.
ISBN 978-1-119-58616-6

• Course website
• http://lms.nthu.edu.tw/course.php?

courseID=40576

• Lecture slides

• assignments & course projects

 54

http://lms.nthu.edu.tw/course.php?courseID=40576
http://lms.nthu.edu.tw/course.php?courseID=40576

Schedule by the Week
1. Welcome

2. (Ch.1) Introduction

3. (Ch.2) OS structure

4. (Ch.3) Processes

5. (Ch.4) Threads

6. Threads (cont'd)

7. (Ch.5) CPU scheduling

8. (Ch.6-7)
Synchronization

9. (Ch.8) Deadlocks

10. (Ch.9) Main Memory

11. (Ch. 10) Virtual
Memory

12. (Ch. 11) Mass Storage

13. (Ch. 12) I/O Systems

14. (Ch. 13) File System

15. (Ch. 14) Protection,
(Ch. 15) Security

 55

Software
• Python 3

• EdSim51 (requires Java)

• SDCC (Small Device C Compiler)

• GIT (version control)

• Google Suite for Education

 56

Grading Policy
• Breakdown

• 35% project (OS, due end of semester, demo)

• 25% midterm

• 35% final

• 5% discretionary (participation, quiz, etc)

• Problem set

• Not graded. Do it on your own

• Expect questions to show on exam

 57

Programming Project
• To write parts of an operating system

• write in low-level C and assembly language

• compile and run code in an ISA simulator

• use of hardware features (interrupt, timer etc)

• Intermediate milestones every couple of weeks

• tutorial in nature, self-checked but not graded

• start from bare metal, gradually add runtime support

• Due by the end of the semester
• submit complete code and demo

 58

To Do
• Set up G Suite for Education - for submitting homework

• https://net.nthu.edu.tw/2009/gapp

• Set up own Unix-like environment (if not already)
• Linux, macOS, CygWin, bash on Ubuntu on Windows 10

• Install basic development tools if not already
• (g)make, git client, python 3, Java

• SDCC: (sdcc.sourceforge.net), Edsim51 (edsim51.com)

• Alternatively, download vmware image (1.9 GB)
• https://drive.google.com/file/d/1aYSz33AAHzHlFSzysGe00NM5jo_Td4YL/view

 59

https://net.nthu.edu.tw/2009/gapp
http://sdcc.sourceforge.net
http://edsim51.com
https://drive.google.com/file/d/1aYSz33AAHzHlFSzysGe00NM5jo_Td4YL/view

Tips for this course
• Attend lecture, read textbook before the

lecture

• Don’t just read the slides!

• Internalize the concepts
• don't just memorize - know why do each step

• Test out your idea
• high-level: Python

• low-level: C/assembly, simulator, actual board...

 60

