Introduction to
Operating Systems

Prof. Pai H. Chou
National Tsing Hua University

Agenda

* Prerequisites
A Historical Perspective

 Administrative

e Course Materials
* Approach
e Schedule

Prerequisites

Prerequisites

e Hardware

« Computer architecture, input/output, interrupts

* Software
 assembly programming: registers, stacks
* system programming language (C)

 fundamental data structures (arrays, stacks, linked
lists, trees)

Prerequisite: C language

* Scoping
» global vs. (file) static, auto local vs. static local

e Pointers

 Pointer type, pointer expression vs. variable

 Pointer to array, structs, function, pointer arithmetic

* Memory allocation

« stack allocation vs.heap allocation (malloc(), free())

 Bit manipulation

Prerequisites: How C works
under the hood

« Compiler-Assembler-Linker-Loader

» User code, library code, system call

e Stack

» Stack frame
» Parameter passing and return value
* Function return address

 Saving and restoring register values across calls

Prerequisites: Unix Tools

e Unix shell (bash, csh) basic commands
« Compiler, linker, debugger

 Editor

« Makefile

* Version control

e Scripting language

Prerequisites: Data Structures

* Arrays
o Linked lists

* singly vs doubly linked, insert, delete, find

« Stacks and Queues

 implementation using array vs. linked list

e [rees

* n-ary tree, tree traversal, recursion

 Hash tables

* hashing, lookup, collision, deletion

Prerequisites: Computer
Architecture

e |nstruction set architecture (ISA)

« opcode, operand, register, addressing modes

 assembly language, machine code,

* Memory organization

* memory hierarchy: cache, memory, disk

« stack, heap, architecture support for languages

e Control transfer

* Interrupts, trap, input/output

Overview

What is an OS?

Different kinds of OS
Problems solved by an OS
Components of an OS
Metrics for evaluating an OS

Trends in OS: multiprocessor, multicore,

10

You may have heard of

* Microsoft Windows
 Windows XP, Vista, 7, 8, 10, ...
* Apple
« macQOS§, i0S, watchOS, tvOSs, ...

 Gnu/Linux
 RedHat, Ubuntu, Debian, SUSE, ...

» Google Android

« KitKat, Lollipop, Marshmallow, Nougat, Oreo, ...

11

You may not have heard of...

Workstations

* SunOS, Solaris, DEC VMS, Ultrix, AlX
Early personal computers, text mode
* CP/M, Apple DOS, Atari DOS, PC DOS...

PC in 1980-90s (GUI)

* IBM OS§/2, BeOS, AmigaOS
 Windows 3.1, 95, 98, ME, NT

Mobile
V)

* PalmOS, NewtonOS (PDA), Windows CE palm []S
) g

(5SS SSNY
ALY AL LN
A VAV LA\ Y
A VAV ANN\ Y

and may more...

12

What is an OS?

» Runtime-support software

e above hardware

 below application software

* Manages all aspects of computer
 Execution of programs (scheduling, concurrency)
* Memory usage (allocation, sharing, mapping)

 Data Storage, input/output (network, display, keyboard,
mouse, touch, audio, video, timing)

* Protection and Security

13

OS: the most powerful software

e Whoever controls the OS rules the world!

« Microsoft Windows (plus Office) made Bill Gates the
richest person on earth (until recently)

 iOS (+iPhone) made Apple the biggest company
« Android gives Google the widest smartphone user base
* Why? because OS defines the “computer”

» programmer usually can’t access underlying hardware
w/out going through OS

» OS provides essential service (e.g., GUI, location, ...)

14

But there are many types of
“Computer Systems”

* General Purpose

» PC, tablet, smartphone, server,

* Embedded systems

» dedicated purpose; normally don’t think of as computer
e.g., iPod, DVD player, washing machine, elevator controller, ..

* has processor, runs software / firmware

* may have storage, communication, ...

* More units of embedded systems in use
« example: a car may have > 100 processors!

« more coming in the Internet of Things (loT)

15

Example: Tesla Model S or X
65 processors!

1

1

1

1 Anti-lock Braking System

2 AC Motor Inverter / .
Charger

1

1
1 Active Cruise Control 1
1 Air Suspension 1
1 AM/FM/HD radio :
1 Audio . 1
1 Auto Pilot T Camera :
1 Auto Pilot 1T Processor :
2 Auto Pilot 2 Processors 1
16 Battery Sub-Modules 1

Bluetooth

2 Charger

Connectivity

4 Door Handle Control

Folding Mirror
FOB receiver

GPS

HVAC

Homelink
Instrument Display
Main Display
Mobile charger
Parking brake
Parking sensor

Power Steering

e 1 Rear Camera
2 Rear Taillight

1 Safety Restraints

2 Seat Controller1 Security
module

4 Side Window Controller

1 Sunroof controller

1 Thermal controller

1 Tire Pressure Monitor

1 Traction Control

2 Body Control Unit

1 Wiper control
1 XM Satellite

https://teslatap.com/undocumented/model-s-processors-count/

16

What OS do different processors

run?

e Mobile OS

 carOS (Apple), Android Auto, QNX,
Windows Embedded Automotive

¢ Real-time OS

« e.g., vxWorks, FreeRTOS, QNX, mBED, ...

* vendor-specific runtime support for
protocol stack

« TI OSAL, Nordic SoftDevices, ...
 No OS ("bare metal")

« just application code and driver! maybe

some library routines for memory, timing, ..

DEATPOOL Zoderatl
5 '
2 & :
- - | '
e _‘ " | £
5 4

s e ¢ N

17

Do you really need an OS?

* Not essential for some embedded systems

e CPU just runs code; doesn’t really “know” it’s running an OS

* Language or library support

 Useful to support concurrency, timing, memory, storage,
communication

* Reasons to leave out the OS, esp. some embedded systems

* Overhead: memory space, slower speed
* Language + library already provide support

* Determinism: ability to reproduce the behavior each time

* But... without OS, code gets messy, hard to maintain

18

Key Issues for this course

Concurrency

e Race conditions, Deadlocks, ...

Resource Management

* Arbitration vs. Virtualization
System Design
 Abstraction vs. Monolith

 Policy vs. Mechanism

Performance Analysis

19

Appreciation for Good OS

* What makes an OS good?

Bug-free: OS should not have bugs!

Robust: OS should not crash
Low overhead: ideally takes no memory or time

Fair: all processes can run w/out waiting too long

Secure: protects the user and system from attacks

Helpful: OS provides the right kind of service to user and
programmer

 OS often gets the first blame when things don’t work
right!

20

A Historical
Perspective

Historical Perspective

Mainframes
Batch system
Multiprogramming
Time-sharing
Computer-System Architectures

Special-Purpose Systems

22

1. Mainframe ystems

e One of the earliest
computers

* Slow I/O devices: card
reader, printer, tape drives

IBM 704

e Evolution: ,
In 1957

 Batch ->
Multiprogramming ->
Time-shared

o Still in use today, but
very different

1.1 Mainframe - Batch Systems

* user submit jobs

* program + data on punch cards

e human operator sorts jobs

* OS loads and runs one job

at a time
/‘ Batch
%
N \\: .\ovs/
Operator
\ci//', /%\

Computer

o

24

1.3 Time-sharing (multitasking)
System: OS Tasks

 Virtual memory (ch. 10)

e swap memory in/out from/to disks to support job
demand

e Storage (ch.11), file system (ch.13-14)

e manages data storage and organization on disk

 Synchronization (ch. 6-7), deadlock (ch. 8)

* support concurrent execution of program

 analyze, prevent, detect, and resolve deadlocks

25

1.1 Mainframe - Batch Systems

* Advantages

» Repeated jobs are done fast without user interaction.

» Offline makes less stress on processor

* Sharing system

for multiple users

* You can assign specific time for the batch jobs

 Drawbacks

* one job at a time

e NO Interaction

petween users and jo

« CPU is often io

le: I/0O speed much s

0S

ower than CPU speed

26

1.2 Mainframe - Multipgramming

« Overlap I/O computation of jobs

 keeps both CPU & I/O devices utilized in parallel

* Spooling

* “simultaneous peripheral operation online”
* /O spooled to disk, free up CPU to do processing
» CPU just needs to be notified when 1/O is done

/| |

Card Reader

¥—1
— cpu

—

Line Printer

27

1.2 Mainframe -
Multiprogramming
* Several jobs are loaded into memory

» CPU is multiplexed among jobs

* /O may be spooled or interactive

CPU Scheduling

CPU

Job Scheduling

Operating System

Job1l

Job2

Job3

T Dick
(_ Disk

Job4

Memory

u
Job pool

23

1.2 Mainframe - Multiprogramming
OS tasks

e Memory Management (ch. 10)

* system allocates memory to multiple jobs

» CPU scheduling (ch. 5)

* system chooses which job to run and for how long

/O system (ch. 12)

* runtime support in terms of device drivers

* allocation of devices to jobs

29

1.3 Mainframe - Time-sharing
(multitasking) System

* An interactive system between user & system
» CPU switches among jobs quickly to support interaction
 User can see result immediately (response time < 15s)

» Usually, keyboard + text display

» Context switch among multiple users

* job completion
* waiting on 1/O

e after some short execution time

30

1. Mainframes: Summary

1.1 1.2 1.3
Batch Multiprogramming | Time-shared
System model Slhgle sl multiprogramming Mgltlple HoEL
single job multiple programs
T T e Interactivity,
Objective Simplicity Resource utilization .
Responsiveness
CPU scheduling, File system,
OS features n/a memory mgmt, /O | virtual memory,

system

synchronization

31

Historical Perspective

Mainframes

Computer-System Architectures
Single processor
Tightly-coupled multiprocessor
Loosely-coupled distributed system

Special-Purpose Systems

32

2.1 Single-Processor

 Traditional personal computers
« Usually emphasizes interactivity

 1/O devices: keyboard, mouse, monitor, printer, ...

 Previously OS offered no protection
« DOS, Windows 3.1, Windows 95/98/ME, MacQOS (1-9)

 program could crash whole system, prone to virus

* Modern PC OS’s are multitasking w/ protection

e OS2, Windows NT/XP/..., macQOS, Linux / Android

33

2.1 (single-processor) ISAs

* SPARC (Sun Microsystems) (Berkeley RISC)
« MIPS (MIPS) (Stanford MIPS)

 Alpha (Digital Equipment Corporation)

« PowerPC (Apple, IBM, Motorola)

« 8086, 80286, 80386, 80486, (x86), Pentium, ...
(Intel)

 Motorola 68000, 68030, 68040, ...
e ARM, Thumb, Thumb-II, ...
* RISC-V (Berkeley)

34

2.2 Parallel Systems

e Also known as

* multiprocessor or tightly coupled systems

* Multiple cores in close communication

* usually communicate through shared memory

* Purpose

* throughput, economical, reliability, power

efficiency

MEM

CPU

CPU

CPU

CPU

System Bus

35

2.2 Parallel Systems

* Symmetric multiprocessor (SMP)
o all processors run the same OS
« most popular today (e.g, Intel i3/i5/i7)

* requires extensive synchronization

* Asymmetric multiprocessor system

* each processor is assigned a specific task
« one master CPU and multiple slave CPUs

e more common in very large systems

36

2.2 Multi-Core Processors

« multiple CPU cores on the same chip

 on-chip communication is faster than off-chip

 Energy efficiency

 running a multicore at slower clock (and voltage)
=> same performance but much lower power!

CPU coreg

registers

cache

CPU core;

registers

cache

memory

37

2.2 Many-Core Processor

* GPGPU - general-purpose graphics processing units

+ e.g., nVidia
« 2880 thread processor, 1.43 TFlops

e Intel Xeon Phi

* Intel Many Integrated Core (MIC)
* 61 cores, 1.2 TFlops

* TILE 64

* mesh network of 64 tiles; each tile = a general purpose
processor

38

2.2 Memory Architectures

« Uniform Memory Architecture

(UMA) CPU | CPU | CPU | CPU

« most commonly represented by SMP

machine today (identical processors) memory
* equal access times to memory
« Nonuniform Memory Architecture
(NUMA)
cpu|cpu|crufcpu GPU|CPU|CPU|CPU
» often made by physically linking memory memory
multiple SMPs
, cpu|cpu|cPufcpu CpPu|cPU|cPU|CPU
* one SMP can directly access memory
memory memory

of another SMP

« example: IBM blade server

39

2.3 Distributed Systems

» also known as loosely coupled system
* each processor has its own local memory

* processors communicate with each other through bus or
network

* easy to scale to large number of nodes

* Purposes

» Resource sharing, Load sharing, Reliability

e Architecture

* peer-to-peer or client-server

40

2.3.1 Chlient-Server Distributed

System

» Easier to manage and control resources

e However

e server becomes bottleneck

* server becomes single point of failure

Server

Network

41

2.3.2 Peer-to-Peer Distributed
System

* Every machine is identical in its role in the
distributed system

« Example

» ppStream, bitTorrent, the Internet

* Any system can play the role of client or

Server
% % % Network
| |

42

2.3.3 Clustered Systems

e Cluster

» shared storage

* closely linked by high-speed LAN (InfiniBand - 300 Gb/s,

Myrinet)

« Examples: Beowulf, http://www.beowulf.org/overview/fag.html

« Asymmetric clusters

 one server runs application, other servers standby

e Symmetric C

e {wO Oor more

usters

nosts run applications and monitor each other

43

http://www.beowulf.org/overview/faq.html

2. System Architecture Summary

Tightly coupled O

Loosely coupled O

Distributed

Multi
processor

Multi-core

Single
core

44

Historical Perspective

Mainframes
Computer-System Architectures

Special-Purpose Systems
Real-time systems
Multimedia systems (“soft real-time”)

Handheld systems

45

3.1 Real-Time Systems

o ability to meet timing constraints

« absolute or relative deadline, periodic or aperiodic

* minimum/max time separation

* Does not necessarily mean “fast”
* guarantee timing constraints are met
e Many applications

» multimedia system, industrial control, flight or auto
control, anti-lock brake

46

3.1 Soft vs Hard Real-Time

* Soft real-time requirements

 Undesirable to miss deadline, but not critical
e example: multimedia streaming

» Solution: give priority to critical real-time task until it completes

* Hard real-time requirements

» Missing deadline results in fundamental failure
« example: nuclear power plant controller => meltdown

« Solution: remedial action to minimize damage

« OSis NOT required, but makes it more structured and
easier to build a real-time system

47

3.2 Multimedia Systems

* Mostly audio and video

 e.g., ppstream, online TV, digital broadcast

e |ssues

* timing constraint: 24-30 frames per second
e on-demand & live streaming

» compression and decompression before/after streaming

» mostly Soft Real-Time

» Conventional OS could work if hardware is fast enough or
can support certain operations

43

3.3 Mobile and Embedded

Systems
» General-Purpose

 personal digital assistants (PDA), smartwatches
 Special-Purpose
* Health-fitness band, smart home switches,

 Considerations

* Power consumption

 Limited memory, limited processor performance

49

Role of OS in different computer

systems?
* Runtime Support

* Do you even need an OS? Or is language/library
support sufficient?

e Need for stable structure?

« Ability to update software?
* Which OS to use?

e features considerations

« compatibility considerations

50

Review

Mainframe systems

+ Batch, multiprogramming, time-sharing
Tightly coupled vs Loosely coupled
UMA vs NUMA

Distributed systems

e Client-server vs. P2P

Real-time

e Soft vs. Hard Real-time

51

Administrative

e |nstructor

 Prof. Pai H. Chou, phchou@cs.nthu.edu.tw
 Office: 620 Delta Building

¢ TA
» RiIm=, HRRET, BIH, REIE, [RIAF

» Course website - important!

* http://Ims.nthu.edu.tw/course.php?courselD=40576

http://lms.nthu.edu.tw/course.php?courseID=40576

Approach

* Jopics
* Following order in the textbook

* Supplemental materials

« Homework assignments

* Word problems - write on your own
» Implement OS algorithms in Python

* Project: simple OS for an actual processor

53

Course Materials

e Textbook:

» Silberschatz, Galvin, and Gagne,

Operating System Concepts, Tenth
Edition, Asia Edition, Wiley, 2019.
ISBN 978-1-119-58616-6

 Course website

* http://Ims.nthu.edu.tw/course.php?

courselD=40576

e Lecture slides

* assignments & course projects

Operating System
Concepts wmem

ABRAHAM SILBERSCHATZ « PETER BAER GALVIN + GREG GAOGNE

WILEY

54

http://lms.nthu.edu.tw/course.php?courseID=40576
http://lms.nthu.edu.tw/course.php?courseID=40576

()

. (Cnh.2) OS structure
(Ch.3)
(

o N O U AW N —

Schedule by the Week

. Welcome

Ch.1) Introduction

Ch.
Ch.4) Threads

Processes

. Threads (cont'd)
. (Ch.5) CPU scheduling
. (Ch.6-7)

Synchronization

m.hwm

9. (Ch.8) Deadlocks

10. (Ch.9) Main Memory
11. (Ch. 10) Virtual

1

Memory

. (Ch. 11) Mass Storage
. (Ch. 12) /O Systems
A
. (C

)
n. 13) File System
)

)

n. 14) Protection,
(Ch. 15) Security

55

Software

Python 3

EdSim51 (requires Java)

SDCC (Small Device C Compiler)
GIT (version control)

Google Suite for Education

56

Grading Policy

e Breakdown

* 35% project (OS, due end of semester, demo)

* 25% midterm

* 35% final

* 5% discretionary (participation, quiz, etc)
* Problem set

* Not graded. Do it on your own

» Expect questions to show on exam

57

Programming Project

 To write parts of an o

perating system

e write in low-level C anc

assembly language

« compile and run code in an ISA simulator

« use of hardware features (interrupt, timer etc)

* Intermediate milestones every couple of weeks

« tutorial in nature, self-checked but not graded

» start from bare metal, gradually add runtime support

* Due by the end of the semester

* submit complete code and demo

58

To Do

Set up G Suite for Education - for submitting homework

e https:/net.nthu.edu.tw/2009/gapp

Set up own Unix-like environment (if not already)

 Linux, macOS, CygWin, bash on Ubuntu on Windows 10

Install basic development tools if not already

 (g)make, git client, python 3, Java

« SDCC: (sdcc.sourceforge.net), Edsim51 (edsim51.com)

Alternatively, download vmware image (1.9 GB)

e https://drive.google.com/file/d/1aYSz33AAHZzHIFSzysGeOONMbSjo Td4Yl/view

59

https://net.nthu.edu.tw/2009/gapp
http://sdcc.sourceforge.net
http://edsim51.com
https://drive.google.com/file/d/1aYSz33AAHzHlFSzysGe00NM5jo_Td4YL/view

Tips for this course

« Attend lecture, read textbook before the
lecture

« Don't just read the slides!

* Internalize the concepts

* don't just memorize - know why do each step
 Test out your idea
* high-level: Python

 low-level: C/assembly, simulator, actual board...

60

