
EdSim51 Tutorial

Pai H. Chou
National Tsing Hua University

 1

EdSim51
• Download EdSim51

• From http://edsim51.com/

• Runs as a Java app

• Two versions
• Edsim DI - standard, with everything

• Edsim SH - customizable

 2

http://edsim51.com/

EdSim51 DI
• DI = Dynamic Interface

• Simulates a complete embedded system

• LCD, LEDs, keypad, bank of buttons, ADC, DAC

• cycle-accurate processor

EdSim51 DI
(Dynamic Interface)

• Simulates a complete embedded system
• LED, LCD, keypad, buttons, ADC, DAC,
• Accurate to the cycle

13

 3

EdSim51 SH
• Customize the devices to use

Edsim51 SH
• Customize the devices to use

14

 4

First Program on bare metal

(1) type these lines
(2) click Assm

(3) should get
(4) click Run

(5) LED should display "2."

 5

How it works
• Port P1 (address 90H)

gets 24H = 0010_0100b

• 0 is a pull-down  
=> turns on!

• 1 is leaves it as pull-up  
=> turns off LED!

How it works
• Schematic
• 0 = on,

1 = off
• 0x24 is
a=0
b=0f=1

g=0
e=0 c=1
d=0 h=0

16

0
0
1
0
0
1
0
0

 6

• How to get it to display different digits,
plus decimal point? example,

•

Try it yourself

 7

1

24

5 6

0

3

Question
• What does END mean in

assembly?
• END is an "assembler

directive"

• It just means end of source
code listing

• it does not mean CPU stops
running!

• Actually, CPU continues
running
• What instructions does it

execute?

 8

Program execution
• Click on "Code Memory" or

"Data Memory" button to
toggle display of memory
content

• PC 0x14EF is where in
program the CPU is executing
(you may see something else)
• PC keeps incrementing until

0xFFFF, then wraps around to
0x0000

• Code memory contains all 00
except first three bytes
• machine code 00 is the NOP

instruction, means "do nothing"

 9

Processor in EdSim51
• The Intel 8051 (MCS-51) microcontroller

• http://lms.nthu.edu.tw/sys/read_attach.php?id=414787

• 8-bit words

• 16-bit address (external), 8-bit address
(internal)

• Harvard architecture

• 64KB "external" data memory, 256-byte "internal" mem

• separate 64 KB code memory

 10

http://lms.nthu.edu.tw/sys/read_attach.php?id=414787

Block Diagram of 8051
Block diagram of

8051
interrupt
control

CPU

OSC

on-chip
ROM for
program

code

bus
control

on-chip
RAM

serial
port4 I/O ports

Timer 0
Timer 1

etc

Counter inputs

TxD RxDP0 P1 P2 P3
Address/Data

External
interrupts

}

}

6

 11

Memory Spaces in 8051

Space CODE IDATA XDATA

full name program
memory

internal data
memory

external data
memory

Size 64 KB 256 Bytes  
(not KB)

64 KB

Purposes instruction and
constant data

CPU registers,
hardware

stack, small
variables

software stack,
main memory

 12

Registers in 8051
• General purpose, 8-bit

• A: (Accumulator), B

• R0, R1, ..., R7 (CPU registers, in 4 banks)

• 16-bit, specifically used as pointers

• DPTR: data pointer, concatenated DPH,DPL

• PC: (program counter) not user visible

• PSW: program status word (8-bit)

 13

Banks of CPU Registers
• One set of 8 registers visible at a time

• R0, ... R7 => selected using 3 bits

• Four banks of CPU registers, in IDATA

• bank 0: IDATA addresses 0x00-0x07

• bank 1: IDATA addresses 0x08-0x0F

• bank 2: IDATA addresses 0x10-0x17

• bank 3: IDATA addresses 0x18-0x1F

• bank selected by setting a special function
register

 14

Accumulator (A)
• An implicit register in many instructions

• as both a source and the destination  
e.g, ADD A, #23  
meaning: A = A + 23

• Reason for using A

• small code size, because there is just one!

• All others require several bits for registers

 15

Machine Instructions
• Opcode

• Specifies the operation (~function)

• Operands
• the "arguments" to an opcode

• could be accumulator, register, constant value,
value in memory, etc

 16

Opcodes in 8051
• MOV, MOVX, MOVC, XCH, XCHD, PUSH, POP
• ADD, ADDC, SUBB, MUL, DIV, ANL, ORL, XRL
• RR, RL, RLC, RRC, SWAP
• INC, DEC, CLR, SETB, CPL, DA
• NOP
• AJMP, LJMP, ACALL, LCALL, RET
• JB, JNB, JC, JNC, JZ, JNZ, JMP, CJNE, DJNZ

 17

Idiosyncrasy with immediate in
Intel Assembly syntax

• Default base: decimal

• #12 (assumed to be decimal)

• Can be hex: #12H (12 hex, = 18 dec.)

• However! the char after # must be 0..9

• #FFH is not an immediate (since F is not in 0..9)

• Solution: #0FFH (add a useless 0 (zero) in front.
It does not make it octal)

 18

Immediate vs. direct
(Addressing mode)

• MOV A, #17H ;; #17H is a literal value  
meaning: A = 0x17;

• MOV A, 17H ;; 17H is IDATA address! 
meaning: A = *((char*)0x17);

• Big difference!

• R0, ... R7 => register mode

• #17 => immediate mode;

• 17H => direct mode (IDATA address 0x17)

• 17 => direct mode at decimal 17 (instead of hex)

 19

MOV instruction
• syntax:  

MOV dest, src
• Think assignment statement: dest := src;

• dest, src are called Operands

• dest can be A, B, R0..R7, DPH, DPL

• src can be A, B, R0...R7, or an immediate

• Immediate is aka a "constant", "literal"
value, e.g., #12

 20

Allowed Combinations of byte-
Addressing Modes

Opcode Dest Source

MOV

A,
Ri or @Ri

#imm
dir

Ri,  
@Ri,

A
#imm

dir

dir,
A

#imm
dir

Ri or @Ri

 21

Note: @Ri is limited to @R0 or @R1
Ri can be from R0 .. R7

Restricted combinations of
Addressing Modes

• Disallowed: Register-to-register MOV

• e.g., MOV R1, R2
• solution: go through A or use immediate

• Accumulator-to-accumulator MOV A, A
(useless)

• anything-to-immediate MOV (nonsense)

• e.g., MOV #20, R3

 22

8051 ISA: Four I/O ports
• 8-bits each 

P0, P1, P2, P3

• Direct addresses
80H, 90H, A0H,
B0H

• Difference: values
tied to the pins

• Bit addressable

P1

P3
P2

P0

 23

Output:
write to port latch

• Byte access

• MOV P1, #5EH
• big-endian bit order

• Bit access

• SETB P1.1 ;; sets port 1 bit 1
• CLR P2.3 ;; clears port 2 bit 3

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0Port P1
Most significant bit Least significant bit

0 1 0 1 1 1 1 0

5 E

 24

Example: how to light up another
7-segment LED

• Need to select
digit

• Decoder maps
<A1,A0> to one-
hot

• Controlled by
<P3.4,P3.3>

• SETB or CLR
instruction to
assign = 1 or 0

How it works
• Schematic
• 0 = on,

1 = off
• 0x24 is
a=0
b=0f=1

g=0
e=0 c=1
d=0 h=0

16

select by setting
<P3.4,P3.3> to...

11 10 01 00

 25

How to light up all four digits?
• Answer: need to continue refreshing

• Example, want to write "2019"
• select digit 3, display digit "2"

• select digit 2, display digit "0"

• select digit 1, display digit "1"

• select digit 0, display digit "9"

• repeat! (can use SJMP instruction)

 26

What does this code do?
ORG 0

TOP: SETB P3.4
SETB P3.3
MOV P1, #24H
CLR P3.3
MOV P1, #24H
CLR P3.4
SETB P3.3
MOV P1, #24H
CLR P3.3
MOV P1, #24H
SJMP TOP ;; jump to TOP
END

 27

Try it yourself
• Try to print out "2019" in an infinite loop

 28

