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Preface

This book covers calculus of a single variable. It is suitable for a year-long (or two-semester)
course, normally known as Calculus I and II in the United States. The prerequisites are high
school or college algebra, geometry and trigonometry. The book is designed for students in
engineering, physics, mathematics, chemistry and other sciences.

One reason for writing this text was because I had already written its sequel, Vector Cal-

culus. More importantly, I was dissatisfied with the current crop of calculus textbooks, which
I feel are bloated and keep moving further away from the subject’s roots in physics. In addi-
tion, many of the intuitive approaches and techniques from the early days of calculus—which
I think often yield more insights for students—seem to have been lost.

I agree with the views of the late Russian mathematician V.I. Arnold on teaching mathe-
matics, in particular the idea that “Mathematics is the part of physics where experiments are
cheap.”1 The ties to physics are especially important in calculus, so this book tries to introduce
new concepts with physical motivations (what other motivations can there be?). The book con-
tains exercises and examples that I hope will adequately prepare students who continue on in
physics and engineering.2

Perhaps controversially, the book uses infinitesimals, making it a bit of a “throwback” or
“retro” calculus text. My justification for this heretical act was purely pedagogical: infinitesi-
mals make learning calculus easier, and their use aligns more with the way students will see
calculus in their physics, chemistry and other science classes and textbooks (where infinitesi-
mals are employed liberally). This might ruffle some feathers among mathematical “purists,”
but they are not the main audience for this book. That said, the book is still compatible with the
usual limit-based approach, so an instructor could simply ignore the parts involving infinites-
imals and teach the material as he or she normally would. I did not want to be dogmatic, so I
used infinitesimals where I thought it made sense, and used limits where appropriate (e.g. in
discussing continuity, series). Again, pedagogy was my priority.

The exercises at the end of each section are divided into three categories: A, B and C. The
A exercises are mostly of a routine computational nature, the B exercises are slightly more
involved, and the C exercises usually require some effort or insight to solve. A crude way of

1ARNOLD, V.I., “On Teaching Mathematics”, Russian Math. Surveys 53 (1998), No. 1, 229-236. An HTML version
is at https://www.uni-muenster.de/Physik.TP/~munsteg/arnold.html

2The book covers some of the types of problems and techniques for solving them that such students will likely
encounter. Facility with using named constants (e.g. c, h, T) is also emphasized.

iii
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describing A, B and C would be “Easy”, “Moderate” and “Challenging”, respectively. However,
many of the B exercises are easy and not all the C exercises are difficult. Appendix A provides
answers and hints to many of the odd-numbered and some of the even-numbered exercises.

A few exercises require the student to write a computer program to solve numerical approx-
imation problems (e.g. numerical methods for approximating definite integrals). Algorithms
are presented in pseudocode, with code implementations in various languages (primarily Java,
but also Python, Octave, Sage). I hope the code comments will help the reader figure out what
is being done, regardless of familiarity with those languages. Students are free to implement
solutions using the language of their choice. There are no dedicated “calculator exercises,” as
those have been rendered pointless by modern computing (with which students need to become
acquainted).

Stylistically I made a conscious effort to break from an unfortunate but all too common
mode of writing in mathematics texts, lamented in the preface of a physics book: “Nothing
is more repellent to normal human beings than the clinical succession of definitions, axioms,
and theorems generated by the labours of pure mathematicians.”3 I have been guilty of that
sin myself, but I have changed my ways and banished all traces of that sort of thing from this
book. So you won’t find Definition 1.2, Theorem 3.3, Corollary 4.6, Lemma 5.7, Axiom 1B,
etc. Instead, I tried to borrow the best of the styles from the physics and foreign languages
textbooks I enjoyed so much in college. I also deliberately avoided what the author Gore Vidal
called the “we-ness” that prevails in academic writing. There is no good reason for the “royal
we” in a textbook, and it comes off as a bit pompous, so we won’t use it.

This book is released under the GNU Free Documentation License (GFDL), which allows
others to not only copy and distribute the book but also to modify it. For more details, see
the included copy of the GFDL. So that there is no ambiguity on this matter, anyone can
make as many copies of this book as desired and distribute it as desired, without needing my
permission. The PDF version will always be freely available to the public at no cost (go to
http://www.mecmath.net/calculus). Feel free to contact me at mcorral@schoolcraft.edu for
any questions on this or any other matter regarding the book. I welcome your feedback.

Schoolcraft College MICHAEL CORRAL

December 2020

3ZIMAN, J.M., Elements of Advanced Quantum Theory, Cambridge, U.K.: Cambridge University Press, 1969.

http://www.mecmath.net/calculus
mailto:mcorral@schoolcraft.edu
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The Greek Alphabet

Letters Name Letters Name Letters Name

A α alpha I ι iota P ρ rho
B β beta K κ kappa Σ σ sigma
Γ γ gamma Λ λ lambda T τ tau
∆ δ delta M µ mu Υ υ upsilon
E ǫ epsilon N ν nu Φ φ phi
Z ζ zeta Ξ ξ xi X χ chi
H η eta O o omicron Ψ ψ psi
Θ θ theta Π π pi Ω ω omega

Mathematical Notation

Symbol Meaning Example

⇒ if...then; implies |x| > 1 ⇒ x2 > 1

⇔ if and only if; two-way implication |x| > 1 ⇔ x2 > 1

iff if and only if; two-way implication |x| > 1 iff x2 > 1

; does not imply |x| > 1 ; x> 1

∃ there exists ∃ a number c >0

Ø there does not exist Ø x such that x2 < 0

∃! there exists a unique ∃! x such that 2x−1= 3

∀ for every ∀x ≥ 0,
p

x is a real number

≡ is identically equal to f ≡ 0 ⇒ f (x)= 0 for all x

∝ is proportional to y ∝ x2 ⇒ y= kx2 for some k

⊆ is a subset of {0,1}⊆ {0,1,2}

∈ is an element of 1 ∈ {1,2,3}

∉ is not an element of 1 ∉ {2,3}

∪ union of sets {0,1}∪ {2,3}= {0,1,2,3}

∩ intersection of sets {0,1}∩ {1,2}= {1}

∅ empty set {0,1}∩ {2,3}=∅

∴ therefore ∴ n must exist





CHAPTER 1

The Derivative

1.1 Introduction

Calculus can be thought of as the analysis of curved shapes.1 Its development grew out of
attempts to solve physical problems. For example, suppose that an object at rest 100 ft above
the ground is dropped. Ignoring air resistance and wind, the object will fall straight down until
it hits the ground (see Figure 1.1.1(a)). As will be proved later, t seconds after being dropped
the object will be s = s(t)=−16t2+100 ft above the ground. The object will thus hit the ground
after 2.5 seconds (when s = 0). While the object’s path is a straight line, the graph of its position
s above the ground as a function of time t is curved, part of a parabola (see Figure 1.1.1(b)).

100 ft

t= 0 sec

t= 2.5 sec

object falling

(a) Path of the object

0

s=−16t2 +100

s

t

100

2.5

(b) Position s as a function of time t

Figure 1.1.1 An object dropped from 100 ft above the ground

How fast is the object moving before it hits the ground? This is where calculus comes in. The
solution, presented now, will motivate much of this chapter.

1It is more than that, of course, but that definition puts us in good company: the first European textbook on
calculus, written by the French mathematician Guillaume de l’Hôpital in 1696, was titled Analyse des Infiniment

Petits pour l’Intelligence des Lignes Courbes (which translates as Analysis of the Infinitely Small for Understanding

Curved Lines). That book (in French) can be obtained freely in electronic form at https://archive.org

1
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First, the object travels 100 ft in 2.5 seconds, so its average speed in that time is

distance traveled
time elapsed

= 100 ft
2.5 seconds

= 40 ft/s,

and its average velocity in that time is

change in position
change in time

= final position − initial position
end time − start time

= 0 ft − 100 ft
2.5 sec − 0 sec

= −40 ft/s.

Unlike speed, velocity takes direction into account. Thus, the object’s downward motion means
it has negative velocity. Positive velocity implies upward motion.

Using the idea of average velocity over an interval of time, there is a natural way to define
the object’s instantaneous velocity at a particular instant of time t:

1. Find the average velocity over an interval of time.

2. Let the interval become smaller and smaller indefinitely, shrinking to a point t. If the
average velocity over that smaller and smaller interval approaches some value, call that
value the instantaneous velocity at time t.

Figure 1.1.2 below shows how to choose the interval: for any time t between 0 and 2.5, use
the interval [t, t+∆t], where ∆t (pronounced “delta t”) is a small positive number. So ∆t is the
change in time over the interval; denote by ∆s the change in the position s over that interval.

s

t
t t+∆t 2.50

100

∆t

∆s

s(t+∆t)

s(t)

average velocity = ∆s

∆t
= s(t+∆t) − s(t)

∆t

Figure 1.1.2 Average velocity ∆s
∆t

over the interval [t, t+∆t]

The average velocity of the object over the interval [t, t+∆t] is ∆s
∆t

, so since s(t)=−16t2+100:
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∆s

∆t
= s(t+∆t) − s(t)

∆t

= −16(t+∆t)2 + 100 − (−16t2 + 100)
∆t

= −16t2 − 32t∆t − 16(∆t)2 + 100 + 16t2 − 100
∆t

= −32t∆t − 16(∆t)2

∆t
= ✚✚∆t (−32t − 16∆t)

✚✚∆t

= −32t − 16∆t ,

Now let the interval [t, t+∆t] get smaller and smaller indefinitely—that is, let ∆t get closer and
closer to 0. Then the average velocity ∆s

∆t
=−32t−16∆t gets closer and closer to −32t−0=−32t.

Thus, the object has instantaneous velocity −32t at time t. This calculation can be interpreted
as taking the limit of ∆s

∆t
as ∆t approaches 0, written as follows:

instantaneous velocity at t = limit of average velocity over [t, t+∆t] as ∆t approaches to 0

= lim
∆t→0

∆s

∆t

= lim
∆t→0

(−32t − 16∆t)

= −32t−16(0)

= −32t

Notice that ∆t is not replaced by 0 in the ratio ∆s
∆t

until after doing as much cancellation as
possible. Notice also that the instantaneous velocity of the object varies with t, as it should
(why?). In particular, at the instant when the object hits the ground at time t = 2.5 sec, the
instantaneous velocity is −32(2.5)=−80 ft/s.

If this makes sense so far, then you understand the crux of the idea of what a limit is and
how to calculate a limit. The instantaneous velocity v(t)=−32t is called the derivative of the
position function s(t) = −16t2 +100. Calculating derivatives, analyzing their properties, and
using them to solve various problems are part of differential calculus.

What does this have to do with curved shapes? Instantaneous velocity is a special case of an
instantaneous rate of change of a function; in this case the instantaneous rate of change
of the position (height above the ground) of the object. Similar to how the rate of change of a
line is its slope, the instantaneous rate of change of a general curve represents the slope of

the curve. For example, the parabola s(t)=−16t2+100 has slope −32t for all t. Note that the
slope of this curve varies (as a function of t), unlike the slope of a straight line.
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Finding the area inside curved regions is another type of problem that calculus can solve.
The basic idea is to use simpler regions—rectangles—whose areas are known, then use those
to approximate the area inside the curved region. One such method is to draw more and more
rectangles of diminishing widths inside the curved region,2 so that the sums of their areas
approach the area of the curved region. Figure 1.1.3 shows an example with four rectangles to
approximate the area under a curve y= f (x) over an interval [a, b] on which f (x)≥ 0.

y = f (x)

y

x
a b

Figure 1.1.3 The area of a curved region

The limit of these sums of rectangular areas is called an integral. The study and application
of integrals are part of integral calculus. Perhaps the most remarkable result in calculus is
that there is a connection between derivatives and integrals—the Fundamental Theorem of

Calculus, discovered in the 17th century, independently, by the two men who invented calculus
as we know it: English physicist, astronomer and mathematician Isaac Newton (1642-1727)
and German mathematician and philosopher Gottfried Wilhelm von Leibniz (1646-1716).

Calculus makes extensive use of infinite sequences and series. An infinite series is just a
sum of an infinite number of terms. For example, it will be shown later in the text that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− ·· · , (1.1)

where the sum on the right involves an infinite number of terms. A power series is a partic-
ular type of infinite series applied to functions; it can be thought of as a polynomial of infinite
degree. For example, the trigonometric function sin x does not appear to be a polynomial. But
it turns out that sin x has a power series representation as

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− ·· · , (1.2)

where again the sum continues infinitely, and the formula holds for all x (in radians).
The idea of replacing a function by its power series played an important role throughout the

development of calculus, and is a powerful technique in many applications.
All the functions in this text will be functions of a single real variable—that is, the values

that the variable can take are real numbers. Below is some standard notation for commonly-
used sets of numbers:

2It will be shown later (in Chapter 5) that the rectangles do not have to be completely inside the region.
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N = the set of all natural numbers, i.e. the set of nonnegative integers: 0,1,2,3,4, . . .

Z = the set of all integers: 0,±1,±2,±3,±4, . . .

Q = the set of all rational numbers
m

n
, where m and n are integers, with n 6=0

R = the set of all real numbers

Note that N ⊂ Z ⊂ Q ⊂ R.
The set of real numbers consists of the rational numbers together with numbers that are

not rational, called irrational numbers. For example,
p

2 is irrational. That is, 2 is not the
square of a rational number. In fact, if the square of a rational number q were an integer,
then q itself would have to be an integer: write q as m/n, where m and n are positive integers
with no common positive integer divisors other than 1. Since q2 = m2/n2 simply duplicates the
integer divisors of m and n, then q2 can be an integer only if n =1, i.e. q is an integer. Clearly
2 is not the square of an integer, and thus it cannot be the square of a rational number. This
argument also shows that

p
3,

p
5,

p
6,

p
7,

p
8,

p
10, and so on, are irrational.3

It turns out that there are far more irrational numbers–and hence real numbers—than ra-
tional numbers. In fact, whereas the rational numbers can be listed in a sequence (i.e. first,
second, third, etc.), the set of real numbers cannot.4 For example, in the closed interval [0,1]
there is no “next” real number after the number 0. Thus, some infinite sets are larger than
others—R is larger than Q. Intervals such as [0,1] or R itself are examples of a continuum

of objects, i.e. no gaps exist.5 A famous unsolved problem in mathematics—the Continuum

Hypothesis—is whether an infinite set exists that is larger in size than Q but smaller than R.
Infinity is an important notion in calculus. Whether it is the idea of infinitely large or in-

finitesimally small, calculus attempts to give the idea some mathematical meaning (typically
by way of limits).6 The mathematical use of infinity has been a subject of philosophical debate.7

Though several centuries old, calculus was the beginning of modern mathematics. Classical

mathematics (e.g. algebra, geometry, trigonometry)—whose origins date back to the ancient
Babylonians, Egyptians, and Greeks—was concerned mostly with the study of static quantities.
Calculus produced a way to analyze dynamic (i.e. changing) quantities. The period from the
17th through the 19th century also saw revolutionary advances in physics, chemistry, biology
and other sciences. The birth of calculus was one part of that qualitative leap.

3This argument is due to the British philosopher Bertrand Russell (1872-1970). For an alternative proof that
p

2
is irrational, see pp. 97-98 in GELFAND, I.M. AND A. SHEN, Algebra, Boston: Birkhäuser, 1993.

4For a proof see Ch.1 in KAMKE, E., Theory of Sets, New York: Dover Publications, Inc., 1950.
5For a study of the structure of the real number system, see BURRILL, C.W., Foundations of Real Numbers, New

York: McGraw-Hill Book Company, 1967.
6Not everyone agrees that calculus does this satisfactorily. For example, for an alternative development of ba-

sically the same material in “standard” calculus but without the use of limits—called infinitesimal analysis—see
KEISLER, H.J., Elementary Calculus: An Infinitesimal Approach, Boston: Prindle, Weber & Schmidt, 1976.
7For example, see the essays by L. E. J. Brouwer, Hermann Weyl and David Hilbert in HEIJENOORT, J. VAN, From

Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Cambridge, MA: Harvard University Press, 1967.
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Exercises
A
For Exercises 1-4, suppose that an object moves in a straight line such that its position s after time t

is the given function s = s(t). Find the instantaneous velocity of the object at a general time t ≥ 0. You
should mimic the earlier example for the instantaneous velocity when s=−16t2 +100.

1. s= t2 2. s= 9.8t2 3. s=−16t2 +2t 4. s= t3

5. By equation (1.1), π = 4
(
1 − 1

3 + 1
5 − 1

7 + 1
9 − ·· ·

)
, where the nth term in the sum inside the

parentheses is (−1)n+1

2n−1 (starting at n = 1).8 So the first approximation of π using this formula is
π≈ 4(1)= 4.0, and the second approximation is π≈ 4

(
1− 1

3

)
= 8/3≈ 2.66667. Continue like this until

two consecutive approximations have 3 as the first digit before the decimal point. How many terms
in the sum did this require? Be careful with rounding off in the approximations.

B

6. In elementary geometry you learned that the area inside a circle of radius r > 0 is πr2 (that formula
will be proved later in the text). So in particular, let C be a circle of radius 1. Then the area inside
C is π. That area can be approximated by Eudoxus’ method of exhaustion.9 The idea is to inscribe
regular polygons inside the circle, i.e. the vertexes of the polygons touch C. Recall from geometry
that a polygon is regular if its sides are of equal length. By increasing the number of sides of the
polygons, the areas inside the polygons will approach the area (π) of C. This was an early attempt
at using what is now called a limit.10

1

C

Figure 1.1.4 Inscribed square

1

C

Figure 1.1.5 Inscribed regular hexagon

(a) Inscribe a square inside C, as in Figure 1.1.4. Show that the area inside the square is 2. This is
a poor approximation of π= 3.14159265..., obviously.

(b) Inscribe a regular hexagon (6-sided) inside C, as in Figure 1.1.5. Show that the area inside the

hexagon is 3
p

3
2 ≈ 2.59807621. This is a slightly better—though still poor—approximation of π.

(c) Inscribe a regular dodecagon (12-sided) inside C. Show that the area inside the dodecagon is 3.
It thus takes 12 sides for the approximation to get the first digit of π correct.

(d) Inscribe a regular 100-sided polygon inside C. Show that the area inside this polygon is approx-
imately 3.13952598. This is getting closer to π.

(e) Show that the general formula for the area inside a regular n-sided polygon inscribed inside C

is
n

2
sin

(
360◦

n

)
. (Hint: The double-angle identity sin 2θ = 2 sin θ cos θ might help.)

8This, by the way, is a terrible formula for calculating π; getting just the 3.14 part requires 119 terms in the sum!
9Originally due to another ancient Greek mathematician, Antiphon (ca. 430 B.C.)

10The great ancient Greek mathematician, physicist and astronomer Archimedes (ca. 287-212 B.C.) used this
method, together with circumscribed regular polygons, to calculate π.
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C

7. What is the flaw in the following “proof” that π= 4?:

d = 1

Step 1: Draw a square around a circle of diameter d = 1. The circumference
of the circle is thus πd = π, and the perimeter of the square is 4.

d = 1

Step 2: Remove corners from the square as shown in the picture on the right,
so that four new corners touch the circle. Notice that the perimeter of the
resulting polygon is still 4, since the lengths of the removed corner pieces are
duplicated in the new polygon, so that the lengths of all the vertical sides add
up to 2 while the lengths of all the horizontal sides add up to 2.

d = 1

Step 3: Remove corners from the polygon in Step 2, as shown in the picture
on the right, so that eight new corners touch the circle. The perimeter of the
resulting polygon is again still 4.

d = 1

Step 4: Continue this procedure indefinitely, with each successive polygon
still having a perimeter of 4 and becoming increasingly indistinguishable from
the circle. Since the perimeters of the polygons always equal 4 and approach
the circle’s circumference (π), then π must equal 4.

8. An infinite set is countable if its members can be put into a one-to-one correspondence with the
members of N, the set of natural numbers (0,1,2,3,4, . . .). Clearly N is itself countable. The set Z of
all integers is also countable, by means of the following one-to-one correspondence with N:

N 0 1 2 3 4 5 6 7 8 . . .
Z 0 1 -1 2 -2 3 -3 4 -4 . . .

Show that Q (the set of all rational numbers) is countable. (Hint: The above correspondence for Z is

an infinite list in one dimension (the horizontal direction). For Q think two-dimensionally.)
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1.2 The Derivative: Limit Approach

The following definition generalizes the example from the previous section (concerning instan-
taneous velocity) to a general function f (x):

The derivative of a real-valued function f (x), denoted by f ′(x), is

f ′(x) = lim
∆x→0

∆ f

∆x
= lim

∆x→0

f (x+∆x) − f (x)
∆x

(1.3)

for x in the domain of f , provided that the limit exists.11

For a general function f (x), the derivative f ′(x) represents the instantaneous rate of

change of f at x, i.e. the rate at which f changes at the “instant” x. For the limit part of
the definition only the intuitive idea of how to take a limit—as in the previous section—is
needed for now. Notice that the above definition makes the derivative f ′ itself a function of the
variable x. The function f ′ can be evaluated at specific values of x, or you can write its general
formula f ′(x).

The (instantaneous) velocity of an object as the derivative of the object’s position as a func-
tion of time is only one physical application of derivatives. There are many other examples:

Field Function Derivative
Physics position velocity

velocity acceleration
momentum force

work power

Field Function Derivative
Physics angular momentum torque

Engineering electric charge electric current
magnetic flux induced voltage

Economics profit marginal profit

The limit definition can be used for finding the derivatives of simple functions.

Example 1.1

Find the derivative of the function f (x)= 1.

Solution: By definition, f (x)= 1 for all x, so:

f ′(x) = lim
∆x→0

f (x+∆x) − f (x)
∆x

= lim
∆x→0

1 − 1
∆x

= lim
∆x→0

0
∆x

= lim
∆x→0

0

f ′(x) = 0

11Recall that the domain of f is the set of all numbers x such that f (x) is defined.
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Notice in the above example that replacing ∆x by 0 was unnecessary when taking the limit,
since the ratio f (x+∆x) − f (x)

∆x
simplified to 0 before taking the limit, and the limit of 0 is 0 regard-

less of what ∆x approaches. In fact, the answer—namely, f ′(x)= 0 for all x—should have been
obvious without any calculations: the function f (x) = 1 is a constant function, so its value (1)
never changes , and thus its rate of change is always 0. Hence, its derivative is 0 everywhere.
Replacing the constant 1 by any constant yields the following important result:

The derivative of any constant function is 0.

The above discussion shows that the calculation in Example 1.1 was unnecessary. Consider
another example where no calculation is required to find the derivative: the function f (x)= x.
The graph of this function is just the line y= x in the xy-plane, and the rate of change of a line
is a constant, called its slope. The line y = x has a slope of 1, so the derivative of f (x) = x is
f ′(x)= 1 for all x. The formal calculation of the derivative, though unnecessary, verifies this:

f ′(x) = lim
∆x→0

f (x+∆x) − f (x)
∆x

= lim
∆x→0

(x+∆x) − x

∆x
= lim

∆x→0

∆x

∆x
= lim

∆x→0
1 = 1

Recall that a function whose graph is a line is called a linear function. For a general
linear function f (x)= mx+b, where m is the slope of the line and b is its y-intercept, the same
argument as above for f (x)= x yields the following result:

The derivative of any linear function is the slope of the line itself:
If f (x)= mx+b then f ′(x)= m for all x.

The function f (x)= 1 from Example 1.1 is the special case where m = 0 and b = 1; its graph
is a horizontal line, so its slope (and hence its derivative) is 0 for all x. Likewise, the function
f (x)= 2x−1 represents a line of slope m = 2, so its derivative is 2 for all x. Figure 1.2.1 shows
these and other linear functions y= f (x).

x

y

1

f (x)= 1 slope= 0

f ′(x)= 0

0

y

x

f (x)= 2x−1

slope= 2

f ′(x)= 2

0

−1

1
2

y

x

f (x)=−x+2

slope=−1

f ′(x)=−1
0

2

2

Figure 1.2.1 Slopes and derivatives of lines
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Linear functions have a constant derivative—the constant being the slope of the line. The
converse turns out to be true: a function with a constant derivative must be a linear function.12

What types of functions do not have constant derivatives? The previous section discussed
such a function: the parabola s(t) = −16t2 +100, whose derivative s′(t) =−32t is clearly not a
constant function. In general, functions that represent curves (i.e. not straight lines) do not
change at a constant rate—that is precisely what makes them curved. So such functions do not
have a constant derivative.

Example 1.2

Find the derivative of the function f (x)= 1
x

. Also, find the instantaneous rate of change of f at x = 2.

Solution: For all x 6= 0, the derivative f ′(x) is:

f ′(x) = lim
∆x→0

f (x+∆x) − f (x)
∆x

= lim
∆x→0

1
x+∆x

− 1
x

∆x
→ 0

0
, so simplify the ratio before plugging in ∆x = 0,

= lim
∆x→0

x − (x+∆x)
(x+∆x)x

∆x
(after getting a common denominator)

= lim
∆x→0

−✟✟∆x

✟✟∆x(x+∆x)x

= lim
∆x→0

−1
(x+∆x)x

= −1
(x+0)x

f ′(x) = − 1
x2

The instantaneous rate of change of f at x = 2 is just the derivative f ′(x) evaluated at x = 2, that is,
f ′(2)=− 1

22 =− 1
4 .

x

y

0

2

f (x)= 1
x

Notice that the instantaneous rate of change f ′(2) = −1
4 in the

above example is a negative number. This should make sense, since
the function f (x) = 1

x
is changing in the negative direction at x = 2;

that is, f (x) is decreasing in value at x = 2. This is plain to see from
the graph of f (x) = 1

x
shown on the right. In fact, for all x 6= 0 the

function f (x) = 1
x

is decreasing as x grows.13 This is reflected in the
derivative f ′(x)=− 1

x2 being negative for all x 6= 0. In general, a nega-
tive derivative means that the function is decreasing, while a positive
derivative means that it is increasing.
12This will be proved in Chapter 5.
13In this text, the rate of change of f (x) is always taken in the direction of increasing x, i.e. in the positive x

direction.
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The problem with using the limit definition to find the derivative of a curved function is that
the calculations require more work, as the above example shows. As the functions become more
complicated those calculations can become difficult or even impossible. And though limits have
not yet been defined formally, for now the intuitively obvious idea of limits suffices, namely:

For a real number a and a real-valued function f (x), say that the limit of f (x) as x ap-
proaches a equals the number L, written as

lim
x→a

f (x) = L ,

if f (x) approaches L as x approaches a.
Equivalently, this means that f (x) can be made as close as you want to L by choosing x

close enough to a. Note that x can approach a from any direction.

Below are some simple rules for limits, which will be proved later:

Rules for Limits: Suppose that a is a real number and that f (x) and g(x) are real-valued
functions such that limx→a f (x) and limx→a g(x) both exist. Then:
(a) lim

x→a
( f (x)+ g(x)) =

(
lim
x→a

f (x)
)
+

(
lim
x→a

g(x)
)

(b) lim
x→a

( f (x)− g(x)) =
(
lim
x→a

f (x)
)
−

(
lim
x→a

g(x)
)

(c) lim
x→a

(k · f (x)) = k ·
(
lim
x→a

f (x)
)

for any constant k

(d) lim
x→a

( f (x) · g(x)) =
(
lim
x→a

f (x)
)
·

(
lim
x→a

g(x)
)

(e) lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)
, if lim

x→a
g(x) 6= 0

The above rules say that the limit of sums, differences, constant multiples, products, and
quotients is the sum, difference, constant multiple, product, and quotient, respectively, of the
limits. This seems intuitively obvious.

These rules can be used for finding other expressions for the derivative. The quantity ∆x rep-
resents a small number—positive or negative—that approaches 0, but it is common in mathe-
matics texts to use the letter h instead:14

f ′(x) = lim
h→0

f (x+h) − f (x)
h

(1.4)

14Physics texts typically prefer the delta notation, since ∆x represents a small change in some physical quantity x.
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Another formulation is to set h =w− x in formula (1.4), which yields

f ′(x) = lim
h→0

f (x+h) − f (x)
h

= lim
w−x→0

f (x+ (w− x)) − f (x)
w − x

,

so that

f ′(x) = lim
w→x

f (w) − f (x)
w − x

(1.5)

since w− x approaches 0 if and only if w approaches x. Another formulation replaces h by −h:

f ′(x) = lim
h→0

f (x+h) − f (x)
h

= lim
−h→0

f (x+−h) − f (x)
−h

= lim
−h→0

− ( f (x) − f (x−h))
−h

,

and thus

f ′(x) = lim
h→0

f (x) − f (x−h)
h

(1.6)

since −h approaches 0 if and only if h approaches 0. The above formulations did not use the
Limit Rules, but the following result does:

Suppose that f ′(x) exists. Then

f ′(x) = lim
h→0

f (x+h) − f (x−h)
2h

. (1.7)

Proof: Since f ′(x) = lim
h→0

f (x+h) − f (x)
h

= lim
h→0

f (x) − f (x−h)
h

by formulas (1.4) and (1.6),

then Limit Rule (c) shows that

1
2

f ′(x) = lim
h→0

f (x+h) − f (x)
2h

= lim
h→0

f (x) − f (x−h)
2h

.

Now use the idea that a−b = (a− c)+ (c−b) for all a, b, and c to write:

lim
h→0

f (x+h) − f (x−h)
2h

= lim
h→0

( f (x+h) − f (x)) + ( f (x) − f (x−h))
2h

= lim
h→0

f (x+h) − f (x)
2h

+ lim
h→0

f (x) − f (x−h)
2h

(by Limit Rule (a))

= 1
2
· f ′(x) + 1

2
· f ′(x)

= f ′(x)

QED
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As an example of using these different formulations, recall that a function f is even if
f (−x) = f (x) for all x in the domain of f , and f is odd if f (−x) =− f (x) for all x in its domain.
For example, x2, x4, and cos x are even functions; x, x3, and sin x are odd functions. The
following result is often useful:

The derivative of an even function is an odd function.
The derivative of an odd function is an even function.

To prove the first statement—the second is an exercise—suppose that f is an even function
and that f ′(x) exists for all x in its domain. Then

f ′(−x) = lim
h→0

f (−x+h) − f (−x)
h

by formula (1.4) with x replaced by −x

= lim
h→0

f (−(x−h)) − f (−x)
h

= lim
h→0

f (x−h) − f (x)
h

since f is even

= lim
h→0

− ( f (x) − f (x−h))
h

= − lim
h→0

f (x) − f (x−h)
h

by Limit Rule (c), so

f ′(−x) = − f ′(x) by formula (1.6),

which shows that f ′ is an odd function.
Derivatives do not always exist, as the following example shows.

Example 1.3

x

y

0

f (x)= |x|

y= xy=−x

Let f (x)= |x|. Show that f ′(0) does not exist.

Solution: Recall that the absolute value function f (x)= |x| is defined as

f (x) = |x| =
{

x if x ≥ 0

−x if x < 0

The graph consists of two lines meeting at the origin. For x ≥ 0 the graph
is the line y= x, which has slope 1. For x ≤ 0 the graph is the line y =−x,
which has slope -1. These lines agree in value (y = 0) at x = 0, but their
slopes do not agree in value at x = 0. Therefore the derivative of f does not exist at x = 0, since the
derivative of a curve is just its slope. A more “formal” proof (which amounts to the same argument) is
outlined in the exercises.
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If the derivative f ′(x) exists then f is differentiable at x. A differentiable function is
one that is differentiable at every point in its domain. For example, f (x)= x is a differentiable
function, but f (x)= |x| is not differentiable at x = 0. The act of calculating a derivative is called
differentiation. For example, differentiating the function f (x)= x yields f ′(x)= 1.

Exercises

Note: For all exercises, you can use anything discussed so far (including previous exercises).

A
For Exercises 1-11, find the derivative of the given function f (x) for all x (unless indicated otherwise).

1. f (x)= 0 2. f (x)= 1−3x 3. f (x)= (x+1)2 4. f (x)= 2x2 −3x+1

5. f (x)= 1
x+1 , for all x 6= −1 6. f (x)= −1

x+1 , for all x 6= −1 7. f (x)= 1
x2 , for all x 6= 0

8. f (x)=p
x, for all x > 0 (Hint: Rationalize the numerator in the definition of the derivative.)

9. f (x)=
p

x+1, for all x >−1 10. f (x)=
p

x2 +1 11. f (x)=
p

x2+3x+4

12. In Exercise 8 the point x = 0 was excluded when calculating f ′(x), even though x = 0 is in the
domain of f (x)=p

x. Can you explain why x = 0 was excluded?

B

13. Show that for all functions f such that f ′(x) exists, f ′(x) = lim
w→x

f (x) − f (w)
x − w

.

14. True or false: If f and g are differentiable functions on an interval (a,b) and f (x)< g(x) for all x in
(a,b), then f ′(x)< g′(x) for all x in (a,b). If true, prove it; if false, give a counterexample. Would your
answer change if the restriction of x to (a,b) were removed and all real x were used instead?

15. Show that the derivative of an odd function is an even function.

C
For Exercises 16-21, assuming that f ′(x) exists, prove the given formula.

16. f ′(x) = lim
h→0

f (x+2h) − f (x−2h)
4h

17. f ′(x) = lim
h→0

f (x+3h) − f (x−3h)
6h

18. f ′(x) = lim
h→0

f (x+2h) − f (x−3h)
5h

19. f ′(x) = lim
h→0

f (x+ah) − f (x−bh)
(a+b)h

(a,b > 0)

20. lim
w→x

w f (x) − x f (w)
w − x

= f (x) − x f ′(x) 21. lim
w→x

w2 f (x) − x2 f (w)
w − x

= 2x f (x) − x2 f ′(x)

22. Show that f (x) = |x| is not differentiable at x = 0, using formula (1.4) for the derivative. Here you
will have to use a part of the definition which has not been used yet: as h approaches 0, h can be
either positive or negative. Consider those two cases in showing that the limit is not defined at x = 0.

23. Suppose that f (a+b) = f (a) f (b) for all a and b, and f ′(0) exists. Show that f ′(x) exists for all x.
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1.3 The Derivative: Infinitesimal Approach

Traditionally a function f of a variable x is written as y = f (x). The dependent variable y is
considered a function of the independent variable x. This allows taking the derivative of y

with respect to x, i.e. the derivative of y as a function of x, denoted by dy

dx
. This is simply a

different way of writing f ′(x), and is just one of many ways of denoting the derivative:

Notation for the derivative of y=== f (x): The following are all equivalent:

dy

dx
, f ′(x) ,

d

dx
( f (x)) , y′ , ẏ , ḟ (x) ,

df

dx
, D f (x)

The notation dy
dx

appears to denote a fraction: a quantity dy divided by a quantity dx. It turns
out that the derivative really can be thought of in that way, as a ratio of infinitesimals. In fact,
this was the way in which derivatives were used by the founders of calculus—Newton and, in
particular, Leibniz.15 Even today, this is often the way in which derivatives are thought of and
used in fields outside of mathematics, such as physics, engineering, and chemistry, perhaps
due to its more intuitive nature.

The concept of infinitesimals used here is based on the nilsquare infinitesimal approach
developed by J.L. Bell16, namely:

A number δ is an infinitesimal if the conditions (a)-(d) hold:
(a) δ 6= 0

(b) if δ> 0 then δ is smaller than any positive real number

(c) if δ< 0 then δ is larger than any negative real number

(d) δ2 = 0 (and hence all higher powers of δ, such as δ3 and δ4, are also 0)

Note: Any infinitesimal multiplied by a nonzero real number is also an infinitesimal, while
0 times an infinitesimal is 0.

The above definition says that infinitesimals are numbers which are closer to 0 than any
positive or negative number without being zero themselves, and raising them to powers greater
than or equal to 2 makes them 0. So infinitesimals are not real numbers.17 This is not a
problem, since calculus deals with other numbers, such as infinity, which are not real. An
infinitesimal can be thought of as an infinitely small number arbitrarily close to 0 but not 0.
15It was Leibniz who created the notation dy

dx
. For this reason dy

dx
is called the Leibniz notation for the derivative.

Newton used the dot notation ẏ, which has fallen out of favor with mathematicians but is still used by many
physicists, especially when the independent variable represents time. Newton called derivatives fluxions. The
prime notation f ′ is due to the French mathematician and physicist Joseph Louis Lagrange (1736-1813).
16BELL, J.L., A Primer of Infinitesimal Analysis, Cambridge, U.K.: Cambridge University Press, 1998.
17In an equivalent treatment, infinitesimals are part of the hyperreal number system. See KEISLER, H.J., Elemen-

tary Calculus: An Infinitesimal Approach, Boston: Prindle, Weber & Schmidt, 1976.
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This might seem like a strange notion, but it really is not all that different from the limit
notion where, say, you let ∆x approach 0 but not necessarily let it equal 0.18

As for the square of a nonzero infinitesimal being 0, think of how a calculator handles the
squares of small numbers. For example, most calculators can display 10−8 as 0.00000001, and
will even let you add 1 to that to get 1.00000001. But when you square 10−8 and add 1 to it,
most calculators will display the sum as simply 1. The calculator treats the square of 10−8,
namely 10−16, as a number so small compared to 1 that it is effectively zero.19

Notice a major difference between 0 and an infinitesimal δ: 2 ·0 and 0 are the same, but 2δ
and δ are distinct. This holds for any nonzero constant multiple, not just the number 2.

The derivative dy

dx
of a function y= f (x) can now be defined in terms of infinitesimals:

Let dx be an infinitesimal such that f (x+dx) is defined. Then dy = f (x+dx)− f (x) is also
an infinitesimal, and the derivative of y= f (x) at x is the ratio of dy to dx:

dy

dx
= f (x+dx) − f (x)

dx
(1.8)

The basic idea is that dx is an infinitesimally small change in the variable x, producing an
infinitesimally small change dy in the value of y= f (x).

Example 1.4

Show that the derivative of y = f (x)= x2 is dy

dx
= 2x.

Solution: For any real number x,

dy

dx
= f (x+dx) − f (x)

dx

= (x+dx)2 − x2

dx

= ��x
2 + 2x dx + (dx)2 − ��x

2

dx

= 2x dx + 0
dx

since dx is an infinitesimal ⇒ (dx)2 = 0

= 2x✚✚dx

✚✚dx

= 2x

18The infinitesimal approach was first developed in an axiomatic manner in the landmark book ROBINSON, A.,
Non-Standard Analysis, Amsterdam: North-Holland, 1966. Robinson showed that for all practical purposes calcu-
lus can be developed without resorting to limits, with equivalent results.
19Calculators do this for display reasons—most can show only 10-12 digits. Try this experiment on your calculator:
Add 1030, −

(
1030)

, and 1 in two different ways:
(
1030+−

(
1030))

+1, and 1030 +
(
−

(
1030)

+1
)
. The first way will

give you the correct answer 1, but the second way yields 0. So addition is not always associative on calculators!
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You might have noticed that the above example did not involve limits, and that the derivative
2x represents a real number (i.e. no infinitesimals appear in the final answer); this will always
be the case. Infinitesimals possess another useful property:

Microstraightness Property: For the graph of a differentiable function, any part of the
curve with infinitesimal length is a straight line segment.

In other words, at the infinitesimal level differentiable curves are straight. The idea behind
this is simple. At various points on a nonstraight differentiable curve y = f (x) the distances
along the curve between the points are not quite the same as the lengths of the line segments
joining the points. For example, in Figure 1.3.1 the distance s measured along the curve from
the point A to the point B is not the same as the length of the line segment AB joining A to B.

y

x

AB

A

B

y= f (x)

s

magnify sAB

A

B

Figure 1.3.1 Curved real-valued distance s 6= length of AB, but infinitesimal s= length of AB

However, as the points A and B get closer to each other, the difference between that part of
the curve joining A to B and the line segment AB becomes less noticeable. That is, the curve
is almost linear when A and B are close. The Microstraightness Property simply goes one step
further and says that the curve actually is linear when the distance s between the points is
infinitesimal (so that s equals the length of AB at the infinitesimal level).

At first this might seem nonsensical. After all, how could any nonstraight part of a curve
be straight? You have to remember that an infinitesimal is an abstraction—it does not exist
physically. A curve y= f (x) is also an abstraction, which exists in a purely mathematical sense,
so its geometric properties at the “normal” scale do not have to match those at the infinitesimal
scale (which can be defined in any way, provided the properties at that scale are consistent).

y

x
x x+dx

y= f (x)

dx

dy

This abstraction finally reveals what an instantaneous rate of change
is: the average rate of change over an infinitesimal interval. Moving
an infinitesimal amount dx away from a value x produces an infinites-
imal change dy in a differentiable function y= f (x). The average rate
of change of y= f (x) over the infinitesimal interval [x, x+dx] is thus dy

dx
,

i.e. the slope—rise over run—of the straight line segment represented
by the curve y= f (x) over that interval, as in the figure on the right.20

20Notice that the figure implies that the Pythagorean Theorem does not apply to infinitesimal triangles. This will
be discussed in Chapter 8.
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The Microstraightness Property can be extended to smooth curves—that is, curves without
sharp edges or cusps. For example, circles and ellipses are smooth, but polygons are not.

The properties of infinitesimals can be applied to determine the derivatives of the sine and
cosine functions. Consider a circle of radius 1 with center O and points A and B on the circle
such that the line segment AB is a diameter. Let C be a point on the circle such that the angle
∠BAC has an infinitesimal measure dx (in radians) as in Figure 1.3.2(a).

A B

C

O

dx

11

(a)

A B

C

O

dx 2dx

11

s= �BC = 2dxs= �BC = 2dx

(b)

Figure 1.3.2 Circle O: BC = 2sin dx, ∠BOC = 2∠BAC

By Thales’ Theorem from elementary geometry, the angle ∠ACB is a right angle. Thus:

sin dx = BC

AB
= BC

2
⇒ BC = 2sin dx

Figure 1.3.2(b) shows that ∠OAC +∠OCA +∠AOC = π. Thus, 1 = OC = OA ⇒ ∠OCA =
∠OAC = dx ⇒∠AOC = π−dx−dx= π−2dx ⇒∠BOC = 2dx. By the arc length formula from
trigonometry, the length s of the arc �BC along the circle from B to C is the radius times the
central angle ∠BOC: s = �BC = 1 ·2dx= 2dx. But by Microstraightness, �BC =BC, and thus:

2sin dx = BC = �BC = 2dx ⇒ sin dx = dx

Since dx is an infinitesimal, (dx)2 = 0. So since sin2 dx+cos2 dx= 1, then:

cos2 dx = 1 − sin2 dx = 1 − (dx)2 = 1 − 0 = 1 ⇒ cos dx = 1

The derivative of y= sin x is then:

d

dx
(sin x) = dy

dx
= sin(x+dx) − sin x

dx

= (sin x cos dx + sin dx cos x) − sin x

dx
by the sine addition formula

= ✘✘✘✘✘(sin x) (1) + dx cos x − ✘✘✘sin x

dx
= ✚✚dx cos x

✚✚dx
, and thus:

d

dx
(sin x) = cos x
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A similar argument (left as an exercise) using the cosine addition formula shows:

d

dx
(cos x) = −sin x

One of the intermediate results proved here bears closer examination. Namely, sin dx = dx

for an infinitesimal angle dx measured in radians. At first, it might seem that this cannot be
true. After all, an infinitesimal dx is thought of as being infinitely close to 0, and sin 0 = 0, so
you might expect that sin dx= 0. But this is not the case. The formula sin dx= dx says that in
an infinitesimal interval around 0, the function y = sin x is identical to the line y = x (not the
line y= 0). This, in turn, suggests that for real-valued x close to 0, sin x≈ x.

This indeed turns out to be the case. The free graphing software Gnuplot21 can display the
graphs of y = sin x and y = x. Figure 1.3.3(a) below shows how those graphs compare over the
interval [−π,π]. Outside the interval [−1,1] there is a noticeable difference.

-4

-3

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3

y

x

sin(x)
x

(a)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

y

x

sin(x)
x

(b)

Figure 1.3.3 sin dx = dx: Comparing y= sin x and y= x near x = 0

Figure 1.3.3(b) shows that there is virtually no difference in the graphs even over the non-
infinitesimal interval [−0.3,0.3]. So sin x≈ x is a good approximation when x is close to 0, that
is, when |x| ≪ 1 (the symbol ≪ means “much less than”). This approximation is used in many
applications in engineering and physics when the angle x is assumed to be small.

Notice something else suggested by the relation sin dx = dx: there is a fundamental differ-
ence at the infinitesimal level between a line of slope 1 (y= x) and a line of slope 0 (y= 0). In a
real interval (−a,a) around x= 0 the difference between the two lines can be made as small as
desired by choosing a > 0 small enough. But in an infinitesimal interval (−δ,δ) around x = 0
there is unbridgeable gulf between the two lines. This is the crucial difference in sin dx being
equal to dx rather than 0.

21Available at http://www.gnuplot.info.

http://www.gnuplot.info
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Notice also that the value of a function at an infinitesimal may itself be an infinitesimal (e.g.
sin dx= dx) or a real number (e.g. cos dx= 1).

For a differentiable function f (x), df
dx

= f ′(x) and so multiplying both sides by dx yields the
important relation:

df = f ′(x) dx (1.9)

Note that both sides of the above equation are infinitesimals for each value of x in the domain
of f ′, since f ′(x) would then be a real number.

The notion of an infinitesimal was fairly radical at the time (and still is). Some mathemati-
cians embraced it, e.g. the outstanding Swiss mathematician Leonhard Euler (1707-1783),
who produced a large amount of work using infinitesimals. But it was too radical for many
mathematicians (and philosophers22), enough so that by the 19th century some mathemati-
cians (notably Augustin Cauchy and Karl Weierstrass) felt the need to put calculus on what
they considered a more “rigorous” footing, based on limits.23 Yet it was precisely the notion of
an infinitesimal which lent calculus its modern character, by showing the power and usefulness
of such an abstraction (especially one that did not obey the rules of classical mathematics).

Exercises

A
For Exercises 1-9, let dx be an infinitesimal and prove the given formula.

1. (dx + 1)2 = 2dx + 1 2. (dx + 1)3 = 3dx + 1 3. (dx + 1)−1 = 1 − dx

4. tan dx = dx 5. sin 2dx = 2dx 6. cos 2dx = 1

7. sin 3dx = 3dx 8. cos 3dx = 1 9. sin 4dx = 4dx

10. Is cot dx defined for an infinitesimal dx? If so, then find its value. If not, then explain why.

11. In the proof of the derivative formulas for sin x and cos x, the equation cos2 dx = 1 was solved to
give cos dx = 1. Why was the other possible solution cos dx =−1 ignored?

B

12. Show that d
dx

(cos x) = −sin x.

13. Show that d
dx

(cos 2x) = −2 sin 2x. (Hint: Use Exercises 5 and 6.)

C

14. Show that d
dx

(tan x) = sec2 x. (Hint: Use Exercise 4.)

22The English philosopher George Berkeley (1685-1753) famously derided infinitesimals as “the ghosts of departed
quantities” in his book The Analyst (1734), which had the disquieting subtitle “A Discourse Addressed to an Infidel
Mathematician” (directed at Newton).
23However, the limit approach turns out, ultimately, to be equivalent to the infinitesimal approach. In essence,
only the terminology is different.
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1.4 Derivatives of Sums, Products and Quotients

So far the derivatives of only a few simple functions have been calculated. The following rules
will make it easier to calculate derivatives of more functions:

Rules for Derivatives: Suppose that f and g are differentiable functions of x. Then:

Sum Rule:
d

dx
( f + g) = df

dx
+ dg

dx

Difference Rule:
d

dx
( f − g) = df

dx
− dg

dx

Constant Multiple Rule:
d

dx
(c f ) = c · df

dx
for any constant c

Product Rule:
d

dx
( f · g) = f · dg

dx
+ g · df

dx

Quotient Rule:
d

dx

(
f

g

)
=

g · df
dx

− f · dg
dx

g2

The above rules can be written using the prime notation for derivatives:

Sum Rule: ( f + g)′(x) = f ′(x) + g′(x)

Difference Rule: ( f − g)′(x) = f ′(x) − g′(x)

Constant Multiple Rule: (c f )′(x) = c · f ′(x) for any constant c

Product Rule: ( f · g)′(x) = f (x) · g′(x) + g(x) · f ′(x)

Quotient Rule:

(
f

g

)′
(x) = g(x) · f ′(x) − f (x) · g′(x)

(g(x))2

The proof of the Sum Rule is straightforward. Since df
dx

and dg
dx

both exist then:

d

dx
( f + g) = ( f + g)(x+dx) − ( f + g)(x)

dx
= f (x+dx) + g(x+dx) − ( f (x) + g(x))

dx

= f (x+dx) − f (x) + g(x+dx) − g(x)
dx

= f (x+dx) − f (x)
dx

+ g(x+dx) − g(x)
dx

= df

dx
+ dg

dx
X

The proofs of the Difference and Constant Multiple Rules are similar and are left as exercises.
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Note that by the Product Rule, in general the derivative of a product is not the product of
the derivatives. That is, d( f ·g)

dx
6= df

dx
· dg

dx
. This should be obvious from some earlier examples. For

instance, if f (x)= x and g(x)= 1 then ( f · g)(x) = x ·1= x so that d( f ·g)
dx

= 1, but df
dx

· dg
dx

= 1 ·0= 0.
There is a proof of the Product Rule similar to the proof of the Sum Rule (see Exercise 20),

but there is a more geometric way of seeing why the formula holds, described below.

g(x+dx)

f(x+
d

x)

f (x)

df

g(x) dg

Construct a rectangle whose perpendicular sides
have lengths f (x) and g(x) for some x, as in the draw-
ing on the right. Change x by some infinitesimal
amount dx, which produces infinitesimal changes df

and dg in f (x) and g(x), respectively. Assume those
changes are positive and extend the original rectan-
gle by those amounts, creating a larger rectangle with
perpendicular sides f (x+dx) and g(x+dx). Then

d( f · g) = ( f · g)(x+dx) − ( f · g)(x)

= f (x+dx) · g(x+dx) − f (x) · g(x)

= (area of outer rectangle) − (area of original rectangle)

= sum of the areas of the three shaded inner rectangles

= f (x) ·dg + g(x) ·df + df ·dg

= f (x) ·dg + g(x) ·df + ( f ′(x) dx) · (g′(x) dx)

= f (x) ·dg + g(x) ·df + ( f ′(x)g′(x)) · (dx)2

= f (x) ·dg + g(x) ·df + ( f ′(x)g′(x)) ·0
d( f · g) = f (x) ·dg + g(x) ·df , so dividing both sides by dx yields

d( f · g)
dx

= f (x) · dg

dx
+ g(x) · df

dx
X

To prove the Quotient Rule, let y = f
g
, so f = g · y. If y were a differentiable function of x,

then the Product Rule would give

df

dx
= d(g · y)

dx
= g · dy

dx
+ y · dg

dx
= g · dy

dx
+ f

g
· dg

dx
⇒ g · dy

dx
= df

dx
− f

g
· dg

dx

and so dividing both sides by g and getting a common denominator gives

dy

dx
= 1

g
· df

dx
− f

g2
· dg

dx
=

g · df

dx
− f · dg

dx

g2
X

A simple mnemonic device for remembering the Quotient Rule is: write f
g

as HI
HO—so that HI

represents the “high” (numerator) part of the quotient and HO represents the “low” (denomi-
nator) part—and think of dHI and dHO as the derivatives of HI and HO, respectively. Then
d
dx

(
f

g

)
= HO·dHI − HI·dHO

HO2 , pronounced as “ho-dee-hi minus hi-dee-ho over ho-ho.”
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Example 1.5

Use the Quotient Rule to show that d
dx

(tan x)= sec2 x.

Solution: Since tan x= sin x
cos x

then:

d

dx
(tan x) = d

dx

(
sin x

cos x

)
=

(cos x) · d
dx

(sin x) − (sin x) · d
dx

(cos x)

cos2 x
= (cos x) · (cos x) − (sin x) · (−sin x)

cos2 x

= cos2 x + sin2 x

cos2 x
= 1

cos2 x
= sec2 x

Example 1.6

Use the Quotient Rule to show that d
dx

(sec x)= sec x tan x.

Solution: Since sec x = 1
cos x

then:

d

dx
(sec x) = d

dx

(
1

cos x

)
=

(cos x) · d
dx

(1) − 1 · d
dx

(cos x)

cos2 x
= (cos x) ·0 − 1 · (−sin x)

cos2 x

= sin x

cos2 x
= 1

cos x
· sin x

cos x
= sec x tan x

Similar to the above examples, the derivatives of cot x and csc x can be found using the
Quotient Rule (left as exercises). The derivatives of all six trigonometric functions are:

d

dx
(cos x) = −sin x

d

dx
(sec x) = sec x tan x

d

dx
(sin x) = cos x

d

dx
(csc x) = −csc x cot x

d

dx
(tan x) = sec2 x

d

dx
(cot x) = −csc2 x

Note that the Sum and Difference Rules can be applied to sums and differences, respectively,
of not just two functions but any finite (integer) number of functions. For example, for three
differentiable functions f1, f2, and f3,

d

dx
( f1 + f2 + f3) = df1

dx
+ d

dx
( f2 + f3) by the Sum Rule

= df1

dx
+ df2

dx
+ df3

dx
by the Sum Rule again.

Continuing like this for four functions, then five functions, and so forth, the Sum and Differ-
ence Rules combined with the Constant Multiple Rule yield the following formula:
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For n ≥ 1 differentiable functions f1, . . ., fn and constants c1, . . ., cn:

d

dx
(c1 f1 + ·· · + cn fn) = c1

df1

dx
+ ·· · + cn

dfn

dx
(1.10)

Note that the above formula includes differences, by using negative constants. The formula
also shows that differentiation is a linear operation, which makes d

dx
a linear operator. The

idea is that d
dx

“operates” on differentiable functions by taking their derivatives with respect to
the variable x. The sum c1 f1 + ·· · + cn fn is called a linear combination of functions, and the
derivative of that linear combination can be taken term by term, with the constant multiples
taken outside the derivatives.

A special case of the above formula is replacing the functions f1, . . ., fn by nonnegative
powers of x, making the sum a polynomial in x. In previous sections the derivatives of a few
polynomials—such as x and x2—were calculated. For the derivative of a general polynomial,
the following rule is needed:

Power Rule:
d

dx

(
xn

)
= n xn−1 for any integer n

There are several ways to prove this formula; one such way being a proof by induction,
which in general means using the following principle:24

Principle of Mathematical Induction

A statement P(n) about integers n ≥ k is true for all n ≥ k if:
1. P(k) is true.

2. If P(n) is true for some integer n ≥ k then P(n+1) is true.

The idea behind mathematical induction is simple: if a statement is true about some initial
integer k (Step 1 above) and if the statement being true for some integer implies it is true for
the next integer (Step 2 above), then the statement being true for k implies it is true for k+1,
which in turn implies it is true for k+2, which implies it is true for k+3, and so forth, making
it true for all integers n ≥ k.

Typically the initial integer k will be 0 or 1. To prove the Power Rule for all integers, first
use induction to prove the rule for all nonnegative integers n ≥ 0, using k = 0 for the initial
integer. For the proof by induction, let P(n) be the statement: d

dx (xn) = n xn−1.

1. Show that P(0) is true.
That means showing that the Power Rule holds for n = 0, i.e. d

dx

(
x0

)
= 0 x0−1 = 0. But

x0 = 1 is a constant, so its derivative is 0. X

24As Bertrand Russell noted, the name is really a misnomer: it is actually a definition of the natural numbers
rather than a principle, and induction technically has a different meaning.
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2. Assuming P(n) is true for some n ≥0, show that P(n+1) is true.
Assuming that d

dx (xn) = n xn−1, show that d
dx

(
xn+1) = (n+1) x(n+1)−1 = (n+1) xn. It was

shown in Section 1.2 that d
dx

(x)= 1, so:

d

dx

(
xn+1) = d

dx

(
x · xn

)

= x · d

dx

(
xn

)
+ xn · d

dx
(x) (by the Product Rule)

= x ·n xn−1 + xn ·1 (by the assumption that P(n) is true)

= n xn + xn = (n+1) xn
X

Thus, by induction, the Power Rule is true for all nonnegative integers n ≥ 0.
To show that the Power Rule is true for all negative integers n < 0, write n =−m, where m

is positive (namely, m = |n|). Then:

d

dx

(
xn

)
= d

dx

(
x−m

)
= d

dx

(
1

xm

)
=

xm · d
dx

(1) − 1 · d
dx (xm)

(xm)2
(by the Quotient Rule)

= xm ·0 − 1 ·m xm−1

x2m
(by the Power Rule for positive integers)

= −m xm−1−2m = m x−m−1 = n xn−1
X

Thus, the Power Rule is true for all integers, which completes the proof. QED

Example 1.7

Find the derivative of f (x)= x4 − 4x3 + 6x2 − 4x + 1.

Solution: Differentiate the polynomial term by term and use the Power Rule:

df

dx
= d

dx

(
x4 − 4x3 + 6x2 − 4x + 1

)

= d

dx

(
x4)

− 4 · d

dx

(
x3)

+ 6 · d

dx

(
x2)

− 4 · d

dx
(x) + d

dx
(1)

= 4x4−1 − 4 ·3x3−1 + 6 ·2x2−1 − 4 ·1 + 0

= 4x3 − 12x2 + 12x − 4

In general, the derivative of a polynomial of degree n ≥ 0 is given by:

For any constants a0, . . ., an with n ≥0:

d

dx

(
anxn + an−1xn−1 · · · + a2x2 + a1x + a0

)
= nanxn−1 + (n−1)an−1xn−2 + ·· · + 2a2x + a1
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A way to remember the Power Rule is: bring the exponent down in front of the variable then
reduce the variable’s original exponent by 1. This works even for negative exponents.

Example 1.8

Find the derivative of f (t) = 3t100 − 2
t100 .

Solution: Differentiate term by term:

df

dt
= d

dt

(
3t100 − 2

t100

)
= d

dt

(
3t100 − 2t−100)

= 3 ·100t99 − 2 ·
(
−100t−101)

= 300t99 + 200

t101

Exercises
A
For Exercises 1-14, use the rules from this section to find the derivative of the given function.

1. f (x) = x2 − x − 1 2. f (x) = x8 + 2x4 + 1

3. f (x) = 2x6

3
− 3

2x6 4. f (x) = sin x + cos x

4

5. f (x) = x sin x 6. f (x) = x2 tan x

7. f (x) = sin x

x
8. f (x) = sin x

x2

9. f (t) = 2t

1+ t2 10. g(t) = 1− t2

1+ t2

11. f (x) = ax+b

cx+d
(a, b, c, d are constants) 12. F(r) = −Gm1m2

r2 (G, m1, m2 are constants)

13. A(r) = πr2 14. V (r) = 4
3
πr3

15. Show that d
dx

(cot x) = −csc2 x. 16. Show that d
dx

(csc x) = −csc x cot x.

B

17. Prove the Difference Rule. 18. Prove the Constant Multiple Rule.

19. Use the Product Rule to show that for three differentiable functions f , g, and h, the derivative of
their product is ( f gh)′ = f ′gh+ f g′h+ f gh′ .

C

20. Provide an alternative proof of the Product Rule for two differentiable functions f and g of x:

(a) Show that (df )(dg) = 0.

(b) By definition, the derivative of the product f · g is

d

dx
( f · g) = f (x+dx) · g(x+dx) − f (x) · g(x)

dx
.

Use that formula along with part (a) to show that d
dx

( f · g) = f · dg

dx
+ g · df

dx
.

(Hint: Recall that df = f (x+dx) − f (x).)
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1.5 The Chain Rule

From what has been discussed so far it might be tempting to think that the derivative of a
function like sin 2x is simply cos 2x, since the derivative of sin x is cos x. It turns out that is
not correct:

d

dx
(sin 2x) = d

dx
(2 sin x cos x) (by the double-angle formula for sine)

= 2
d

dx
(sin x cos x) (by the Constant Multiple Rule)

= 2
(
sin x · d

dx
(cos x) + cos x · d

dx
(sin x)

)
(by the Product Rule)

= 2 (sin x · (−sin x) + cos x ·cos x)

= 2
(
cos2 x − sin2 x

)

= 2 cos 2x (by the double-angle formula for cosine)

So the derivative of sin 2x is 2 cos 2x, not cos 2x.
In other words, you cannot simply replace x by 2x in the derivative formula for sin x. Instead,

regard sin 2x as a composition of two functions: the sine function and the 2x function. That is,
let f (u)= sin u, where the variable u itself represents a function of another variable x, namely
u(x)= 2x. So since f is a function of u, and u is a function of x, then f is a function of x, namely:
f (x) = sin 2x. Since f is a differentiable function of u, and u is a differentiable function of x,
then df

du
and du

dx
both exist (with df

du
= cos u and du

dx
= 2), and multiplying the derivatives shows

that f is a differentiable function of x:

df

✚✚du
·✚
✚du

dx
= df

dx
since the infinitesimals du cancel, so

(cos u) ·2 = df

dx
⇒ df

dx
= 2 cos u = 2 cos 2x

The above argument holds in general, and is known as the Chain Rule:

Chain Rule: If f is a differentiable function of u, and u is a differentiable function of x,
then f is a differentiable function of x, and its derivative with respect to x is:

df

dx
= df

du
· du

dx

Notice how simple the proof is—the infinitesimals du cancel.25

25Some textbooks give dire warnings to not think that du is an actual quantity that can be canceled. However, you
can safely ignore those warnings, because du is just an infinitesimal and hence can be canceled!
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The Chain Rule should make sense intuitively. For example, if df

du
= 4 then that means f is

increasing 4 times as fast as u, and if du
dx

= 3 then u is increasing 3 times as fast as x, so overall
f should be increasing 12= 4 ·3 times as fast as x, exactly as the Chain Rule says.

Example 1.9

Find the derivative of f (x)= sin(x2 + x+1).

Solution: The idea is to make a substitution u= x2 + x+1 so that f (x)= sin u. By the Chain Rule,

df

dx
= df

du
· du

dx

= d

du
(sin u) · d

dx
(x2 + x+1)

= (cos u) · (2x+1)

= (2x+1) cos(x2+ x+1)

after replacing u by its definition as a function of x in the last step; the final answer for the derivative
should be in terms of x, not u.

In the Chain Rule you can think of the function in question as the composition of an “outer”
function f and an “inner” function u; first take the derivative of the “outer” function then
multiply by the derivative of the “inner” function. Think of the “inner” function as a box into
which you can put any function of x, and the “outer” function being a function of that empty
box.

For instance, for the function f (x) = sin(x2 + x+ 1) in the previous example, think of the
“outer” function as sin ✷, where ✷= x2 + x+1 is the “inner” function, so that

f (x) = sin(x2 + x+1)

= sin ✷

df

dx
= (cos ✷) ·

d

dx
✷

=
(
cos x2 + x+1

)
· d

dx
x2 + x+1

= (2x+1) cos(x2 + x+1)

Example 1.10

Find the derivative of f (x)= (2x4−3cos x)10.

Solution: Here the “outer” function is f (✷)=✷
10 and the “inner” function is ✷= u= 2x4 −3cos x:

df

dx
= df

du
· du

dx
= 10✷9 · d

dx
(✷) = 10(2x4 −3cos x)9 (8x3+3sin x)
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Recall that the composition f ◦ g of two functions f and g is defined as ( f ◦ g)(x) = f (g(x)).
Using prime notation the Chain Rule can be written as:

Chain Rule: If g is a differentiable function of x, and f is a differentiable function on the
range of g, then f ◦ g is a differentiable function of x, and its derivative with respect to x is:

( f ◦ g)′(x) = f ′(g(x)) · g′(x)

Using the Chain Rule, the Power Rule can be extended to include exponents that are rational
numbers:26

d

dx

(
xr

)
= r xr−1 for any rational number r

To prove this, let r = m/n, where m and n are integers with n 6= 0. Then y= xr = xm/n = (xm)1/n,
so that yn = xm. Taking the derivative with respect to x of both sides of this equation gives

d

dx

(
yn

)
= d

dx

(
xm

)
, so evaluating the left side by the Chain Rule gives

nyn−1 · dy

dx
= mxm−1

n
(
xm/n

)n−1
· dy

dx
= mxm−1

dy

dx
= mxm−1

nxm−(m/n)
= m

n
xm−1−(m−(m/n)) = m

n
x(m/n)−1 = r xr−1

X

Example 1.11

Find the derivative of f (x)=
p

x.

Solution: Since
p

x = x1/2 then by the Power Rule:

df

dx
= d

dx

(
x1/2

)
= 1

2
x1/2−1 = 1

2
x−1/2 = 1

2
p

x

Example 1.12

Find the derivative of f (x)= 2
3
p

x
.

Solution:
df

dx
= d

dx

(
2
3

x−1/2
)
= 2

3
· −1

2
x−3/2 = − 1

3 x3/2

26It will be shown in Chapter 2 how to define any real number as an exponent. The Power Rule extends to that
case as well.
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Exercises
A
For Exercises 1-18, find the derivative of the given function.

1. f (x) = (1 − 5x)4 2. f (x) = 5(x3 + x − 1)4

3. f (x) =
p

1 − 2x 4. f (x) = (1 − x2)
3
2

5. f (x) =
p

x

x + 1
6. f (x) =

p
x + 1

p
x − 1

7. f (t) =
(

1 − t

1 + t

)4

8. f (x) =
(

x2 + 1
x − 1

)6

9. f (x) = sin2 x 10. f (x) = cos
(p

x
)

11. f (x) = 3tan(5x) 12. f (x) = A cos(ωx + φ) (A, ω, φ are constants)

13. f (x) = sec(x2) 14. f (x) = sin2
(

1
1− x

)
+ cos2

(
1

1− x

)

15. L(β) = 1
√

1 − β2
16. f (x) = 1

πs

(
1 +

(
x− l

s

)2)−1

(s, l are constants)

17. f (x) = cos(cos x) 18. f (x) =
√

1 + p
x

B

19. In a certain type of electronic circuit27 the overall gain Av is given by

Av = Ao

1 − T

where the loop gain T is a function of the open-loop gain Ao.

(a) Show that
dAv

dAo

= 1
1 − T

− Ao

(1 − T)2

d(1−T)
dAo

.

(b) In the case where T is directly proportional to Ao, use part (a) to show that

dAv

dAo

= 1

(1 − T)2
.

(Hint: First show that Ao · d(1−T)
dAo

= −T.)

20. Show that the Chain Rule can be extended to 3 functions: if u is a differentiable function of x, v is
a differentiable function of u, and f is a differentiable function of v, then

df

dx
= df

dv
· dv

du
· du

dx

so that f is a differentiable function of x. Notice that the 3 derivatives are linked together as in a
chain (hence the name of the rule). The Chain Rule can be extended to any finite number of functions
by the above technique.

27This is an example of a current-differencing negative feedback amplifier. See pp.473-479 in SCHILLING, D.L.
AND C. BELOVE, Electronic Circuits: Discrete and Integrated, 2nd ed., New York: McGraw-Hill, Inc., 1979.
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21. In an internal combustion engine, as a piston moves downward the connecting rod rotates the crank
in the clockwise direction, as shown in Figure 1.5.1 below.28

connecting
rod

l

A

B

O

cr
an

k

a

s

θ

piston

Figure 1.5.1

The point A can only move vertically, causing the point B to move around a circle of radius a centered
at the point O, which is directly below the point A and does not move. As the crank rotates it makes
an angle θ with the line OA. Let l = AB and s = OA as in the picture. Assume that all lengths are
measured in centimeters, and let the time variable t be measured in minutes.

(a) Show that s = acos θ +
(
l2 − a2 sin2θ

)1/2
for 0≤ θ ≤π.

(b) The mean piston speed is S̄p = 2LN, where L = 2a is the piston stroke, and N is the rotational

velocity of the crank, measured in revolutions per minute (rpm). The instantaneous piston
velocity is Sp = ds

dt
. Let R = l/a. Show that for 0≤ θ ≤π,

∣∣∣∣
Sp

S̄p

∣∣∣∣ = π

2
sin θ

[
1 + cos θ

(
R2 −sin2θ

)1/2

]
.

28See pp.43-45 in HEYWOOD, J.B., Internal Combustion Engine Fundamentals, New York: McGraw-Hill Inc., 1988.
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1.6 Higher Order Derivatives

The derivative f ′(x) of a differentiable function f (x) can be thought of as a function in its
own right, and if it is differentiable then its derivative—denoted by f ′′(x)—is the second

derivative of f (x) (the first derivative being f ′(x)). Likewise, the derivative of f ′′(x) would
be the third derivative of f (x), written as f ′′′(x). Continuing like this yields the fourth
derivative, fifth derivative, and so on. In general the n-th derivative of f (x) is obtained
by differentiating f (x) a total of n times. Derivatives beyond the first are called higher order

derivatives.

Example 1.13

For f (x)= 3x4 find f ′′(x) and f ′′′(x).

Solution: Since f ′(x)= 12x3 then the second derivative f ′′(x) is the derivative of 12x3, namely:

f ′′(x) = 36x2

The third derivative f ′′′(x) is then the derivative of 36x2, namely:

f ′′′(x) = 72x

Since the prime notation for higher order derivatives can be cumbersome (e.g. writing 50
prime marks for the fiftieth derivative), other notations have been created:

Notation for the second derivative of y=== f (x): The following are all equivalent:

f ′′(x) , f (2)(x) ,
d2 y

dx2 ,
d2

dx2 ( f (x)) , y′′ , y(2) , ÿ , f̈ (x) ,
d2 f

dx2 , D2 f (x)

Notation for the n-th derivative of y=== f (x): The following are all equivalent:

f (n)(x) ,
dn y

dxn
,

dn

dxn
( f (x)) , y(n) ,

dn f

dxn
, Dn f (x)

Notice that the parentheses around n in the notation f (n)(x) indicate that n is not an exponent—
it is the number of derivatives to take. The n in the Leibniz notation dn y

dxn indicates the same
thing, and in general makes working with higher order derivatives easier:

d2 y

dx2
= d

dx

(
dy

dx

)

d3 y

dx3 = d

dx

(
d2 y

dx2

)
= d2

dx2

(
dy

dx

)

...

dn y

dxn
= d

dx

(
dn−1 y

dxn−1

)
= dn−1

dxn−1

(
dy

dx

)
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A natural question to ask is: what do higher order derivatives represent? Recall that the
first derivative f ′(x) represents the instantaneous rate of change of a function f (x) at the value
x. So the second derivative f ′′(x) represents the instantaneous rate of change of the function
f ′(x) at the value x. In other words, the second derivative is a rate of change of a rate of change.

s= 0

s> 0s< 0The most famous example of this is for motion in a straight line:
let s(t) be the position of an object at time t as the object moves along
the line. The motion can take two directions, e.g. forward/backward
or up/down. Take one direction to represent positive position and the other to represent neg-
ative direction, as in the drawing on the right. The (instantaneous) velocity v(t) of the object
at time t is s′(t), i.e. the first derivative of s(t). The acceleration a(t) of the object at time
t is defined as v′(t), the instantaneous rate of change of the velocity. Thus, a(t) = s′′(t), i.e.
acceleration is the second derivative of position. To summarize:

s(t) = position at time t

v(t) = velocity at time t

= ds

dt
= s′(t) = ṡ(t)

a(t) = acceleration at time t

= dv

dt
= v′(t) = v̇(t)

= d

dt

(
ds

dt

)
= d2s

dt2
= s′′(t) = s̈(t)

Example 1.14

Ignoring wind and air resistance, the position s of a ball thrown straight up with an initial velocity of
34 m/s from a starting point 2 m off the ground is given by s(t) =−4.9t2 +34t+2 at time t (measured in
seconds) with s measured in meters. Find the velocity and acceleration of the ball at any time t≥ 0.

Solution: The ball moves in a straight vertical line, first straight up then straight down until it hits the
ground. Its velocity v(t) is

v(t) = ds

dt
= −9.8t + 34 m/s

while its acceleration a(t) is

a(t) = d2s

dt2 = d

dt

(
ds

dt

)
= d

dt
(−9.8t + 34) = −9.8 m/s2,

which is the acceleration due to the force of gravity on Earth.
Note that time t = 0 is the time at which the ball was thrown, so that v(0) is the initial velocity of the
ball. Indeed, v(0)=−9.8(0)+34= 34 m/s, as expected.
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v > 0
a< 0

v < 0
a< 0

v = 0
t= 3.47

s= 0

s= 2
t= 0

Notice in Example 1.14 that the acceleration of the ball is not
only constant but also negative. To see why this makes sense,
first consider the case where the ball is moving upward. The
ball has an initial upward velocity of 34 m/s then slows down
to 0 m/s at the instant it reaches its maximum height above the
ground. So the velocity is decreasing, i.e. its rate of change—the
acceleration—is negative.

The ball reaches its maximum height above the ground when its
velocity is zero, that is, when v(t)=−9.8t+34= 0, i.e. at time t =
34/9.8 = 3.47 seconds after being thrown (see the picture above). The ball then starts moving
downward and its velocity is negative (e.g. at time t = 4 s the velocity is v(4) = −9.8(4)+34 =
−5.2 m/s). Recall that negative velocity indicates downward motion, while positive velocity
means the motion is upward (away from the Earth’s center). So in the case where the ball
begins moving downward it goes from 0 m/s to a negative velocity, with the ball moving faster
towards the ground, which it hits with a velocity of −33.43 m/s (why?). So again the velocity is
decreasing, which again means that the acceleration is negative.

Common terminology involving motion might cause some confusion with the above discus-
sion. For example, even though the ball’s acceleration is negative as it falls to the ground, it
is common to say that the ball is accelerating in that situation, not decelerating (as the ball is
doing while moving upward). In general, acceleration is understood to mean that the mag-

nitude (i.e. the absolute value) of the velocity is increasing. That magnitude is called the
speed of the object. Deceleration means the speed is decreasing.

The first and second derivatives of an object’s position with respect to time represent the
object’s velocity and acceleration, respectively. Do the third, fourth, and other higher order
derivatives have any physical meanings? It turns out they do. The third derivative of posi-
tion is called the jerk of the object. It represents the rate of change of acceleration, and is
often used in fields such as vehicle dynamics (e.g. minimizing jerk to provide smoother brak-
ing). The fourth, fifth, and sixth derivatives of position are called snap, crackle, and pop,
respectively.29

The zero-th derivative f (0)(x) of a function f (x) is defined to be the function f (x) itself:
f (0)(x) = f (x). There is a way to define fractional derivatives, e.g. the one-half derivative

f (1/2)(x), which will be discussed in Chapter 6.
An immediate consequence of the definition of higher order derivatives is:

dm+n

dxm+n
( f (x)) = dm

dxm

(
dn

dxn
( f (x))

)
for all integers m ≥ 0 and n ≥0.

Recall that the factorial n! of an integer n >0 is the product of the integers from 1 to n:

n! = 1 ·2 ·3 · · · · ·n
29Yes, those really are their names, obviously inspired by a certain breakfast cereal. Snap has found some uses in
flight dynamics, e.g. minimizing snap to optimize flight paths of drones.
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For example:

1! = 1 3! = 1 ·2 ·3 = 6

2! = 1 ·2 = 2 4! = 1 ·2 ·3 ·4 = 24

By convention 0! is defined to be 1. The following statement can be proved using induction:

dn

dxn
(xn) = n! for all integers n ≥ 0

Thus,
dn+1

dxn+1

(
xn

)
= d

dx

(
dn

dxn

(
xn

))
= d

dx
(n!) = 0

for all integers n ≥ 0, since n! is a constant. Polynomials are linear combinations of nonnegative
powers of a variable (e.g. x), so the above result combined with the Sum Rule and the Constant
Multiple rule—which also hold for higher-order derivatives—yields this important fact:

The (n+1)-st derivative (“n plus first derivative”) of a polynomial of degree n is 0:

For any polynomial p(x)= a0 + a1x + a2x2 + ·· · + anxn of degree n,
dn+1

dxn+1 (p(x)) = 0.

This is the basis for the commonly-used statement that “any polynomial can be differentiated
to 0” by taking a sufficient number of derivatives. For example, differentiating the polynomial
p(x)= 100x100+50x99 101 times would yield 0 (as would differentiating more than 101 times).

Exercises

A
For Exercises 1-6 find the second derivative of the given function.

1. f (x) = x3 + x2 + x + 1 2. f (x) = x2 sin x 3. f (x) = cos3x

4. f (x) = sin x

x
5. f (x) = 1

x
6. F(r) = Gm1m2

r2

7. Find the first five derivatives of f (x)= sin x. Use those to find f (100)(x) and f (2014)(x).

8. Find the first five derivatives of f (x)= cosx. Use those to find f (100)(x) and f (2014)(x).

9. If an object moves along a straight line such that its position s(t) at time t is directly proportional to
t for all t (written as s∝ t), then show that the object’s acceleration is always 0.

B

10. Use induction to show that dn

dxn (xn) = n! for all integers n≥ 1.

11. Show that for all integers n≥ m ≥ 1, dm

dxm (xn) = n!
(n−m)! xn−m .
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12. Find the general expression for the n-th derivative of f (x)= 1
ax+b

for all constants a and b (a 6= 0).

13. Show that the function y = A cos(ωt+φ) + Bsin(ωt+φ) satisfies the differential equation

d2 y

dt2 + ω2 y = 0

for all constants A, B, ω, and φ.

14. If s(t) represents the position at time t of an object moving along a straight line, then show that:

s′ and s′′ have the same sign ⇒ the object is accelerating

s′ and s′′ have opposite signs ⇒ the object is decelerating

15. For all twice-differentiable functions f and g, show that ( f · g)′′ = f ′′ · g + 2 f ′ · g′ + f · g′′.

C

16. Recall that taking a derivative is a way of operating on a function. That is, think of d
dx

as the
differentiation operator on the collection of differentiable functions, taking a function f (x) to its
derivative function df

dx
:

f (x) df

dx

d
dx

Likewise, d2

dx2 is an operator on twice-differentiable functions, taking a function f (x) to its second

derivative function d2f

dx2 :

f (x) d2f

dx2

d2

dx2

In general, an eigenfunction of an operator A is a function φ(x) such that A(φ(x)) = λ ·φ(x), that is,

φ(x) λ ·φ(x)
A

for all x in the domain of φ, for some constant λ called the eigenvalue of the eigenfunction.

(a) Show for all constants k that φ(x) = cos kx is an eigenfunction of the d2

dx2 operator, and find its

eigenvalue. That is, show that d2

dx2 (φ(x))=λ ·φ(x) for some constant λ (the eigenvalue).

(b) The wave function ψ for a particle of mass m moving in a one-dimensional box of length L, given
by

ψ(x) =
√

2
L

sin
πx

L
for 0 ≤ x ≤ L,

is a solution (assuming zero potential energy) of the time-independent Schrödinger equation

− h2

8π2m

d2ψ

dx2 = Eψ(x)

where h is Planck’s constant and E is a constant that represents the total energy of the wave
function. Find an expression for the constant E in terms of the other constants. Notice that this
makes ψ(x) an eigenfunction of the d2

dx2 operator.



CHAPTER 2

Derivatives of Common Functions

2.1 Inverse Functions

The derivatives calculated in the previous chapter were mostly for polynomials and a few
trigonometric functions. This chapter will show how to find the derivatives of other types of
functions, beginning in this section with inverse functions. The idea here is that if a function
is differentiable and has an inverse then that inverse function is also differentiable.

x

Domain

y

Range

f

y= f (x)

Figure 2.1.1

Recall that a function is a rule that assigns a single object
y from one set (the range) to each object x from another set
(the domain). That rule can be written as y = f (x), where f is
the function (see Figure 2.1.1). There is a simple vertical rule for
determining whether a rule y= f (x) is a function: f is a function
if and only if every vertical line intersects the graph of y = f (x)
in the xy-coordinate plane at most once (see Figure 2.1.2).

y

x

y= f (x)

(a) f is a function

y

x

y= f (x)

(b) f is not a function

Figure 2.1.2 Vertical rule for functions

Recall that a function f is one-to-one (often written as 1−1) if it assigns distinct values
of y to distinct values of x. In other words, if x1 6= x2 then f (x1) 6= f (x2). Equivalently, f is
one-to-one if f (x1) = f (x2) implies x1 = x2. There is a simple horizontal rule for determining
whether a function y = f (x) is one-to-one: f is one-to-one if and only if every horizontal line
intersects the graph of y= f (x) in the xy-coordinate plane at most once (see Figure 2.1.3).

37
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y

x

y= f (x)

(a) f is one-to-one

y

x

y= f (x)

(b) f is not one-to-one

Figure 2.1.3 Horizontal rule for one-to-one functions

If a function f is one-to-one on its domain, then f has an inverse function, denoted by f −1,
such that y= f (x) if and only if f −1(y)= x. The domain of f −1 is the range of f .

The basic idea is that f −1 “undoes” what f does, and vice versa. In other words,

f −1( f (x)) = x for all x in the domain of f , and

f ( f −1(y)) = y for all y in the range of f .

Intuitively it is clear that a function is one-to-one (and hence invertible) when it is either
strictly increasing or strictly decreasing; if the function, say, increases and then decreases (as
in Figure 2.1.3(b)) then the horizontal rule would be violated around that “turning point.” For
differentiable functions a positive derivative means the function is increasing, while a negative
derivative means the function is decreasing (this will be proved in Chapter 3).

However, a function can still be one-to-one even if its derivative is zero only at isolated points
(i.e. not identically zero over an entire interval of points) and either positive everywhere else
or negative everywhere else. For example, the function f (x) = x3 has derivative f ′(x) = 3x2,
which is zero only at the isolated point x = 0 and positive for all other values of x. Clearly
f is one-to-one over the set of all real numbers (why?) and hence it has an inverse function
x= f −1(y)= 3

p
y defined for all real numbers y (i.e. the range of f ).

Thus, having a derivative that is either always positive or always negative is sufficient for a
function to be one-to-one but not necessary. Having a nonzero derivative is necessary, though,
for the inverse function to be differentiable.

In algebra you learned that a
b
= 1

b
a

for all real numbers a 6= 0 and b 6= 0 (and hence b
a
6= 0).

The same holds true for the infinitesimals dy and dx (nonzero by definition) since they can
be treated like numbers, which immediately yields a formula for the derivative of an inverse
function:

Derivative of an Inverse Function: If y = f (x) is differentiable and has an inverse
function x= f −1(y), then f −1 is differentiable and its derivative is

dx

dy
= 1

dy
dx

if
dy

dx
6= 0.

The inverse of a function would still exist at a point where dy
dx

= 0 but it would not be differen-
tiable there, since its derivative would be the undefined quantity 1

0 .
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Since y is a function of x, dy

dx
will be in terms of x and hence 1

dy

dx

will be in terms of x. However,

since (by invertibility) x is a function of y, dx
dy

would normally be in terms of y, not x, so that

the two sides of the equation dx
dy

= 1
dy

dx

are not in the same terms! One way to handle this

discrepancy is to use the formula y = f (x) to solve for x in terms of y then substitute that
expression into dy

dx
, so that dx

dy
= 1

dy

dx

is now in terms of y. That might not always be possible,

however (e.g. try solving for x in the formula y= xsin x).

Example 2.1

Find the inverse f −1 of the function f (x)= x3 then find the derivative of f −1.

Solution: The function y = f (x) = x3 is one-to-one over the set of all real numbers (why?) so it has an
inverse function x = f −1(y) defined for all real numbers, namely x = f −1(y)= 3

p
y.

The derivative of f −1 is

dx

dy
= 1

dy
dx

= 1

3x2 , which is in terms of x, so putting it in terms of y yields

= 1

3
(

3
p

y
)2 = 1

3y2/3

which agrees with the derivative obtained by differentiating x = 3
p

y directly. Note that this derivative
is defined for all y except y= 0, which occurs when x = 3p0= 0, i.e. at the point (x, y)= (0,0).

Functions are often expressed in terms of x, so it is common to see an inverse function also
expressed in terms of x: writing the inverse of f (x) = x3 as f −1(x) = 3

p
x (not as f −1(y) = 3

p
y)),

as confusing as that might be. In that case, the idea is to switch the roles of x and y in the
original function y= f (x), making it x= f (y), and then write y= f −1(x) and use

dy

dx
= 1

dx
dy

to put the derivative of f −1 in terms of x, following the same procedure mentioned earlier.

Example 2.2

Find the inverse f −1 of the function f (x)= x3 then find the derivative of f −1.

Solution: Rewrite y = f (x)= x3 as x = f (y)= y3, so that its inverse function y = f −1(x)= 3px has deriva-
tive

dy

dx
= 1

dx
dy

= 1

3y2 , which is in terms of y, so putting it in terms of x yields

= 1

3
(

3
p

x
)2 = 1

3x2/3

which agrees with the derivative obtained by differentiating y= 3px directly.
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To obtain a formula in prime notation for the derivative of an inverse function, notice that
for all x in the domain of an invertible differentiable function f ,

f −1( f (x)) = x ⇒ d

dx

(
f −1( f (x))

)
= d

dx
(x) ⇒

(
f −1)′ ( f (x)) · f ′(x) = 1

by the Chain Rule, and hence:

(
f −1)′ ( f (x)) = 1

f ′(x)
if f ′(x) 6= 0

Two equivalent ways to write this are:

(
f −1)′ (c) = 1

f ′(a)
where c = f (a) and f ′(a) 6= 0

and

(
f −1)′ (x) = 1

f ′( f −1(x))
if f ′( f −1(x)) 6= 0

Exercises

A
For Exercises 1-8, show that the given function y = f (x) is one-to-one over the given interval, then find
the formulas for the inverse function f −1 and its derivative. Use Example 2.2 as a guide, including
putting f −1 and its derivative in terms of x.

1. f (x)= x, for all x 2. f (x)= 3x, for all x

3. f (x)= x2, for all x ≥ 0 4. f (x)=p
x, for all x ≥ 0

5. f (x)= 1
x
, for all x > 0 6. f (x)= 1

x
, for all x < 0

7. f (x)= 1
x2 , for all x > 0 8. f (x)= x5, for all x

9. The unit circle x2 + y2 = 1 does not define y as a single function of x, since y =±
p

1− x2 defines two
separate functions. But the part of the unit circle in the first quadrant, i.e. for 0≤ x ≤ 1 and 0≤ y≤ 1,
does define y = f (x) =

p
1− x2 as a single function of x that is one-to-one on the interval [0,1]. Find

the formulas for its inverse function f −1 and its derivative.

B

10. Show that if f is differentiable and invertible, and if f −1 is twice-differentiable, then

(
f −1)′′

(x) = − f ′′( f −1(x))
(
f ′( f −1(x))

)3
.
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2.2 Trigonometric Functions and Their Inverses

The graphs of the six trigonometric functions are shown in Figure 2.2.1:
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y

0

1

−1

π
2

π 3π
2

2π

(a) y = sin x

x

y

0

1

−1

π
2

π 3π
2

2π

(b) y = cos x

x

y

0−π
2

π
2

(c) y = tan x

x

y

0

1

−1
π
2

π 3π
2

2π

(d) y = csc x

x

y

0

1

−1
π
2

π 3π
2

2π

(e) y = sec x

x

y

0
π
2

π

(f) y = cot x

Figure 2.2.1 Graphs of the six trigonometric functions

Recall that sin x, cos x, csc x, and sec x have a period of 2π (i.e. repeat the same values every
2π radians), while tan x and cot x have a period of π.

The derivatives of the six trigonometric functions—given in Section 1.4—are:

d

dx
(sin x) = cos x

d

dx
(csc x) = −csc x cot x

d

dx
(cos x) = −sin x

d

dx
(sec x) = sec x tan x

d

dx
(tan x) = sec2 x

d

dx
(cot x) = −csc2 x

The six trigonometric functions are not one-to-one over their entire domains, but recall from
trigonometry that they are one-to-one when restricted to smaller domains, and hence have
inverse functions, called the inverse trigonometric functions.
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For example, y= sin x is one-to-one over the interval
[
−π

2 , π2
]
, as shown in Figure 2.2.2 below:

x

y

0

−1

1

π
2

π−π
2

−π

y= sin x

Figure 2.2.2 y= sin x is one-to-one with x restricted to
[
−π

2 , π2
]

Similarly, recall that cos x is one-to-one over [0,π], tan x is one-to-one over (−π/2,π/2), csc x

is one-to-one over (−π/2,0)∪ (0,π/2), sec x is one-to-one over (0,π/2)∪ (π/2,π), and cot x is one-
to-one over (0,π). Hence, the inverse trigonometric functions sin−1 x, cos−1 x, tan−1 x, csc−1 x,
sec−1 x and cot−1 x are defined,1 with the following domains and ranges:

function sin−1 x cos−1 x tan−1 x csc−1 x sec−1 x cot−1 x

domain [−1,1] [−1,1] (−∞,∞) |x| ≥ 1 |x| ≥ 1 (−∞,∞)

range [−π
2 , π2 ] [0,π]

(
−π

2 , π2
) (

−π
2 ,0

)
∪

(
0, π2

) (
0, π2

)
∪

(
π
2 ,π

)
(0,π)

The graphs of all six inverse trigonometric functions are shown in Figures 2.2.3 and 2.2.4
below:

x

y

0

−π
2

π
2

1−1

(a) y = sin−1 x

x

y

0

π

1−1

(b) y = cos−1 x

x

y

0

π
2

−π
2

(c) y = tan−1 x

Figure 2.2.3 Graphs of sin−1 x, cos−1 x, tan−1 x

1The arc notation arcsin x, arccos x, arctan x, arccsc x, arcsec x, arccot x is often used in place of sin−1 x, cos−1 x,
tan−1 x, csc−1 x, sec−1 x, cot−1 x, respectively.
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x

y

0

π
2

−π
2

1−1

(a) y = csc−1 x

x

y

0

π

π
2

1−1

(b) y = sec−1 x

x

y

0

π

π
2

(c) y = cot−1 x

Figure 2.2.4 Graphs of csc−1 x, sec−1 x, cot−1 x

The derivatives of the six inverse trigonometric functions are:

d

dx
(sin−1 x) = 1

p
1− x2

(for |x| < 1)
d

dx
(csc−1 x) = − 1

|x|
p

x2 −1
(for |x| > 1)

d

dx
(cos−1 x) = − 1

p
1− x2

(for |x| < 1)
d

dx
(sec−1 x) = 1

|x|
p

x2 −1
(for |x| > 1)

d

dx
(tan−1 x) = 1

1+ x2

d

dx
(cot−1 x) = − 1

1+ x2

For the derivative of cos−1 x, recall that y= cos−1 x is an angle between 0 and π radians, defined
for −1≤ x≤ 1. Since cos y= x by the definition of y, then dx

dy
=−sin y and

sin2 y = 1−cos2 y = 1− x2 ⇒ sin y = ±
√

1− x2 =
√

1− x2

since 0≤ y≤π (which means sin y must be nonnegative). Thus:

d

dx
(cos−1 x) = dy

dx
= 1

dx
dy

= 1
−sin y

= − 1
p

1− x2
X

For the derivative of sec−1 x, since y = sec−1 x is defined for |x| ≥ 1, then 0 ≤ y < π/2 for x ≥ 1
and π/2 < y ≤ π for x ≤ −1. Recall also that sec y and tan y are both positive when 0 < y < π/2
and are both negative when π/2< y<π. So in both cases the product sec y tan y is nonnegative,
i.e. sec y tan y= |sec y tan y|. Thus, since sec y= x and

1 + tan2 y = sec2 y ⇒ tan2 y = sec2 y − 1 ⇒ tan y = ±
√

sec2 y − 1 = ±
√

x2 −1

then for |x| > 1:

d

dx
(sec−1 x) = dy

dx
= 1

dx
dy

= 1
sec y tan y

= 1
|sec y tan y| = 1

∣∣x
p

x2 −1
∣∣ = 1

|x|
p

x2 −1
X
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The proofs of the derivative formulas for the remaining inverse trigonometric functions are
similar, and are left as exercises.

Example 2.3

Find the derivative of the function y= 3 tan(π−2x).

Solution: By the Chain Rule with u= π−2x, the derivative of y= 3 tan(π−2x)= 3 tan u is:

dy

dx
= dy

du
· du

dx
=

(
3 sec2 u

)
(−2) = −6 sec2 (π−2x)

Example 2.4

Find the derivative of the function y= sin−1 (x/4).

Solution: By the Chain Rule with u= x/4, the derivative of y = sin−1 (x/4)= sin−1 u is:

dy

dx
= dy

du
· du

dx
= 1

p
1−u2

· 1
4

= 1

4
√

1− (x2/16)
= 1

p
16− x2

Exercises

A
For Exercises 1-16, find the derivative of the given function y= f (x).

1. y = sec2 3x 2. y = csc(x2+1) 3. y = cot3x 4. y = cos(tan x)

5. y = tan−1(x/3) 6. y = sec−1(x2+1) 7. y = cot−1 3x 8. y = cos−1 (sin x)

9. y = cot−1(1/x) 10. y = tan−1px 11. y =
(
sin−1 3x

)2
12. y = tan−1 1

x
+ tan−1 x

13. y = tan−1 x−1
x+1 14. y = x sin−1(2x+1) 15. y = x cot−1 x 16. y = tan−1 1

x
+cot−1 x

17. Find the derivative of y = sin−1 x + cos−1 x . Explain why no derivative formulas were needed.

B
For Exercises 18-21 prove the given derivative formula.

18.
d

dx
(sin−1 x) = 1

p
1− x2

19.
d

dx
(tan−1 x) = 1

1+ x2

20.
d

dx
(cot−1 x) = − 1

1+ x2 21.
d

dx
(csc−1 x) = − 1

|x|
p

x2−1

22. The Chebyshev polynomials Tn(x)= cos(n cos−1 x) are defined for all |x| ≤ 1 and n= 0,1,2, . . ..

(a) Show that the Chebyshev polynomials Tn(x) satisfy the differential equation

(1− x2) T ′′
n(x) − x T ′

n(x) + n2 Tn(x) = 0

(b) Find polynomial expressions for T0(x), T1(x) and T2(x).

(c) Show that Tn+1(x) + Tn−1(x) = 2x Tn(x) for all n≥ 1. (Hint: Write θ = cos−1 x so that cosθ = x)
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2.3 The Exponential and Natural Logarithm Functions

Functions of the form ax, where the exponent x varies, are called exponential functions. Unless
otherwise noted, assume that a > 0 (0x is just 0, and (−1)1/2 is not a real number). You already
know how ax is defined when the exponent x is a rational number (i.e. x= m/n where m and n

are integers, n 6= 0). But what if x were irrational, such as
p

2? What would 3
p

2 mean?
The idea is that

p
2= 1.414213562. . . can be approximated by rational numbers 14/10= 1.4,

141/100 = 1.41, 1414/1000 = 1.414, 14142/10000 = 1.4142, and so on, taking larger and larger
numerators and denominators in the rational approximations to get more and more decimal
places of

p
2. Then 3

p
2 would be the number that 3 raised to those rational approximations

approaches:
3
p

2 = lim
m/n→

p
2

m/n rational

3m/n

Each quantity 3m/n is defined inside the above limit, and as the rational numbers m/n get
closer to the value of

p
2 it can be shown the limit of the values of 3m/n will exist:2

31.4 = 3
14
10 = 4.65553672174608

31.41 = 3
141
100 = 4.70696500171657

31.414 = 3
1414
1000 = 4.72769503526854

31.4142 = 3
14142
10000 = 4.72873393017119

31.41421 = 3
141421
100000 = 4.72878588090861

31.414213 = 3
1414213
1000000 = 4.72880146624114

...
...

31.414213562... = 3
p

2 = 4.72880438783742

Of course you would never do all this by hand—you would simply use a computer or calculator,
which use much more efficient algorithms for calculating powers in general.3

All the usual rules of exponents that you learned in algebra apply to ax when defined in
the manner described above, with a > 0 and x varying over all real numbers. Of all the pos-
sible values for the base a, the one that appears the most in mathematics, the sciences and
engineering is the base e, defined as:

e = lim
x→∞

(
1 + 1

x

)x

(2.1)

The approximate value of is e = 2.71828182845905. . . (often called the Euler number).

2For the general case see pp.61-63 in FRANKLIN, P., A Treatise on Advanced Calculus, New York: Dover Publica-
tions, Inc., 1964.

3For example, to see how square roots and cube roots are calculated see Chapter 2 in FIKE, C.T., Computer

Evaluation of Mathematical Functions, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1968.
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The limit in this definition means that as x becomes larger—approaching infinity (∞)—the
values of

(
1 + 1

x

)x
approach a number, denoted by e. More decimal places for e can be obtained

by making x sufficiently large.4 For example, when x = 5×106 the value is 2.718281555200129.
For extremely large values of x, that is, when x ≫ 1 (the symbol ≫ means “much larger than”),

e ≈
(
1 + 1

x

)x

⇒ e1/x ≈
((

1 + 1
x

)x)1/x

= 1 + 1
x

⇒
(
e1/x − 1

)
x ≈

(
1
x

)
x = 1 ,

so letting h =1/x, and noting that h = 1/x→ 0 if and only if x →∞, yields the useful limit:5

lim
h→0

eh − 1
h

= 1 (2.2)

Using the above limit, the derivative of y= ex can be found:

d

dx

(
ex

)
= ex

Proof: Using the limit definition of the derivative for f (x)= ex,

d

dx

(
ex

)
= lim

h→0

f (x+h) − f (x)
h

= lim
h→0

ex+h − ex

h

= lim
h→0

ex
(
eh − 1

)

h
= ex · lim

h→0

eh − 1
h

(since ex does not depend on h)

= ex · 1 = ex

QED

In general, for a differentiable function u = u(x) as the exponent the Chain Rule yields:

d

dx

(
eu

)
= eu · du

dx

Example 2.5

Find the derivative of y= 4e−x2
.

Solution:
dy

dx
= 4e−x2 · d

dx
(−x2) = 4e−x2 · (−2x) = −8xe−x2

4It will be shown in Chapter 9 that this limit does in fact exist.
5This is admittedly a “hand waving” argument. In Chapter 3 a more exact method will be discussed for proving

limits like this one.
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The function ex is often referred to simply as the exponential function, even though there
are obviously many exponential functions. What makes the base e so special? Take y= Aekt to
represent the amount of some physical quantity at time t, for some constants A and k. Then

dy

dt
= d

dt

(
Aekt

)
= k · Aekt = ky ,

which says that the instantaneous rate of change of the quantity is directly proportional to

the amount present at that instant. It turns out that many physical quantities exhibit that
behavior, some of which will be discussed shortly. Conversely, in Chapter 5 it will be shown
that any solution to the differential equation dy

dt
= ky must be of the form y = Aekt for some

constant A. This is what gives the exponential function its special significance.
Let f (x)= ex be the exponential function. Then f (x)> 0 for all x and f ′(x) = f (x)= ex > 0 for

all x, and so f (x) is strictly increasing. The graph is shown in Figure 2.3.1.

x

y

0

1

y= ex

Figure 2.3.1 The exponential function

x

y

0 1

y= ln x

Figure 2.3.2 Natural logarithm function

Thus, the exponential function is one-to-one over the set of all real numbers and hence has
an inverse function, called the natural logarithm function, denoted (as a function of x) as
f −1(x) = ln x. The graph is shown in Figure 2.3.2. Below is a summary of the relationship
between ex and ln x:

domain of ln x = all x> 0 = range of ex

range of ln x = all x = domain of ex

y = ex if and only if x = ln y (2.3)

eln x = x for all x> 0 (2.4)

ln
(
ex

)
= x for all x (2.5)

The reader should be aware that many—if not most—fields outside of mathematics use the
notation log x instead of ln x for the natural logarithm function.6

6This text almost used log x as well, prevented only by the desire for compatibility with other mathematics texts.
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From algebra you should be familiar with the following properties of the natural logarithm,
along with their equivalent properties in terms of the exponential function:7

ln(ab) = ln a + ln b ea · eb = ea+b

ln
(a

b

)
= ln a − ln b

ea

eb
= ea−b

ln ab = b ln a
(
ea

)b = eab

ln 1 = 0 e0 = 1

To find the derivative of y= ln x, use x = ey:

dy

dx
= 1

dx
dy

= 1
d
dy (ey)

= 1
ey

= 1
x

Hence:

d

dx
(ln x) = 1

x

In general, for a differentiable function u = u(x), the Chain Rule yields:

d

dx
(ln u) = 1

u
· du

dx
= u′

u

Example 2.6

Find the derivative of y= ln
(
x2+3x−1

)
.

Solution:
dy

dx
= 1

x2+3x−1
· d

dx
(x2+3x−1) = 2x+3

x2 +3x−1

Recall that |x| = −x for x< 0, in which case ln(−x) is defined and

d

dx
(ln |x|) = d

dx
(ln(−x)) = 1

−x
· (−1) = 1

x
.

7Note that when using the formula ln
(

a
b

)
= ln a − ln b in numerical computations—especially on hand-held

calculators—it is preferable to use the left side of the equation, i.e. ln
(

a
b

)
, since the right side ln a− ln b is vulner-

able to the problem of subtractive cancellation, which can give an incorrect answer of 0 if a and b are nearly equal.
For a discussion of subtractive cancellation see § 1.3 in HENRICI, P., Essentials of Numerical Analysis, with Pocket

Calculator Demonstrations, New York: John Wiley & Sons, Inc., 1982.
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Combine that result with the derivative d
dx

(ln x)= 1
x

for x> 0 to get:

d

dx
(ln |x|) = 1

x

Logarithmic Differentiation

For some functions it is easier to differentiate the natural logarithm of the function
first and then solve for the derivative of the original function. This technique is called
logarithmic differentiation, demonstrated in the following two examples.

Example 2.7

Find the derivative of y= xx.

Solution: For this example assume x > 0 (since x is both the base and the exponent). Note that you
cannot use the Power Rule for this function since the exponent x is a variable, not a fixed number.
Instead, take the natural logarithm of both sides of the equation y = xx and then take the derivative of
both sides and solve for y′:

ln y = ln
(
xx

)
= x · ln x

d

dx
(ln y) = d

dx
(x · ln x)

y′

y
= 1 · ln x + x · 1

x

y′ = y (ln x + 1) = xx (ln x + 1)

Example 2.8

Find the derivative of y= (2x+1)7(3x3−7x+6)4

(1+sin x)5
.

Solution: Use logarithmic differentiation by taking the natural logarithm of y and then use properties
of logarithms to simplify the differentiation before solving for y′:

ln y = ln
(

(2x+1)7(3x3 −7x+6)4

(1+sin x)5

)
= ln

(
(2x+1)7(3x3−7x+6)4)

− ln
(
(1+sin x)5)

= ln
(
(2x+1)7)

+ ln
(
(3x3−7x+6)4)

− ln
(
(1+sin x)5)

d

dx
(ln y)= d

dx

(
7 ln(2x+1) + 4 ln(3x3−7x+6) − 5 ln(1+sin x)

)

y′

y
= 7 · 2

2x+1
+ 4 · 9x2−7

3x3 −7x+6
− 5 · cos x

1+sin x

y′ = y ·
(

14
2x+1

+ 36x2−28

3x3 −7x+6
− 5cos x

1+sin x

)

= (2x+1)7(3x3−7x+6)4

(1+sin x)5 ·
(

14
2x+1

+ 36x2 −28
3x3−7x+6

− 5cos x

1+sin x

)
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Radioactive decay

A classic example of the differential equation dy

dt
= ky is the case of exponential decay

of a radioactive substance, often referred to simply as radioactive decay. In this case
the general solution y = Aekt represents the amount of the substance at time t ≥ 0,
and the decay constant k is negative: dy

dt
< 0 since the substance is decaying (i.e. the

amount of substance is decreasing) while y> 0 , so dy

dt
= ky implies that k < 0.

y

t
0

A0

1
2 A0

y = A0ekt (k < 0)

tH

Figure 2.3.3

The constant A is the initial amount of the
substance, i.e. the amount at time t = 0: y(0)=
Ae0t = Ae0 = A. For this reason A is some-
times denoted by A0. The constant k turns
out to be related to the half-life of the sub-
stance, defined as the time tH required for
half the current amount of substance to de-
cay (see Figure 2.3.3).

You might be tempted to think that the
half-life is not a constant, that it might change
depending on the amount of substance present.
For example, perhaps it would take longer
for 100 g of the substance to decay to 50 g than it would for 10 g to decay to 5 g. How-
ever, this is not so. To see why, pick any t ≥ 0 as the current time, so that y(t) = A0ekt

is the current amount of the substance. By definition, that amount should be halved
when the time tH has passed, that is, y(t+ tH) = 1

2 y(t). Then tH does turn out to be
independent of the initial amount A0 and depends only on k, since

y(t+ tH) = 1
2

y(t) ⇒ A0ek(t+tH ) = 1
2

A0ekt ⇒ ✚✚A0✚
✚ekt · ektH = 1

2✚
✚A0✚

✚ekt

⇒ ektH = 1
2

⇒ ktH = ln
(
1
2

)
= − ln 2

and so:

tH = − ln 2
k

and k = − ln 2
tH

(2.6)

Example 2.9

Suppose that 5 mg of a radioactive substance decays to 3 g in 6 hours. Find the half-life of the substance.

Solution: Consider A0 = 5 mg as the initial amount, so that y(t) = 5ekt is the amount at time t≥ 0 hours.
Use the given information that y(6)= 3 mg to find k, the decay constant of the substance:

3 = y(6) = 5ek6 ⇒ 6k = ln
(

3
5

)
⇒ k = 1

6
ln 0.6
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Then the half-life tH is:

tH = − ln 2
k

= − ln 2
1
6 ln 0.6

= 8.14 hours

Note in the above example that the given time t = 6 was used for finding the constant
k and then the half-life tH . For the converse problem—given the half-life find the time
required for a certain amount to decay—you would do the opposite: use the given tH

to find k and then solve for the required time t from the equation y(t)= A0ekt.

Example 2.10

Another example of the differential equation dy

dt
= ky is exponential growth of cell bacteria, in which

case k > 0 since the number of cells y(t) at time t is increasing.

Example 2.11

V C

R

I(t)

Figure 2.3.4

Another example is for the current I in a simple series electric
circuit with a constant direct current (DC) source of voltage V , a
capacitor with capacitance C, a resistor with resistance R, and a
switch, as in Figure 2.3.4. If the capacitor is initially uncharged
when the switch is open, and if the switch is closed at time t = 0,
then the current I(t) through the circuit at time t ≥ 0 satisfies (by
Kirchoff ’s Second Law) the differential equation

RC
dI

dt
+ I = 0 ⇒ dI

dt
= − I

RC

so that I(t) = I0e−t/RC where I0 is the initial current at t= 0. Ohm’s Law says that V = I0R, so

I(t) = V

R
e−t/RC

is the current at time t≥ 0, which decreases exponentially.

Example 2.12

In the previous examples the quantities that decayed or grew exponentially did so as functions of
time. There are other possible variables besides time, though. For example, the atmospheric pres-
sure p measured as a function of height h above the surface of the Earth satisfies—assuming constant
temperature—the differential equation

dp

dh
= −w0

p0
p

where p0 is the pressure at height h= 0 (i.e. ground level) and w0 is the weight of a cubic foot of air at
pressure p0 (with air pressure measured in lbs per square foot and height measured in feet). Thus,

p(h) = p0 e
− w0

p0
h

.

So the atmospheric pressure decreases exponentially as the height above the ground increases.
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Exercises
A
For Exercises 1-12, find the derivative of the given function.

1. y = e2x 2. y = xex2
3. y = e−x − ex

4. y = esin x 5. y = 1 + ex

1 − ex
6. y = 1

1 + e−2x

7. y = eex
8. y = e2 ln x 9. y = ln(3x)

10. y = ln(x2 + 2x + 1)4 11. y =
(
ln(tan x2)

)3
12. y = ln(ex + e2x)

13. Show that
d

dx
(ln(kx)) = 1

x
for all constants k > 0.

14. Show that
d

dx
(ln (xn)) = n

x
for all integers n≥ 1.

For Exercises 15-18, use logarithmic differentiation to find dy

dx
.

15. y = xx2
16. y = xln x 17. y = xsin x 18. y = (x+2)8 (3x−1)7

(1−5x)4

B

19. Suppose it takes 8 hours for 30% of a radioactive substance to decay. Find the half-life of the
substance.

20. The radioactive isotope radium-223 has a half-life of 11.43 days. How long would it take for 3 kg of
radium-223 to decay to 1 kg?

21. If a certain cell population grows exponentially—i.e. is of the form A0ekt with k > 0—and if the
population doubles in 6 hours, how long would it take for the population to quadruple?

For Exercises 22-25, use induction to prove the given formula for all n≥ 0.

22.
dn

dxn

(
ekx

)
= kn ekx (any constant k 6= 0) 23.

dn

dxn
(x ex) = (x+n) ex

24.
dn

dxn
(x e−x) = (−1)n(x−n) e−x 25.

dn+1

dxn+1 (xn ln x) = n!
x

26. Show that f ′(x) = f (x) (1− f (x)) for the sigmoid neuron function f (x) = 1
1+ e−x

. This derivative

relation is used in neural network learning algorithms.

27. If y = Ce−κt cos
(p

n2 −κ2 t + γ
)

then show that

d2 y

dt2 + 2κ
dy

dt
+ n2 y = 0

for all constants C, n, κ, γ, with 0≤ κ≤ n.

C

28. Suppose that ey + ex = ey+x. Show that dy

dx
=−ey−x.

29. For an infinitesimal dx show that edx = 1 + dx. (Hint: Use d
dx

(ex)= ex.)

30. For an infinitesimal dx show that ln(1+dx) = dx.
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2.4 General Exponential and Logarithmic Functions

For a general exponential function y = ax, with a > 0, use logarithmic differentiation
to find its derivative:

ln y = ln
(
ax

)
= x ln a

d

dx
(ln y) = d

dx
(x ln a) = ln a

y′

y
= ln a ⇒ y′ = y · ln a

Thus, the derivative of y= ax is:

d

dx

(
ax

)
= (ln a) ax

In general, for an exponent of the form u = u(x):

d

dx

(
au

)
= (ln a) au · du

dx

Example 2.13

Find the derivative of y= 2cos x.

Solution: This is the case where a= 2, so:

dy

dx
= (ln 2) 2cos x · d

dx
(cosx) = −(ln 2) (sin x) 2cos x

Note that any exponential function y= ax can be expressed in terms of the exponen-
tial function ex. Since

ax > 0 ⇒ eln(ax) = ax ,

and since ln(ax)= x ln a, then:

ax = ex ln a

Computers and calculators often use the above formula to calculate ax.
The function y = ax has an inverse for any a > 0, except for a = 1 (in that case

y= 1x = 1 is just a constant function). To see this, notice that since ax > 0 for all x, and
ln a< 0 for 0< a< 1, while ln a> 0 for a> 1, then dy

dx
= (ln a)ax is always negative if
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0 < a < 1 and always positive if a > 1. Thus, y = ax is a strictly decreasing function if
0 < a < 1, and it is a strictly increasing function if a > 1. The graphs in each case are
shown in Figure 2.4.1.

x

y

0

1

a> 1

a< 1

Figure 2.4.1 y= ax

x

y

0 1

a> 1

a< 1

Figure 2.4.2 y= loga x

Hence, for any a > 0 with a 6= 1 the function f (x) = ax is one-to-one, so it has an
inverse function, called the base a logarithm and denoted by f −1(x) = loga x. It is
often spoken as “log base a of x”. The graphs for a < 1 and a > 1 are shown in Figure
2.4.2. Note that the natural logarithm is just the base a logarithm in the special case
with a= e, i.e. ln x= loge x. The base a logarithm has properties similar to those of the
natural logarithm (and the corresponding properties of ax):

loga (bc) = loga b + loga c ab ·ac = ab+c

loga

(
b

c

)
= loga b − loga c

ab

ac
= ab−c

loga bc = c loga b
(
ab

)c
= abc

loga 1 = 0 a0 = 1

Note that loga x can be put in terms of the natural logarithm, since

x = aloga x ⇒ ln x = ln
(
aloga x

)
= (loga x) · (ln a)

so dividing the last expression by ln a gives:

loga x = ln x

ln a

The above formula is useful on calculators that do not have a loga x key or function.
Taking the derivative of both sides yields:
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d

dx

(
loga x

)
= 1

x ln a

In general, when taking the logarithm of a function u = u(x):

d

dx

(
loga u

)
= 1

u ln a
· du

dx
= u′

u ln a

Example 2.14

Find the derivative of y= log2(cos 4x).

Solution: This is the case where a= 2, so:

dy

dx
= 1

(cos 4x) (ln 2)
· d

dx
(cos 4x) = − 4sin 4x

(ln 2)(cos 4x)

The number a is the base of both the logarithm function loga x and the exponential
function ax. Base 2 and base 10 are the most commonly used bases other than base
e. Base 10 is how numbers are normally expressed, as combinations of powers of 10
(e.g. 2014= 2 ·103 + 0 ·102 + 1 ·101 + 4 ·100). Base 2 is especially useful in computer
science, since computers represent all numbers in binary format, i.e. as a sequence
of zeros and ones, indicating how many successive powers of two to take and then
sum up.8 For example, the number 6 is represented in binary format as 110, since
1 ·22 + 1 ·21 + 0 ·20 = 4+2+0= 6.

Exercises

A
For Exercises 1-9, find the derivative of the given function.

1. y = 3x + 3−x

2
2. y= 2ln 3x 3. y = 22x

4. y = tan−1πx 5. y= log2 (x2+1) 6. y = log10 ex

7. y = sin
(
log2 πx

)
8. y= log2 42x 9. y = 8log2 x

B

10. Show that for all constants k the function y = Aa
kx

ln a satisfies the differential equation dy
dx

= ky.
Does this contradict the statement made in Section 2.3 that the only solution to that differential
equation is of the form y= Aekx? Explain your answer.

8Binary notation leads to the joke “There are 10 kinds of people in the world: those who understand binary and
those who do not.”



CHAPTER 3

Topics in Differential Calculus

3.1 Tangent Lines

Everyone knows that the Earth is not flat, but locally, e.g. in your immediate vicinity,
isn’t the Earth effectively flat? In other words, “flat” is a fairly good approximation of
the Earth’s surface “near” you, and it simplifies matters enough for you to do some
useful things.

This idea of approximating curved shapes by straight shapes is a frequent theme
in calculus. Recall from Chapter 1 that by the Microstraightness Property a differen-
tiable curve y = f (x) actually is a straight line over an infinitesimal interval, having
slope dy

dx
. The extension of that line to all values of x is called the tangent line:

For a curve y= f (x) that is differentiable at x = a, the tangent line to the curve at
the point P = (a, f (a)) is the unique line through P with slope m= f ′(a). P is called
the point of tangency. The equation of the tangent line is thus given by:

y − f (a) = f ′(a) · (x−a) (3.1)

y

x

P
y = f (x)

tangent
line

a

slope = f ′(a)

Figure 3.1.1 Tangent line

Figure 3.1.1 on the right shows the tangent line
to a curve y = f (x) at a point P. If you were to look
at the curve near P with a microscope, it would look
almost identical to its tangent line through P. Why
is this line—of all possible lines through P—such a
good approximation of the curve near P? It is be-
cause at the point P the tangent line and the curve
both have the same rate of change, namely, f ′(a).
So the curve’s values and the line’s values change
by roughly the same amount slightly away from P

(where the line and curve have the same value), making their values nearly equal.

56
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Example 3.1

x

y

1

1

−1

0

(1,1)

y= x2

y= 2x−1

Figure 3.1.2

Find the tangent line to the curve y= x2 at x = 1.

Solution: By formula (3.1), the equation of the tangent line is

y − f (a) = f ′(a) · (x−a)

with a = 1 and f (x) = x2. So f (a) = f (1) = 12 = 1. Both the curve
y= x2 and the tangent line pass through the point (1, f (1))= (1,1). The
derivative of f (x) = x2 is f ′(x) = 2x, so f ′(a) = f ′(1) = 2(1) = 2, which
is the slope of the tangent line at (1,1). Hence, the equation of the
tangent line is y−1 = 2(x−1), or (in slope-intercept form) y= 2x−1.

The curve and tangent line are shown in Figure 3.1.2. Near the point
(1,1) the curve and tangent line are close together, but the separation
grows farther from that point, especially in the negative x direction.

In trigonometry you probably learned about tangent lines to circles,
where a tangent line is defined as the unique line that touches the cir-
cle at only one point, as in the figure on the right. In this case the tangent
line is always on one side of the circle, namely, the exterior of the circle;
it does not cut through the interior of the circle. In fact, that definition is a special
case of the calculus definition. In general, though, the tangent line to any other type
of curve will not necessarily be on only one side of the curve, as it was in Example 3.1.

Example 3.2

x

y

(0,0)

y= x3

y= 0

Figure 3.1.3

Find the tangent line to the curve y= x3 at x = 0.

Solution: Use formula (3.1) with a= 0 and f (x)= x3. Then f (a)= f (0)=
03 = 0. The derivative of f (x)= x3 is f ′(x)= 3x2, so f ′(a)= f ′(0)= 3(0)2 =
0. Hence, the equation of the tangent line is y−0= 0(x−0), which is
y= 0. In other words, the tangent line is the x-axis itself.

As shown in Figure 3.1.3, the tangent line cuts through the curve. In
general it is possible for a tangent line to intersect the curve at more
than one point, depending on the function.

Example 3.3

x

y
y= sin xy= x

(0,0)

Figure 3.1.4

Find the tangent line to the curve y= sin x at x = 0.

Solution: Use formula (3.1) with a= 0 and f (x)= sin x. Then f (a)=
f (0) = sin 0 = 0. The derivative of f (x) = sin x is f ′(x) = cos x, so
f ′(a) = f ′(0) = cos 0 = 1. Hence, the equation of the tangent line is
y−0= 1(x−0), which is y = x, as in Figure 3.1.4. Near x = 0, the
tangent line y= x is close to the line y = sin x, which was shown in
Section 1.3 (namely, sin dx = dx, so that sin x ≈ x for x ≪ 1).
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There are several important things to note about tangent lines:

• The slope of a curve’s tangent line is the slope of the curve.
Since the slope of a tangent line equals the derivative of the curve at the point of
tangency, the slope of a curve at a particular point can be defined as the slope of
its tangent line at that point. So curves can have varying slopes, depending on the
point, unlike straight lines, which have a constant slope. An easy way to remember
all this is to think “slope = derivative.”

• The tangent line to a straight line is the straight line itself.
This follows easily from the definition of a tangent line, but is also easy to see with
the “slope = derivative” idea: a straight line’s slope (i.e. derivative) never changes,
so its tangent line—having the same slope—will be parallel and hence must coincide
with the straight line (since they have the points of tangency in common). For
example, the tangent line to the straight line y = −3x+2 is y = −3x+2 at every
point on the straight line.

• The tangent line can be thought of as a limit of secant lines.
A secant line to a curve is a line that passes through two points on the curve.
Figure 3.1.5 shows a secant line LPQ passing through the points P = (x0, f (x0)) and
Q = (w, f (w)) on the curve y= f (x),

y

x

y= f (x)
LPQ

P

Q

TP

x0

f (x0)

w

f (w)

Figure 3.1.5 Secant line LPQ approaching the tangent line TP as Q → P

As the point Q moves along the curve toward P, the line LPQ approaches the tan-
gent line TP at the point P, provided the curve is smooth at P (i.e. f ′(x0) exists).
This is because the slope of LPQ is ( f (w)− f (x0))/(w− x0), and so

lim
Q→P

(
slope of LPQ

)
= lim

w→x0

f (w) − f (x0)
w − x0

= f ′(x0) = slope of TP

which means that as Q approaches P the “limit” of the secant line LPQ has the same
slope and goes through the same point P as the tangent line TP .
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• Smooth curves have tangent lines, nonsmooth curves do not.

For example, think of the absolute value function f (x) = |x|. Its graph has a sharp
edge at the point (0,0), making it nonsmooth there, as shown in Figure 3.1.6(a)
below. There is no real way to define a tangent line at (0,0), because as mentioned
in Section 1.2, the derivative of f (x) does not exist at x= 0. The same holds true for
curves with cusps, as in Figure 3.1.6(b).

x

y

0

y= |x|

(a) f (x)= |x|

y= f (x)

(b) Curve with a cusp

Figure 3.1.6 Nonsmooth curves: no tangent line at the nonsmooth points

Many lines go through the point of nonsmoothness, some of which are indicated by
the dashed lines in the above figures, but none of them can be the tangent line.
Sharp edges and cusps have to be “smoothed out” to have a tangent line.

As a point moves along a smooth curve, the corresponding tangent lines to the curve
make varying angles with the positive x-axis—the angle is thus a function of x. Let
φ= φ(x) be the smallest angle that the tangent line L to a curve y = f (x) makes with
the positive x-axis, so that −90◦ <φ(x)< 90◦ for all x (see Figure 3.1.7).

x
x1 x2 x3

y y= f (x)

Lφ(x2)= 0◦
L

φ(x3)

L

φ(x1)

Figure 3.1.7 The angle φ(x) between the tangent line and positive x-axis

run

rise

L

φ(x)

As Figure 3.1.7 shows, −90◦ < φ(x) < 0◦ when the tangent line L

has negative slope, 0◦ < φ(x) < 90◦ when L has positive slope, and
φ(x)= 0◦ when L is horizontal (i.e. has zero slope). The slope of a line
is usually defined as the rise divided by the run in a right triangle,
as shown in the figure on the right. The figure shows as well that by definition of the
tangent of an angle, tan φ(x) also equals the rise (opposite) over run (adjacent). Thus,
since the slope of L is f ′(x), this means that tan φ(x)= f ′(x). In other words:
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The tangent line to a curve y = f (x) makes an angle φ(x) with the positive x-axis,
given by

φ(x) = tan−1 f ′(x) . (3.2)

Example 3.4

y

x

y= e2x

(
− 1

2 , 1
e

) L

φ

Find the angle φ that the tangent line to the curve y = e2x at x =− 1
2 makes

with the positive x-axis, such that −90◦ <φ< 90◦.

Solution: The angle is φ = φ(−1/2) = tan−1 f ‘(−1/2), where f (x) = e2x. Since
f ′(x)= 2e2x, then

φ = φ(−1/2) = tan−1 f ‘(−1/2) = tan−1 2e−1 = tan−1 0.7358 = 36.3◦ .

The figure on the right shows the tangent line L to the curve at x =− 1
2 and the angle φ.

y

x

P
y = f (x)

L

N

normal
line

a

tangent
line

Figure 3.1.8 Normal line N

You learned about perpendicular lines in elementary
geometry. Figure 3.1.8 shows the natural way to define
how a line N can be perpendicular to a curve y = f (x)
at a point P on the curve: the line is perpendicular to
the tangent line of the curve at P. Call this line N

the normal line to the curve at P. Since N and L are
perpendicular, their slopes are negative reciprocals of
each other (provided neither slope is 0). The equation
of the normal line follows easily:

The equation of the normal line to a curve y= f (x) at a point P = (a, f (a)) is

y − f (a) = − 1
f ′(a)

· (x − a) if f ′(a) 6= 0. (3.3)

If f ′(a)= 0, then the normal line is vertical and is given by x = a.

Example 3.5

Find the normal line to the curve y = x2 at x = 1. (Note: This is the curve from Example 3.1.)

Solution: The equation of the normal line is

y − f (a) = − 1
f ′(a)

· (x−a)

with a= 1, f (x)= x2, and f ′(x)= 2x. So f (a)= 1 and f ′(a) = 2. Hence, the equation of the normal line is
y−1=− 1

2 (x−1), or (in slope-intercept form) y =− 1
2 x+ 3

2 .
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Exercises
A
For Exercises 1-12, find the equation of the tangent line to the curve y = f (x) at x = a.

1. f (x) = x2 + 1; at x = 2 2. f (x) = x2 − 1; at x = 2 3. f (x) = −x2 + 1; at x = 3

4. f (x) = 1; at x =−1 5. f (x) = 4x; at x = 1 6. f (x) = ex; at x = 0

7. f (x) = x2 − 3x + 7; at x = 2 8. f (x) = x + 1
x − 1

; at x = 0 9. f (x) = (x3 + 2x − 1)3; at x =−1

10. f (x) = tan x; at x = 0 11. f (x) = sin 2x; at x = 0 12. f (x) =
p

1 − x2; at x = 1/
p

2

13. Find the equations of the tangent lines to the curve y = x3 −2x2 +4x+1 which are parallel to the
line y= 3x−5.

14. Draw an example of a curve having a tangent line that intersects the curve at more than one point.

For Exercises 15-17, find the angle φ that the tangent line to the curve y = f (x) at x = a makes with the
positive x-axis, such that −90◦ <φ< 90◦.

15. f (x) = x2; at x = 2 16. f (x) = cos 2x; at x =π/6 17. f (x) = x2 + 2x − 3; at x =−1

18. Show that if φ(x) is the angle that the tangent line to a curve y = f (x) makes with the positive
x-axis such that 0◦ ≤φ(x)< 180◦, then

φ(x) =





cos−1

(
1

√
1 + ( f ′(x))2

)
when f ′(x)≥ 0

cos−1

(
−1

√
1 + ( f ′(x))2

)
when f ′(x)< 0.

(Hint: Draw a right triangle.)

For Exercises 19-21, find the angle φ that the tangent line to the curve y = f (x) at x = a makes with the
positive x-axis, such that 0◦ ≤φ< 180◦.

19. f (x) = x2; at x =−1 20. f (x) = e−x; at x = 1 21. f (x) = ln2x; at x = 10

For Exercises 22-24, find the equation of the normal line to the curve y= f (x) at x = a.

22. f (x) =
p

x; at x = 4 23. f (x) = x2 + 1; at x = 2 24. f (x) = x2 − 7x + 4; at x = 3

25. Find the equations of the normal lines to the curve y= x3 −2x2−11x+3 which have a slope of − 1
4 .

B

26. Show that the area of the triangle formed by the x-axis, the y-axis, and the tangent line to the
curve y= 1/x at any point P is constant (i.e. the area is the same for all P).

27. For a constant a> 0, let P be a point on the curve y= ax2, and let Q be the point where the tangent
line to the curve at P intersects the y-axis. Show that the x-axis bisects the line segment PQ.

28. Let P be a point on the curve y= 1/x in the first quadrant, and let Q be the point where the tangent
line to the curve at P intersects the x-axis. Show that the triangle ∆POQ is isosceles, where O is
the origin.
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3.2 Limits: Formal Definition

So far only the intuitive notion of a limit has been used, namely:

A real number L is the limit of f (x) as x approaches a if the values of f (x) can be
made arbitrarily close to L by picking values of x sufficiently close to a.

That notion can be put in terms of a formal definition as follows:

Let L and a be real numbers. Then L is the limit of a function f (x) as x approaches
a, written as

lim
x→a

f (x) = L ,

if for any given number ǫ> 0, there exists a number δ> 0, such that

| f (x)−L| < ǫ whenever 0< |x−a| < δ .

A visual way of thinking of this definition is shown in Figure 3.2.1 below:

y

x

y = f (x)

a−δ
(

a a+δ
)

L+ǫ

L

L−ǫ

0< |x−a| < δ

| f (x)−L| < ǫ

Figure 3.2.1 lim
x→a

f (x)= L

Figure 3.2.1 says that for any interval around L on the y-axis, you will be able to
find at least one small interval around x = a (but excluding a) on the x-axis that the
function y= f (x) maps completely inside that interval on the y-axis. Choosing smaller
intervals around L on the y-axis could force you to find smaller intervals around a on
the x-axis.

In Figure 3.2.1, f (x) is made arbitrarily close to L (within any distance ǫ > 0) by
picking x sufficiently close to a (within some distance δ > 0). Since 0 < |x− a| < δ

means that x = a itself is excluded, the solid dot at (a,L) could even be a hollow dot.
That is, f (a) does not have to equal L, or even be defined; f (x) just needs to approach L

as x approaches a. Thus–perhaps counter-intuitively—the existence of the limit does
not actually depend on what happens at x = a itself.
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Example 3.6

Show that lim
x→a

x = a for any real number a.

Solution: Though the limit is obvious, the following “epsilon-delta” proof shows how to use the formal
definition. The idea is to let ǫ> 0 be given, then “work backward” from the inequality | f (x)−L| < ǫ to
get an inequality of the form |x−a| < δ, where δ> 0 usually depends on ǫ. In this case the limit is L = a

and the function is f (x)= x, so since

| f (x)−a| < ǫ ⇔ |x−a| < ǫ ,

then choosing δ= ǫ means that

0< |x−a| < δ ⇒ |x−a| < ǫ ⇒ | f (x)−a| < ǫ ,

which by definition means that lim
x→a

x = a.

Calculating limits in this way might seem silly since—as in Example 3.6—it requires
extra effort for a result that is obvious. The formal definition is used most often in
proofs of general results and theorems. For example, the rules for limits—listed in
Section 1.2—can be proved by using the formal definition.

Example 3.7

Suppose that lim
x→a

f (x) and lim
x→a

g(x) both exist. Show that

lim
x→a

( f (x)+ g(x)) =
(
lim
x→a

f (x)
)
+

(
lim
x→a

g(x)
)

Solution: Let lim
x→a

f (x)= L1 and lim
x→a

g(x)= L2. The goal is to show that lim
x→a

( f (x)+ g(x))= L1 +L2. So let

ǫ> 0. Then ǫ/2> 0, and so by definition there exist numbers δ1 > 0 and δ2 > 0 such that

0< |x−a| < δ1 ⇒ | f (x) − L1 | < ǫ/2 , and

0< |x−a| < δ2 ⇒ |g(x) − L2 | < ǫ/2 .

Now let δ=min(δ1,δ2). Then δ> 0 and

0< |x−a| < δ ⇒ 0< |x−a| < δ1 and 0< |x−a| < δ2

⇒ | f (x) − L1 | < ǫ/2 and |g(x) − L2 | < ǫ/2

Since |A+B| ≤ |A |+ |B| for all real numbers A and B, then

| f (x) + g(x) − (L1 +L2)| = |( f (x) − L1) + (g(x) − L2)| ≤ | f (x) − L1 | + |g(x) − L2 |

and thus
0< |x−a| < δ ⇒ | f (x) + g(x) − (L1 +L2)| < ǫ/2 + ǫ/2 = ǫ

which by definition means that lim
x→a

( f (x)+ g(x))= L1 +L2. X
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The proofs of the other limit rules are similar.1 In general, using the formal defini-
tion will not be necessary for evaluating limits of specific functions—in many cases a
simple analysis of the function is all that is needed, often from its graph.

Example 3.8

x

y

1

1

2

0

y= f (x)

Figure 3.2.2

Evaluate lim
x→1

f (x) for the following function:

f (x) =





x if x > 1

2 if x = 1

1 if x < 1

Solution: From the graph of f (x) in Figure 3.2.2, it is clear that as x

approaches 1 from the right (i.e. for x > 1) f (x) approaches 1 along the
line y = x, whereas as x approaches 1 from the left (i.e. for x < 1) f (x)
approaches 1 along the horizontal line y= 1. Thus, lim

x→1
f (x)= 1 .

Note that the limit did not depend on the value of f (x) at x = 1.

As Example 3.8 shows, what matters for a limit is what happens to the value of f (x)
as x gets near a, not at x = a itself. Figure 3.2.3(a) below shows how as x approaches
a, f (x) approaches a number different from f (a). Figure 3.2.3(b) shows that x = a does
not even need to be in the domain of f (x), i.e. f (a) does not have to be defined. So it
will not always be the case that lim

x→a
f (x)= f (a).

y

x

y = f (x)

a

L

f (a)
(a, f (a))

(a) lim
x→a

f (x)= L 6= f (a)

y

x

y= f (x)

a

L

(b) lim
x→a

f (x)= L, f (x) not defined at x = a

Figure 3.2.3 Excluding x = a from lim
x→a

f (x)

In Example 3.8 the direction in which x approached the number 1 did not affect
the limit. But what if f (x) had approached different values depending on how x ap-
proached 1? In that case the limit would not exist. The following definitions and
notation for one-sided limits will make situations like that simpler to state.

1For example, see Section 2.2 in PROTTER, M.H. AND C.B. MORREY, A First Course in Real Analysis, New York:
Springer-Verlag, 1977.
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Call L the right limit of a function f (x) as x approaches a, written as

lim
x→a+

f (x) = L ,

if f (x) approaches L as x approaches a for values of x larger than a.
Call L the left limit of a function f (x) as x approaches a, written as

lim
x→a−

f (x) = L ,

if f (x) approaches L as x approaches a for values of x smaller than a.

The following statement follows immediately from the above definitions:

The limit of a function exists if and only if both its right limit and left limit exist
and are equal:

lim
x→a

f (x) = L ⇔ lim
x→a−

f (x) = L = lim
x→a+

f (x)

Example 3.9

x

y

1−1

1

2

0

y= f (x)

Figure 3.2.4

Evaluate lim
x→0−

f (x), lim
x→0+

f (x), and lim
x→0

f (x) for the following function:

f (x) =
{

x2 if x < 0

2− x if x ≥ 0

Solution: From the graph of f (x) in Figure 3.2.4, it is clear that as x

approaches 0 from the left (i.e. for x < 0) f (x) approaches 0 along the
parabola y = x2, whereas as x approaches 0 from the right (i.e. for
x > 0) f (x) approaches 2 along the line y = 2− x. Hence, lim

x→0−
f (x)= 0

and lim
x→0+

f (x) = 2 . Thus, lim
x→0

f (x) does not exist since the left and

right limits do not agree at x = 0.

Example 3.10

x

y

0

1

−1

y= sin(1/x)

Figure 3.2.5

Evaluate lim
x→0+

sin
(

1
x

)
.

Solution: For x > 0 the function f (x) = sin(1/x) is defined, and its graph
is shown in Figure 3.2.5. As x approaches 0 from the right, sin(1/x) will
be 1 for the numbers x = 2/π, 2/5π, 2/9π, 2/13π, . . . (which approach 0),
and sin(1/x) will be −1 for the numbers x = 2/3π, 2/7π, 2/11π, 2/15π, . . .
(which also approach 0). So as x approaches 0 from the right, sin(1/x)

will oscillate between 1 and −1. Thus, lim
x→0+

sin
(

1
x

)
does not exist .
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So far only finite limits have been considered, that is, L = lim
x→a

f (x) where L is a real

(i.e. finite) number. Define an infinite limit, with L =∞ or −∞, as follows:

For a real number a, the limit of a function f (x) equals infinity as x approaches
a, written as

lim
x→a

f (x) = ∞ ,

if f (x) grows without bound as x approaches a, i.e. f (x) can be made larger than
any positive number by picking x sufficiently close to a:
For any given number M > 0, there exists a number δ> 0, such that

f (x) > M whenever 0< |x−a| < δ .

For a real number a, the limit of a function f (x) equals negative infinity as x

approaches a, written as
lim
x→a

f (x) = −∞ ,

if f (x) grows negatively without bound as x approaches a, i.e. f (x) can be made
smaller than any negative number by picking x sufficiently close to a:
For any given number M < 0, there exists a number δ> 0, such that

f (x) < M whenever 0< |x−a| < δ .

The above definitions can be modified accordingly for one-sided limits. If lim
x→a

f (x) =
∞ or lim

x→a
f (x) = −∞, then the line x = a is a vertical asymptote of f (x), and f (x)

approaches the line x= a asymptotically. The formal definitions are rarely needed.

Example 3.11

x

y

0

y = 1
x

Figure 3.2.6

Evaluate lim
x→0

1
x

.

Solution: For x 6= 0 the function f (x)= 1
x

is defined, and its graph
is shown in Figure 3.2.6. As x approaches 0 from the right, 1/x
approaches ∞, that is,

lim
x→0+

1
x

= ∞ .

As x approaches 0 from the left, 1/x approaches −∞, that is,

lim
x→0−

1
x

= −∞ .

Since the right limit and the left limit are not equal, then lim
x→0

1
x

does not exist .

Note that the y-axis (i.e. the line x = 0) is a vertical asymptote for f (x)= 1
x
.
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Example 3.12

x

y

0

y = 1
x2

Figure 3.2.7

Evaluate lim
x→0

1
x2 .

Solution: For x 6= 0 the function f (x)= 1
x2 is defined, and its graph

is shown in Figure 3.2.7. As x approaches 0 from either the right
or the left, 1/x2 approaches ∞, that is,

lim
x→0+

1

x2 = ∞ = lim
x→0−

1

x2 .

Since the right limit and the left limit both equal ∞, then lim
x→0

1
x2 = ∞ .

Note that the y-axis (i.e. the line x = 0) is a vertical asymptote for f (x)= 1
x2 .

In the limit lim
x→a

f (x) so far only real values of a have been considered. However, a

could be either ∞ or −∞:

For a real number L, the limit of a function f (x) equals L as x approaches ∞,
written as

lim
x→∞

f (x) = L ,

if f (x) can be made arbitrarily close to L for x sufficiently large and positive:
For any given number ǫ> 0, there exists a number N > 0, such that

| f (x) − L| < ǫ whenever x> N .

For a real number L, the limit of a function f (x) equals L as x approaches −∞,
written as

lim
x→−∞

f (x) = L ,

if f (x) can be made arbitrarily close to L for x sufficiently small and negative:
For any given number ǫ> 0, there exists a number N < 0, such that

| f (x) − L| < ǫ whenever x< N .

The above definitions can be modified accordingly for L replaced by either ∞ or −∞.
One way to interpret the statement lim

x→∞
f (x) = L is: the long-term behavior of f (x) is

to approach a steady-state at L. If lim
x→∞

f (x) = L or lim
x→−∞

f (x) = L, then the line y = L

is a horizontal asymptote of f (x), and f (x) approaches the line y= L asymptotically.
Again, for most limits of specific functions, only the intuitive notions are needed.
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Example 3.13

From Figures 3.2.6 and 3.2.7, it is clear that

lim
x→∞

1
x

= 0 = lim
x→−∞

1
x

and lim
x→∞

1

x2 = 0 = lim
x→−∞

1

x2

Note that the x-axis (i.e. the line y= 0) is a horizontal asymptote for f (x)= 1
x

and f (x)= 1
x2 .

Some limits are obvious—you can use them for calculating other limits:

lim
x→∞

xn =
{
∞ for any real n > 0

0 for any real n < 0
lim

x→−∞
xn =

{
∞ for n = 2,4,6,8, . . .

−∞ for n = 1,3,5,7, . . .

lim
x→∞

ex = ∞ lim
x→−∞

ex = 0 lim
x→∞

e−x = 0 lim
x→−∞

e−x = ∞

lim
x→∞

ln x = ∞ lim
x→0+

ln x = −∞

A related notion is that of Big O notation (that is the capital letter O, not a zero):

Say that
f (x) = O(g(x)) as x→∞,

spoken as “ f is big O of g”, if there exist positive numbers M and x0 such that

| f (x)| ≤ M |g(x)| for all x≥ x0.

For example, obviously 2x3 = O(x3), by picking M = 2, with x0 any positive number.
In general, f (x)=O(g(x)) means that f exhibits the same long-term behavior as g, up
to a constant multiple. You can think of g as the more basic “type” of function that
describes f , as far as long-term behavior.

Example 3.14

Show that 5x4−2= O(x4).

Solution: First, recall from algebra that |a+b| ≤ |a|+ |b| for all real numbers a and b. Thus,
∣∣5x4 −2

∣∣ ≤
∣∣5x4∣∣ + |−2| = 5

∣∣x4 ∣∣ + 2

for all x. So since
∣∣x4

∣∣= x4 ≥ 1 for all x≥ 1, then
∣∣5x4−2

∣∣ ≤ 5
∣∣x4∣∣ + 2 ≤ 5

∣∣x4∣∣ + 2
∣∣x4 ∣∣ ⇒

∣∣5x4 −2
∣∣ ≤ 7

∣∣x4 ∣∣ for all x ≥ 1,

which shows that 5x4 −2=O(x4), with M = 7 and x0 = 1.
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Some limits need algebraic manipulation before they can be evaluated.

Example 3.15

Evaluate lim
x→∞

(p
x+1 −

p
x
)

.

Solution: Note that both
p

x+1 and
p

x approach ∞ as x goes to ∞, resulting in a limit of the form
∞−∞. This is an example of an indeterminate form, which can equal anything (as will be discussed
shortly); it does not have to equal 0 (i.e. the ∞’s do not necessarily “cancel out”). The trick here is to use
the conjugate of

p
x+1 − p

x, so that

lim
x→∞

(p
x+1 −

p
x
)
= lim

x→∞

(p
x+1 −

p
x
)
·
p

x+1 + p
x

p
x+1 + p

x
= lim

x→∞
(x+1) − x
p

x+1 + p
x

= lim
x→∞

1
p

x+1 + p
x

= 0

since the numerator is 1 and both terms in the sum in the denominator approach ∞ (i.e. 1
∞ = 0).

Some other indeterminate forms are ∞/∞, 0/0 and ∞·0. How would you handle such
limits? One way is to use L’Hôpital’s Rule2; a simplified form is stated below:

L’Hôpital’s Rule: If f and g are differentiable functions and

lim
x→a

f (x)
g(x)

= ±∞
±∞ or

0
0

then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

The number a can be real, ∞, or −∞.

Example 3.16

Evaluate lim
x→∞

2x−1
ex

.

Solution: This limit is of the form ∞/∞:

lim
x→∞

2x−1
ex

→ ∞
∞

= lim
x→∞

2
ex

by L’Hôpital’s Rule

= 0

since the numerator is 2 and ex →∞ as x →∞.
Note that one way of interpreting the limit being 0 is that ex grows much faster than 2x−1. In fact,
using L’Hôpital’s Rule it can be shown that ex grows much faster than any polynomial, i.e. exponential

growth outstrips polynomial growth.

2For a proof, see pp.89-91 in PROTTER, M.H. AND C.B. MORREY, A First Course in Real Analysis, New York:
Springer-Verlag, 1977.
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Example 3.17

Evaluate lim
x→∞

x

ln x
.

Solution: This limit is of the form ∞/∞:

lim
x→∞

x

ln x
→ ∞

∞
= lim

x→∞
1
1
x

by L’Hôpital’s Rule

= lim
x→∞

x = ∞

Note that one way of interpreting the limit being ∞ is that x grows much faster than ln x. In fact,
using L’Hôpital’s Rule it can be shown that any polynomial grows much faster than ln x, i.e. polynomial

growth outstrips logarithmic growth.

Example 3.18

Evaluate lim
x→∞

xe−2x .

Solution: This limit is of the form ∞·0, which can be converted to ∞/∞:

lim
x→∞

xe−2x = lim
x→∞

x

e2x
→ ∞

∞

= lim
x→∞

1

2e2x
by L’Hôpital’s Rule

= 0

Note that the limit is another consequence of exponential growth outstripping polynomial growth.

Example 3.19

Evaluate lim
x→∞

2x2 − 7x − 5

3x2 + 2x − 1
.

Solution: This limit is of the form ∞/∞:

lim
x→∞

2x2 − 7x − 5
3x2 + 2x − 1

→ ∞
∞

= lim
x→∞

4x − 7
6x + 2

by L’Hôpital’s Rule

→ ∞
∞ , so use L’Hôpital’s Rule again

= 4
6

= 2
3

Note that the limit ended up being the ratio of the leading coefficients of the polynomials in the numer-
ator and denominator of the original limit. Note also that the lower-order terms (degree less than 2)
ended up not mattering. In general you can always discard the lower-order terms when taking the limit
of a ratio of polynomials (i.e. a rational function).
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Example 3.20

Evaluate lim
x→0

1 − cos x

x
.

Solution: This limit is of the form 0/0:

lim
x→0

1 − cos x

x
→ 0

0

= lim
x→0

sin x

1
by L’Hôpital’s Rule

= sin0
1

= 0

There is an intuitive justification for L’Hôpital’s Rule: since the limit limx→a
f (x)
g(x)

uses a ratio to compare how f changes relative to g as x approaches a, then it is
really the rates of change of f and g—namely f ′ and g′, respectively—that are being
compared in that ratio, which is what L’Hôpital’s Rule says.

The following result provides another way to calculate certain limits:

Squeeze Theorem: Suppose that for some functions f , g and h there is a number
x0 ≥ 0 such that

g(x) ≤ f (x) ≤ h(x) for all x> x0

and that lim
x→∞

g(x) = lim
x→∞

h(x) = L. Then lim
x→∞

f (x) = L.

Similarly, if g(x) ≤ f (x) ≤ h(x) for all x 6= a in some interval I containing a, and if
lim
x→a

g(x) = lim
x→a

h(x) = L, then lim
x→a

f (x) = L.

Intuitively, the Squeeze Theorem says that if one function is “squeezed” between
two functions approaching the same limit, then the function in the middle must also
approach that limit. The theorem also applies to one-sided limits (x→ a+ or x→ a−).

Example 3.21

Evaluate lim
x→∞

sin x

x
.

Solution: Since −1 ≤ sin x ≤ 1 for all x, then dividing all parts of those inequalities by x > 0 yields

−1
x

≤ sin x

x
≤ 1

x
for all x > 0 ⇒ lim

x→∞
sin x

x
= 0

by the Squeeze Theorem, since lim
x→∞

−1
x

= 0 = lim
x→∞

1
x

.
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Exercises
A
For Exercises 1-18 evaluate the given limit.

1. lim
x→2

x2 +3x−10

x2 − x−2
2. lim

x→∞
x2+3x−10

2x2 − x−2
3. lim

x→∞
x2 +3x−10

2x3 − x−2
4. lim

x→∞
x3 +3x−10

2x2− x−2

5. lim
x→π/2

cos x

x−π/2
6. lim

x→∞
x2

ex
7. lim

x→−∞
x2ex 8. lim

x→0+
ln x

e1/x

9. lim
x→0

tan x − x

x − sin x
10. lim

x→0

sin 3x

sin 4x
11. lim

x→∞
cos x

x
12. lim

x→0
x sin

(
1
x

)

13. lim
x→0

ln(1− x) − sin2 x

1 − cos2 x
14. lim

x→1

(
1

ln x
− 1

x−1

)
15. lim

x→π/2
(sec x − tan x)

16. lim
x→0+

e−1/x

x
17. lim

x→∞

(√
x2 +4 − x

)
18. lim

x→0

cot x

csc x

B

19. The famous “twin paradox,” a result of Einstein’s special theory of relativity, says that if one of a
pair of twins leaves the earth in a rocket traveling at a high speed, then he will be younger than his
twin upon returning to earth.3 This is due to the phenomenon of time dilation, which says that a
clock moving with a speed v relative to a clock at rest in some inertial reference frame counts time
slower relative to the clock at rest, by a factor of

γ= 1
√

1−β2
,

called the Lorentz factor, where β = v
c

is the fraction of the speed of light c at which the clock is
moving (c ≈ 2.998×108 m/sec). Notice that 0 ≤ β < 1 (why?). For example, a clock moving at half
the speed of light, so that β= 0.5, would have γ= 1.1547, meaning that the clock runs about 15.47%
slower than the clock on earth.

(a) Evaluate lim
β→1−

γ . What is the physical interpretation of this limit?

(b) Suppose an astronaut and his twin just turned 30 years old when the astronaut leaves earth on
a high-speed journey through space. Upon returning to earth the astronaut is 35 and his twin
is 70. At roughly what fraction of the speed of light must the astronaut have been traveling?

20. Show that lim
x→∞

p(x)
ex

= 0 for all polynomials p(x) of degree n≥ 1 with a positive leading coefficient.

21. Show that lim
x→∞

p(x)
ln x

=∞ for all polynomials p(x) of degree n≥ 1 with a positive leading coefficient.

22. Show that 5x3 +6x2−4x+3 =O(x3). 23. Show that
2x2 +1

x+1
=O(x). (Hint: Consider x ≥ 1)

24. Call h(x) an infinitesimal function as x → a if lim
x→a

h(x) = 0. That is, an infinitesimal function

approaches zero near some point. Prove the following result, where a and L are real numbers:

lim
x→a

f (x) = L ⇔ f (x)= L+h(x) for all x, where h(x) is an infinitesimal function as x → a

3See p.154-159 in FRENCH, A.P., Special Relativity, Surrey, U.K.: Thomas Nelson & Sons Ltd., 1968.
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3.3 Continuity

Recall from the previous section that a limit limx→a f (x) can exist without being equal
to f (a), or with f (a) not even being defined. Many functions encountered in applica-
tions, however, will meet those conditions, and they have a special name:

A function f is continuous at x= a if

lim
x→a

f (x) = f (a) . (3.4)

A function is continuous on an interval I if it is continuous at every point in the
interval. For a closed interval I = [a, b], a function f is continuous on I if it is
continuous on the open interval (a, b) and if limx→a+ f (x) = f (a) (i.e. f is right

continuous at x = a) and limx→b− f (x) = f (b) (i.e. f is left continuous at x = b).
A function is discontinuous at a point if it is not continuous there. A continuous
function is one that is continuous over its entire domain.

Equation (3.4) in the above definition implies that f (a) is defined, i.e. x = a is in the
domain of f . Figure 3.3.1 below shows some examples of continuity and discontinuity:

y

x
x1 x2 x3 x4

y = f (x)

Figure 3.3.1 Continuous at x1, discontinuous at x2, x3 and x4

In the above figure, f is not continuous at x = x2 because limx→x2 f (x) 6= f (x2); f is not
continuous at x = x3 because limx→x3 f (x) does not exist (the right and left limits do
not agree— f is said to have a jump discontinuity at x= x3); and f is not continuous
at x = x4 because f (x4) is not defined. However, f is continuous at x= x1.

A function is continuous if its graph is one unbroken piece over its entire domain.
Polynomials, rational functions, trigonometric functions, exponential functions, and
logarithmic functions are all continuous on their domains. For example, tan x is con-
tinuous over its domain, which is broken into disjoint intervals (−π/2,π/2), (π/2,3π/2),
(3π/2,5π/2), and so forth; the graph is unbroken on each of those intervals. However,
tan x is not continuous over all of R, since the function is not defined at all points in R.

In the language of infinitesimals, a function f is continuous at x = a if f (a+dx)− f (a)
is an infinitesimal for any infinitesimal dx. This definition is rarely used.

Physical examples of continuous functions are position, speed, velocity, acceleration,
temperature, and pressure. Some discontinuous functions do arise in applications.
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Example 3.22

The floor function ⌊x⌋ is defined as

⌊x⌋ = the largest integer less than or equal to x .

In other words, ⌊x⌋ rounds a non-integer down to the previous integer, and integers stay the same. For
example, ⌊0.1⌋ = 0, ⌊0.9⌋ = 0, ⌊0⌋ = 0, and ⌊−1.3⌋ =−2. The graph of ⌊x⌋ is shown in Figure 3.3.2(a).

x

y

−2 −1 2 30 1

−1

−2

1

2

y= ⌊x⌋

(a) Floor function ⌊x⌋

x

y

−3 −2 −1 20 1

−1

−2

1

2

y= ⌈x⌉

(b) Ceiling function ⌈x⌉

Figure 3.3.2 Floor and ceiling functions

Similarly, the ceiling function ⌈x⌉ is defined as

⌈x⌉ = the smallest integer greater than or equal to x .

In other words, ⌈x⌉ rounds a non-integer up to the next integer, and integers stay the same. For example,
⌈0.1⌉ = 1, ⌈0.9⌉ = 1, ⌈1⌉ = 1, and ⌈−1.3⌉ =−1. The graph of ⌈x⌉ is shown in Figure 3.3.2(b).

Clearly both ⌊x⌋ and ⌈x⌉ have jump discontinuities at the integers, but both are continuous at all
non-integer values of x. Both functions are also examples of step functions, due to the staircase
appearance of their graphs. Step functions are useful in situations when you want to model a quantity
that takes only a discrete set of values. For example, in a car with a 4-gear transmission, f (x) could
be the gear the transmission has shifted to while the car travels at speed x. Up to a certain speed the
car remains in first gear ( f = 1) and then shifts to second gear ( f = 2) after attaining that speed, then
it remains in second gear until reaching another speed, upon which the car then shifts to third gear
( f = 3), and so on. In general, discrete changes in state are often modeled with step functions.

Example 3.23

For an extreme case of discontinuity, consider the function

f (x) =
{

0 if x is rational

1 if x is irrational

This function is discontinuous at every value of x in R, since within any positive distance δ of a real
number x—no matter how small δ is—there will be an infinite number of both rational and irrational
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numbers. This is a property of R. So the value of f will keep jumping between 0 and 1 no matter how
close you get to x. In other words, for any number a in R, f (a) exists but it will never equal limx→a f (x)
because that limit will not exist.

By the various rules for limits, it is straightforward to show that sums, differences,
constant multiples, products and quotients of continuous functions are continuous.
Likewise a continuous function of a continuous function (i.e. a composition of continu-
ous functions) is also continuous. In addition, a continuous function of a finite limit of
a function can be passed inside the limit:

If f is a continuous function and lim
x→a

g(x) exists and is finite, then:

f
(
lim
x→a

g(x)
)
= lim

x→a
f (g(x)) (3.5)

The same relation holds for one-sided limits.

The above result is useful in evaluating the indeterminate forms 00, ∞0, and 1∞. The
idea is to take the natural logarithm of the limit by passing the continuous function
ln x inside the limit and evaluate the resulting limit.

Example 3.24

Evaluate lim
x→0+

xx .

Solution: This limit is of the form 00, so let y= lim
x→0+

xx and then take the natural logarithm of y:

ln y = ln
(

lim
x→0+

xx

)

= lim
x→0+

ln xx (pass the natural logarithm function inside the limit)

= lim
x→0+

x ln x → 0 · (−∞)

= lim
x→0+

ln x

1/x
→ −∞

∞

= lim
x→0+

1/x

−1/x2 by L’Hôpital’s Rule

ln y = lim
x→0+

(−x) = 0

Thus, lim
x→0+

xx = y = e0 = 1.
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There is an important relationship between differentiability and continuity:

Every differentiable function is continuous.

Proof: If a function f is differentiable at x = a then f ′(a)= lim
x→a

f (x)−f (a)
x−a

exists, so

lim
x→a

( f (x)− f (a)) = lim
x→a

( f (x)− f (a))· x−a

x−a
= lim

x→a

f (x)− f (a)
x−a

· lim
x→a

(x−a) = f ′(a)·0 = 0

which means that lim
x→a

f (x) = f (a) , i.e. f is continuous at x = a . X

x

y

0

y = |x|

Note that the converse is not true. For example, the absolute
value function f (x) = |x| is continuous everywhere—its graph
is unbroken, as shown in the picture on the right—but recall
from Example 1.3 in Section 1.2 that it is not differentiable at
x = 0. Continuous curves can have sharp edges and cusps, but
differentiable curves cannot.

Two other important theorems4 about continuous functions are:

Extreme Value Theorem: If f is a continuous function on a closed interval [a, b]
then f attains both a maximum value and a minimum value on that interval.

Intermediate Value Theorem: If f is a continuous function on a closed interval
[a, b] then f attains every value between f (a) and f (b).
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y= f (x)

Figure 3.3.3 Extreme Value Theorem
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Figure 3.3.4 Intermediate Value Theorem

Figure 3.3.3 shows why a closed interval is required for the Extreme Value Theorem,
as f attains neither a maximum nor minimum on the open interval (c, d). The Inter-
mediate Value Theorem says that continuous functions cannot “skip over” intermedi-
ate values between two other function values. In Figure 3.3.4 the function f skips the
value k between f (c)= 1 and f (d)= 2 because f is not continuous over all of [c, d]. On
[a, b] the value k is attained by f at x= x0, i.e. f (x0)= k, since f is continuous on [a, b].

4The full proofs require some advanced results. See pp.97-98 and p.558 in TAYLOR, A.E. AND W.R. MANN,
Advanced Calculus, 2nd ed., New York: John Wiley & Sons, Inc., 1972.
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Example 3.25

Show that there is a solution to the equation cos x = x.

Solution: Let f (x)= cos x − x. Since f is continuous for all x, in particular it is continuous on [0,1]. So
since f (0)= 1> 0 and f (1)=−0.459698 < 0, then by the Intermediate Value Theorem there is a number
c in the open interval (0,1) such that f (c) = 0, since 0 is between the values f (0) and f (1). Hence,
cos c − c = 0, which means that cos c = c. That is, x = c is a solution of cos x = x.

Note in the above example that the Intermediate Value Theorem does not tell you
how to find the solution, just that the solution exists. To find the solution you can use
the bisection method: divide the interval [0,1] in half and apply the Intermediate
Value Theorem to each half-interval to determine which one contains the solution;
repeat this procedure on that half-interval, resulting in a smaller interval containing
the solution, then repeat the procedure over and over, until you eventually obtain
an interval so small that the midpoint of that interval can be taken as the solution.
Listing 3.1 below shows one way of implementing the bisection method for Example
3.25 to find the root of f (x)= cos x− x, using the Python programming language.

Listing 3.1 Bisection method in Python

1 import math

2

3 def f(x):

4 return math.cos(x) - x

5

6 def bisect(a, b):

7 midpt = (a+b)/2.0

8 tol = 1e-15

9 if b - a > tol:

10 val = f(midpt)

11 if val*f(a) < 0:

12 bisect(a, midpt)

13 elif val*f(b) < 0:

14 bisect(midpt, b)

15 else:

16 print("Root = %.13f" % (midpt))

17 else:

18 print("Root = %.13f" % (midpt))

19

20 bisect(0, 1)

Line 8 sets the tolerance to 10−15: the program terminates upon reaching an interval
whose length is smaller than that. The output is shown below:

Root = 0.7390851332152

This is the number obtained by taking the cosine of a number (in radians) repeatedly.
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Exercises
A
For Exercises 1-18, indicate whether the given function f (x) is continuous or discontinuous at the given
value x = a by comparing f (a) with limx→a f (x).

1. f (x)= |x|; at x = 0 2. f (x)= |x−1|; at x = 0 3. f (x)= ⌊x⌋; at x = 0

4. f (x)= ⌊x⌋; at x = 0.3 5. f (x)= ⌈x⌉; at x = 0 6. f (x)= ⌈x⌉; at x = 0.5

7. f (x)= x − ⌊x⌋; at x = 0 8. f (x)= x − ⌊x⌋; at x = 1.1 9. f (x)= x − |x|; at x = 0

10. f (x) =
{

0 if x ≤ 0,

1 if x > 0;
at x = 0

11. f (x) =
{

0 if x ≤ 0,

1 if x > 0;
at x = 1

12. f (x) =
{

x2 if x ≤ 0,

1 if x > 0;
at x = 0

13. f (x) =
{

x+1 if x ≤ 0,

1 if x > 0;
at x = 1

14. f (x) =
{

sin(x2) if x 6= 0,

0 if x = 0;
at x = 0

15. f (x) =
{

sin(1/x) if x 6= 0,

0 if x= 0;
at x = 0

16. f (x) =
{

0 if x is rational,

1 if x is irrational;

at x =
p

3

17. f (x) =
{

0 if x is rational,

x if x is irrational;
at x = 0

18. f (x) =
{

0 if x is rational,

x if x is irrational;
at x = 1

19. Evaluate lim
x→0+

xx2
. 20. Evaluate lim

x→∞
x1/x . 21. Evaluate lim

x→0
(1− x)1/x .

22. If f (x)= x2 + x−2
x−1

for x 6= 1, how should f (1) be defined so that f (x) is continuous at x = 1 ?

23. If f (x)= 1/x for x 6= 0, is there a way to define f (0) so that f (x) is continuous for all x ?

B

24. Can a function that is not continuous over a closed interval attain a maximum value and a mini-
mum value in that interval? If so, then give an example; if not then explain why.

25. Show that there is a number x such that x5− x = 3.

26. Prove that f (x)= x8 +3x4 −1 has at least two distinct real roots.

27. Suppose that a function f is continuous on the interval [0,3], f has no roots in [0,3], and f (1) = 1.
Prove that f (x)> 0 for all x in [0,3].

28. Show that an object whose average speed is vavg over the time interval a ≤ t ≤ b will move with
speed vavg at some time t in [a,b].

29. Let f (x) = 1/(x− 1). Then f (0) = −1 < 0 and f (2) = 1 > 0. Can you conclude by the Intermediate
Value Theorem that f (x) must be 0 for some x in [0,2] ? Explain.

30. Show that if f ′ and f ′′ exist and are continuous at x then

f ′′(x) = lim
h→0

f (x) − 2 f (x−h) + f (x−2h)

h2 .

31. Show that if f ′, f ′′ and f ′′′ exist and are continuous at x then

f ′′′(x) = lim
h→0

f (x) − 3 f (x−h) + 3 f (x−2h) − f (x−3h)
h3 .
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3.4 Implicit Differentiation

A function y = f (x) is usually given by an explicit formula, such as y = x2. It is then
straightforward to find dy

dx
using the differentiation rules you have learned so far. But

suppose instead that you were given merely an equation involving x and y, such as

x3 y2esin(xy) = x2 + xy + y3 .

The set of points (x, y) satisfying this equation describes some sort of curve in the xy-
plane, but it might not be possible to solve for y in terms of x—that is, there might not
be an explicit formula for y as a function of the variable x. So in this case does the
derivative dy

dx
even have any meaning, and if so then how would you find it?

It turns out that dy

dx
does make sense in such a case, because an equation involving

x and y such as the one above implicitly defines y in terms of x in the following sense:
as x varies so does y. Hence it should be possible to find the rate of change of y with
respect to the variable x (i.e. dy

dx
). To do so, take d

dx
of both sides of the equation, then

assume that y really is a function of x so that you can use the Chain Rule to solve for
dy

dx
. The example below illustrates this procedure, called implicit differentiation.

Example 3.26

−4 −2 0 2 4 6
−10

−5

0

5

10

x

y

Find dy

dx
given the equation x3 +3x+2= y2.

Solution: The above equation implicitly defines an elliptic curve, and its
graph is shown on the right. This curve is not a function y = f (x), since it
violates the vertical line test, but y still varies with x. To find dy

dx
take d

dx
of

both sides of the equation then solve for dy

dx
:

d

dx
(x3 + 3x + 2) = d

dx
(y2)

3x2 + 3 = 2y · dy

dx
by the Chain Rule, so

dy

dx
= 3x2 + 3

2y

At first this might seem unsatisfying—or confusing—since dy

dx
is given in terms of both x and y.

However, the derivative can still be evaluated at specific points (x, y) on the curve, i.e. any (x, y) satis-
fying the original equation. For example, it is easy to check that (x, y) = (1,

p
6) satisfies the equation

x3 +3x+2= y2, so dy

dx
(1,

p
6)= 3(1)2+3

2
p

6
=

p
6

2 . Note that dy

dx
is not defined when y= 0.

Notice that taking the square root of both sides of the original equation does not result in an explicit
formula for y, since y=±

p
x3+3x+2 defines two functions, not just one. The beauty of implicit differen-

tiation is that the derivative dy
dx

= 3x2+3
2y

calculated above gives you a single expression for the derivative
of both those functions.
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An algebraic curve is defined as the set of all points (x, y) satisfying a polynomial
equation in the variables x and y, such as x2 − 3xy4 + 1 = x5 − y2. An elliptic curve

is a special case of an algebraic curve, where the polynomial has the specific form
x3+ax+b = y2, such as the equation x3+3x+2= y2 from Example 3.26. Elliptic curves
have certain properties that have found applications in cryptography.5

Example 3.27

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Find dy

dx
given the equation x+ y= x3 + y3.

Solution: The above equation implicitly defines an algebraic curve and its
graph is shown on the right. To find dy

dx
take d

dx
of both sides of the equation

then solve for dy

dx
:

d

dx
(x + y) = d

dx
(x3 + y3)

1 + dy

dx
= 3x2 + 3y2 · dy

dx
by the Chain Rule, so

dy

dx
= 3x2 − 1

1 − 3y2

Notice that the curve consists of an oval shape (an ellipse, actually) with a line through it. In fact,
that line is y =−x, as can be verified by replacing each instance of y in the equation x+ y = x3 + y3 by
−x (resulting in the equation 0= 0). You might be wondering how dy

dx
is defined at the points where that

line intersects the ellipse: is it the slope of the line y =−x (i.e. −1), or is it the slope of the tangent line
to the ellipse at those points (which would not equal −1)? This is discussed in the exercises.

The graph was created with the free open-source graphing program Gnuplot6 using the following
Gnuplot commands (which give an idea of how to plot implicit functions in general):

set size square

set view 0,0

set isosamples 500,500

set contour base

set cntrparam levels discrete 0

unset surface

set grid

unset key

unset ztics

set xlabel ’x’

set ylabel ’y’

f(x,y) = x + y - x**3 - y**3

splot [-3:3][-3:3] f(x,y) lw 3

5For example, see Section 12.2 in BUCHMANN, J.A., Introduction to Cryptography, New York: Springer-Verlag,
2001.

6See the documentation at http://www.gnuplot.info/documentation.html

http://www.gnuplot.info/documentation.html
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Example 3.28

x

y

0 1

x2 + y2 = 1

(4/5,3/5)

Find the tangent line to the curve x2+ y2 = 1 at the point (4/5,3/5).

Solution: This curve is the unit circle, shown in the picture on the right.
First use implicit differentiation to find dy

dx
:

d

dx
(x2 + y2) = d

dx
(1) ⇒ 2x + 2y · dy

dx
= 0 by the Chain Rule

⇒ dy

dx
= − x

y

The slope m of the tangent line to the curve at (4/5,3/5) is then m = dy

dx
(4/5,3/5) =− 4/5

3/5 =−4/3. Thus, the
equation of the tangent line is y− 3

5 =− 4
3

(
x− 4

5

)
.

Exercises
A
For Exercises 1-9, use implicit differentiation to find dy

dx
.

1. x3 y − 4xy2 = y + x2 2. xy = (x+ y)3 3. (x+ y)3 = (x− y+1)2

4. x2/3 + y2/3 = a2/3 5. (x2− y2)2 = 2x2 + y2 6.
x+ y

x− y
= x2+ y2

7. cos(xy) = sin(x2 y2) 8. x3 − x = y2 9. x3 y2esin(xy) = x2 + xy + y3

10. In Example 3.28 is it possible to solve the equation x2+y2 = 1 explicitly for y in terms of x? Explain.

11. In Example 3.28 what happens to the tangent line at the point (1,0)? Why does this make sense
geometrically?

12. Find the equation of the tangent line to the curve x3+3x2 y+ y3 = 8 at the point (2,0).

B

13. Find d2 y

dx2 for the curve x2+ y2 = 1. You may use the results from Example 3.28.

14. Show that at every point (x0, y0) on the curve y2 = 4ax, the equation of the tangent line to the curve
is yy0 = 2a(x+ x0).

15. Show that at every point (x0, y0) on the ellipse
x2

a2 + y2

b2 = 1, the equation of the tangent line to the

ellipse is
xx0

a2
+ yy0

b2
= 1.

16. Show that at every point (x0, y0) on the hyperbola
x2

a2 − y2

b2 = 1, the equation of the tangent line to

the hyperbola is
xx0

a2 − yy0

b2 = 1.

17. Show that dy
dx

is not defined at the points of intersection of the line and ellipse described by the
curve x+ y= x3 + y3 from Example 3.27. (Hint: Factor the equation x+ y= x3 + y3.)

18. Show that the points P = (2,4) and Q = (−31/64,−337/512) are on the elliptic curve x3 +3x+2= y2

from Example 3.26, and that the tangent line to the curve at P also goes through Q.
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3.5 Related Rates

If several quantities are related by an equation, then differentiating both sides of that
equation with respect to a variable (usually t, representing time) produces a relation
between the rates of change of those quantities. The known rates of change are then
used in that relation to determine an unknown related rate.

Example 3.29

100

300

10

h

Suppose that water is being pumped into a rectangular pool at a
rate of 60,000 cubic feet per minute. If the pool is 300 ft long, 100
ft wide, and 10 ft deep, how fast is the height of the water inside
the pool changing?

Solution: Let V be the volume of the water in the pool. Since the
volume of a rectangular solid is the product of the length, width,
and height of the solid, then

V = (300)(100)h = 30000h ft3

where h is the height of the water, as in the picture on the right. Both V and h are functions of time t

(measured in minutes), and dV
dt

= 60000 ft3/min was given. The goal is to find dh
dt

. Since

dV

dt
= d

dt
(30000h) = 30000

dh

dt

then
dh

dt
= 1

30000
dV

dt
= 1

30000
·60000 = 2 ft/min.

Example 3.30

100

✸

x

θ

θ

Suppose that the angle of inclination from the top of a 100 ft pole to
the sun is decreasing at a rate of 0.05 radians per minute. How fast
is the length of the pole’s shadow on the ground increasing when the
angle of inclination is π/6 radians? You may assume that the pole is
perpendicular to the ground.

Solution: Let θ be the angle of inclination and let x be the length of the
shadow, as in the picture on the right. Both θ and x are functions of
time t (measured in minutes), and dθ

dt
= −0.05 rad/min was given (the

derivative is negative since θ is decreasing). The goal is to find dx
dt

when

θ =π/6, denoted by dx
dt

∣∣∣∣
θ=π/6

(the vertical bar means “evaluated at” the value of the subscript to the right

of the bar). Since

x = 100 cot θ ⇒ dx

dt
= −100 csc2θ · dθ

dt
= −100 csc2θ · (−0.05) = 5 csc2θ

then
dx

dt

∣∣∣∣
θ=π/6

= 5 csc2(π/6) = 5 (2)2 = 20 ft/min.
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Example 3.31

The radius of a right circular cylinder is decreasing at the rate of 3 cm/min, while the height is increas-
ing at the rate of 2 cm/min. Find the rate of change of the volume of the cylinder when the radius is 8
cm and the height is 6 cm.

Solution: Let r, h, and V be the radius, height, and volume, respectively, of the cylinder. Then V =πr2 h.
Since dr

dt
=−3 cm/min and dh

dt
= 2 cm/min, then by the Product Rule:

dV

dt
= d

dt
(πr2 h) =

(
2πr · dr

dt

)
h + πr2 · dh

dt
⇒ dV

dt

∣∣∣∣r = 8
h = 6

= 2π (8)(−3)(6) + π (82) (2) = −160π
cm3

min

Exercises
A

1. A stone is dropped into still water. If the radius of the circular outer ripple increases at the rate of 4
ft/s, how fast is the area of the circle of disturbed water increasing when the radius is 10 ft?

2. The radius of a sphere decreases at a rate of 3 mm/hr. Determine how fast the volume and surface
area of the sphere are changing when the radius is 5 mm.

3. A kite 80 ft above level ground moves horizontally at a rate of 4 ft/s away from the person flying it.
How fast is the string being released at the instant when 100 ft of string have been released?

4. A 10-ft ladder is leaning against a wall on level ground. If the bottom of the ladder is dragged away
from the wall at the rate of 5 ft/s, how fast will the top of the ladder descend at the instant when it
is 8 ft from the ground?

5. A person 6 ft tall is walking at a rate of 6 ft/s away from a light which is 15 ft above the ground. At
what rate is the end of the person’s shadow moving along the ground away from the light?

6. An object moves along the curve y= x3 in the xy-plane. At what points on the curve are the x and y

coordinates of the object changing at the same rate?

7. The radius of a right circular cone is decreasing at the rate of 4 cm/min, while the height is increasing
at the rate of 3 cm/min. Find the rate of change of the volume of the cone when the radius is 6 cm
and the height is 7 cm.

8. Two boats leave the same dock at the same time, one goes north at 25 mph and the other goes east
at 30 mph. How fast is the distance between the boats changing when they are 100 miles apart?

9. Repeat Exercise 8 with the angle between the boats being 110◦.

B

10. An angle θ changes with time. For what values of θ do sin θ and tan θ change at the same rate?

11. Repeat Example 3.30 but with the ground making a 100◦ angle with the pole to the left of the pole.

C

12. An upright cylindrical tank full of water is tipped over at a constant angular speed. Assume that
the height of the tank is at least twice its radius. Show that at the instant the tank has been tipped
45◦, water is leaving the tank twice as fast as it did at the instant the tank was first tipped. (Hint:

Think of how the water looks inside the tank as it is being tipped.)
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3.6 Differentials

An ideal gas satisfies the equation PV = RT, where R is a constant and P, V , and T

are the pressure, volume per mole, and temperature, respectively, of the gas. It will be
proved that

dP

P
+ dV

V
= dT

T
. (3.6)

Recall that dP, dV , and dT represent infinitesimal changes in the quantities P, V ,
and T, respectively. Notice that none of the quotients in Equation (3.6) have an in-
finitesimal in the denominator. For example, dP is divided not by dx or dt, as it would
be in a derivative such as dP

dx
or dP

dt
. Instead it is divided by P, which is not an in-

finitesimal. So Equation (3.6) is an equation that relates infinitesimals themselves,
i.e. infinitesimal changes, not infinitesimal rates of change. This is, in fact, how many
physical laws are stated, for reasons that will be discussed shortly.

Though infinitesimals have been used throughout this text, many calculus text-
books7 do not even mention them, instead preferring to call them differentials.8 For
compatibility, the definition is given here:

For a differentiable function f (x), the differential of f (x) is

df = f ′(x) dx (3.7)

where dx is an infinitesimal change in x.

Note that this is identical to Equation (1.9) in Section 1.3.

Example 3.32

Find the differential df of f (x)= x3.

Solution: By definition,
df = f ′(x) dx = 3x2 dx

Equivalently, this can be written as
d(x3) = 3x2 dx ,

which is often the way it would appear in textbooks in the sciences.

All the rules for derivatives (e.g. sum rule, product rule) apply to differentials, and
can be proved simply by multiplying the corresponding derivative rule by dx on both
sides of the equation:

7More accurately, many current calculus textbooks never mention them. Calculus texts up through the 1930s or
so not only mentioned infinitesimals but used them extensively, even to the point of the texts themselves having
titles such as Introduction to Infinitesimal Calculus.

8Though often in an unclear and sometimes confusing and misleading manner, as will be seen later in this section.
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Let f and g be differentiable functions, and let c be a constant. Then:
(a) d(c) = 0

(b) d(c f ) = c df (Constant Multiple Rule)

(c) d( f + g) = df + dg (Sum Rule)

(d) d( f − g) = df − dg (Difference Rule)

(e) d( f g) = f dg + g df (Product Rule)

(f) d

(
f

g

)
= g df − f dg

g2 (Quotient Rule)

(g) d( f n) = nf n−1 df (Power Rule)

(h) d( f (g)) = df

dg
dg (Chain Rule)

For example, to prove (e), multiply both sides of the usual Product Rule by dx so that

d( f g)
dx

= f
dg

dx
+ g

df

dx
⇒ d( f g) = ✚✚dx

(
f

dg

✚✚dx
+ g

df

✚✚dx

)

⇒ d( f g) = f dg + g df X

since the dx terms all cancel. The proofs of the other rules are similar.
The differential version of the ideal gas law in Equation (3.6)

dP

P
+ dV

V
= dT

T

can now be proved by taking the differential of both sides of the equation PV = RT:

d(PV ) = d(RT) = R ·dT by the Constant Multiple Rule

V dP + P dV = PV

T
dT by the Product Rule and since R = PV

T

V dP

PV
+ P dV

PV
= dT

T
after dividing both sides by PV

dP

P
+ dV

V
= dT

T
X

Notice that dP
P

, dV
V

and dT
T

represent the relative infinitesimal changes in P, V , and T,
respectively. The differential formulation is useful for finding one relative infinitesi-
mal change when the other two are known.
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Example 3.33

Suppose that M is the total mass of a rocket and its unburnt fuel at any time t (so M is a function of
t). Over an infinitesimal time dt a mass dm of fuel is burnt and the gas byproducts are expelled out the
rear of the rocket at a velocity vE relative to the rocket. Using the law of conservation of momentum
over the interval dt, show that

vE dm = M dv

where m and v are the mass of burnt fuel and the velocity of the rocket, respectively, at the beginning
of the time dt.

Solution: Momentum is defined as mass times velocity. The momentum of the rocket at the beginning
of the time dt is thus Mv. At the end of the time dt, the momentum of the rocket consists of two parts,
namely the momentum of the rocket and its remaining unburnt fuel, which is

((mass before dt) − (increase in burnt fuel)) × ((velocity before dt) + (increase in velocity)) (3.8)

(M−dm)(v+dv) (3.9)

and the momentum of the fuel that was burnt and expelled out the rear, which is

(v−vE)dm .

So by conservation of momentum,

Mv = (M−dm)(v+dv) + (v−vE)dm

Mv = Mv − v dm + M dv − (dm)(dv) + v dm − vE dm, so

vE dm = M dv − (dm)(dv) = M dv

since (dm)(dv) = (m′(t)dt)(v′(t)dt) = m′(t)v′(t)(dt)2 = m′(t)v′(t) ·0 = 0.

Dividing both sides of vE dm = M dv by dt yields the equation

M v̇ = ṁ vE

using the dot notation—mentioned in Section 1.3—for the derivative with respect to the time variable
t, which is still popular with physicists. Since v̇ is just acceleration a, this formulation is the classic
equation for the acceleration of a rocket.9

Letting f be the natural logarithm function and letting g = u in the differential
version of the Chain Rule yields the following useful result:

d(ln u) = du

u

This is often used in a differential version of the technique of logarithmic differentia-
tion discussed in Section 2.3.

9For other formulations see Chapter 1 in ROSSER, J.B., R.R. NEWTON AND G.L. GROSS, Mathematical Theory

of Rocket Flight, New York: McGraw-Hill Book Company, Inc., 1947.
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Example 3.34

Prove the relation dP
P

+ dV
V

= dT
T

using logarithmic differentiation.

Solution: Take the natural logarithm and then the differential of both sides of the equation PV = RT:

ln(PV ) = ln(RT) ⇒ ln P + ln V = ln R + ln T

⇒ d(ln P + ln V ) = d(ln R + ln T)

⇒ dP

P
+ dV

V
= 0 + dT

T
= dT

T
(since ln R is a constant)

Example 3.35

The derivative of the area πr2 of a circle of radius r, as a function of r, equals its circumference 2πr. Use
the notion of a differential as an infinitesimal change to explain why this makes sense geometrically.

Solution: Let A = πr2 be the area of a circle of varying radius r. Then A′(r) = 2πr, which is equivalent
to saying dA = 2πr dr. To see why this makes sense geometrically, imagine increasing the radius by
dr, as in the picture below on the left. This increases the area A of the circle to A+dA, with dA the
infinitesimal area of the shaded ring in the picture.

r

dr slice and
roll flat

dA

2πr

2π(r+dr)

dr area = dA

π dr

dr area = 0

Slice that ring along the dashed line then roll it flat, yielding a trapezoid with height dr, top length
2πr (from the circumference of the inner circle of the ring), and bottom length 2π(r + dr) (from the
circumference of the outer circle of the ring), as shown in the picture above on the right. The triangular
edges of the trapezoid contribute nothing to the area of the trapezoid, since (by the Microstraightness
Property) the hypotenuse of each is indeed a straight line, so each is a right triangle with height dr and
(by symmetry) base πdr, thus having area 1

2π(dr)2 = 0. Hence the entire area dA of the trapezoid comes
from the rectangular portion of height dr and base 2πr, which means dA = 2πr dr, as expected.

The above example answers the question of whether it is a happy coincidence that
the derivative of a circle’s area turns out to be the circle’s circumference—no, it is not!
Some other such cases (e.g. the derivative of a sphere’s volume is its surface area) are
left to the exercises. Note that a similar “coincidence” does not occur for a square: if
x is the length of each side then the area is x2, but the derivative of x2 is 2x, which is
not the perimeter of the square (i.e. 4x). Why does this not follow the same pattern as
the circle? Think about a key difference in the shape of a square in comparison to a
circle, keeping differentiability in mind.
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There are many benefits to using differentials—i.e. infinitesimals—in calculus.10

For example, recall Example 3.31 in Section 3.5 on related rates, where the volume V

of a right circular cylinder with radius r and height h changes with time t as

dV

dt
=

(
2π r · dr

dt

)
h + π r2 · dh

dt
.

The above equation forces you to consider only the derivative with respect to the time
variable t. What if you wanted to see the rates of change with respect to another
variable, such as r, h, or some other quantity? In that case using the differential
version of the above equation, namely

dV = 2π rh dr + π r2 dh

provides more flexibility—you are free to divide both sides by any differential, not just
by dt. Many related rates problems would likely benefit from this approach.

Present-day calculus textbooks confuse the notion of a differential (infinitesimal) dx

with the idea of a small but real value ∆x. The two are not the same. An infinitesimal
is not a real number and cannot be assigned a real value, no matter how small; ∆x

can be assigned real values. Using dx and ∆x interchangeably is a source of much
confusion for students (likewise for dy and ∆y). This confusion rears its head in exer-
cises involving the linear approximation of a curve by its tangent line near a point x0,
namely f (x) ≈ f (x0)+ f ′(x0)(x− x0) when x− x0 is “small” (e.g.

p
63 ≈ 7.9375, by using

f (x) = p
x, x = 63, x0 = 64, and x− xo = ∆x = −1). Such exercises have nothing to do

with differentials, not to mention having dubious value nowadays. They are remnants
of a bygone era, before the advent of modern computing obviated the need for such
(generally) poor approximations.

Exercises
A

1. Find the differential df of f (x)= x2 −2x+5. 2. Find the differential df of f (x)= sin2(x2).

3. Show that d
(
tan−1(y/x)

)
= x dy − ydx

x2 + y2 4. Given y2 − xy+2x2 = 3, find dy.

5. The elasticity of a function y= f (x) is E(y)= x

y
· dy

dx
. Show that E(y)= d(ln y)

d(ln x)
.

6. Prove the differential version of the Quotient Rule:

d

(
f

g

)
= gdf − f dg

g2

10For an excellent overview on this subject, see DRAY, T. AND C.A. MANOGUE, Putting Differentials Back into
Calculus, College Math. J. 41 (2010), 90-100. Some of the material in this section is indebted to that paper, which
is available at http://www.math.oregonstate.edu/bridge/papers/differentials.pdf

http://www.math.oregonstate.edu/bridge/papers/differentials.pdf
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7. Let y= cun , where c and n are constants. Show that

dy

y
= n

du

u
.

8. Obviously the derivative of the constant π2 is not 2π. But is d(π2)= 2πd(π) true? Explain.

B

9. The continuity relation for an ideal gas is

PM
p

T
= constant

where P and T are the pressure and temperature, respectively, of the gas, and M is the Mach

number. Show that
dP

P
+ dM

M
= dT

2T
.

10. For an ideal gas, satisfying the equation PV = RT as before, the Gibbs energy G is defined as
G = H−TS, where H and S are the enthalpy and entropy, respectively, of the gas.

(a) Show that

d

(
G

RT

)
= 1

RT
dG − G

RT2
dT .

(b) One of the fundamental property relations for an ideal gas (which you do not need to prove) is

dG = V dP − S dT .

Use this and part (a) to show that

d

(
G

RT

)
= V

RT
dP − H

RT2 dT .

11. The derivative of the volume πr2h of a right circular cylinder of radius r and height h, as a function
of r, equals its lateral surface area 2πrh. Use the notion of a differential as an infinitesimal change
to explain why this makes sense geometrically.

12. The derivative of the volume 4π
3 r3 of a sphere of radius r, as a function of r, equals its surface area

4πr2. Use the notion of a differential as an infinitesimal change to explain why this makes sense
geometrically.

13. In quantum calculus the q-differential of a function f (x) is

dq f (x) = f (qx) − f (x) ,

and the q-derivative of f (x) is

Dq f (x) =
dq f (x)

dqx
= f (qx) − f (x)

qx − x
= f (qx) − f (x)

(q−1)x
.

(a) Show that for all positive integers n,

Dq

(
xn

)
= [n] xn−1 ,

where [n] = 1+ q+ q2 +·· ·+ qn−1.

(b) Use part (a) to show that for all positive integers n,

lim
q→1

Dq

(
xn

)
= d

dx

(
xn

)
.



CHAPTER 4

Applications of Derivatives

4.1 Optimization

Many physical problems involve optimization: finding either a maximum or mini-
mum value of some quantity. Optimization problems often have a constraint involv-
ing two variables which allows you to rewrite the objective function—the function to
optimize—as a function of a single variable: use the constraint to solve for one variable
in terms of another, then substitute that expression into the objective function.

First, the intuitive notions of maximum and minimum need clarifying.

A function f has a global maximum at x= c if f (c)≥ f (x) for all x in the domain of
f . Similarly, f has a global minimum at x = c if f (c)≤ f (x) for all x in the domain
of f . Say that f has a local maximum at x = c if f (c) ≥ f (x) for all x “near” c,
i.e. for all x such that |x− c| < δ for some number δ > 0. Likewise, f has a local

minimum at x= c if f (c)≤ f (x) for all x such that |x−c| < δ for some number δ> 0.

In other words, a global maximum is the largest value everywhere (“globally”), whereas
a local maximum is only the largest value “locally.” Likewise for a global vs local min-
imum. The picture below illustrates the differences.

y

x
a c1 c2 b

y= f (x)

In the picture, on the interval [a, b] the function f has a global minimum at x = a, a
global maximum at x = c1, a local minimum at x = c2, and a local maximum at x= b.

90
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Every global maximum [minimum] is a local maximum [minimum], but not vice
versa. In physical applications global maxima or minima1 are the primary interest.
The Extreme Value Theorem in Section 3.3 guarantees the existence of at least one
global maximum and at least one global minimum for continuous functions defined on
closed intervals (i.e. intervals of the form [a, b]). All the functions under consideration
here will be differentiable, and hence continuous. So the only issues will be how to
find the global maxima or minima, and how to handle intervals that are not closed.

Consider again the picture from the previous page, this time looking at how the
derivative f ′ changes over [a, b]. Intuitively it is obvious that near an internal max-
imum (i.e. in the open interval (a, b)) such as at x = c1, the function should increase
before that point and then decrease after that point. That means that f ′(x) > 0 before
x= c1 and f ′(x)< 0 after the “turning point” x= c1, as shown below.

y

x
a c1 c2 b

f ′ = 0

f ′ = 0

y= f (x)

f ′ > 0
f ′ < 0

f ′ > 0

Assuming that f ′ is continuous (which will be the case for all the functions in this
section), then this means that f ′ = 0 at x = c1, that is, f ′(c1) = 0. Similarly, near
the internal minimum at x = c2, f ′(x) < 0 before x = c2 and f ′(x) > 0 after x = c2, so
that f ′(c2) = 0. Points at which the derivative is zero are called critical points (or
stationary points) of the function. So x= c1 and x= c2 are critical points of f .

Note in the picture that f ′ goes from positive to zero to negative around x = c1, so
that f ′ is decreasing around x = c1, i.e. f ′′ = ( f ′)′ < 0. Similarly, f ′ is increasing around
x= c2, i.e. f ′′ > 0. This leads to the following test for local maxima and minima:2

Second Derivative Test: Let x= c be a critical point of f (i.e f ′(c)= 0). Then:
(a) If f ′′(c)> 0 then f has a local minimum at x = c.

(b) If f ′′(c)< 0 then f has a local maximum at x= c.

(c) If f ′′(c)= 0 then the test fails.

To see why the test fails when f ′′(c) = 0, consider f (x)= x3: f ′(0)= 0 and f ′′(0)= 0, yet
x = 0 is neither a local minimum nor maximum in any open interval containing x = 0.
Section 4.2 will present an alternative for when the Second Derivative Test fails.

1The words “maxima” and “minima” are the traditional plural forms of maximum and minimum, respectively.
2A formal proof requires the Mean Value Theorem, which will be presented in Section 4.4.
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There is a simple visual mnemonic device for remembering the Second Derivative
Test, due to a generic minimum or maximum resembling a smile or frown, respec-
tively:

+++ +++

f ′′ > 0
local min.

−−− −−−

f ′′ < 0
local max.

o o

f ′′ = 0
test fails

The “eyes” in the faces represent the sign of f ′′ at a critical point, while the “mouths”
indicate the nature of that point (when f ′′ = 0 nothing is known). The procedure for
finding a global maximum or minimum can now be stated:

How to find a global maximum or minimum

Suppose that f is defined on an interval I. There are two cases:
1. The interval I is closed: The global maximum of f will occur either at an

interior local maximum or at one of the endpoints of I whichever of these points
provides the largest value of f will be where the global maximum occurs.
Similarly, the global minimum of f will occur either at an interior local min-
imum or at one of the endpoints of I; whichever of these points provides the
smallest value of f will be where the global minimum occurs.

2. The interval I is not closed and has only one critical point: If the only
critical point is a local maximum then it is a global maximum. If the only critical
point is a local minimum then it is a global minimum.

In each case of the above procedure try to use the Second Derivative Test to verify that
a critical point is a local minimum or maximum, unless it is obvious from the nature
of the problem that there can be only a minimum or only a maximum.

Example 4.1

x

y

x

y

Figure 4.1.1

Show that the rectangle with the largest area for a fixed perimeter is a
square.

Solution: Let L be the perimeter of a rectangle with sides x and y. The
idea is that L is a fixed constant, but x and y can vary. Figure 4.1.1
shows that there are many possible shapes for the rectangle, but in all
cases L = 2x+2y. Let A be the area of such a rectangle. Then A = xy,
which is a function of two variables. But

L = 2x + 2y ⇒ y = L

2
− x ,
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and hence

A = x

(
L

2
− x

)
= Lx

2
− x2

is now a function of x alone, on the open interval (0,L/2) (since the length x is positive). Now find the
critical points of A:

A′(x) = 0 ⇒ L

2
− 2x = 0

⇒ x = L

4
is the only critical point

This problem is thus the case of a function defined on an open interval having only one critical point.
Use the Second Derivative Test to verify that the sole critical point x = L/4 is a local maximum for A:

A′′(x) = −2 ⇒ A′′(L/4) = −2 < 0 ⇒ A has a local maximum at x = L/4

Thus, A has a global maximum at x = L/4. Also, y = L/2− x = L/2−L/4 = L/4, which means that x = y,
i.e. the rectangle is a square.
Note: The constraint in this example was L = 2x+2y and the objective function was A = xy.

Example 4.2

h

r

Figure 4.1.2

Suppose a right circular cylindrical can with top and bottom lids will be assembled
to have a fixed volume. Find the radius and height of the can that minimizes the
total surface area of the can.

Solution: Let V be the fixed volume of the can with radius r and height h, as in
Figure 4.1.2. The volume V is a constant, with V = πr2h. Let S be the total surface
area of the can, including the lids. Then

S = 2πr2 + 2πrh

where the first term in the sum on the right side of the equation is the combined
area of the two circular lids and the second term is the lateral surface area of the
can. So S is a function of r and h, but h can be eliminated since

V = πr2h ⇒ h = V

πr2

and so

S = 2πr2 + 2πr · V

πr2 = 2πr2 + 2V

r

making S a function of r alone. Now find the critical points of S (i.e. solve S′(r) = 0):

S′(r) = 0 ⇒ 4πr − 2V

r2 = 0

⇒ r3 = V

2π

⇒ r = 3

√
V

2π
is the only critical point
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Since both r and h are lengths and have to be positive, then 0 < r < ∞. So this is another case of a
function defined on an open interval having only one critical point. Use the Second Derivative Test to

verify that this critical point r = 3
√

V
2π is a local minimum for S:

S′′(r) = 4π + 4V

r3 ⇒ S′′
(

3

√
V

2π

)
= 4π + 4V

V
2π

= 12π > 0 ⇒ S has a local minimum at r = 3

√
V

2π

Thus, S has a global minimum at r = 3
√

V
2π , and

r · r2 = r3 = V

2π
⇒ 2r = V

πr2 = h .

Hence, r = 3
√

V
2π and h = 2 3

√
V
2π will minimize the total surface area, i.e. the height should equal the

diameter.

Note that this result can be applied to soda cans, where the volume is V = 12 fluid ounces ≈ 21.6 cubic
inches: both a diameter and height of about 3.8 inches will minimize the amount (and hence the cost)
of the aluminum used for the can. Yet soda cans are not that wide and short—they are usually thinner
and taller. So why is a non-optimal size used in practice? Other factors—e.g. packing requirements, the
need for small children to hold the can in one hand—might override the desire to minimize the cost of
the aluminum. The lesson is that an optimal solution for one factor (material cost) might not always be
truly optimal when all factors are considered; compromise is often necessary.

Example 4.3

v 0

L

θ

v 0
v0 sin θ

v0 cos θ
θ

Figure 4.1.3

Suppose that a projectile is launched from the ground with a fixed
initial velocity v0 at an angle θ with the ground. What value of θ
would maximize the horizontal distance traveled by the projectile,
assuming the ground is flat and not sloped (i.e. horizontal)?

Solution: Let x and y represent the horizontal position and vertical
position, respectively, of the projectile at time t≥ 0. From the trian-
gle at the bottom of Figure 4.1.3, the horizontal and vertical com-
ponents of the initial velocity are v0 cos θ and v0 sin θ, respectively.
Since distance is the product of velocity and time, then the horizon-
tal and vertical distances traveled by the projectile by time t due to

the initial velocity are (v0 cos θ)t and (v0 sin θ)t, respectively. Ignor-
ing wind and air resistance, the only other force on the projectile
will be the downward force g due to gravity, so that the equations of motion for the projectile are:

x = (v0 cos θ)t

y = −1
2

gt2 + (v0 sin θ)t

The goal is to find θ that maximizes the length L shown in Figure 4.1.3. First write y as a function of x:

x = (v0 cos θ)t ⇒ t = x

v0 cos θ
⇒ y = −1

2
g

(
x

v0 cos θ

)2

+ (v0 sin θ) · x

v0 cos θ

⇒ y = − gx2

2v2
0 cos2 θ

+ x tan θ
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Then L is the value of x > 0 that makes y= 0:

0 = − gL2

2v2
0 cos2 θ

+ L tan θ ⇒ L =
2v2

0 sin θ cos θ

g
=

v2
0 sin 2θ

g

So L is now a function of θ, with 0 < θ < π/2 (why?). So if there is a single local maximum then it must
be the global maximum. Now get the critical points of L:

L′(θ) = 0 ⇒
2v2

0 cos 2θ

g
= 0

⇒ cos 2θ = 0

⇒ 2θ = π

2
⇒ θ = π

4
is the only critical point

Use the Second Derivative Test to verify that L has a local maximum at θ =π/4:

L′′(θ) = −
4v2

0 sin 2θ

g
⇒ L′′(π/4) = −

4v2
0

g
< 0

⇒ L has a local maximum at θ = π

4

Thus, L has a global maximum at θ = π
4 , i.e. the projectile travels the farthest horizontally when

launched at a 45◦ angle with the ground (with L
(
π
4

)
= v2

0
g

being the maximum horizontal distance).

Note that once the formula for L as a function of θ was found to be L = v2
0 sin 2θ

g
, calculus was not actually

needed to solve this problem. Why? Since v2
0 and g are positive constants (recall g = 9.8m/s2), L would

have its largest value when sin 2θ has its largest value 1, which occurs when θ =π/4.

Example 4.4

Fermat’s Principle states that light always travels along the path that takes the least amount of time.
So suppose that a ray of light is shone from a point A onto a flat horizontal reflective surface at an angle
θ1 with the surface and then reflects off the surface at an angle θ2 to a point B. Show that Fermat’s
Principle implies that θ1 = θ2.

Solution: Let L be the horizontal distance between A and B, let d1 be the distance the light travels
from A to the point of contact C with the surface a horizontal distance x from A, let d2 be the distance
from C to B, and let y1 and y2 be the vertical distances from A and B, respectively, to the surface, as in
the picture below.

d1

d2

A

B

C

y1

y2

θ1 θ2

x L− x
L
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Since time is distance divided by speed, and since the speed of light is constant, then minimizing the
total time elapsed is equivalent to minimizing the total distance traveled, namely D = d1+d2. The basic
idea here is that Fermat’s Principle implies that for the light to go from A to B in the shortest time, the
unknown point C—and hence the unknown distance x—will have to be at a point that makes θ1 = θ2.
The distances L, y1 and y2 are constants, so the goal is to write the total distance D as a function of x,
find the x that minimizes D, then show that that value of x makes θ1 = θ2.

First, note that C has to be between A and B as in the picture, otherwise the total distance D would
be larger than if C were directly below either A or B. This ensures that θ1 and θ2 are between 0 and
π/2, and that 0≤ x ≤ L.

Next, by the Pythagorean Theorem and the above picture,

d1 =
√

x2 + y2
1 and d2 =

√
(L− x)2+ y2

2

and so the total distance D = d1 +d2 traveled by the light is a function of x:

D(x) =
√

x2+ y2
1 +

√
(L− x)2+ y2

2

To find the critical points of D, solve the equation D′(x)= 0:

D′(x) = x
√

x2+ y2
1

− L− x
√

(L− x)2+ y2
2

= 0 ⇒ x

d1
= L− x

d2
⇒ sin θ1 = sin θ2 ⇒ θ1 = θ2

since the sine function is one-to-one over the interval [0, π2 ].
This seems to prove the result, except for one remaining issue to resolve: verifying that the minimum

for D really does occur at the x between 0 and L where D′(x) = 0, not at the endpoints x = 0 or x = L

of the closed interval [0,L]. Note that using the Second Derivative Test in this case does not matter,
since you would have to check the value of D at the endpoints anyway and compare those values to the
values of D at the critical points. To find expressions for the critical points, note that

D′(x) = 0 ⇒ x
√

x2 + y2
1

= L− x
√

(L− x)2 + y2
2

⇒ x2

x2+ y2
1

= (L− x)2

(L− x)2+ y2
2

⇒ ✘✘✘✘✘
(L− x)2x2 + x2 y2

2 = ✘✘✘✘✘
(L− x)2x2 + (L− x)2 y2

1

⇒ xy2 = (L− x)y1 ⇒ x = Ly1

y1 + y2
is the only critical point,

and x is between 0 and L. Now compare the values of D2(x) at x = 0, x = L, and x = Ly1
y1+y2

:

D2(0) = L2 + y2
1 + y2

2 + 2y1

√
L2+ y2

2

D2(L) = L2 + y2
1 + y2

2 + 2y2

√
L2+ y2

1

D2
(

Ly1
y1+y2

)
= L2 + y2

1 + y2
2 + 2y1 y2

Since y2 <
√

L2 + y2
2 and y1 <

√
L2+ y2

1 , then D2
(

Ly1
y1+y2

)
is the smallest of the three values above, so that

D2(x) has its minimum value at x = Ly1
y1+y2

, which means D(x) has its minimum value there. X



Optimization • Section 4.1 97

Example 4.5

A man is in a boat 4 miles off a straight coast. He wants to reach a point 10 miles down the coast in the
minimum possible time. If he can row 4 mi/hr and run 5 mi/hr, where should he land the boat?

p
x2 +16

4

x 10− x
10

YSolution: Let T be the total time traveled. The goal is to minimize T. From the
picture on the right, since time is distance divided by speed, break the total time
into two parts: the time rowing in the water and the time running on the coast,
so that

T = timerow + timerun = distrow

speedrow
+ distrun

speedrun
=

p
x2 +16

4
+ 10− x

5
,

where 0≤ x ≤ 10 is the distance along the coast where the boat lands. Then

T ′(x) = x

4
p

x2 +16
− 1

5
= 0 ⇒ 5x = 4

√
x2+16 ⇒ 25x2 = 16(x2 +16) ⇒ x = 16

3
,

so x = 16
3 is the only critical point. Thus, the (global) minimum of T will occur at x = 16

3 , x = 0, or x = 10.
Since

T(0) = 3 , T(10) =
p

29
2

≈ 2.693 , T

(
16
3

)
= 13

5
= 2.6

then T( 16
3 )< T(10)< T(0). Hence, the global minimum occurs when landing the boat x = 16

3 ≈ 5.33 miles
down the coast.

Note that this example shows the importance of checking the endpoints. It was quite close between
landing about 5.33 miles down the coast (2.6 hours) or simply rowing all the way to the destination
(about 2.693 hours)—the difference is only about 5.6 minutes. With just a slight change in a few of the
numbers, the minimum could have occurred at an endpoint. Moral: always check the endpoints!3

Example 4.6

Find the point (x, y) on the graph of the curve y=p
x that is closest to the point (1,0).

x

y

0

D

(x, y)

(1,0)

y=p
x

Solution: Let (x, y) be a point on the curve y=p
x. Then (x, y)= (x,

p
x ),

so by the distance formula the distance D between (x, y) and (1,0) is
given by

D2 = (x−1)2 + (y−0)2 = (x−1)2 + (
p

x )2 = (x−1)2 + x ,

which is a function of x ≥ 0 alone. Note that minimizing D is equivalent
to minimizing D2. Since

d(D2)
dx

= 2(x−1) + 1 = 2x − 1 = 0 ⇒ x = 1
2 is the only critical point,

and since d2(D2)
dx2 = 2 > 0 for all x, then by the Second Derivative Test x = 1/2 is a local minimum. Hence,

the global minimum for D2 must occur at the endpoint x = 0 or at x = 1/2. But D2(0)= 1> D2(1/2)= 3/4,
so the global minimum occurs at x = 1/2. Hence, the closest point is (x, y) = (1/2,

p
1/2).

3Another possible lesson is that optimal in the mathematical sense might, again, not mean optimal in a practical
sense. After all, presumably after the man is finished with whatever he had to do at the destination 10 miles down
the coast, he then has the inconvenience of going back about 4.67 miles to retrieve his boat. At his running speed
of 10 mph this would take 28 minutes, wiping out the 5.6 minutes he gained with his “optimal” landing spot!
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Example 4.7

Find the width and height of the rectangle with the largest possible perimeter inscribed in a semicircle
of radius r.

hr

w
2

w

Solution: Let w be the width of the rectangle and let h be the height, as
in the picture. Then the perimeter is P = 2w+2h. By symmetry and the
Pythagorean Theorem,

h2 = r2 −
(w

2

)2
⇒ h = 1

2

√
4r2 −w2

and so P = 2w+
p

4r2 −w2 for 0< w < 2r. Find the critical points of P:

P ′(w) = 2 − w
p

4r2 −w2
= 0 ⇒ w = 2

√
4r2 −w2

⇒ w2 = 16r2 − 4w2

⇒ w = 4r
p

5
is the only critical point,

and since

P ′′(w) = − 4r2

(4r2 −w2)3/2
⇒ P ′′

(
4rp

5

)
= − 53/2

2r
< 0

then P has a local maximum at w = 4rp
5

, by the Second Derivative Test. Since P(w) is defined for w in

the open interval (0,2r), the local maximum is a global maximum. For the width w = 4rp
5

the height is

h= rp
5

, which gives the dimensions for the maximum perimeter.

Note: If w were extended to include the cases of “degenerate” rectangles of zero width or height, i.e.

w = 0 or w = 2r, then the maximum perimeter would still occur at w= 4rp
5
, since P

(
4rp

5

)
= 10rp

5
≈ 4.472r is

larger than P(0)= 2r and P(2r) = 4r.

Exercises
A

1. Find the point on the curve y = x2 that is closest to the point (4, −1/2).

2. Prove that for 0≤ p≤ 1, p (1− p) ≤ 1
4 .

3. A farmer wishes to fence a field bordering a straight stream with 1000 yd of fencing material. It is
not necessary to fence the side bordering the stream. What is the maximum area of a rectangular
field that can be fenced in this way?

4. The power output P of a battery is given by P = V I − RI2, where I, V , and R are the current,
voltage, and resistance, respectively, of the battery. If V and R are constant, find the current I that
maximizes P.

5. An impulse turbine consists of a high speed jet of water striking circularly mounted blades. The
power P generated by the turbine is P = VU(V −U), where V is the speed of the jet and U is the
speed of the turbine. If the jet speed V is constant, find the turbine speed U that maximizes P.
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6. A man is in a boat 5 miles off a straight coast. He wants to reach a point 15 miles down the coast in
the minimum possible time. If he can row 6 mi/hr and run 10 mi/hr, where should he land the boat?

7. The current I in a voltaic cell is

I = E

R+ r
,

where E is the electromotive force and R and r are the external and internal resistance, respectively.
Both E and r are internal characteristics of the cell, and hence can be treated as constants. The
power P developed in the cell is P = RI2. For which value of R is the power P maximized?

8. Find the point(s) on the ellipse x2

25 + y2

16 = 1 closest to (−1,0).

9. Find the maximum area of a rectangle that can be inscribed in an ellipse x2

a2 + y2

b2 = 1, where a > 0
and b > 0 are arbitrary constants. Your answer should be in terms of a and b.

10. Find the radius and angle of the circular sector with the maximum area and a fixed perimeter P.

11. In Example 4.3 show that the maximum height reached by the projectile when launched with an

initial velocity v0 at an angle 0< θ < π
2 to the ground is

v2
0 sin2 θ

2g
.

12. The phase velocity v of a capillary wave with surface tension T and water density p is

v =
√

2πT

λp
+ λg

2π

where λ is the wavelength. Find the value of λ that minimizes v.

13. For an inventory model with a constant order quantity Q > 0 and a constant linear inventory de-
pletion rate D, the total unit cost TC to maintain an average inventory of Q/2 units is

TC = C + P

Q
+ (I+W)Q

2D

where C is the capital investment cost, P is the cost per order, I is the per unit interest charge per
unit time, and W is the overall inventory holding cost. Find the value of Q that minimizes TC.

a

a

a

θθ

14. The opening of a rain gutter—shown in the figure on the right—has
a bottom and two sides each with length a. The sides make an angle
θ with the bottom. Find the value of θ that maximizes the amount of
rain the gutter can hold.

B

E r

r0 x0
15. In an electric circuit with a supplied voltage (emf) E, a resistor

with resistance r0, and an inductor with reactance x0, suppose
you want to add a second resistor. If r represents the resistance
of this second resistor then the power P delivered to that resistor
is given by

P = E2r

(r+ r0)2 + x0
2

with E, r0, and x0 treated as constants. For which value of r is the power P maximized?



100 Chapter 4 • Applications of Derivatives §4.1

16. The stress τ in the xy-plane along a varying angle φ is given by

τ = τ(φ) =
σx −σy

2
sin 2φ + τxy cos 2φ ,

where σx, σy, and τxy are stress components that can be treated as constants. Show that the maxi-
mum stress is

τ =

√(
σx −σy

)2 + 4τ2
xy

2
.

(Hint: Draw a right triangle with angle 2φ after finding the critical point(s).)

17. A certain jogger can run 0.16 km/min, and walks at half that speed. If he runs along a circular trail
with circumference 50 km and then—before completing one full circle—walks back straight across
to his starting point, what is the maximum time he can spend on the run/walk?

18. A rectangular poster is to contain 50 square inches of printed material, with 4-inch top and bottom
margins and 2-inch side margins. What dimensions for the poster would use the least paper?

19. Find the maximum volume of a right circular cylinder that can be inscribed in a sphere of radius 3.

20. A figure consists of a rectangle whose top side coincides with the diameter of a semicircle atop it.
If the perimeter of the figure is 20 m, find the radius and height of the semicircle and rectangle,
respectively, that maximizes the area inside the figure.

21. A thin steel pipe 25 ft long is carried down a narrow corridor 5.4 ft wide. At the end of the corridor
is a right-angle turn into a wider corridor. How wide must this corridor be in order to get the pipe
around the corner? You may assume that the width of the pipe can be ignored.

22. A rectangle is inscribed in a right triangle, with one corner of the rectangle at the
right angle of the triangle. Show that the maximum area of the rectangle occurs
when a corner of the rectangle is at the midpoint of the hypotenuse of the triangle.

23. Find the relation between the radius and height of a cylindrical can with an open top that maxi-
mizes the volume of the can, given that the surface area of the can is always the same fixed amount.

24. An isosceles triangle is circumscribed about a circle of radius r. Find the height of the triangle that
minimizes the perimeter of the triangle.

25. Suppose N voltaic cells are arranged in N/x rows in parallel, with each row consisting of x cells in
series, creating a current I through an external resistance R. Each cell has internal resistance r and
EMF (voltage) e. Find the x that maximizes the current I, which—due to Ohm’s Law—is given by

I = xe

(x2r/N)+R
.

26. A single-degree-of-freedom harmonically forced vibration system with damping factor ζ has mag-

nification factor MF = ((1− r2)2 + (2ζr)2)−1/2, where r is the frequency ratio. Find the value of r that
maximizes MF.

27. At a distance x ≥ 0 from the center of a uniform ring with charge q and radius a, the magnitude E

of the electric field for points on the axis of the ring is

E = qx

4πǫ0 (a2 + x2)3/2

where ǫ0 is the permittivity of free space. Find the distance x that maximizes E.
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28. Find the equation of the tangent line to the ellipse x2

a2 + y2

b2 = 1 in the first quadrant that forms with
the coordinate axes the right triangle with minimal area.

29. A “cold” star that has exhausted its nuclear fuel—called a white dwarf —has total energy E, given
by

E = ħ2 (3π2Nq)5/3

10π2m

(
4
3
πR3

)−2/3

− 3GM2N2

5R

where ħ is the reduced Planck constant, N is the number of nucleons—protons and neutrons—in the
star, q is the charge of an electron, m is the mass of an electron, M is the mass of a nucleon, G is the
gravitational constant, and R is the radius of the star. Show that the radius R that minimizes E is

R =
(

9π
4

)2/3 ħ2q5/3

GmM2N1/3
.

C

30. An object of mass m has orbital angular momentum l around a black hole with Schwarzchild radius

rS and mass M. The effective potential Φ of the object is

Φ = −GM

r
+ l2

2m2r2
− rS l2

2m2r3

where G is the gravitational constant and r is the object’s distance from the black hole. Show that Φ
has a local maximum and minimum at r = r1 and r = r2, respectively, where

r1 = l2

2GMm2


1−

√

1− 6GMm2rS

l2


 and r2 = l2

2GMm2


1+

√

1− 6GMm2rS

l2


 .

A

B

θ1

θ2

31. Recall Fermat’s Principle from Example 4.4, which states that light travels
along the path that takes the least amount of time. The speed of light in a
vacuum is approximately c= 2.998×108 m/s, but in some other medium (e.g.
water) light is slower. Suppose that a ray of light goes from a point A in one
medium where it moves at a speed v1 and ends up at a point B in another
medium where it moves at a speed v2. Use Fermat’s Principle to prove Snell’s

Law, which says that the light is refracted through the boundary between
the two media such that

sin θ1

sin θ2
= v1

v2

where θ1 and θ2 are the angles that the light makes with the normal line perpendicular to the
boundary of the media in the first and second medium, respectively, as in the picture above.

32. A sphere of radius a is inscribed in a right circular cone, with the sphere touching the base of the
cone. Find the radius and height of the cone if its volume is a minimum.

33. Find the length of the shortest line segment from the positive x-axis to the positive y-axis going
through a point (a,b) in the first quadrant.

34. Find the radius r of a circle c whose center is on a fixed circle C of radius R such that the arc length
of the part of c within C is a maximum.
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4.2 Curve Sketching

A function can increase between two points in different ways, as shown in Figure 4.2.1.

y

x

y= f (x)

(a) f ′′ = 0: straight

y

x

y = f (x)

(b) f ′′ > 0: concave up

y

x

y = f (x)

(c) f ′′ < 0: concave down

Figure 4.2.1 Increasing function f : f ′ > 0, different signs for f ′′

In each case in the above figure the function is increasing, so that f ′(x) > 0, but the
manner in which the function increases is determined by its concavity, that is, by
the sign of the second derivative f ′′(x). The function in the graph on the far left is
linear, i.e. of the form f (x)= ax+b for some constants a and b, so that f ′′(x)= 0 for all
x. But the functions in the other two graphs are nonlinear. In the middle graph the
derivative f ′ is increasing, so that f ′′ > 0; in this case the function is called concave

up. In the graph on the far right the derivative f ′ is decreasing, so that f ′′ < 0; in
this case the function is called concave down. The same definitions would hold if the
function were decreasing, as shown in Figure 4.2.2 below:

y

x

y= f (x)

(a) f ′′ = 0

y

x

y = f (x)

(b) f ′′ > 0: concave up

y

x

y = f (x)

(c) f ′′ < 0: concave down

Figure 4.2.2 Decreasing function f : f ′ < 0, different signs for f ′′

In Figures 4.2.1(b) and 4.2.2(b) the function is below the line joining the points at
each end, while in Figure 4.2.1(c) and 4.2.2(c) the function is above that line. This
turns out to be true in general, as a result of the following theorem:
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Concavity Theorem: Suppose that f is a twice-differentiable function on [a, b].
Then:
(a) If f ′′(x) > 0 on (a, b) then f (x) is below the line l(x) joining the points (a, f (a))

and (b, f (b)) for all x in (a, b).

(b) If f ′′(x) < 0 on (a, b) then f (x) is above the line l(x) joining the points (a, f (a))
and (b, f (b)) for all x in (a, b).

y

x
a b

y= f (x)

l(x)

f (a)

f (b)

Proof: Only part (a) will be proved; the proof of part
(b) is similar and left as an exercise. So assume that
f ′′(x) > 0 on (a, b), and l(x) be the line joining (a, f (a))
and (b, f (b)), as in the drawing on the right. The draw-
ing suggests that f (x) < l(x) over (a, b), but this is
what has to be proved.

The goal is to show that g(x) = f (x)− l(x) < 0 on
(a, b), since this will show that f (x) < l(x) on (a, b).
Since f and l are both continuous on [a, b] then so is
g. Hence g has a global maximum somewhere in [a, b], by the Extreme Value Theo-
rem. Suppose the global maximum occurs at an interior point x = c, i.e. for some c

in the open interval (a, b). Then g′(c) = 0 and g′′(c) = f ′′(c)− l′′(c) = f ′′(c) > 0, since
l(x) is a line and hence has a second derivative of 0 for all x. Then by the Sec-
ond Derivative Test g has a local minimum at x = c, which contradicts g having a
global maximum at x = c. Thus, the global maximum of g cannot occur at an inte-
rior point, so it must occur at one of the end points x = a or x = b. In other words,
either g(x) < g(a) or g(x) < g(b) for all x in (a, b). But f (a) = l(a) and f (b) = l(b), so
g(a) = 0 = g(b). Hence, g(x) < 0 for all x in (a, b), i.e. f (x) < l(x) for all x in (a, b). X

Points where the concavity of a function changes have a special name:

A function f has an inflection point at x = c if the concavity of f changes around
x= c. That is, the function goes from concave up to concave down, or vice versa.

Note that to be an inflection point it does not suffice for the second derivative to
be 0 at that point; the second derivative must change sign around that point, either
from positive to negative or from negative to positive. For example, f (x) = x3 has an
inflection point at x = 0, since f ′′(x) = 6x < 0 for x < 0 and f ′′(x) = 6x > 0 for x > 0, i.e.
f ′′(x) changes sign around x= 0 (and of course f ′′(0)= 0). But for f (x)= x4, x = 0 is not

an inflection point even though f ′′(0)= 0, since f ′′(x)= 12x2 ≥ 0 is always nonnegative.
That is, f (x)= x4 is always concave up. Figure 4.2.3 below shows the difference:
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y

x
0

(a) f (x)= x3: inflection point at x = 0

y

x
0

(b) f (x)= x4: non-inflection point at x = 0

Figure 4.2.3 Inflection vs non-inflection point at x = 0 with f ′′(0)= 0

Figure 4.2.3(b) shows that a point where the second derivative is 0 is a possible inflec-
tion point, but you still must check that the second derivative changes sign around that
point. Using local minima and maxima, concavity and inflection points, and where a
function increases or decreases, you can sketch the graph of a function.

Example 4.8

Sketch the graph of f (x) = x3 − 6x2 + 9x + 1. Find all local maxima and minima, inflection points,
where the function is increasing or decreasing, and where the function is concave up or concave down.

Solution: Since f ′(x) = 3x2 −12x+9 = 3(x−1)(x−3) then x = 1 and x = 3 are the only critical points.
And since f ′′(x) = 6x−12 then f ′′(1) = −6 < 0 and f ′′(3) = 6 > 0. So by the Second Derivative Test, f

has a local maximum at x = 1 and a local minimum at x = 3. Since f ′′(x) = 6x−12 < 0 for x < 2 and
f ′′(x)= 6x−12> 0 for x > 2, then x= 2 is an inflection point, and f is concave down for x < 2 and concave
up for x > 2. The table below shows where f is increasing and decreasing, based on the sign of f ′:

x values 3(x−1) (x−3) f ′(x) direction

x < 1 − − + f is increasing
1< x < 3 + − − f is decreasing

x > 3 + + + f is increasing

The graph is shown below:

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

y

x
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Example 4.9

Sketch the graph of f (x) = −x
1 + x2 . Find all local maxima and minima, inflection points, where the func-

tion is increasing or decreasing, and where the function is concave up or concave down. Also indicate
any asymptotes.

Solution: Since f ′(x)= x2−1
(1+x2)2

then x = 1 and x =−1 are the only critical points. And since f ′′(x)= 2x (3−x2)
(1+x2)3

then f ′′(1) = 1
2 > 0 and f ′′(−1) = − 1

2 < 0. So by the Second Derivative Test, f has a local minimum at
x = 1 and a local maximum at x =−1. Since f ′′(x)> 0 for x <−

p
3, f ′′(x)< 0 for −

p
3< x < 0, f ′′(x)> 0 for

0 < x <
p

3, and f ′′(x) < 0 for x >
p

3, then x = 0,±
p

3 are inflection points, f is concave up for x < −
p

3
and for 0 < x <

p
3, and f is concave down for −

p
3 < x < 0 and for x >

p
3. Since f ′(x) > 0 for x < −1

and x > 1 then f is increasing for |x| > 1. And f ′(x) < 0 for −1 < x < 1 means f is decreasing for |x| < 1.
Finally, since lim

x→∞
f (x)= 0 and lim

x→−∞
f (x)= 0 then the x-axis (y= 0) is a horizontal asymptote. There are

no vertical asymptotes (why?).
The graph is shown below:

−1

−0.5

0

0.5

1

−4 −3 −2 −1 0 1 2 3 4

y

x

If the Second Derivative Test fails then one alternative is the following test:

First Derivative Test: For a continuous function f on an interval I, let x = c be
a number in I such that f (c) is defined, and either f ′(c) = 0 or f ′(c) does not exist.
Then:
(a) If f ′(x) changes from negative to positive around x= c then f has a local mini-

mum at x= c.

(b) If f ′(x) changes from positive to negative around x = c then f has a local max-
imum at x= c.

This test merely states the obvious: a function decreases then increases around a
minimum, and it increases then decreases around a maximum.
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Example 4.10

0
0.2
0.4
0.6
0.8

1
1.2
1.4

−2−1.5−1−0.5 0 0.5 1 1.5 2

y

x

Sketch the graph of f (x)= x2/3.

Solution: Clearly f (x) is continuous for all x, including x =
0 (since f (0) = 0), but f ′(x) = 2

3 3px
is not defined at x = 0.

Since f ′(x) changes from negative to positive around x = 0
( f ′(x)< 0 when x < 0 and f ′(x)> 0 when x > 0), then by the
First Derivative Test f has a local minimum at x = 0. Since
f ′′(x) = − 2

9 x4/3 < 0 for all x 6= 0, then f is always concave
down. There are no vertical or horizontal asymptotes. The
graph is shown on the right.

Note that the Second Derivative Test could not be used for this function, since f ′(x) 6= 0 for all x (notice
also that f ′′(x) is not defined at x = 0).

A more complete alternative to the Second Derivative Test is the following:4

Nth Derivative Test: A non-constant function f with continuous derivatives of
all orders up to and including n > 1 at x = c has either a local minimum, local
maximum or inflection point at x = c if and only if

f (k)(c) = 0 for k = 1, 2, . . ., n−1 and f (n)(c) 6= 0

(i.e. the nth derivative is the first nonzero derivative at x= c). If so, then:
(a) If n > 1 is even and f (n)(c)> 0 then f has a local minimum at x= c.

(b) If n > 1 is even and f (n)(c)< 0 then f has a local maximum at x= c.

(c) If n > 1 is odd then f has an inflection point at x= c.

Note that the Second Derivative Test is the special case where n = 2 in the Nth Deriva-
tive Test. Though this test gives necessary and sufficient conditions for a local max-
imum, local minimum, and inflection point, calculating the first n derivatives can be
complicated if n is large and the given function is not simple.

Example 4.11

The Second Derivative Test fails for f (x) = x4 at the critical point x = 0, since f ′′(0) = 0. But the first
4 derivatives of f (x) = x4 are f ′(x) = 4x3, f ′′(x) = 12x2, f (3)(x) = 24x, and f (4)(x) = 24, which are all
continuous and

f (k)(0) = 0 for k = 1, 2, 3 and f (4)(0) = 24 6= 0 .

So by the Nth Derivative Test, since n= 4 is even and f (4)(0)= 24> 0 then f (x)= x4 has a local minimum
at x = 0. Note that f (x)≥ 0= f (0) for all x, so x = 0 is actually a global minimum for f .

4For a proof, see pp.10-11 in KOO, D., Elements of Optimization, New York: Springer-Verlag, 1977.
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A common practice in many fields of science and engineering is to combine multiple
named constants (e.g. π) or variables in a function into one variable and then sketch a
graph of that function. The example below illustrates the technique.

Example 4.12

A hydrogen atom has one electron, and the probability of finding the electron in the ground state of the
hydrogen atom between radii r and r+dr is D(r)dr, where dr is an infinitesimal change in the radius
r (the distance from the electron to the nucleus), D(r) is the radial probability density function

D(r) = 4

a3
0

r2e−2r/a0

and a0 ≈ 5.291772×10−11 m is the Bohr radius. It is useful to analyze this function in terms of r ≥ 0 in
relation to the Bohr radius a0 (e.g. r = 0.5a0, a0, 2a0, 3a0). To do this, let x = r

a0
, so that

D(r) = 4
a0

(
r

a0

)2

e
−2

(
r

a0

)

⇒ a0 D(x) = 4x2e−2x

and then sketch the graph of a0 D(x), which is shown below:

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6

a
0

D
(

r a
0

)

r
a0

From the graph it looks like x = 1 (i.e. r = a0) is a local (and global) maximum, so that the electron is
most likely to be found near r = a0, and the probability drops off dramatically past a distance r = 3a0.
In the exercises you will be asked to show that r = a0 is indeed a local maximum and that the inflection
points are r =

(
1± 1p

2

)
a0.

Note that the right side of the formula a0 D(x) = 4x2e−2x does not involve a0, which was multiplied
over to the left side. In general that is the strategy when dealing with these sorts of functions where
variables and constants are combined. In this case the stray constant a0 can be multiplied with D since
that will not affect the location of critical and inflection points, nor fundamentally alter the general
shape of the graph.
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Example 4.13

For a single particle with two states—energy 0 and energy ǫ—in thermal contact with a reservoir at
temperature τ, the average energy U and heat capacity CV are given by

U = ǫ
e−ǫ/τ

1+ e−ǫ/τ
and CV = kB

( ǫ
τ

)2 eǫ/τ

(
1+ eǫ/τ

)2

where kB ≈ 1.38065×10−23 J/K is the Boltzmann constant. The graph below shows both quantities as
functions of τ/ǫ (not ǫ/τ, as you might expect). See Exercise 9.
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Exercises

A
For Exercises 1-8 sketch the graph of the given function. Find all local maxima and minima, inflection
points, where the function is increasing or decreasing, where the function is concave up or concave
down, and indicate any asymptotes.

1. f (x) = x3 −3x 2. f (x) = x3 −3x2 +1 3. f (x) = xe−x 4. f (x) = x2 e−x2

5. f (x) = 1

1 + x2 6. f (x) = x2

(x−1)2 7. f (x) = e−x − e−2x

2
8. f (x) = e−x sin x

9. Write U/ǫ and CV /kB from Example 4.13 as functions of x = τ/ǫ. You do not need to sketch the graphs.

10. Show that the function D(r) = 4
a3

0
r2e−2r/a0 from Example 4.12 has a local maximum at r = a0 and

inflection points at r =
(
1± 1p

2

)
a0.

11. Sketch the graph of Kratzer’s molecular potential V (r) =−2D
(

a
r
− 1

2
a2

r2

)
as a function of x = r

a
, with

a> 0 and D > 0 as constants.

12. Sketch the graph of f (K)= 2N
p

K e
− K

kTp
π (kT)3/2 as a function of x = K

kT
, with N, k and T as positive constants.

13. Prove part (b) of the Concavity Theorem.



Numerical Approximation of Roots of Functions • Section 4.3 109

4.3 Numerical Approximation of Roots of Functions

When finding critical points of a function f , you encounter the problem of solving the
equation f ′(x) = 0. The examples and exercises so far were set up carefully so that
solutions to that equation could be found in a simple closed form. But in practice this
will not always be the case—in fact it is almost never the case. For example, finding
the critical points of f (x)= sin x − x2

2 entails solving the equation f ′(x)= cos x − x = 0,
for which there is no solution in a closed-form expression.

What should you do in such a situation?5 One possibility is to use the bisection
method mentioned in Section 3.3. In fact, in Example 3.25 the solution to the equation
cos x = x (i.e. cos x − x = 0) was shown to exist in the interval [0,1], and then a
demonstration of the bisection method was given to find that solution.

The bisection method is one of many numerical methods for finding roots of a func-
tion (i.e. where the function is zero). Finding the critical points of a function means
finding the roots of its derivative. Though the bisection method could be used for that
purpose, it is not efficient—convergence to the root is slow. A far more efficient method
is Newton’s method6, whose geometric interpretation is shown in Figure 4.3.1 below.

y

x
0

y= f (x)

x̄ x0

(x0, f (x0))

x1

(x1, f (x1))

x2

Figure 4.3.1 Newton’s method for finding a root x̄ of f (x)

The idea behind Newton’s method is simple: to find a root x̄ of a function f , choose an
initial guess x0 and then go up—or down—to the curve y= f (x) and draw the tangent
line to the curve at the point (x0, f (x0)). Let x1 be where that tangent line intersects
the x-axis, as shown above; repeat this procedure on x1 to get the next number x2,
repeat on x2 to get x3, and so on. The resulting sequence of numbers x0, x1, x2, x3, . . .,
will approach the root x̄. Convergence under certain conditions can be proved.7

5Note: To “just give up”—as suggested semi-seriously by some students I have had—is not an option.
6Sometimes called the Newton-Raphson method.
7See pp.58-62 in SAATY, T.L. AND J. BRAM, Nonlinear Mathematics, New York: McGraw-Hill, Inc., 1964.
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The general formula for the number xn obtained after n ≥ 1 iterations in Newton’s
method can be determined by considering the formula for x1. First, the tangent line to
y= f (x) at the point (x0, f (x0)) has slope f ′(x0), so the equation of the line is

y − f (x0) = f ′(x0) (x − x0) . (4.1)

The point (x1,0) is (by design) also on that line, so that

0 − f (x0) = f ′(x0) (x1 − x0) ⇒ x1 = x0 − f (x0)
f ′(x0)

provided that f ′(x0) 6= 0. The general formula for xn is given by the following algorithm:

Newton’s method: For an initial guess x0, the numbers xn for n ≥ 1 are computed
iteratively as:

xn = xn−1 − f (xn−1)
f ′(xn−1)

for n = 1, 2, 3, . . .

That is, each “next” number xn depends on the previous number xn−1. The algo-
rithm terminates whenever f ′(xn) = 0, or when the desired accuracy is reached. If
f ′(xn)= 0 for some n ≥ 0, then you could start over with a different initial guess x0.

To implement this algorithm in a programming language (for which Newton’s method
is well-suited), the following language-independent pseudocode can be used as a guide:

Algorithm pseudocode for Newton’s method

NEWTON’S METHOD

1 N ← NUMBER-OF-ITERATIONS ✄ User supplies this value
2 x← INITIAL-GUESS ✄ User supplies this value
3 for n ← 1 to N

4 do

5 if f ′(x) 6= 0
6 then

7 x ← x − f (x)
f ′(x)

8 print x

9 else

10 error “division by zero”
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Example 4.14

Use Newton’s method to find the root of f (x)= cos x− x.

Solution: Since the root is already known to be in the interval [0,1], choose x0 = 1 as the initial guess.
The numbers xn for n ≥ 1 can be computed with a hand-held scientific calculator, but the process is
tedious and error-prone. Using a computer is far more efficient and allows more flexibility.

For example, the algorithm is easily implemented in the Java programming language. Save this code
in a plain text file as newton.java:

Listing 4.1 Newton’s method in Java (newton.java)

1 public class newton {

2 public static void main(String[] args) {

3 int N = Integer.parseInt(args[0]); //Number of iterations

4 double x = 1.0; //initial guess

5 System.out.println("n=0: " + x);

6 for (int i = 1; i <= N; i++) {

7 x = x - f(x)/derivf(x);

8 System.out.println("n=" + i + ": " + x);

9 }

10 }

11

12 //Define the function f(x)

13 public static double f(double x) {

14 return Math.cos(x) - x;

15 }

16

17 //Define the derivative f’(x)

18 public static double derivf(double x) {

19 return -Math.sin(x) - 1.0;

20 }

21 }

Though knowledge of Java would help, it should not be that difficult to figure out what the above code
is doing. The number of iterations N is passed as a command-line parameter to the program, and xn

is computed and printed for n= 0, 1, 2, . . . , N. Note that the derivative of f (x) is “hard-coded” into the
program.8 There is also no error checking for the derivative being zero at any xn. The program would
simply halt on a division by zero error.

Compile the code, then run the program with 10 iterations:

javac newton.java

java newton 10

The output is shown below:

8There are some programming language libraries for calculating derivatives of functions “on the fly,” i.e. dynami-
cally. For example, the GNU libmatheval C/Fortran library can perform such symbolic operations. It is available
at http://www.gnu.org/software/libmatheval/

http://www.gnu.org/software/libmatheval/
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n=0: 1.0

n=1: 0.7503638678402439

n=2: 0.7391128909113617

n=3: 0.739085133385284

n=4: 0.7390851332151607

n=5: 0.7390851332151607

n=6: 0.7390851332151607

n=7: 0.7390851332151607

n=8: 0.7390851332151607

n=9: 0.7390851332151607

n=10: 0.7390851332151607

Note that the solution x̄ = 0.7390851332151607 was found after only 4 iterations; the numbers xn repeat
for n≥ 5. This is much faster than the bisection method.

Another root-finding numerical method similar to Newton’s method is the secant

method, whose geometric interpretation is shown in Figure 4.3.2 below:

y

x
0

y= f (x)

x̄ x0

(x0, f (x0))

x1

(x1, f (x1))

x2

Figure 4.3.2 Secant method for finding a root x̄ of f (x)

The idea behind the secant method is simple: to find a root x̄ of a function f , choose
two initial guesses x0 and x1, then go up—or down—to the curve y= f (x) and draw the
secant line through the points (x0, f (x0)) and (x1, f (x1)) on the curve. Let x2 be where
that secant line intersects the x-axis, as shown above; repeat this procedure on x1 and
x2 to get the next number x3, and keep repeating in this way. The resulting sequence
of numbers x0, x1, x2, x3, . . ., will approach the root x̄, under the right conditions.9

9See pp.227-229 in DAHLQUIST, G. AND Å. BJÖRCK, Numerical Methods, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1974.
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Since the secant line through (x0, f (x0)) and (x1, f (x1)) has slope f (x1)−f (x0)
x1−x0

, the equa-
tion of that secant line is:

y − f (x1) = f (x1)− f (x0)
x1 − x0

(x − x1)

The point (x2,0) is on that line, so that

0 − f (x1) = f (x1)− f (x0)
x1 − x0

(x2 − x1) ⇒ x2 = x1 − (x1 − x0) · f (x1)
f (x1) − f (x0)

provided that x1 6= x0. The general formula for xn is given by the following algorithm:

Secant method: For two initial guesses x0 and x1, the numbers xn for n ≥ 2 are
computed iteratively as:

xn = xn−1 − (xn−1 − xn−2) · f (xn−1)
f (xn−1) − f (xn−2)

for n = 2, 3, 4, . . . (4.2)

That is, each “next” number xn depends on the previous two numbers xn−1 and
xn−2. The algorithm terminates whenever xn = xn−1 (i.e. the numbers start repeat-
ing) or when the desired accuracy is reached.

Algorithm pseudocode for the secant method

SECANT METHOD

1 N ← NUMBER-OF-ITERATIONS ✄ User supplies this value
2 x0 ← FIRST-INITIAL-GUESS ✄ User supplies this value
3 x1 ← SECOND-INITIAL-GUESS ✄ User supplies this value
4 f0 ← f (x0)
5 for n ← 1 to N

6 do

7 f1 ← f (x1)
8 if f0 6= f1
9 then

10 x ← x1 − (x1 − x0) · f1

f1 − f0
11 print x

12 x0 ← x1
13 f0 ← f1 ✄ Re-use f1 as f0 in the next iteration
14 x1 ← x

15 else

16 error “division by zero”
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One difference you might have noticed between the secant method and Newton’s
method is that the secant method does not use derivatives. The secant method replaces
the derivative in Newton’s method with the slope of a secant line which approximates
the derivative (recall how the tangent line is the limit of slopes of secant lines). This
might seem like a drawback, perhaps giving a “less accurate” slope than the tangent
line, but in practice it is not really a problem. In fact, in many cases the secant method
is preferable, since computing derivatives can often be quite complicated.

Example 4.15

Use the secant method to find the root of f (x)= cos x− x.

Solution: Since the root is already known to be in the interval [0,1], choose x0 = 0 and x1 = 1 as the
two initial guesses. The algorithm is easily implemented in the Java programming language. Save this
code in a plain text file as secant.java:

Listing 4.2 Secant method in Java (secant.java)

1 import java.math.*;

2 public class secant {

3 public static void main(String[] args) {

4 int N = Integer.parseInt(args[0]); //Number of iterations

5 double x0 = 0.0; //first initial guess

6 double x1 = 1.0; //second initial guess

7 double f0 = f(x0);

8 double f1;

9 double x = 0.0;

10 for (int i = 2; i <= N; i++) {

11 f1 = f(x1);

12 x = x1 - (x1 - x0)*f1/(f1 - f0);

13 x0 = x1;

14 f0 = f1; //Re-use f1 as f0 in the next iteration

15 x1 = x;

16 System.out.println("n=" + i + ": " + x);

17 }

18 }

19

20 //Define the function f(x)

21 public static double f(double x) {

22 return Math.cos(x) - x;

23 }

24 }

Compile the code, then run the program:

javac secant.java

java secant 10

The output is shown below:
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n=2: 0.6850733573260451

n=3: 0.736298997613654

n=4: 0.7391193619116293

n=5: 0.7390851121274639

n=6: 0.7390851332150012

n=7: 0.7390851332151607

n=8: 0.7390851332151607

n=9: NaN

n=10: NaN

Notice that the root was found after 6 iterations (n = 7). The undefined number NaN (which stands
for “Not a Number”) was returned starting with the eighth iteration (n = 9) because x7 = x8, so that
f (x8) − f (x7) = 0, causing a division by zero error in the term

x9 = x8 − (x8 − x7) · f (x8)
f (x8) − f (x7)

.

For the function f (x)= cos x − x, the table below summarizes the results of 10 itera-
tions of the bisection method, Newton’s method and the secant method:

Term Bisection Newton Secant
x0 0.5 1.0 0.0
x1 0.75 0.7503638678402439 1.0
x2 0.625 0.7391128909113617 0.6850733573260451
x3 0.6875 0.739085133385284 0.736298997613654
x4 0.71875 0.7390851332151607 0.7391193619116293
x5 0.734375 0.7390851332151607 0.7390851121274639
x6 0.7421875 0.7390851332151607 0.7390851332150012
x7 0.73828125 0.7390851332151607 0.7390851332151607
x8 0.740234375 0.7390851332151607 0.7390851332151607
x9 0.7392578125 0.7390851332151607 undefined
x10 0.73876953125 0.7390851332151607 undefined

Newton’s method found the root after 4 iterations, while the secant method needed
6 iterations. After 10 iterations the bisection method had yet to find the root to the
same level of precision as the other methods—it would take 52 iterations (that is, x52)
to achieve similar accuracy to 16 decimal places.

In general Newton’s method requires fewer iterations to find a root than the secant
method does, but this does not necessarily mean that it will always be faster. De-
pending on the complexity of the function and its derivative, Newton’s method could
involve more “expensive” operations (i.e. computing values, as opposed to assigning

values) than the secant method, so that the few more iterations possibly required by
the secant method are made up for by fewer total computations.
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To see this, notice that Newton’s method always requires that both f (xn−1) and
f ′(xn−1) be computed for the nth term xn in the sequence. The secant method needs
f (xn−1) and f (xn−2) for the nth term, but a good programmer would save the value of
f (xn−1) so that it could be re-used (and hence not re-computed) as f (xn−2) in the next
iteration, resulting in potentially fewer total computations for the secant method.

There are occasional pitfalls in using Newton’s method. For example, if f ′(xn) = 0
for some n ≥ 1 then Newton’s method fails, due to division by 0 in the algorithm. The
geometric reason is clear: the tangent line to the curve at that point would be parallel
to the x-axis and hence would not intersect it (assuming f (xn) 6= 0). There would be no
“next number” xn+1 in the iteration! See Figure 4.3.3(a) below.

y

x
x̄ xn xn−1

f ′(xn)= 0

y = f (x)

(a) f ′(xn)= 0

y

x
x̄ x0 x1 x2

. . .

y = f (x)

(b) Moving away from a root

Figure 4.3.3 Newton’s method: Potential pitfalls

Another possible problem is that Newton’s method might move you away from the
root, i.e. not get closer, typically by a poor choice of x0. See Figure 4.3.3(b) above. In
some extreme cases, it is possible that Newton’s method simply loops back and forth
endlessly between the same two numbers, as in Figure 4.3.4:

y

x
x̄ x0x1

y = f (x)

y

x
x0 x1x̄

y= f (x)

Figure 4.3.4 Newton’s method: Infinite loop

In most cases a different choice for the initial guess x0 will fix such problems. Most
textbooks on the subject of numerical analysis discuss these issues.10

10For example, RALSTON, A. AND P. RABINOWITZ, A First Course in Numerical Analysis, 2nd ed., New York:
McGraw-Hill, Inc., 1978.



Numerical Approximation of Roots of Functions • Section 4.3 117

There are conditions under which Newton’s method is guaranteed to work, and
convergence is fast. Newton’s method has a quadratic rate of convergence, mean-
ing roughly that the error terms—the differences between approximate roots and the
actual root—are being squared in the long term. More precisely, if the numbers xn for
n ≥ 0 converge to a root x̄, then the error terms ǫn = xn − x̄ for n ≥ 0 satisfy the limit

lim
n→∞

|ǫn+1 |
|ǫn |2

= C

for some constant C. Squared error terms might sound like a bad thing, but the xn

terms are converging to the root, making the error terms closer to 0 for large n. Squar-
ing a number ǫn when |ǫn | < 1 results in a smaller number, not a larger one.

The numerical methods that you have learned will make it possible to sketch the
graphs of many more functions, since finding local minima and maxima involves find-
ing roots of f ′, and finding inflection points involves finding roots of f ′′. You now know
some methods for finding those roots.

Finally, despite being slower, the bisection method has the nice advantage of al-
ways working. The speed of modern computers makes the difference in algorithmic
efficiency negligible in many cases.

Exercises
A

1. Use Newton’s method to find the root of f (x)= cos x−2x.

2. Use Newton’s method to find the positive root of f (x)= sin x− x/2.

3. Use Newton’s method to find the solution of the equation e−x = x.

4. Use Newton’s method to find the solution of the equation e−x = x2.

5. Use Newton’s method and f (x)= x2 −2 to approximate
p

2 accurate to six decimal places.

6. Use Newton’s method to approximate
p

3 accurate to six decimal places.

7. Repeat Exercise 1 with the secant method. 8. Repeat Exercise 3 with the secant method.

9. Repeat Exercise 5 with the secant method. 10. Repeat Exercise 6 with the secant method.

11. Cosmic microwave background radiation is described by a function similar to f (x)= x3

−1+ex for x ≥ 0.
Use Newton’s method to find the global maximum of f accurate to four decimal places.

12. Would a different choice for x0 in either graph in Figure 4.3.4 eliminate the infinite loop? Explain.

13. Draw a graph without any symmetry that has the infinite loop problem for Newton’s method.

14. The time t(p) required for a p-way merge of a file on a single disk drive into memory is

t(p) = pa+m

ln p
,

where p> 1, a is the disk access time, and m is the time to read in one segment of the size of memory.
Find the integer closest to the value of p that minimizes t(p) when a= 24.3ms and m = 3500.3ms.
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4.4 The Mean Value Theorem

The difference between instantaneous and average rates of change has been discussed
in earlier sections. Recall that there is no difference between the two for linear func-
tions. For nonlinear functions the average rate of change over an interval [a, b] of
positive length (i.e. b−a> 0) will not be the same as the instantaneous rate of change
at every point in the interval. However, the following theorem guarantees that they
will be the same at some point in the interval:

Mean Value Theorem: Let a and b be real numbers such that a< b, and suppose
that f is a function such that
(a) f is continuous on [a, b], and

(b) f is differentiable on (a, b).

Then there is at least one number c in the interval (a, b) such that

f ′(c) = f (b) − f (a)
b − a

. (4.3)

Figure 4.4.1 below shows the geometric interpretation of the theorem:

y

x
a c b

y= f (x)

f (b)

f (a)

(b, f (b))

(a, f (a))

slope= f ′(c)

slope= f (b)− f (a)
b−a

Figure 4.4.1 Mean Value Theorem: parallel tangent line and secant line

The idea is that there is at least one point on the curve y = f (x) where the tangent
line will be parallel to the secant line joining the points (a, f (a)) and (b, f (b)). For each
c in (a, b) the tangent line has slope f ′(c), while the secant line has slope f (b)−f (a)

b−a
. The

Mean Value Theorem says that these two slopes will be equal somewhere in (a, b).
To prove the Mean Value Theorem (sometimes called Lagrange’s Theorem), the fol-

lowing intermediate result is needed, and is important in its own right:
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Rolle’s Theorem: Let a and b be real numbers such that a < b, and suppose that
f is a function such that
(a) f is continuous on [a, b],

(b) f is differentiable on (a, b), and

(c) f (a)= f (b)= 0.

Then there is at least one number c in the interval (a, b) such that f ′(c)= 0.

y

x
a c b

y= f (x)

slope= f ′(c)

Figure 4.4.2

Figure 4.4.2 on the right shows the geometric in-
terpretation of the theorem. To prove the theorem,
assume that f is not the constant function f (x) = 0
for all x in [a, b] (if it were then Rolle’s Theorem
would hold trivially). Then there must be at least
one x0 in (a, b) such that either f (x0)> 0 or f (x0)< 0.
If f (x0) > 0 then by the Extreme Value Theorem f

attains a global maximum at some x= c in the open
interval (a, b), since f is zero at the endpoints x = a and x = b of the closed interval
[a, b]. Then f ′(c) = 0 since f has a maximum at x = c. Likewise if f (x0) < 0 then f

attains a global minimum at some x = c in (a, b), and thus again f ′(c)= 0 . X

The Mean Value Theorem can now be proved by applying Rolle’s Theorem to the
function

F(x) = f (x) − f (a) − f (b)− f (a)
b−a

(x−a)

where f satisfies the conditions of the Mean Value Theorem. Basically, F “tilts” the
graph of f from Figure 4.4.1 to look like the graph in Figure 4.4.2. It is trivial to check
that F(a) = F(b) = 0, and F is continuous on [a, b] and differentiable on (a, b) since f

is. Thus, by Rolle’s Theorem, F ′(c)= 0 for some c in (a, b). However,

F ′(x) = f ′(x) − f (b)− f (a)
b−a

and so

F ′(c) = f ′(c) − f (b)− f (a)
b−a

= 0 ⇒ f ′(c) = f (b)− f (a)
b−a

X

Note that both the Mean Value Theorem and Rolle’s Theorem are purely existence

theorems—they tell you only that a certain number exists. The task of finding the
numbers is left to you. For the Mean Value Theorem that task involves solving the
equation f ′(x) = f (b)−f (a)

b−a
(or f ′(x) = 0 for Rolle’s Theorem). The numerical root-finding

methods from Section 4.3 could come in handy, since obtaining closed-form solutions
might be impossible. For that reason, the Mean Value Theorem is more useful for
theoretical purposes. One such application is the following important result:
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If f is a differentiable function on an interval I such that f ′(x) = 0 for all x in I,
then f is a constant function on I.

Note that I can be any interval, even the entire real line (−∞,∞). It is already known
that f = constant ⇒ f ′ = 0; the above result says that the converse is true. The proof
is by contradiction: assume that f is not a constant function and show this contradicts
the Mean Value Theorem. If f is not constant then there exist numbers a< b in I such
that f (a) 6= f (b). However, by the Mean Value Theorem there must exist a number c

in the interval (a, b) such that

f ′(c) = f (b)− f (a)
b−a

.

Since the derivative of f is 0 everywhere in I, then f ′(c)= 0 and so

f (b)− f (a)
b−a

= 0 ⇒ f (b) − f (a) = 0 ⇒ f (a) = f (b) ,

a contradiction of f (a) 6= f (b). Thus, f must be a constant function. X

Another theoretical result can be proved with the Mean Value Theorem:

Let f be a differentiable function on an interval I. Then:

(a) If f ′ > 0 on I then f is increasing on I.

(b) If f ′ < 0 on I then f is decreasing on I.

To prove part (a), assume that f ′(x) > 0 for all x in I, and choose arbitrary numbers
a and b in I with a < b. To prove that f is increasing on I it suffices to show that
f (a)< f (b). By the Mean Value Theorem there is a number c in (a, b) (and hence in I)
such that

f (b)− f (a)
b−a

= f ′(c) , and so

f (b)− f (a) = (b−a) f ′(c) > 0

since b−a> 0 and f ′(c)> 0. Thus, f (b)> f (a), and so f is increasing on I. X

The proof of part (b) is similar and is left as an exercise. You might wonder why such
a proof is necessary. After all, an intuitive explanation was provided in Section 1.2 for
why positive or negative derivatives imply that a function is increasing or decreasing,
respectively. That knowledge has been assumed and used in the subsequent sections.
Intuitive so-called “hand-waving” explanations, in fact, often yield more insight than
a “formal” proof, such as the one above. However, it is good to know that such intuition
has a solid basis and can be proved, if needed.
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The Mean Value Theorem can help in proving inequalities, often used in the sciences
for establishing upper or lower bounds on a quantity (e.g. worst-case scenario).
Example 4.16

Show that sin x ≤ x for all x≥ 0.

Solution: The inequality holds trivially for x = 0, since sin 0 = 0 ≤ 0. So assume that x > 0. Then by the
Mean Value Theorem there is a number c in (0,x) such that for f (x)= sin x,

f (x) − f (0)
x−0

= f ′(c) ⇒ sin x − sin 0
x−0

= cos c

⇒ sin x = x cos c

⇒ sin x ≤ x

since cos c≤ 1 and x > 0. Note that sin x ≤ x is a sharper inequality than sin x ≤ 1 when 0< x < 1.

There is a useful alternative form of the Mean Value Theorem. If a < b then let
h = b−a> 0, so that a+h = b. Then any number c in (a, b) can be written as c = a+θh

for some number θ in (0,1). To see this, let c be in (a, b). Then 0< c−a< b−a= h and
so 0< c−a

h
< 1. Thus, θ = c−a

h
is in (0,1) and a+θh = a+ (c−a) = c. Hence:

Mean Value Theorem (alternative form): Let a and h > 0 be real numbers, and
suppose that f is a function such that

(a) f is continuous on [a,a+h], and

(b) f is differentiable on (a,a+h).

Then there is a number θ in the interval (0,1) such that

f (a+h) − f (a) = h f ′(a+θh) . (4.4)

The Mean Value Theorem is the special case of g(x)= x in the following generalization:

Extended Mean Value Theorem: Let a and b be real numbers such that a < b,
and suppose that f and g are functions such that

(a) f and g are continuous on [a, b],

(b) f and g are differentiable on (a, b), and

(c) g′(x) 6= 0 for all x in (a, b).

Then there is at least one number c in the interval (a, b) such that

f ′(c)
g′(c)

= f (b) − f (a)
g(b) − g(a)

. (4.5)
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The Mean Value Theorem says that the derivative of a differentiable function will
always attain one particular value on a closed interval: the function’s average rate
of change over the interval. It turns out that the derivative will take on every value
between its values at the endpoints, similar to how the Intermediate Value Theorem
applies to continuous functions:11

Darboux’s Theorem: If f is a differentiable function on a closed interval [a, b]
then its derivative f ′ attains every value between f ′(a) and f ′(b).

In other words, if f ′(a) < γ < f ′(b) (or f ′(b) < γ < f ′(a)) then there is a number c

in (a, b) such that f ′(c) = γ. If f ′ were continuous on [a, b] then the result would fol-
low trivially by the Intermediate Value Theorem for continuous functions. What is
perhaps surprising is that Darboux’s Theorem holds even for derivatives that are not

continuous. This means that a discontinuous derivative cannot have the type of sim-
ple jump discontinuities that would allow it to “skip” over intermediate values—the
points of discontinuity must be of a more complicated type. One rough interpretation
of Darboux’s Theorem is that even if a derivative is not a continuous function, it will
behave sort of as if it were.

Exercises

A

1. Does Rolle’s Theorem apply to the function f (x)= 1−|x| on the interval [−1,1]? If so, find the number
in (−1,1) that Rolle’s Theorem guarantees to exist. If not, explain why not.

2. Suppose that two horses run a race starting together and ending in a tie. Show that, at some time
during the race, they must have had the same speed.

3. Use the Mean Value Theorem to show that
∣∣sin A − sin B

∣∣ ≤
∣∣A−B

∣∣ for all A and B (in radians).
Does

∣∣sin A + sin B
∣∣ ≤

∣∣A+B
∣∣ for all A and B? Explain.

4. Show that
∣∣cos A − cos B

∣∣ ≤
∣∣A−B

∣∣ for all A and B (in radians). Does
∣∣cos A + cos B

∣∣ ≤
∣∣A+B

∣∣
for all A and B? Explain.

5. Show that tan x ≥ x for all 0≤ x < π
2 .

6. Show that
∣∣tan A − tan B

∣∣ ≥
∣∣A−B

∣∣ for all A and B (in radians) in
(
−π

2 , π2
)
. Can the inequality be

extended to all A and B? Explain your answer.

B

7. Use Rolle’s Theorem to show that for all constants a and b with a> 0, f (x)= x3−ax+b can not have
three positive roots. Also, show that it can not have three negative roots.

11For a proof see pp.16-17 in OSTROWSKI, A.M., Solution of Equations and Systems of Equations, 2nd ed., New
York: Academic Press Inc., 1966.
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8. Use the Mean Value Theorem to show that if f ′ < 0 on an interval I then f is decreasing on I.

9. Suppose that f and g are continuous on [a,b] and differentiable on (a,b), and that f ′(x) > g′(x) for
all a< x < b. Show that f (b)− g(b) > f (a)− g(a).

10. Prove the Extended Mean Value Theorem, by applying Rolle’s Theorem to the function

F(x) = f (x) − f (a) − f (b)− f (a)
g(b)− g(a)

(g(x)− g(a)) .

11. Show that ex ≥ 1+ x for all x. (Hint: Consider f (x)= ex − x.)

12. Show that ln(1+ x)< x for all x > 0. 13. Show that tan−1 x < x for all x.

14. Show that for 0<α≤β< π
2 ,

β−α

cos2α
≤ tan β − tan α ≤ β−α

cos2β
.

15. Show that for 0< a≤ b,
b−a

b
≤ ln

b

a
≤ b−a

a
.

16. Show that for n> 1 and a> b,

nbn−1(a−b) < an −bn < nan−1(a−b) .

C

17. Show that
p

a2 +b < a+ b

2a
for all positive numbers a and b.

18. Show that f (x) = cos2 x + cos2 (
π
3 + x

)
− cos x cos

(
π
3 + x

)
is a constant function. What is its value?

19. Suppose that f (x) is a differentiable function and that f (0)= 0 and f (1)= 1. Show that f ′(x0)= 2x0

for some x0 in the interval (0,1).

20. Prove the inequality ∣∣∣∣
x1 + x2

1+ x1x2

∣∣∣∣ < 1 for −1 < x1,x2 < 1

as follows:

(a) First prove the special case where x1 = x2.

(b) For the case x1 < x2 define

f (x)= x+a

1+ax

for −1≤ x ≤ 1, where −1< a< 1. Show that f is increasing on [−1,1], then use a= x2 and x = x1.

Note that proving the case x2 < x1 is unnecessary (why?).
This inequality is a generalization of the same inequality for 0 ≤ x1,x2 < 1 in the relativistic velocity

addition law from the theory of special relativity: if object 1 has velocity v1 relative to a frame of
reference F, and if object 2 has a velocity v2 relative to object 1, so that x1 = v1/c and x2 = v2/c
represent the fractions of the speed of light c at which the objects are moving, then the fraction of
the speed of light at which object 2 is moving with respect to F is x = (x1+ x2)/(1+ x1x2). So it should
be true that 0 ≤ x < 1, since nothing can move faster than the speed of light.



CHAPTER 5

The Integral

5.1 The Indefinite Integral

Derivatives appear in many physical phenomena, such as the motion of objects. Recall,
for example, that given the position function s(t) of an object moving along a straight
line at time t, you could find the velocity v(t) = s′(t) and the acceleration a(t) = v′(t) of
the object at time t by taking derivatives. Suppose the situation were reversed: given
the velocity function how would you find the position function, or given the accelera-
tion function how would you find the velocity function?

s(t) v(t) a(t)

d
dt

?

d
dt

?

Figure 5.1.1 Differentiation vs antidifferentiation for motion functions

In this case calculating a derivative would not help, since the reverse process is
needed: instead of differentiation you need a way of performing antidifferentiation,
i.e. you would calculate an antiderivative.

An antiderivative F(x) of a function f (x) is a function whose derivative is f (x).
In other words, F ′(x)= f (x).

Differentiation is relatively straightforward. You have learned the derivatives of
many classes of functions (e.g. polynomials, trigonometric functions, exponential and
logarithmic functions), and with the various rules for differentiation you can calculate
derivatives of complicated expressions involving those functions (e.g. sums, powers,
products, quotients). Antidifferentiation, however, is a different story.

124
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To see some of the issues involved, consider a simple function like f (x) = 2x. Of
course you know that d

dx
(x2) = 2x, so it seems that F(x) = x2 is the antiderivative of

f (x)= 2x. But is it the only antiderivative of f (x)? No. For example, if F(x)= x2+1 then
F ′(x) = 2x = f (x), and so F(x) = x2 +1 is another antiderivative of f (x) = 2x. Likewise,
so is F(x) = x2 +2. In fact, any function of the form F(x) = x2 +C, where C is some
constant, is an antiderivative of f (x)= 2x.

Another potential issue is that functions of the form F(x) = x2 +C are just the most
obvious antiderivatives of f (x) = 2x. Could there be some other completely different
function—one that cannot be simplified into the form x2 +C—whose derivative also
turns out to be f (x)= 2x? The answer, luckily, is no:

Suppose that F(x) and G(x) are antiderivatives of a function f (x). Then F(x) and
G(x) differ only by a constant. That is, F(x)=G(x)+C for some constant C.

To prove this, consider the function H(x)= F(x)−G(x), defined for all x in the common
domain I of F and G. Since F ′(x)=G′(x)= f (x), then

H′(x) = F ′(x) − G′(x) = f (x) − f (x) = 0

for all x in I, so H(x) is a constant function on I, as was shown in Section 4.4 on the
Mean Value Theorem. Thus, there is a constant C such that

H(x) = C ⇒ F(x) − G(x) = C ⇒ F(x) = G(x) + C

for all x in I. X

The practical consequence of the above result can be stated as follows:

To find all antiderivatives of a function, it is necessary only to find one antideriva-
tive and then add a generic constant to it.

So for the function f (x)= 2x, since F(x)= x2 is one antiderivative then all antideriva-
tives of f (x) are of the form F(x)= x2+C, where C is a generic constant. Thus, functions
do not have just one antiderivative but a whole family of antiderivatives, all differing
only by a constant. The following notation makes all this easier to express:

The indefinite integral of a function f (x) is denoted by
∫

f (x) dx

and represents the entire family of antiderivatives of f (x).

The large S-shaped symbol before f (x) is called an integral sign.
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Though the indefinite integral
∫

f (x) dx represents all antiderivatives of f (x), the in-
tegral can be thought of as a single object or function in its own right, whose derivative
is f ′(x):

d

dx

(∫
f (x) dx

)
= f (x)

You might be wondering what the integral sign in the indefinite integral represents,
and why an infinitesimal dx is included. It has to do with what an infinitesimal rep-
resents: an infinitesimal “piece” of a quantity. For an antiderivative F(x) of a function
f (x), the infinitesimal (or differential) dF is given by dF = F ′(x) dx= f (x) dx, and so

F(x) =
∫

f (x) dx =
∫

dF .

The integral sign thus acts as a summation symbol: it sums up the infinitesimal
“pieces” dF of the function F(x) at each x so that they add up to the entire function
F(x). Think of it as similar to the usual summation symbol Σ used for discrete sums;
the integral sign

∫
takes the sum of a continuum of infinitesimal quantities instead.

Finding (or evaluating) the indefinite integral of a function is called integrating

the function, and integration is antidifferentiation.

Example 5.1

Evaluate
∫

0 dx.

Solution: Since the derivative of any constant function is 0, then
∫

0 dx = C, where C is a generic
constant.

Note: From now on C will simply be assumed to represent a generic constant, without having to explic-
itly say so every time.

Example 5.2

Evaluate
∫

1 dx.

Solution: Since the derivative of F(x)= x is F ′(x)= 1, then
∫

1 dx = x+C.

Example 5.3

Evaluate
∫

x dx.

Solution: Since the derivative of F(x)= x2

2 is F ′(x)= x, then
∫

x dx = x2

2 +C.

Since d
dx

(
xn+1

n+1

)
= xn for any number n 6= −1, and d

dx
(ln |x|) = 1

x
= x−1, then any power

of x can be integrated:
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Power Formula:

∫
xn dx =





xn+1

n+1
if n 6= −1

ln |x| if n =−1

The following rules for indefinite integrals are immediate consequences of the rules
for derivatives:

Let f and g be functions and let k be a constant. Then:

1.

∫
k f (x) dx = k

∫
f (x) dx

2.

∫
( f (x)+ g(x)) dx =

∫
f (x) dx +

∫
g(x) dx

3.

∫
( f (x)− g(x)) dx =

∫
f (x) dx −

∫
g(x) dx

The above rules are easily proved. For example, the first rule is a simple consequence
of the Constant Multiple Rule for derivatives: if F(x)=

∫
f (x) dx, then

d

dx
(k F(x)) = k

d

dx
(F(x)) = k f (x) ⇒

∫
k f (x) dx = k F(x) = k

∫
f (x) dx . X

The other rules are proved similarly and are left as exercises. Repeated use of the
above rules along with the Power Formula shows that any polynomial can be inte-
grated term by term—in fact any finite sum of functions can be integrated in that
manner:

For any functions f1, . . ., fn and constants k1, . . ., kn,
∫

(k1 f1(x)+·· ·+kn fn(x)) dx = k1

∫
f1(x) dx + ·· · + kn

∫
fn(x) dx . (5.1)

Example 5.4

Evaluate
∫

(x7 −3x4) dx.

Solution: Integrate term by term, pulling constant multiple outside the integral:

∫
(x7 −3x4) dx =

∫
x7 dx − 3

∫
x4 dx = x8

8
− 3x5

5
+ C
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Example 5.5

Evaluate
∫p

x dx.

Solution: Use the Power Formula:

∫ p
x dx =

∫
x1/2 dx = x3/2

3/2
+ C = 2x3/2

3
+ C

Example 5.6

Evaluate
∫ (

1
x2 + 1

x

)
dx.

Solution: Use the Power Formula and integrate term by term:

∫ (
1
x2 + 1

x

)
dx =

∫ (
x−2 + 1

x

)
dx = x−1

−1
+ ln |x| + C = −1

x
+ ln |x| + C

The following indefinite integrals are just re-statements of the corresponding deriva-
tive formulas for the six basic trigonometric functions:

∫
cos x dx = sin x + C

∫
sin x dx = −cos x + C

∫
sec2 x dx = tan x + C

∫
sec x tan x dx = sec x + C

∫
csc x cot x dx = −csc x + C

∫
csc2 x dx = −cot x + C

Since d
dx

(ex)= ex, then:

∫
ex dx = ex + C
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Example 5.7

Evaluate
∫

(3sin x + 4cos x − 5ex) dx.

Solution: Integrate term by term:
∫

(3sin x + 4cos x − 5ex) dx = 3
∫

sin x dx + 4
∫

cos x dx − 5
∫

ex dx

= −3cos x + 4sin x − 5ex + C

Example 5.8

Recall from Section 1.1 the example of an object dropped from a height of 100 ft. Show that the height
s(t) of the object t seconds after being dropped is s(t) =−16t2 +100, measured in feet.

100 ft

t= 0 sec

s(t)

t> 0

Solution: When the object is dropped at time t = 0 the only force acting on it is
gravity, causing the object to accelerate downward at the known constant rate of
32 ft/s2. The object’s acceleration a(t) at time t is thus a(t) = −32. If v(t) is the
object’s velocity at time t, then v′(t) = a(t), which means that

v(t) =
∫

a(t) dt =
∫

−32 dt = −32t + C

for some constant C. The constant C here is not generic—it has a specific
value determined by the initial condition on the velocity: the object was at rest at time t = 0. That is,
v(0)= 0, which means

0 = v(0) = −32(0) + C = C ⇒ v(t) = −32t

for all t≥ 0. Likewise, since s′(t) = v(t) then

s(t) =
∫

v(t) dt =
∫

−32t dt = −16t2 + C

for some constant C, determined by the initial condition that the object was 100 ft above the ground at
time t= 0. That is, s(0) = 100, which means

100 = s(0) = −16(0)2 + C = C ⇒ s(t) = −16t2 + 100

for all t≥ 0. X

The formula for s(t) in Example 5.8 can be generalized as follows: denote the ob-
ject’s initial position at time t = 0 by s0, let v0 be the object’s initial velocity (positive
if thrown upward, negative if thrown downward), and let g represent the (positive)
constant acceleration due to gravity. By Newton’s First Law of motion the only accel-
eration imparted to the object after throwing it is due to gravity:

a(t) = −g ⇒ v(t) =
∫

a(t) dt =
∫

−g dt = −gt + C

for some constant C: v0 = v(0)=−g(0)+C = C. Thus, v(t)=−gt+v0 for all t ≥ 0, and so

s(t) =
∫

v(t) dt =
∫

(−gt + v0) dt = −1
2 gt2 + v0t + C
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for some constant C: s0 = s(0)=−1
2 g(0)2+v0(0)+C = C. To summarize:

Free fall motion: At time t ≥ 0:

acceleration: a(t) = −g

velocity: v(t) = −gt + v0

position: s(t) = −1
2 gt2 + v0t + s0

initial conditions: s0 = s(0) , v0 = v(0)

Note that the units are not specified—they just need to be consistent. In metric units,
g = 9.8 m/s2, while g = 32 ft/s2 in English units.

Thinking of an indefinite integral as the sum of all the infinitesimal “pieces” of a
function—for the purpose of retrieving that function—provides a handy way of inte-
grating a differential equation to obtain the solution. The key idea is to transform the
differential equation into an equation of differentials, which has the effect of treating
functions as variables. Some examples will illustrate the technique.

Example 5.9

For any constant k, show that every solution of the differential equation dy
dt

= ky is of the form y = Aekt

for some constant A. You can assume that y(t) > 0 for all t.

Solution: Put the y terms on the left and the t terms on the right, i.e. separate the variables:

dy

y
= k dt

Now integrate both sides (notice how the function y is treated as a variable):
∫

dy

y
=

∫
k dt

ln y+C1 = kt+C2 (C1 and C2 are constants)

ln y = kt+C (combine C1 and C2 into the constant C)

y = ekt+C = ekt · eC = Aekt

where A = eC is a constant. Note that this is the formula for radioactive decay from Section 2.3.

Example 5.10

Recall from Section 3.6 the equation of differentials

dP

P
+ dV

V
= dT

T

relating the pressure P, volume V and temperature T of an ideal gas. Integrate that equation to obtain
the original ideal gas law PV = RT, where R is a constant. .
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Solution: Integrating both sides of the equation yields
∫

dP

P
+

∫
dV

V
=

∫
dT

T

ln P + ln V = ln T + C (C is a constant)

ln(PV ) = ln T + C

PV = eln T+C = eln T · eC = T eC = RT

where R = eC is a constant. X

The integration formulas in this section depended on already knowing the deriva-
tives of certain functions and then “working backward” from their derivatives to obtain
the original functions. Without that prior knowledge you would be reduced to guess-
ing, or perhaps recognizing a pattern from some derivative you have encountered. A
number of integration techniques will be presented shortly, but there are many indef-
inite integrals for which no simple closed form exists (e.g.

∫
ex2

dx and
∫

sin(x2) dx).

Exercises

A
For Exercises 1-15, evaluate the given indefinite integral.

1.

∫ (
x2 + 5x − 3

)
dx 2.

∫
3cos x dx 3.

∫
4ex dx

4.

∫ (
x5 − 8x4 − 3x3 + 1

)
dx 5.

∫
5sin x dx 6.

∫
3ex

5
dx

7.

∫
6
x

dx 8.

∫
4
3x

dx 9.

∫ (
−2

p
x
)

dx

10.

∫
1

3
p

x
dx 11.

∫ (
x + x4/3

)
dx 12.

∫
1

3 3
p

x
dx

13.

∫
3sec x tan x dx 14.

∫
5sec2 x dx 15.

∫
7csc2 x dx

16. Prove the sum and difference rules for indefinite integrals:
∫

( f (x)± g(x))dx =
∫

f (x)dx ±
∫

g(x)dx

17. Integrate both sides of the equation

dP

P
+ dM

M
= dT

2T

to obtain the ideal gas continuity relation:
PM
p

T
= constant.

18. Use the free fall motion equation for position to show that the maximum height reached by an

object launched straight up from the ground with an initial velocity v0 is
v2

0
2g

.
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5.2 The Definite Integral

Recall from the last section that the integral sign in the indefinite integral
∫

f (x) dx

represents a summation of the infinitesimals f (x) dx= dF for an antiderivative F(x) of
f (x). Why is the term “indefinite” used? Because the summation is indefinite: the x

in f (x) dx is defined generically, meaning “x in general,” that is, not for x in a specific
range of values. The same summation over a specific, definite range of values of x, say,
over an interval [a, b], is a different type of integral:

The definite integral of a function f (x) over an interval [a, b] is denoted by

∫b

a
f (x) dx

and represents the sum of the infinitesimals f (x) dx for all x in [a, b].

An indefinite integral yields a generic function, whereas a definite integral yields
either a number or a specific function. There are many ways to calculate the specific
summation in a definite integral, one of which is motivated by a geometric interpreta-
tion of the infinitesimal f (x) dx as the area of a rectangle, as in Figure 5.2.1 below:

y= f (x)

f (x)

f (x+dx)− f (x)

y

x
a bx x+dx

dx

Figure 5.2.1 The infinitesimal f (x) dx as the area of a rectangle

The shaded rectangle in the above picture has height f (x) and width dx, and so its
area is f (x) dx. In fact, it appears that that area is just a little bit smaller than the
area under the curve y = f (x) and above the x-axis between x and x+ dx; there is a
small gap between the curve and the top of the rectangle, accounting for the difference
in the area. However, the area of that gap turns out to be zero, as shown below:
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f (x)

df = f (x+dx)− f (x)
y= f (x)

x x+dx

dx

A

B

C

Figure 5.2.2 Area under the curve y= f (x) over [x,x+dx]

By the Microstraightness Property, the curve y = f (x) shown in Figure 5.2.1 is a
straight line over the infinitesimal interval [x, x+dx], as shown in Figure 5.2.2.1 Thus,
the part of the area between the curve and the x-axis over the interval [x, x+dx] con-
sists of two parts: the area f (x) dx of the shaded rectangle and the area of the right
triangle △ABC, both of which are shown in Figure 5.2.2. However, the area of △ABC

is zero:

Area of △ABC = 1
2

(base)×(height) = 1
2

(dx)(df ) = 1
2

(dx)( f ′(x) dx) = 1
2

f ′(x)(dx)2 = 0

The function f shown in Figure 5.2.2 is increasing at x, but a similar argument could
be made if f were decreasing at x. Hence, the area between the curve y= f (x) and the
x-axis comes solely from the rectangles with area f (x) dx, as x varies from a to b. The
sum of all those rectangular areas, though, equals the definite integral of f (x) over
[a, b]. The definite integral can thus be interpreted as an area:

For a function f (x) ≥ 0 over [a, b], the area under the curve y = f (x) between
x= a and x = b, denoted by A, is given by

A =
∫b

a
f (x) dx

and represents the area of the region R bounded above by y= f (x), bounded below
by the x-axis, and bounded on the sides by x= a and x= b (with a< b).

1The function f is assumed to be differentiable at x, in this case. If not then the points where f is not differentiable
can be excluded without affecting the integral.
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y = f (x)

y

x
a b

R

Figure 5.2.3 The area A of the region R equals
∫b

a f (x)dx

In Figure 5.2.3 the area under the curve y = f (x) between x = a and x = b is the
area A of the shaded region R, namely A =

∫b
a f (x) dx. To calculate that area for a

specific function, rectangles can again be used, but this time with widths that are
small positive numbers instead of infinitesimals. The procedure is as follows:

1. Create a partition P = {x0 < x1 < ·· · < xn−1 < xn} of the interval [a, b] into n ≥ 1
subintervals [x0, x1], [x1, x2], . . ., [xn−1, xn], with x0 = a and xn = b.

2. In each subinterval [xi−1, xi] of P pick a number x∗
i
, so that xi−1 ≤ x∗

i
≤ xi for i = 1

to n.

3. For i = 1 to n, form a rectangle whose base is the subinterval [xi−1, xi] of length
∆xi = xi − xi−1 > 0 and whose height is f (x∗

i
).

4. Take the sum f (x∗1 )∆x1 + f (x∗2 )∆x2 +·· ·+ f (x∗n)∆xn of the areas of these rectangles,
called a Riemann sum.

y= f (x)

f (x∗1 ) f (x∗2 ) f (x∗n)

y

x
x0a= x∗1 x1 x∗2 x2 . . . xn−1 x∗n xn = b

. . .

∆x1 ∆x2 ∆xn

Figure 5.2.4 A Riemann sum of f (x) over a partition of [a,b]

5. Take the limit of the Riemann sums as n → ∞, so that the subinterval lengths
approach 0. If the limit exists then that limit is the area A of the region R:

Area A =
∫b

a
f (x) dx = lim

n→∞

n∑

i=1
f (x∗i )∆xi (5.2)
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The limit in Formula (5.2) should be taken over all partitions whose norm—the
length of the largest subinterval—approaches 0. In practice, however, the partitions
are usually chosen so that the subintervals are of equal length, and then simply make
those equal lengths smaller and smaller by dividing the interval [a, b] into more and
more such subintervals. Note that the points x∗

i
in each subinterval can be anywhere

in the subinterval—often the midpoint of the subinterval is chosen, but the left and
right endpoints are also typical choices.

In the above procedure the gaps between the rectangles and the curve will have ar-
eas approaching 0 as the number n of subintervals grows and the subinterval lengths
approach 0. This is true if the function f is differentiable, and in fact even if f is merely
continuous.2 Thus, the area under the curve can be defined by the above procedure.

To calculate the area under a curve in this manner, the reader should have some
familiarity with the summation notation in Formula (5.2).

For real numbers a1, a2, . . ., an and an integer n ≥ 1,

n∑

k=1
ak = a1 + a2 + ·· · + an

is the sum of a1, . . ., an. The symbol Σ is called the summation sign, which is the
Greek capital letter Sigma.

The following rules for this “Sigma notation” are intuitively obvious:

Let a1, a2, . . ., an, and b1, b2, . . ., bn be real numbers, and let c be a constant. Then:

(1)
n∑

k=1
(ak +bk) =

n∑

k=1
ak +

n∑

k=1
bk

(2)
n∑

k=1
(ak −bk) =

n∑

k=1
ak −

n∑

k=1
bk

(3)
n∑

k=1
cak = c

n∑

k=1
ak

(4)
n∑

k=1
ak =

n∑

i=1
ai (i.e. the sum is independent of the summation index letter)

2For a proof and fuller discussion of all this, see Ch.1-2 in KNOPP, M.I., Theory of Area, Chicago: Markham
Publishing Co., 1969. The book attempts to define precisely what an “area” actually means, including that of a
rectangle (showing agreement with the intuitive notion of width times height).
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The following summation formulas can be helpful when calculating Riemann sums:

Let n ≥ 1 be a positive integer. Then:

(1)
n∑

k=1
1 = n

(2)
n∑

k=1
k = 1 + 2 + ·· · + n = n (n+1)

2

(3)
n∑

k=1
k2 = 12 + 22 + ·· · + n2 = n (n+1)(2n+1)

6

(4)
n∑

k=1
k3 = 13 + 23 + ·· · + n3 = n2 (n+1)2

4

(5)
n∑

k=1
k4 = 14 + 24 + ·· · + n4 = n (n+1)(6n3+9n2+n−1)

30

Formula (1) is obvious: add the number 1 a total of n times and the sum is n.
Formula (2) can be proved by induction:

1. Show that
n∑

k=1
k = n (n+1)

2
for n = 1:

1∑

k=1
k = 1 = 1(1+1)

2
X

2. Assume that
n∑

k=1
k = n (n+1)

2
for some integer n ≥ 1. Show that the formula holds

for n replaced by n+1, that is:
n+1∑

k=1
k = (n+1)((n+1)+1)

2
= (n+1)(n+2)

2

To show this, note that
n+1∑

k=1
k = 1 + 2 + ·· · + n + (n+1) =

n∑

k=1
k + (n+1)

= n (n+1)
2

+ (n+1) = n (n+1) + 2(n+1)
2

= (n+1)(n+2)
2

X

3. By induction, this proves the formula for all integers n ≥ 1. QED
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Formulas (3)-(5) can be proved similarly by induction (see the exercises). The example
below shows how Formulas (2) and (3) are used in finding the limit of a Riemann sum.

Example 5.11

Use Riemann sums to calculate
∫2

1
x2 dx.

Solution: The definite integral is the area under the curve y = f (x) = x2 between x = 1 and x = 2, as
shown in Figure 5.2.5(a):

0

y

x
1 2

(a) Area under y= x2 over [1,2]

0

y

x
1= x0 x1 x2 . . . xn−1 xn = 2

. . .

(b) Riemann sums using left endpoints: x∗
i
= xi−1

Figure 5.2.5 Calculating
∫2

1 x2 dx

Divide the interval [1,2] into n subintervals of equal length ∆xi = (2−1)/n = 1/n for i = 1 to n, so that
the partition P is {x0 < x1 < . . . xn} where xi = 1+ i

n
for i = 0, 1, . . ., n (and hence x0 = 1 and xn = 2). In

each subinterval [xi−1,xi] pick the point x∗
i

to be the left endpoint xi−1, so that the rectangles appear as
in Figure 5.2.5(b). Then
∫2

1
x2 dx = lim

n→∞

n∑

i=1
f (x∗i )∆xi = lim

n→∞

n∑

i=1
f (xi−1)

1
n

= lim
n→∞

n∑

i=1
x2

i−1
1
n

= lim
n→∞

n∑

i=1

(
1+ i−1

n

)2 1
n

= lim
n→∞

n∑

i=1

(
1
n

+ 2
n2 (i−1) + 1

n3 (i−1)2
)

= lim
n→∞

(
n∑

i=1

1
n

+ 2
n2

n∑

i=1
(i−1) + 1

n3

n∑

i=1
(i−1)2

)
= lim

n→∞

(
1 + 2

n2

n−1∑

i=1
i + 1

n3

n−1∑

i=1
i2

)

= lim
n→∞

(
1 + 2

n2
· (n−1)n

2
+ 1

n3
· (n−1)n(2n−1)

6

)
(replace n by n−1 in Formulas (2) and (3))

=
(

lim
n→∞

1
)
+

(
lim

n→∞
n−1

n

)
+

(
lim

n→∞
2n2 −3n+1

6n2

)

= 1 + 1
1

+ 2
6

= 7
3
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It it often simpler to use a computer to calculate approximations of a definite inte-
gral, by taking the Riemann sum of a sufficiently large number of rectangles in order
to achieve the desired accuracy. Choosing subintervals of equal length, as in Example
5.11, makes it easier to use an algorithm to calculate the integral.

For example, the table below summarizes the calculations of Riemann sums for the
function in Example 5.11—namely f (x)= x2 over [1,2]—using different values for the
points x∗

i
in the subintervals (left endpoints, midpoints, and right endpoints):

# of rectangles Left endpoint Midpoint Right endpoint
1 1 2.25 4
2 1.625 2.3125 3.125
3 1.851851851852 2.324074074074 2.851851851852
4 1.96875 2.328125 2.71875
5 2.04 2.33 2.64
10 2.185 2.3325 2.485
100 2.31835 2.333325 2.34835
1000 2.3318335 2.33333325 2.3348335
10000 2.333183335 2.3333333325 2.333483335
100000 2.33331833335 2.333333333325 2.33334833335
1000000 2.333331833333 2.333333333333 2.333334833333

Due to the concavity of the curve y = x2, using the left endpoints underestimates
the actual area, whereas using the right endpoints yields an overestimate. Using the
midpoints usually gives better results (i.e. more accuracy in fewer iterations).

So far only definite integrals of nonnegative functions have been considered—that
is, functions f (x) ≥ 0 over an interval [a, b]. If f (x) is either negative or changes sign
over [a, b], then the definite integral can be defined as follows:

Let R be the region bounded by y= f (x) and the x-axis between x = a and x = b. If
f (x)≤ 0 over [a, b], then

∫b

a
f (x) dx = the negative of the area of R

If f (x) changes sign over [a, b], then

∫b

a
f (x) dx = the net area of R,

where the parts of R above the x-axis count as positive area and the parts below
count as negative area.
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Note: In the definite integral
∫b

a
f (x) dx the numbers a and b are called the limits

of integration, with a being the lower limit of integration and b the upper limit

of integration. The function f (x) being integrated is called the integrand, in both
definite and indefinite integrals.

Exercises

A

1. Explain why
∫b

a
c dx = c(b−a) for any constant c.

2. Would using left endpoints in the Riemann sums underestimate or overestimate
∫2

1 ln x dx? Explain.

B

3. Use Riemann sums to calculate
∫1

0
x dx. 4. Use Riemann sums to calculate

∫1

0
x2 dx.

5. Use Riemann sums to calculate
∫1

0
3x2 dx. 6. Use Riemann sums to calculate

∫1

0
x3 dx.

7. Prove the formula
n∑

k=1
k2 = n (n+1)(2n+1)

6
by induction on n≥ 1.

8. Prove the formula
n∑

k=1
k2 = n (n+1)(2n+1)

6
as follows:

(a) Show that
n∑

k=1

(
(k+1)3 − k3)

= (n+1)3 − 1 .

(b) Show that (k+1)3 − k3 = 3k2 + 3k + 1 .

(c) Use the formula
n∑

k=1
k = n (n+1)

2
and parts (a) and (b) to show that

n∑

k=1
k2 = n (n+1)(2n+1)

6
.

9. Prove the formula
n∑

k=1
k3 = n2 (n+1)2

4
by induction on n≥ 1.

10. The famous quicksort algorithm in computer science is a popular method for placing objects in
some order (e.g. numerical, alphabetical). On average the algorithm needs O(n log n) comparisons
to sort n objects (here log n means the natural logarithm of n). The proof of that average complexity

depends on the inequality
m−1∑

k=2
k ln k ≤

∫m

2
x ln x dx

for all integers m > 2. Explain why that inequality is true.

C

11. Prove the formula
n∑

k=1
k4 = 14 + 24 + ·· · + n4 = n (n+1)(6n3 +9n2 +n−1)

30
by induction on n≥ 1.

12. Calculate the following sum:

1 + (1+2) + (1+2+3) + (1+2+3+4) + ·· · + (1+2+3+4+·· ·+50)
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5.3 The Fundamental Theorem of Calculus

Using Riemann sums to calculate definite integrals can be tedious, as was seen in the
previous section. In fact the technique shown in that section depended on the function
being a low-degree polynomial, which obviously will not always be the case. Luckily
there is a better way, involving antiderivatives, given by the following theorem:

Fundamental Theorem of Calculus: Suppose that a function f is differentiable
on [a, b]. Then:

(I) The function A(x) defined on [a, b] by

A(x) =
∫x

a
f (t) dt

is differentiable on [a, b], and

A′(x) = f (x)

for all x in [a, b].

(II) If F is an antiderivative of f on [a, b], i.e. F ′(x)= f (x) for all x in [a, b], then

∫b

a
f (x) dx = F(b) − F(a) .

The function A(x) in Part I of the theorem is sometimes called the area function

because it represents the area under the curve y = f (x) over the interval [a, x], as
shown in Figure 5.3.1 below.

y = f (x)

y

x
a x b

A(x)

Figure 5.3.1 The area function A(x)=
∫x

a f (t)dt

y = f (x)

y

x
a x x+dx b

dA

Figure 5.3.2 dA = A(x+dx)− A(x)

To prove Part I, assume that f (x) ≥ 0 on [a, b] as in Figure 5.3.1 (the proofs for f (x)
either negative or switching sign over [a, b] are similar). The goal is to show that for
any x in [a, b] the differential dA exists and equals f (x) dx. First, dA = A(x+dx)−A(x)
is the area under the curve y = f (x) over the interval [x, x+ dx], as shown in Figure
5.3.2 above.
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By the Microstraightness Property f is a straight line over the infinitesimal interval
[x, x+ dx], so f must be either increasing, constant, or decreasing over that interval.
The three possibilities are shown in Figure 5.3.3:

f (x) f (x)

df
y= f (x)

x x+dx

dx

A

B

C

(a) f is increasing

f (x)

y = f (x)

x x+dx

dx

(b) f is constant

f (x)

f (x+dx)

−df

y= f (x)

x x+dx

dx

A

B

C

(c) f is decreasing

Figure 5.3.3 The three possibilities for dA

In the case where f is increasing over [x, x+dx], the infinitesimal area dA is the sum
of the area of the rectangle of height f (x) and width dx and the area of the right trian-
gle △ABC shown in Figure 5.3.3(a). The area of △ABC is 1

2 (df )(dx)= 1
2 f ′(x)(dx)2 = 0,

so dA = f (x) dx.
In the case where f is constant over [x, x+dx], the infinitesimal area dA is the area

of the rectangle of height f (x) and width dx, as shown in Figure 5.3.3(b). So again,
dA = f (x) dx.

In the case where f is decreasing over [x, x+ dx], the infinitesimal area dA is the
sum of the area of the rectangle of height f (x+ dx) and width dx and the area of the
right triangle △ABC shown in Figure 5.3.3(c). Note that df < 0 since f is decreasing,
and so the area of △ABC is 1

2 (−df )(dx)=−1
2 f ′(x)(dx)2 = 0. Thus,

dA = f (x+dx) dx = ( f (x)+df ) dx = f (x) dx + f ′(x)(dx)2 = f (x) dx + 0 = f (x) dx .

So in all three cases, dA = f (x) dx, and so A′(x)= dA
dx

= f (x), which shows that A(x) is
differentiable and has derivative f (x). This proves Part I of the Fundamental Theorem
of Calculus. X

To prove Part II of the theorem, let F(x) be an antiderivative of f (x) over [a, b]. Since
A(x) =

∫x
a f (x) dx is also an antiderivative of f (x) over [a, b] by Part I of the theorem,

then A(x) and F(x) differ by a constant C over [a, b]. In other words:
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A(x) = F(x) + C for all x in [a, b]

By definition A(a) = 0, since it is the area under the curve over the interval [a,a] of
zero length. Thus,

0 = A(a) = F(a) + C ⇒ C = −F(a) ⇒ A(x) = F(x) − F(a) for all x in [a, b]

and so ∫b

a
f (x) dx = A(b) = F(b) − F(a)

which proves Part II of the theorem.3 X

Note: In some textbooks Part I is called the First Fundamental Theorem of Calculus

and Part II is called the Second Fundamental Theorem of Calculus. The following
notation provides a shorthand way of writing F(b)−F(a):

F(x)
∣∣∣∣
b

a

= F(b) − F(a)

Example 5.12

Calculate
∫2

1
x2 dx.

Solution: Recall from Example 5.11 in the previous section that the integral equals 7/3. In that example
Riemann sums were used, but Part II of the Fundamental Theorem of Calculus makes the integral much
easier to calculate. Since F(x)= x3

3 is an antiderivative of f (x)= x2, then

∫2

1
x2 dx = x3

3

∣∣∣∣
2

1
= 23

3
− 13

3
= 7

3
.

Note in the above example that any antiderivative of f (x)= x2 could have been used,
e.g. F(x)= x3

3 +5. Notice that the constant 5 would have been canceled out when evalu-
ating F(2)−F(1). So you do not need to add a generic constant C to the antiderivative
of f (x) in a definite integral, as you would in an indefinite integral.

Example 5.13

Calculate
∫π

0
sin x dx.

Solution: Since F(x)=−cos x is an antiderivative of f (x)= sin x, then
∫π

0
sin x dx = −cos x

∣∣∣∣
π

0
= −cos π − (−cos 0) = −(−1) − (−1) = 2 .

3The theorem can be proved for the weaker condition that f is merely continuous on [a,b]. See p.173-175 in
PARZYNSKI, W.R. AND P.W. ZIPSE, Introduction to Mathematical Analysis, New York: McGraw-Hill, Inc., 1982.
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Example 5.14

Calculate
∫1

−1
x3 dx.

Solution: Since F(x)= x4

4 is an antiderivative of f (x)= x3, then

∫1

−1
x3 dx = x4

4

∣∣∣∣
1

−1
= 14

4
− (−1)4

4
= 1

4
− 1

4
= 0 .

Example 5.14 is a special case of the following result for odd functions:

If f is an odd function, i.e. f (−x)=− f (x) for all x, then
∫a

−a
f (x) dx = 0

for all a> 0 such that f is continuous on [−a,a].

The idea is that since an odd function is symmetric around the origin, then the area
between the curve and the x-axis over [0,a] will cancel out the area between the curve
and the x-axis over [−a,0]. Both areas are the same but one gets counted as positive
and the other negative, as shown in Figure 5.3.4 below:

x

y

y = f (x)

a

−a +
—

Figure 5.3.4 Odd function f over [−a,a]

x

y

y = f (x)

a−a

Figure 5.3.5 Even function f over [−a,a]

By symmetry around the y-axis, a similar result holds for even functions (see Figure
5.3.5):

If f is an even function, i.e. f (−x)= f (x) for all x, then
∫a

−a
f (x) dx = 2

∫a

0
f (x) dx

for all a> 0 such that f is continuous on [−a,a].
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The following rules for definite integrals are a consequence of the corresponding
rules for indefinite integrals:

Let f and g be continuous functions on [a, b] and let k be a constant. Then:

1.

∫b

a
k f (x) dx = k

∫b

a
f (x) dx

2.

∫b

a
( f (x)+ g(x)) dx =

∫b

a
f (x) dx +

∫b

a
g(x) dx

3.

∫b

a
( f (x)− g(x)) dx =

∫b

a
f (x) dx −

∫b

a
g(x) dx

The following results for definite integrals are a consequence of the Fundamental
Theorem of Calculus:

Let f be a continuous function on [a, b] and suppose that a< c < b. Then:

(1)

∫a

a
f (x) dx = 0

(2)

∫a

b
f (x) dx = −

∫b

a
f (x) dx

(3)

∫b

a
f (x) dx =

∫c

a
f (x) dx +

∫b

c
f (x) dx

For example, if F(x) is an antiderivative of f (x) on [a, b], then
∫c

a
f (x) dx +

∫b

c
f (x) dx = (F(c)−F(a)) + (F(b)−F(c)) = F(b) − F(a) =

∫b

a
f (x) dx

which proves rule (3).
The following result is a consequence of Part I of the Fundamental Theorem of Cal-

culus along with the Chain Rule:

Chain Rule for integrals: Let f be a continuous function on an interval I con-
taining x= a, and let g(x) be a differentiable function on I. If

F(x) =
∫g(x)

a
f (t) dt for all x in I

then F ′(x)= f (g(x)) · g′(x) for all x in I.
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Example 5.15

Let F(x)=
∫x2

0
e−t2

dt for all x > 0. Find F ′(x).

Solution: By the Chain Rule for integrals, with f (t)= et2
and g(x)= x2:

F ′(x) = f (g(x)) · g′(x) = e−(x2)2 · (2x) = 2x e−x4

Exercises
A
For Exercises 1-12, evaluate the given definite integral.

1.

∫1

0
x2 dx 2.

∫1

−1
x2 dx 3.

∫1

0
x3 dx 4.

∫1

−1
(x2+3x−4) dx

5.

∫2

1

1
x2 dx 6.

∫3

2

1
x3 dx 7.

∫π/2

0
cos x dx 8.

∫1

0
ex dx

9.

∫1

−1
2ex dx 10.

∫π

−π
sin x dx 11.

∫4

0

p
x dx 12.

∫2

−2

x3 ex2

cos 2x
dx

13. Show that ln x =
∫x

1

1
t

dt for all x > 0. 14. Show that
∫a

b
f (x) dx = −

∫b

a
f (x) dx.

15. Given f (x) =
∫x

1

t
p

t4 +1
dt , find f ′(3) and f ′(−2).

B

16. Prove the Chain Rule for integrals.

17. Explain why for any continuous function f on [a,b],
∣∣∣∣
∫b

a
f (x) dx

∣∣∣∣ ≤
∫b

a
| f (x)| dx .

18. Explain why if f (x)≤ g(x) on [a,b] then
∫b

a
f (x) dx ≤

∫b

a
g(x) dx .

C

19. Show that if f (x) is continuous on [a,b] then there is a number c in (a,b) such that
∫b

a
f (x) dx = f (c) · (b−a) .

20. Let f (t) be a continuous function for all t≥ 0, and for each x ≥ 0 define a function g(x) by

g(x) =
∫x

0
(x− t) f (t) dt .

Show that g′(x) =
∫x

0
f (t) dt for all x ≥ 0.

21. Show that for all x > 0, ∫x

0

dt

1+ t2 +
∫1/x

0

dt

1+ t2

is independent of x.
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5.4 Integration by Substitution

The integrals encountered so far—whether indefinite or definite—have been the sim-
plest kind, since the antiderivatives were given by known formulas. For example,∫

cos x dx = sin x+C. What if the integral were
∫

cos 2x dx instead? No formula has
been discussed yet for this integral, and the answer is not sin 2x+C, since the deriva-
tive of sin 2x is 2cos 2x, not cos 2x. But dividing sin 2x by 2 first and then taking the
derivative would yield cos 2x, so that

∫
cos 2x dx = 1

2 sin 2x+C.
Evaluating an integral in such a manner is often done when the function is not

too complicated, as the one above. Usually it will not be quite that simple, and so
a general technique called substitution is needed. The idea behind substitution is
to replace part of the function being integrated by a new variable—typically u—so
that a complicated function of x is now a simpler function of u that you know how to
integrate.

Example 5.16

Evaluate
∫

cos 2x dx by substitution.

Solution: The 2x in the cosine function is what makes this integral unknown, so replace it by u: let
u= 2x. The integral is now ∫

cos u dx

which is a problem because the point of doing substitution is to eliminate all references to the variable
x, including in the infinitesimal dx. The entire integral needs to be in terms of u and du, but the dx is
still there. So put dx in terms of du:

u = 2x ⇒ du = 2dx ⇒ dx = 1
2

du

The integral now becomes
∫

cos u

(
1
2

du

)
= 1

2

∫
cos u du = 1

2
sin u + C

by the formula already known, just with the letter u as the variable instead of x. The original integral
was in terms of x, so the final answer—for an indefinite integral—should also be in terms of x. Thus,
the final step is to substitute back into the answer what u equals in terms of x, namely 2x:

∫
cos 2x dx = 1

2
sin u + C = 1

2
sin 2x + C

If the procedure in the above example seems similar to making a substitution when
using the Chain Rule to take a derivative, that is because it is similar: you are basi-
cally doing the same thing only in reverse. Just as for differentiation, it is not always
obvious what part of the function is the best candidate for substitution when perform-
ing integration. There is one obvious rule: never make the substitution u = x, because
that changes nothing.
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Example 5.17

Evaluate
∫

e−3x dx.

Solution: The −3x in the exponential function is what makes this integral unknown, so make the
substitution u=−3x, which means that du= −3dx, and so dx =− 1

3 du. Thus:
∫

e−3x dx =
∫

eu

(
−1

3
du

)
= −1

3

∫
eu du = −1

3
eu + C = −1

3
e−3x + C

The above example can be generalized as follows:

∫
eax dx = 1

a
eax + C for any constant a 6= 0

Example 5.17 was the special case with a=−3.

Example 5.18

Evaluate
∫

(1+4x)5 dx.

Solution: You might be tempted to make the substitution u = 4x, but that would then require finding
the integral of (1+u)5, for which there is not yet any formula. But there is a formula for the integral of
u5. Hence, let u= 1+4x, so that du= 4dx ⇒ dx = 1

4 du. Thus:
∫

(1+4x)5 dx = 1
4

∫
u5 du = 1

4
u6

6
+ C = 1

24
(1+4x)6 + C

Example 5.19

Evaluate
∫

2x ex2
dx.

Solution: It might be unclear whether you should make the substitution u = 2x or u = x2, but the hint
here is that the derivative of the x2 inside the exponential function is 2x, which appears outside the
exponential function. Indeed, you could check that letting u= 2x would result in an integral no simpler
than the current one (namely, 1

2

∫
u eu2 /4 du). So let u= x2, which means du= 2x dx. Thus:

∫
2x ex2

dx =
∫

eu du = eu + C = ex2 + C

Example 5.20

Evaluate
∫

x
√

1+3x2 dx.

Solution: Note that the derivative of the 1+3x2 term inside the square root function is 6x, which is
almost the function x outside the square root—all that is missing is the constant multiple 6. That is a
hint to let u = 1+3x2. Notice also that du = 6x dx ⇒ x dx = 1

6 du, and x dx is the remaining part of the
integral outside the square root. Thus:

∫
x
√

1+3x2 dx = 1
6

∫ p
u du = 1

6
u3/2

3/2
+ C = 1

9
(1+3x2)3/2 + C
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Example 5.21

Evaluate
∫

x2 dx
p

x3 +9
.

Solution: Let u= x3 +9, so that du= 3x2 dx ⇒ x2 dx = 1
3 du. Thus:

∫
x2 dx

p
x3 +9

=
∫ 1

3 du
p

u
= 1

3

∫
u−1/2 du = 1

3
u1/2

1/2
+ C = 2

3

√
x3 +9 + C

Example 5.22

Evaluate
∫

2x dx

x2 −1
.

Solution: Notice that the numerator 2x in the function is exactly the derivative of the denominator
x2 −1. That is a hint to substitute on the denominator so that the integral is the natural logarithm
function. Let u= x2−1, so that du= 2x dx. Thus:

∫
2x dx

x2 −1
=

∫
du

u
= ln |u| + C = ln |x2 −1| + C

Example 5.23

Evaluate
∫

tan x dx.

Solution: Notice that tan x = sin x
cos x

and that the numerator sin x is almost the derivative of the denom-
inator cos x; all that is missing is a negative sign. That is a hint to substitute on the denominator:
u= cos x, so that du=−sin x dx ⇒ sin x dx =−du. Thus:

∫
tan x dx =

∫
sin x

cos x
dx

=
∫ −du

u
= − ln |u| + C = − ln |cos x| + C = ln |cos x|−1 + C = ln |sec x| + C

Example 5.24

Evaluate
∫

sec x dx.

Solution: Notice that
∫

sec x dx =
∫

sec x (sec x + tan x)
sec x + tan x

dx =
∫

sec x tan x + sec2 x

sec x + tan x
dx

and that the numerator in the last integral is the derivative of the denominator: let u = sec x + tan x,
so that du= (sec x tan x + sec2 x)dx. Thus:

∫
sec x dx =

∫
du

u
= ln |u| + C = ln |sec x + tan x| + C

The following formulas are straightforward consequences of substitution and the
derivatives of inverse trigonometric functions discussed in Section 2.2:
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For any constant a> 0:
∫

dx
p

a2 − x2
= sin−1

( x

a

)
+ C (if |x| < a) (5.3)

∫
dx

a2 + x2 = 1
a

tan−1
( x

a

)
+ C (5.4)

∫
dx

|x|
p

x2 −a2
= 1

a
sec−1

( x

a

)
+ C (if |x| > a) (5.5)

For example, to prove the second formula, recall that d
dx

(
tan−1 x

)
= 1

1+x2 . Make the
substitution u = x/a, so that x= au and dx= a du. Thus:

∫
dx

a2 + x2 =
∫

a du

a2 +a2u2 = 1
a

∫
du

1+u2 = 1
a

tan−1 u + C = 1
a

tan−1
( x

a

)
+ C X

Example 5.25

Evaluate
∫

dx
p

4−9x2
.

Solution: The 4−9x2 inside the square root is almost of the form a2− x2, except for the 9. The goal is to
have u2 = 9x2, so let u= 3x, which means that dx = 1

3 du and u2 = 9x2. Thus,
∫

dx
p

4−9x2
= 1

3

∫
du

p
4−u2

= 1
3

sin−1
( u

2

)
+ C = 1

3
sin−1

(
3x

2

)
+ C

by Formula (5.2) with a= 2.

To use substitution with definite integrals, follow the same procedure as with indef-
inite integrals but add one extra step: replace the limits of integration x= a and x= b

in the original integral
∫b

a f (x) dx by u = g(a) and u = g(b), respectively, in the new
integral involving u, where u = g(x) is your substitution.

Example 5.26

Evaluate
∫2

1
(2x+1)3 dx.

Solution: Let u= g(x)= 2x+1, which means that dx = 1
2 du. The upper limit of integration x = 2 becomes

u = g(2) = 2(2)+1 = 5 in the new u-based integral, while the lower limit of integration x = 1 becomes
u= g(1)= 2(1)+1= 3. Thus:

∫2

1
(2x+1)3 dx = 1

2

∫5

3
u3 du = 1

8
u4

∣∣∣∣
5

3
= 1

8
(54−34) = 68

Note that you could have put everything back in terms of x at the end, but there was no need to since
you would get the same numerical answer.
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The following property of definite integrals comes in handy for evaluating certain
types of definite integrals:

For any constant a, ∫a

0
f (x) dx =

∫a

0
f (a− x) dx . (5.6)

This is simple to prove, using the substitution u = a− x, so x = a−u and dx = −du,
while x= 0 becomes u = a and x= a becomes u = 0 in the limits of integration:

∫a

0
f (x) dx = −

∫0

a
f (a−u) du =

∫a

0
f (a−u) du =

∫a

0
f (a− x) dx X

Example 5.27

Evaluate
∫π

0

x sin x

1+cos2 x
dx.

Solution: Let I =
∫π

0

x sin x

1+cos2 x
dx. Then by the above property (with a= π):

I =
∫π

0

(π− x) sin(π− x)
1+cos2(π− x)

dx =
∫π

0

(π− x) sin x

1+cos2 x
dx = π

∫π

0

sin x

1+cos2 x
dx −

∫π

0

x sin x

1+cos2 x
dx

I = π

∫π

0

sin x

1+cos2 x
dx − I

2I = π

∫π

0

sin x

1+cos2 x
dx = −π tan−1(cos x)

∣∣∣∣
π

0
= −π

(
−π

4
− π

4

)
= π2

2

I = π2

4

Exercises
A
For Exercises 1-24 evaluate the given integral.

1.

∫
(3cos 5x + 4sin 5x) dx 2.

∫
e2x + e−2x

2
dx 3.

∫(
xe−x2

+ x2 cos x3
)

dx

4.

∫
x − 2

x2 − 4x + 9
dx 5.

∫
ex

1 + ex
dx 6.

∫
1

1 + ex
dx

7.

∫
x
p

x+4 dx 8.

∫
cos2 x dx 9.

∫
tan2 x dx

10.

∫
3

p
4 − 25x2

dx 11.

∫
3

4 + 25x2
dx 12.

∫
sin2 x cos3 x dx



Integration by Substitution • Section 5.4 151

13.

∫1

0
(2x+1)3 dx 14.

∫1

0
(2x−1)3 dx 15.

∫8

0
x
p

1+ x dx

16.

∫π/2

0
4 sin(x/2) dx 17.

∫π/4

0
4 sin x cos x dx 18.

∫p
π

0
5x cos(x2) dx

19.

∫−1

−2

x

(x2 +2)3 dx 20.

∫ln 3

− ln 3

ex

ex +4
dx 21.

∫3

1

dx
p

x (x+1)

22.

∫1

−1

x2 dx
p

x3 +9
23.

∫2

1

dx

x2 −6x+9
24.

∫3

−3

x5 dx

ex2

25. Evaluate the indefinite integral ∫
sin x cos x dx

three different ways:

(a) Use the substitution u= sin x.

(b) Use the substitution u= cos x.

(c) Use the trigonometric identity 2sin x cos x = sin 2x.

(d) Are the three answers from parts (a)-(c) actually different? Explain.

26. For all positive constants L, show the following:

(a)

∫L

0

(
1 − x

L

)2
dx = L

3

(b)

∫L/2

−L/2

(
1
2

− x

L

)2

dx = L

3

(c)

∫L

0

(
1 − x

L

)3 ( x

L

)2
dx = L

60

B

27. Recall from trigonometry that sin2 x = 1
2 (1 − cos 2x) for all x.

(a) Use the Fundamental Theorem of Calculus to evaluate
∫π

0
sin2 x dx .

(b) Approximate the integral from part (a) by dividing the interval [0,π] into n = 2 subintervals of
equal length, [0,π/2] and [π/2,π], and finding the exact value of the sum of the areas of the
rectangles whose heights are determined at the right endpoints of the subintervals.

(c) Repeat part (b) with n= 3.

(d) Repeat part (b) with n= 4.

(e) Repeat part (b) with n= 6.

28. Show that
∫

csc x dx = − ln |csc x + cot x| + C. (Hint: See Example 5.24.)

C

29. Use the property
∫a

0 f (x) dx =
∫a

0 f (a− x) dx to show that

∫π/2

0

sin2 x

sin x+cos x
dx = 1

p
2

ln
(p

2+1
)

.

(Hint: Use Exercise 28 and the sine addition formula.)



152 Chapter 5 • The Integral §5.5

5.5 Improper Integrals

Definite integrals so far have been defined only for continuous functions over finite
closed intervals. There are times when you will need to perform integration despite
those conditions not being met. For example, in quantum mechanics the Dirac delta

function4 δ is defined on R by four properties:

x

y

0

∞

Figure 5.5.1 y= δ(x)

(1): δ(x) = 0 for all x 6= 0

(2): δ(0) = ∞

(3):
∫∞

−∞
δ(x) dx = 1

(4): For any continuous function f on R,∫∞

−∞
f (x) δ(x) dx = f (0).

Properties (3) and (4) provide examples of one type of improper integral: an inte-
gral over an infinite interval (in this case the entire real line R= (−∞,∞)). Define this
type of improper integral as follows:

For a continuous function f and a real number a, define the improper integral

of f over [a,∞) by ∫∞

a
f (x) dx = lim

b→∞

∫b

a
f (x) dx ,

define the improper integral of f over (−∞,a] by
∫a

−∞
f (x) dx = lim

b→−∞

∫a

b
f (x) dx ,

and define the improper integral of f over (−∞,∞) by
∫∞

−∞
f (x) dx =

∫c

−∞
f (x) dx +

∫∞

c
f (x) dx ,

for any real number c (typically c = 0). If the given limit exists (i.e. is a real
number) then the improper integral is convergent; otherwise it is divergent.

4Created by the physicist P.A.M. Dirac (1902-1984), who won a Nobel Prize in physics in 1933. The function is
neither real-valued nor continuous at x = 0. The “graph” in Figure 5.5.1 is perhaps misleading, as ∞ is not an
actual point on the y-axis. One interpretation is that δ is an abstraction of an instantaneous pulse or burst of
something, preceded and followed by nothing. To learn more about this fascinating and useful function, see §15 in
DIRAC, P.A.M., The Principles of Quantum Mechanics, 4th ed., Oxford, UK: Oxford University Press, 1958.



Improper Integrals • Section 5.5 153

The limits in the above definitions are always taken after evaluating the integral
inside the limit. Just as for “proper” definite integrals, improper integrals can be
interpreted as representing the area under a curve.

Example 5.28

Evaluate
∫∞

1

dx

x
.

y

x
0 1

y= 1
x

Solution: For all real numbers b > 1,

∫∞

1

dx

x
= lim

b→∞

∫b

1

dx

x
= lim

b→∞

(
ln x

∣∣∣∣
b

1

)

= lim
b→∞

(ln b − ln 1) = lim
b→∞

b = ∞

and so the integral is divergent. This means that the area under the
curve y = 1/x over the interval [1,∞)—as shown in the graph above—is infinite.

Example 5.29

Evaluate
∫∞

1

dx

x2 .

y

x
0 1

y= 1
x2

Solution: For all real numbers b > 1,

∫∞

1

dx

x2
= lim

b→∞

∫b

1

dx

x2
= lim

b→∞

(
−1

x

∣∣∣∣
b

1

)

= lim
b→∞

(
−1

b
−

(
−1

1

))
= lim

b→∞

(
1 − 1

b

)
= 1 − 0 = 1 .

This means that the area under the curve y = 1/x2 over the interval [1,∞)—as shown in the graph
above—equals 1. Thus, an infinite region can have a finite area. Length and area are different and
not necessarily related concepts, as this example illustrates. Notice that y = 1/x2 approaches the x-axis
asymptote much faster than y= 1/x does—fast enough to make the integral convergent.

Example 5.30

Evaluate
∫0

−∞
ex dx .

y

x
0

y= ex

Solution: For all real numbers b < 0,

∫0

−∞
ex dx = lim

b→−∞

∫0

b
ex dx = lim

b→−∞

(
ex

∣∣∣∣
0

b

)

= lim
b→−∞

(1 − eb) = 1 − 0 = 1 .

This means that the area under the curve y = ex over the interval
(−∞,0]—as shown in the graph above—equals 1.
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Example 5.31

Evaluate
∫∞

0
sin x dx .

y

x
0 2π

1

−1

y= sin x

Solution: Since
∫∞

0
sin x dx = lim

b→∞

∫b

0
sin x dx

= lim
b→∞

(
−cos x

∣∣∣∣
b

0

)
= lim

b→∞
(−cos b + 1)

then the integral is divergent, since limb→∞ cos b does not exist
(cosb oscillates between 1 and -1). This means that the net area
over [0,∞)—counted as positive above the x-axis and negative below—is indeterminate.

Example 5.32

Evaluate
∫∞

−∞

dx

1+ x2
.

y

x
0

y= 1
1+x2

Solution: Split the integral at x = 0:
∫∞

−∞

dx

1+ x2 =
∫0

−∞

dx

1+ x2 +
∫∞

0

dx

1+ x2

=
(

lim
b→−∞

∫0

b

dx

1+ x2

)
+

(
lim
b→∞

∫b

0

dx

1+ x2

)

=
(

lim
b→−∞

tan−1 x

∣∣∣∣
0

b

)
+

(
lim
b→∞

tan−1 x

∣∣∣∣
b

0

)

= lim
b→−∞

(tan−1 0 − tan−1 b) + lim
b→∞

(tan−1 b − tan−1 0)

= (0− (−π/2)) + (π/2−0) = π

This means that the area under the curve y = 1
1+x2 over the entire real line (−∞,∞)—as shown in the

graph above—equals π. Note that if the integral were split at any number c then the answer would
be the same. Another way to evaluate the integral would have been to use the symmetry around the
y-axis—as f (x)= 1

1+x2 is an even function—so that
∫∞

−∞

dx

1+ x2 = 2
∫∞

0

dx

1+ x2 = ·· · = 2(π/2−0) = π .

Since the integrand is continuous over R, a common way of evaluating the integral—especially among
students—is to simply use ±∞ as actual limits of integration, thus avoiding the need to take a limit:

∫∞

−∞

dx

1+ x2 = tan−1 x

∣∣∣∣
∞

−∞
= tan−1(∞) − tan−1(−∞) = π

2
− −π

2
= π

This type of shortcut is fine as long as you are aware of what plugging x = ±∞ into tan−1 x actually
means, and that there are no numbers for which the integrand is undefined (which would yield an
improper integral of a different type, to be discussed shortly).
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The second type of improper integral is of a function not continuous or not bounded
over its interval of integration. For example, the integral in property (3) of the Dirac
delta function is of that type, since δ is discontinuous at x = 0. Define this type of
improper integral as follows:

For a function f that is continuous on [a, b) but has either a discontinuity or vertical
asymptote at x= b, define the improper integral of f over [a, b) by

∫b

a
f (x) dx = lim

c→b−

∫c

a
f (x) dx .

Likewise, if f is continuous on (a, b] but has either a discontinuity or vertical
asymptote at x= a, then define the improper integral of f over (a, b] by

∫b

a
f (x) dx = lim

c→a+

∫b

c
f (x) dx .

If f is continuous on [a, b] but has either a discontinuity or vertical asymptote at
x= c for a< c < b, then define the improper integral of f over [a, b] by

∫b

a
f (x) dx =

∫c

a
f (x) dx +

∫b

c
f (x) dx ,

where the integrals on the right are evaluated as in the first two definitions. If the
given limit exists (i.e. is a real number) then the improper integral is convergent;
otherwise it is divergent.
Adjust these definitions accordingly for infinite intervals—e.g. [a,∞), (−∞, b], or
(−∞,∞)—to be consistent with the definitions of improper integrals of that type.

Example 5.33

Evaluate
∫1

0

dx

x
.

y

x
0 1

y= 1
x

Solution: Since x = 0 is a vertical asymptote for y= 1
x
,

∫1

0

dx

x
= lim

c→0+

∫1

c

dx

x
= lim

c→0+

(
ln x

∣∣∣∣
1

c

)

= lim
c→0+

(ln 1 − ln c) = 0 − (−∞) = ∞

and so the integral is divergent. This means that the area under the curve y = 1/x
over the interval (0,1]—as shown in the graph above—is infinite. The region is infinite in the y direction.
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Example 5.34

Evaluate
∫1

0

dx
p

x
.

y

x
0 1

y= 1p
x

Solution: Since x = 0 is a vertical asymptote for y= 1p
x
,

∫1

0

dx
p

x
= lim

c→0+

∫1

c

dx
p

x
= lim

c→0+

(
2
p

x

∣∣∣∣
1

c

)

= lim
c→0+

(2 − 2
p

c ) = 2 − 0 = 2 .

This means that the area under the curve y = 1/
p

x over the interval (0,1]—as shown
in the graph above—equals 2. The region is infinite in the y direction.

Example 5.35

Evaluate
∫3

1
⌊x⌋ dx .

y

x
0 1 2 3

1

2
y = ⌊x⌋

Solution: Recall from Example 3.22 in Section 3.3 that the floor function
y = ⌊x⌋ has jump discontinuities at each integer value of x, as shown
in the graph on the right. The integral

∫3
1 ⌊x⌋ dx is thus an improper

integral over the interval [1,3), which needs to be split at the point of
discontinuity x = 2 within that interval:

∫3

1
⌊x⌋ dx =

∫2

1
⌊x⌋ dx +

∫3

2
⌊x⌋ dx

=
(

lim
b→2−

∫b

1
⌊x⌋ dx

)
+

(
lim

c→3−

∫c

2
⌊x⌋ dx

)

=
(

lim
b→2−

∫b

1
1 dx

)
+

(
lim

c→3−

∫c

2
2 dx

)

= lim
b→2−

(
x

∣∣∣∣
b

1

)
+ lim

c→3−

(
2x

∣∣∣∣
c

2

)

= lim
b→2−

(b−1) + lim
c→3−

(2c−4) = (2−1) + (6−4) = 3

Similar to some of the above examples, the following result is easy to prove (see the
exercises):

For any real number a> 0, the improper integral
∫∞

a

dx

xp

is convergent if p > 1, and divergent if 0< p ≤ 1.
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The following test for convergence or divergence is sometimes helpful:

Comparison Test for Improper Integrals:

(a) If | f (x)| ≤ g(x) for all x in [a,∞), and if
∫∞

a g(x) dx is convergent, then
∫∞

a f (x) dx

is convergent.

(b) If f (x)≥ g(x)≥ 0 for all x in [a,∞), and if
∫∞

a g(x) dx is divergent, then
∫∞

a f (x) dx

is divergent.

The idea behind part (a) is that if −g(x) ≤ f (x) ≤ g(x) over [a,∞), then—thinking
of improper integrals as areas—the integral of f is “squeezed” between the two finite
integrals for ±g. There are, however, some subtle issues to prove about the limit in
the integral of f —finite bounds might not necessarily mean the limit exists.5

Example 5.36

Show that
∫∞

1

sin x

x2 dx is convergent.

y

x0
1

y= 1
x2

y=− 1
x2

sin x
x2

Solution: By Example 5.29, the integral
∫∞

1
1
x2 dx is convergent. So

since |sin x| ≤ 1 for all x, then
∣∣∣∣
sin x

x2

∣∣∣∣ ≤ 1
x2

for all x in [1,∞). Thus, by the Comparison Test,
∫∞

1
sin x

x2 dx is

convergent. The graph on the right shows how the curve y = sin x
x2

is bounded between the curves y=± 1
x2 .

The rules and properties from Section 5.3 concerning definite integrals still apply
to improper integrals, provided the improper integrals are convergent. For example,
suppose a function f has a discontinuity or vertical asymptote at x = c. If both im-
proper integrals

∫c
a f (x) dx and

∫b
c f (x) dx are convergent, then the improper integral∫b

a f (x) dx is convergent and
∫b

a
f (x) dx =

∫c

a
f (x) dx +

∫b

c
f (x) dx .

Likewise, if
∫c

a f (x) dx and
∫∞

c f (x) dx are convergent, then so is
∫∞

a f (x) dx, with
∫∞

a
f (x) dx =

∫c

a
f (x) dx +

∫∞

c
f (x) dx .

5See pp.140-141 in BUCK, R.C., Advanced Calculus, 2nd ed., New York: McGraw-Hill Book Co., 1965.
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Exercises
A
For Exercises 1-15, evaluate the given improper integral.

1.

∫∞

1

dx

x3 2.

∫1

0

dx
3px

3.

∫∞

0
e−x dx 4.

∫∞

0
e−2x dx 5.

∫1

−1

dx

x

6.

∫∞

0
xe−x2

dx 7.

∫0

−∞
2x dx 8.

∫π/2

0
tan x dx 9.

∫1

0

ln x

x
dx 10.

∫1

−1

dx
p

1− x2

11.

∫3

0
⌈x⌉ dx 12.

∫∞

−∞

dx

x2 + 4
13.

∫1

0

dx

(x−1)3 14.

∫∞

2

dx

x ln x
15.

∫∞

1

dx

x
p

x2 −1

16. In a standby system of two non-identical components, the normal operating component A has a
failure rate of λA > 0 failures per unit time, while the standby component B—which takes over when
A fails—has a failure rate λB > 0 (with λA 6=λB).

(a) Find the standby system’s reliability R(t) beyond time t≥ 0, where

R(t) =
∫∞

t

λAλB

λA −λB

(
e−λB x − e−λA x

)
dx .

(b) Show that the system’s mean time to failure (MTTF) m, where m =
∫∞

0 R(t)dt , is m = 1
λA

+ 1
λB

.

17. Show that for all a> 0,
∫∞

a

dx

xp
is convergent if p> 1, and divergent if 0 < p≤ 1.

18. Show that for all a> 0,
∫a

0

dx

xp
is convergent if 0< p< 1, and divergent if p≥ 1.

19. Is
∫∞

1

dx

x+ x4 convergent? Explain. 20. Is
∫∞

2

dx

x−p
x

convergent? Explain.

B

21. Example 5.31 showed that
∫∞

0 sin x dx is divergent. What is the flaw in the argument that the
integral must be 0 since each “hump” of sin x above the x-axis is canceled by one below the x-axis?

22. This exercise concerns the subtraction rule
∫∞

a ( f (x)− g(x))dx =
∫∞

a f (x)dx −
∫∞

a g(x)dx.

(a) Show that 1
x(x+1) =

1
x
− 1

x+1 for all x except 0 and -1

(b) Show that
∫∞

1
dx

x(x+1) is convergent.

(c) Show that both
∫∞

1
dx
x

and
∫∞

1
dx

x+1 are divergent.

(d) Does part (c) contradict parts(a)-(b) and the subtraction rule? Explain.

x

y

0− 1
n

1
n

n

y = Dn(x)

23. The improper integral
∫∞
−∞δ(x)dx = 1 is one of the notable

“improprieties” of the Dirac delta function δ. One way to
think of that integral is by approximating δ by triangular
“pulse” functions Dn (for n≥ 1), as in the picture on the right.

(a) Write a formula for each Dn(x) over all of R.

(b) Show that
∫∞
−∞ Dn(x)dx = 1 for all integers n≥ 1.

(c) Show that limn→∞ Dn(0)=∞= δ(0).

(d) Do the Dn functions begin to resemble δ as n→∞?



CHAPTER 6

Methods of Integration

6.1 Integration by Parts

In physics and engineering the Gamma function1
Γ (t), defined by

Γ (t) =
∫∞

0
xt−1 e−x dx for all t > 0,

has found many uses. Evaluating Γ (2) entails integrating the function f (x)= x e−x. No
formula or substitution you have learned so far would be of help. Differentiating that
function, on the other hand, is easy. By the Product Rule for differentials,

d(x e−x) = x d(e−x) + d(x) e−x

= −x e−x dx + e−x dx

d(x e−x) = −x e−x dx − d(e−x)

x e−x dx = −d(x e−x) − d(e−x), so integrate both sides to get
∫

x e−x dx = −
∫

d(x e−x) −
∫

d(e−x) = −x e−x − e−x + C

since
∫

dF = F + C. Generalizing this process for functions u and v,

d(uv) = u dv + v du

u dv = d(uv) − v du

so that integrating both sides yields the integration by parts formula:

For differentiable functions u and v:
∫

u dv = uv −
∫

v du (6.1)

1Created by the Swiss mathematician, physicist and astronomer Leonhard Euler (1707-1783). The use of the
Greek capital letter Γ for this function is due to the French mathematician Adrien-Marie Legendre (1752-1833).
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Integration by parts is just the Product Rule for derivatives in integral form, typically
used when the integral

∫
v du would be simpler than the original integral

∫
u dv.

Example 6.1

Use integration by parts to evaluate
∫

x e−x dx . Use the answer to evaluate Γ (2).

Solution: The original integral is always of the form
∫

u dv, so you must decide which parts of xe−x dx

will represent u and dv. Typically you would choose dv to be a differential that you could integrate
easily (since you will need to integrate dv to get v) and choose u to be a function whose derivative is
simpler than u (since that derivative will appear in v du, which you hope to be a simpler integral). In
this case, pick u = x and dv = e−x dx. Then du = dx and v =

∫
dv =

∫
e−x dx = −e−x (you can omit the

generic constant C for now—include it when you have evaluated
∫

v du). Thus,
∫

u dv = uv −
∫

v du

∫
x

u

e−x dx

dv

= x

u

(−e−x)

v

−
∫

−e−x

v

dx

du

∫
x e−x dx = −x e−x − e−x + C

which agrees with the example at the beginning of this section. Note that
∫

v du =
∫
−e−x dx, which

indeed is simpler than the original integral. The Gamma function value Γ (2) can now be evaluated:

Γ (2) =
∫∞

0
x e−x dx

= −x e−x − e−x

∣∣∣∣
∞

0

= lim
x→∞

(−x e−x − e−x) − (−0 e0 − e0)

= −
(

lim
x→∞

x

ex

)
−

(
lim
x→∞

e−x
)
− (0−1)

= 0 − 0 + 1 = 1

Example 6.2

What would happen in Example 6.1 if you let u= e−x and dv = x dx?

Solution: In this case du=−e−x dx and v=
∫

dv =
∫

x dx = 1
2 x2, so that

∫
x e−x dx =

∫
e−x

u

x dx

dv

= e−x

u

1
2

x2

v

−
∫

1
2

x2

v

(−e−x)dx

du

= 1
2

x2 e−x + 1
2

∫
x2 e−x dx

which leads you in the wrong direction: a more difficult integral than the original.
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Example 6.2 showed the importance of an appropriate choice for u and dv. There
are some rough guidelines for that choice—as in Example 6.1—but no rules that are
guaranteed to always work. It might not be clear when you should even attempt
integration by parts.

Example 6.3

Evaluate
∫

ln x dx .

Solution: Integration by parts ostensibly requires two functions in the integral, whereas here ln x ap-
pears to be the only one. However, the choice for dv is a differential, and one exists here: dx. Choosing
dv = dx obliges you to let u= ln x. Then du= 1

x
dx and v =

∫
dv =

∫
dx = x. Now integrate by parts:

∫
u dv = uv −

∫
v du

∫
ln x dx = (ln x) (x) −

∫
x · 1

x
dx

= x ln x −
∫

1 dx

= x ln x − x + C

Note that choosing dv = ln x dx would be pointless, as integrating dv to get v is the original problem!

Example 6.4

Evaluate
∫

x3 ex2
dx .

Solution: One frequently useful guideline for integration by parts is to eliminate the most complicated
function in the integral by integrating it—as dv—into something simpler (which becomes v). In this
integral, ex2

is somewhat complicated but has no closed form antiderivative. However, x ex2
appears in

the integral and can be integrated easily (using a substitution as in Section 5.4). So choose dv = x ex2
dx,

which means u= x2. Then du= 2x dx and v =
∫

dv =
∫

x ex2
dx = 1

2 ex2
. Now integrate by parts:

∫
u dv = uv −

∫
v du

∫
x3 ex2

dx = x2 · 1
2

ex2 −
∫

1
2

ex2 ·2x dx

= x2

2
ex2

−
∫

x ex2
dx

= x2

2
ex2 − 1

2
ex2 + C

= (x2−1)
2

ex2 + C

Sometimes multiple rounds of integration by parts are needed, as in the following
example.
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Example 6.5

Evaluate
∫

x2 e−x dx .

Solution: This integral appears similar to the one in Example 6.1, so choose dv = e−x dx and u = x2.
Then du= 2x dx and v =

∫
e−x dv =−e−x. Now integrate by parts:

∫
u dv = uv −

∫
v du

∫
x2 e−x dx = x2 · (−e−x) −

∫
−e−x ·2x dx

= −x2 e−x + 2
∫

x e−x dx (integrate by parts again)

∫
x2 e−x dx = −x2 e−x + 2(−x e−x − e−x) + C (by Example 6.1)

= −x2 e−x − 2x e−x − 2 e−x + C

In the above example, notice that the u = 2x in the second integral came from the
derivative of the u = x2 in the first integral. Likewise, the dv = −e−x dx in the second
integral came from integrating the dv = e−x dx from the first integral. In general, if
n rounds of integration by parts were needed, with u i and vi representing the u and
v, respectively, for round i = 1, 2, . . ., n, then the repeated integration by parts would
look like this:

∫
u1 dv1 = u1v1 −

∫
v1 du1

= u1v1 −
∫

u2 dv2

= u1v1 −
(
u2v2 −

∫
v2 du2

)
= u1v1 − u2v2 +

∫
u3 dv3

= u1v1 − u2v2 +
(
u3v3 −

∫
u4 dv4

)

= u1v1 − u2v2 + u3v3 −
(
u4v4 −

∫
u5 dv5

)

= ·· ·

= u1v1 − u2v2 + u3v3 − u4v4 + u5v5 − ·· ·
∫

un dvn

The last integral
∫

un dvn is one you could presumably integrate easily.
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The above procedure is called the tabular method for integration by parts, since it
can be shown in a table (the arrows indicate multiplication):

u dv

u1 dv1
u2 v1 (+) + u1 v1
u3 v2 (–) − u2 v2
u3 v3 (+) + u3 v3
u4 v4 (–) − u4 v4

...
...

...

The idea is to differentiate down the u column and integrate down the dv column. If
the u in the original integral is a polynomial of degree n, then you know from Section
1.6 that its (n+1)-st derivative will be 0, at which point the tabular method terminates.
The integral is then the sum of the indicated products with alternating signs.

For example, the tabular method on the integral from Example 6.5 looks like this:

u dv

x2 e−x dx

2x −e−x (+) + (x2) (−e−x)
2 e−x (–) − (2x) (e−x)
0 −e−x (+) + (2) (−e−x)STOP

The integral is the sum of the products, and agrees with the result in Example 6.5:
∫

x2 e−x dx = + (x2) (−e−x) − (2x) (e−x) + (2) (−e−x) + C = −x2 e−x − 2x e−x − 2 e−x + C

Example 6.6

Evaluate
∫

x3 e−x dx .

Solution: Use the tabular method with u= x3 and dv = e−x dx:

u dv

x3 e−x dx

3x2 −e−x (+) + (x3) (−e−x)
6x e−x (–) − (3x2) (e−x)
6 −e−x (+) + (6x) (−e−x)

0 e−x (–) − (6)(e−x)STOP
∫

x3 e−x dx = −x3 e−x − 3x2 e−x − 6x e−x − 6 e−x + C
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Integration by parts can sometimes result in the original integral reappearing, al-
lowing it to be combined with the original integral.

Example 6.7

Evaluate
∫

sec3 x dx .

Solution: Let u = sec x and dv = sec2 x dx, so that du = sec x tan x dx and v =
∫

dv =
∫

sec2 x dx = tan x.
Then

∫
u dv = uv −

∫
v du

∫
sec3 x dx = sec x tan x −

∫
sec x tan2 x dx

∫
sec3 x dx = sec x tan x −

∫
sec x (sec2 x − 1) dx

∫
sec3 x dx = sec x tan x +

∫
sec x dx −

∫
sec3 x dx

2
∫

sec3 x dx = sec x tan x + ln | sec x + tan x | + C

∫
sec3 x dx = 1

2
(sec x tan x + ln | sec x + tan x |) + C

Example 6.8

Evaluate
∫

ex sin x dx .

Solution: Let u= ex and dv = sin x dx, so that du= ex dx and v=
∫

dv =
∫

sin x dx =−cos x. Then
∫

u dv = uv −
∫

v du

∫
ex sin x dx = −ex cos x +

∫
ex cos x dx

and so integration by parts is needed again, for the integral on the right: let u= ex and dv = cos x dx, so
that du= ex dx and v =

∫
dv =

∫
cos x dx = sin x. Then

∫
ex sin x dx = −ex cos x +

(
uv −

∫
v du

)

∫
ex sin x dx = −ex cos x +

(
ex sin x −

∫
ex sin x dx

)

2
∫

ex sin x dx = −ex cos x + ex sin x

∫
ex sin x dx = ex

2
(sin x − cos x) + C
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In Example 6.1 integration by parts was used in evaluating an improper integral.
In general, in definite or improper integrals where a and b are real numbers or ±∞,

∫b

a
u dv = uv

∣∣∣∣
b

a

−
∫b

a
v du .

Example 6.9

Evaluate
∫1

0
x3

√
1− x2 dx .

Solution: Since x3
p

1− x2 = x2 · x
p

1− x2, and x
p

1− x2 is easy to integrate (via a substitution), let
u= x2 and dv = x

p
1− x2 dx. Then du= 2x dx and v=

∫
dv =

∫
x
p

1− x2 dx =− 1
3 (1− x2)3/2, and so:

∫b

a
u dv = uv

∣∣∣∣
b

a

−
∫b

a
v du

∫1

0
x3

√
1− x2 dx = − x2

3
(1− x2)3/2

∣∣∣∣
1

0
+

∫1

0

2x

3
(1− x2)3/2 dx

= (0−0) +
(
−2
15

(1− x2)5/2
∣∣∣∣
1

0

)
= 0 + 2

15
= 2

15

Exercises

A
For Exercises 1-25, evaluate the given integral.

1.

∫
x ln x dx 2.

∫
x2 ex dx 3.

∫
x cos x dx 4.

∫
x3x dx 5.

∫
x2 ax dx (a> 0)

6.

∫
ln 4x dx 7.

∫
ln x2 dx 8.

∫
x2 sin x dx 9.

∫
x cos2 x dx 10.

∫
sin x cos 2x dx

11.

∫
sin−1 x dx 12.

∫
cos−1 2x dx 13.

∫
tan−1 3x dx 14.

∫
x sec2 x dx 15.

∫
sin x sin 3x dx

16.

∫
ln x

x3
dx 17.

∫
x3 ln2 x dx 18.

∫
x5 ex dx 19.

∫2

0

x3 dx
p

4− x2
20.

∫1

0
x3

√
1+ x2 dx

21.

∫
sin(ln x) dx 22.

∫
ln(1+ x2)dx 23.

∫
x tan−1 x dx 24.

∫
cot−1 p

x dx 25.

∫
e
p

x dx

26. Evaluate the integral
∫

ex sin x dx from Example 6.8 by using two rounds of the tabular method
and the formula

∫
u1 dv1 = u1v1 −u2v2 +

∫
v2 du2 from p.162.

B

27. Show that for all constants a and b 6= 0,
∫

eax cos bx dx = eax (a cos bx + b sin bx)
a2 +b2 and

∫
eax sin bx dx = eax (a sin bx − b cos bx)

a2 +b2 .
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28. For the Gamma function Γ (t) show the following:

(a) Γ (t+1) = tΓ (t) for all t> 0. (Hint: Use integration by parts.)

(b) Γ (n) = (n−1)! for all positive integers n. (Hint: Use part (a) and induction.)

Note that by part (b) the Gamma function can be thought of as an extension of the factorial operation
to all positive real numbers. In fact, the Gamma function was created for that purpose.

29. Use Exercise 28 to prove for all integers n≥ 1:
∫∞

0
rn e−r ln r dr = (n−1)! + n

∫∞

0
rn−1 e−r ln r dr

30. By the Maxwell speed distribution for gas molecules, the average speed 〈ν〉 of molecules of mass m

in a gas at temperature T is

〈ν〉 = 4π
( m

2πkT

)3/2
∫∞

0
ν3 e−mν2/2kT dν ,

where k ≈ 1.38056×10−23 J/K is the Boltzmann constant. Show that

〈ν〉 =

√
8kT

πm
.

31. Some physics texts write integrals in a form like this energy integral from statistical mechanics,
∫∞

0
ln

(
1−αe−x2

)
d(x3)

which uses the differential of a function—in this case d(x3)—instead of a variable (e.g. not just plain
dx). This often signals that integration by parts is on the way, with the added benefit of having the
v =

∫
dv calculation done for you—in the above integral d(x3) means that v = x3, with dv = d(x3) not

really being needed for anything else. With that understanding, show that for 0<α< 1,

∫∞

0
ln

(
1−αe−x2

)
d(x3) = −2α

∫∞

0

x4 e−x2
dx

1−αe−x2 .

32. Find the flaw in the following “proof” that 0 = 1:

Evaluating the integral

∫
dx

x
using integration by parts with u = 1

x
and dv = dx, so that du =−dx

x2

and v = x, shows that

∫
u dv = uv −

∫
v du

∫
dx

x
=

(
1
x

)
· x −

∫
x ·

(
−dx

x2

)

∫
dx

x
= 1 +

∫
dx

x

0 = 1 X
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6.2 Trigonometric Integrals

In engineering applications you sometimes encounter integrals of the form
∫

cos (αt+φ1) cos (βt+φ2) dt

where αt+φ1 and βt+φ2 are different angles (e.g. when the voltage and current are out
of phase in an AC circuit). In general, integrals involving products of sines and cosines
with “mixed” angles can be simplified with the useful product-to-sum formulas:2

sin A cos B = 1
2 (sin (A+B) + sin (A−B)) (6.2)

cos A sin B = 1
2 (sin (A+B) − sin (A−B)) (6.3)

cos A cos B = 1
2 (cos (A+B) + cos (A−B)) (6.4)

sin A sin B = −1
2 (cos (A+B) − cos (A−B)) (6.5)

Example 6.10

Evaluate
∫

0.5 sin x sin 12x dx .

Solution: Using the product-to-sum formula (6.5) with A = x and B = 12x,

sin A sin B = − 1
2 (cos (A+B) − cos (A−B))

sin x sin 12x = − 1
2 (cos (x+12x) − cos (x−12x))

sin x sin 12x = − 1
2 (cos 13x − cos 11x)

since cos(−11x)= cos 11x. Then
∫

0.5 sin x sin 12x dx = −1
4

∫
(cos 13x − cos 11x) dx

= − 1
52

sin 13x + 1
44

sin 11x + C

Notice how the product-to-sum formula turned an integral of products of sines into integrals of individ-
ual cosines, which are easily integrated. The integrand is an example of a modulated wave, commonly
used in electronic communications (e.g. radio broadcasting). The graph is shown below:

y

x0

0.5

−0.5

y= 0.5sin x sin12x

π 2π

The curves y=±0.5sin x (shown in dashed lines) form an amplitude envelope for the modulated wave.

2See Section 3.4 in CORRAL, M., Trigonometry, http://mecmath.net/trig/, 2009.

http://mecmath.net/trig/
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On occasion you might need to integrate trigonometric functions raised to powers
higher than two. For the sine function raised to odd powers of the form 2n+1 (for
n ≥ 1), the trick is to replace sin2 x by 1−cos2 x, so that

∫
sin2n+1 x dx =

∫
(sin2 x)n sin x dx

=
∫

(1−cos2 x)n sin x dx

=
∫

p(u) du

where p(u) is a polynomial in the variable u = cos x, and the single sin x is now part of
du =−sin x dx. You can then use the Power Formula to integrate that polynomial.

Example 6.11

Evaluate
∫

sin3 x dx .

Solution: Let u= cos x so that du= −sin x dx:
∫

sin3 x dx =
∫

(sin2 x) sin x dx

=
∫

(1−cos2 x) sin x dx

=
∫

(1−u2) (−du)

=
∫

(u2 −1) du

= 1
3

u3 − u + C

= 1
3

cos3 x − cos x + C

In general
∫

sin2n+1 x dx will be a polynomial of degree 2n+1 in terms of cos x. Sim-
ilarly, use cos2 x = 1− sin2 x to integrate odd powers of cos x, with the substitution
u = sin x:

∫
cos2n+1 x dx =

∫
(cos2 x)n cos x dx

=
∫

(1−sin2 x)n

p(u)

cos x dx

du
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Integrals of the form
∫

sinm x cosn x dx, where either m or n is odd, can be evaluated
using the above trick for the function having the odd power.

Example 6.12

Evaluate
∫

sin2 x cos3 x dx .

Solution: Replace cos2 x by 1−sin2 x, then let u= sin x so that du= cos x dx:
∫

sin2 x cos3 x dx =
∫

sin2 x (cos2 x) cos x dx

=
∫

sin2 x (1−sin2 x)

p(u)

cos x dx

du

=
∫

(u2 −u4) du

= 1
3

u3 − 1
5

u5 + C

= 1
3

sin3 x − 1
5

sin5 x + C

For even powers of sin x or cos x. You would replace sin2 x or cos2 x with either

sin2 x = 1 − cos 2x

2
or cos2 x = 1 + cos 2x

2
,

respectively, as often as necessary, then proceed as before if odd powers occur.

Example 6.13

Evaluate
∫

sin4 x dx .

Solution: Replace sin2 x by 1−cos 2x
2 :

∫
sin4 x dx =

∫(
1 − cos 2x

2

)2

dx

= 1
4

∫
(1 − 2 cos 2x + cos22x) dx

= 1
4

∫(
1 − 2 cos 2x + 1 + cos 4x

2

)
dx

= 1
8

∫
(3 − 4 cos 2x + cos 4x) dx

= 3x

8
− 1

4
sin 2x + 1

32
sin 4x + C
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Similar methods can be used for integrals of the form
∫

secm x tann x dx when either
m is even or n is odd. For an even power m = 2k+2, use sec2 x = 1+ tan2 x for all but
two of the m powers of sec x, then use the substitution u = tan x, so that du = sec2 x dx.
This results in an integral of a polynomial p(u) in terms of u = tan x:

∫
sec2k+2 x tann x dx =

∫
(sec2 x)k sec2 x tann x dx

=
∫

(1+ tan2 x)k tann x

p(u)

sec2 x dx

du

Likewise for an odd power n = 2k+1, use tan2 x = sec2 x−1 for all but one of the n

powers of tan x, then use the substitution u = sec x, so that du = sec x tan x dx. This
results in an integral of a polynomial p(u) in terms of u = sec x:

∫
secm x tan2k+1 x dx =

∫
secm−1 x sec x (tan2 x)k tan x dx

=
∫

secm−1 x (sec2 x−1)k

p(u)

sec x tan xdx

du

Mimic the above procedure for integrals of the form
∫

cscm x cotn x dx when either m

is even or n is odd, using the identity csc2 x= 1+cot2 x in a similar manner.

Example 6.14

Evaluate
∫

sec4 x tan x dx .

Solution: Use sec2 x = 1+ tan2 x for one sec2 x term, then substitute u= tan x, so that du= sec2 x dx:
∫

sec4 x tan x dx =
∫

sec2 x sec2 x tan x dx

=
∫

(1+ tan2 x) tan x sec2 x dx

=
∫

(1+u2)u du

=
∫

(u+u3) du

= 1
2

u2 + 1
4

u4 + C

= 1
2

tan2 x + 1
4

tan4 x + C
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For some trigonometric integrals try putting everything in terms of sines and cosines.

Example 6.15

Evaluate
∫

cot4 x

csc5 x
dx .

Solution: Put cot x and csc x in terms of sin x and cos x:

∫
cot4 x

csc5 x
dx =

∫
cos4 x sin5 x

sin4 x
dx

=
∫

cos4 x sin x dx (now let u= cos x, du= −sin x dx)

= −
∫

u4 dx = −1
5

cos5 x + C

Exercises

A
For Exercises 1-12, evaluate the given integral.

1.

∫
sin 2x cos 5x dx 2.

∫
cos 2x cos 5x dx 3.

∫
sin 2x sin 5x dx 4.

∫
cos 2πx sin 3πx dx

5.

∫
sin3 x cos3/2 x dx 6.

∫
cos4 x dx 7.

∫
sin6 x dx 8.

∫
sin x sin 2x sin 3x dx

9.

∫
sec4 x dx 10.

∫
sec2 x tan3 x dx 11.

∫
tan3 x

sec4 x
dx 12.

∫
dx

csc2 x cot x

B

13. Evaluate
∫

sin3 x cos3 x dx in two different ways:

(a) Use sin3 x = (1−cos2 x) sin x and the substitution u= cos x.

(b) Use cos3 x = (1−sin2 x) cos x and the substitution u= sin x.

Are the answers from parts(a) and (b) equivalent? Explain.

14. Evaluate
∫

sec4 x tan x dx by using sec4 x tan x = sec3 x (sec x tan x) and the substitution u= sec x.
Is your answer equivalent to the answer in Example 6.14? Explain.

15. Show that
∫

4 tan x (1− tan2 x)

(1+ tan2 x)2
dx = −1

4
cos 4x + C.

16. The autocorrelation function Rx(τ) of the periodic function x(t)= A cos(ωt+θ) is given by

Rx(τ) = ω

2π

∫2π/ω

0
x(t) x(t−τ) dt

where A, ω and θ are constants. Show that

Rx(τ) = A2

2
cos ωτ .



172 Chapter 6 • Methods of Integration §6.3

6.3 Trigonometric Substitutions

One of the fundamental formulas in geometry is for the area A of a circle of radius r:
A = πr2. The calculus-based proof of that formula uses a definite integral evaluated
by means of a trigonometric substitution, as will now be demonstrated.

Use the circle of radius r > 0 centered at the origin (0,0) in the xy-plane, whose
equation is x2 + y2 = r2 (see Figure 6.3.1(a) below).

x

y

r

θ

r0

(x, y)= (rcos θ,rsin θ)x2 + y2 = r2

(a) Full circle

x

y

r−r

θ = 0θ =π

0

y=
p

r2 − x2

(b) Upper hemisphere

Figure 6.3.1 Circle of radius r

By symmetry about the x-axis, the area A of the circle is twice the area of its upper
hemisphere (see Figure 6.3.1(b) above), which is the area under the curve y=

p
r2 − x2:

A = 2
∫r

−r

√
r2 − x2 dx

To evaluate this integral, recall from trigonometry that any point (x, y) on the circle
can be written as (x, y) = (r cos θ, rsin θ), where 0 ≤ θ < 2π (in radians) is the angle
shown in Figure 6.3.1(a). Figure 6.3.1(b) shows that as x goes from x =−r to x = r, the
angle θ goes from θ = π to θ = 0. Now substitute x = r cos θ and dx = −r sin θdθ into
the integral and change the limits of integration from x = −r and x = r to θ = π and
θ = 0, respectively:

A = 2
∫0

π

√
r2 − r2 cos2 θ (−r sin θ) dθ = −2

∫π

0

√
r2 (1−cos2 θ) (−r sin θ) dθ

= 2
∫π

0
r
√

sin2 θ r sin θ dθ = 2r2
∫π

0
sin2 θ dθ = ✓2r2

∫π

0

1−cos 2θ

✓2
dθ

= r2
(
θ − 1

2
sin 2θ

) ∣∣∣∣
π

0
= r2

(
π − 1

2
sin 2π −

(
0 − 1

2
sin 0

))

= πr2
X
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For an indefinite integral of the general form
∫p

a2 −u2 du, the same calculation as
above with the substitutions u = acos θ and du =−asin θdθ yields

∫√
a2 −u2 du =

∫√
a2 −a2 cos2 θ (−a sin θ) dθ = −a2

∫
sin2 θ dθ

= −a2
∫

1−cos 2θ
2

dθ = −a2

2
θ + a2 sin 2θ

4
+ C ,

which is still in terms of θ. To put this back in terms of u, use θ = cos−1( u
a

), the double-

angle formula sin 2θ= 2 sin θ cos θ, and
p

a2 −u2 =
√

a2 sin2 θ = a sin θ. Then
∫√

a2 −u2 du = −a2

2
cos−1

(u

a

)
+ 2a2 sin θ cos θ

4

= −a2

2
cos−1

(u

a

)
+ (a cos θ) (a sin θ)

2
+ C

which results in the following formula:

∫√
a2 −u2 du = −a2

2
cos−1

(u

a

)
+ 1

2
u

√
a2 −u2 + C (6.6)

It is left as an exercise to show that the substitution u = asin θ gives:

∫√
a2 −u2 du = a2

2
sin−1

(u

a

)
+ 1

2
u

√
a2 −u2 + C (6.7)

That these two seemingly different antiderivatives are equivalent follows immediately
from the identity sin−1 x + cos−1 x = π

2 for all −1 ≤ x ≤ 1, which shows that the an-

tiderivatives differ by the constant πa2

4 (absorbed in the generic constant C):

a2

2
sin−1

(u

a

)
+ 1

2
u

√
a2 −u2 + C = a2

2

(π
2

− cos−1
(u

a

))
+ 1

2
u

√
a2 −u2 + C

= −a2

2
cos−1

(u

a

)
+ 1

2
u

√
a2 −u2 + C+ πa2

4
C

Thus, either substitution—u = acos θ or u = asin θ—can be used when evaluating the
integral

∫p
a2 −u2 du. The latter choice is sometimes preferred, to avoid the negative

sign in du and the resulting formula.
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Example 6.16

Evaluate
∫√

9−4x2 dx .

Solution: The integrand is of the form
p

a2 −u2 with a= 3 and u = 2x, so that du = 2dx. Then dx = 1
2 du

and so:
∫√

9−4x2 dx = 1
2

∫√
a2 −u2 du

= 1
2

(
a2

2
sin−1

(u

a

)
+ 1

2
u

√
a2 −u2

)
+ C

= 9
4

sin−1
(

2x

3

)
+ 1

2
x
√

9−4x2 + C

In general, when other methods fail, use the table below as a guide for certain types
of integrals, making use of the specified substitution and trigonometric identity:

Integral contains Substitution Identity

p
a2 − u2 u = a sin θ 1 − sin2θ = cos2θ

p
a2 + u2 u = a tan θ 1 + tan2θ = sec2θ

p
u2 − a2 u = a sec θ sec2θ − 1 = tan2θ

For example, the substitution u = a tan θ leads to the following formula:

∫√
a2 +u2 du = 1

2
u

√
a2 +u2 + a2

2
ln

∣∣u+
√

a2 +u2
∣∣ + C (6.8)

Similarly, the substitution u = a sec θ yields this formula:

∫√
u2−a2 du = 1

2
u

√
u2 −a2 − a2

2
ln

∣∣u+
√

u2 −a2
∣∣ + C (6.9)

The proof of each formula requires this result from Example 6.7 in Section 6.1:

∫
sec3θ dθ = 1

2
(sec θ tan θ + ln | sec θ + tan θ |) + C (6.10)

The above substitutions can be used even if no square roots are present.
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Example 6.17

Evaluate
∫

dx

(1+ x2)2 .

Solution: Notice that this integral cannot be evaluated by using the Power Formula with the substi-
tution u = 1+ x2 (why?). Integration by parts does not look promising, either. So try a trigonometric
substitution. The integrand contains a term of the form a2 + u2 (with a = 1 and u = x), so use the
substitution x = tan θ. Then dx = sec2θdθ and so

∫
dx

(1+ x2)2
=

∫
sec2θ dθ

(1+ tan2θ)2

=
∫

sec2θdθ

(sec2θ)2

=
∫

dθ

sec2θ2

=
∫

cos2θ dθ

=
∫

1+cos 2θ
2

dθ

= θ

2
+ 1

4
sin 2θ + C

= θ

2
+ 1

2
sin θ cos θ + C

by the trigonometric double-angle identity sin 2θ = 2 sin θ cos θ.

p 1+
x
2

x

1
θ

The simplest way to get expressions for sin θ and cos θ in terms of x is to draw
a right triangle with an angle θ such that tan θ = x = x

1 , as in the drawing on

the right. The hypotenuse must then be
p

1+ x2 (by the Pythagorean Theorem),
which makes it easy to read off the values of sin θ and cos θ:

sin θ = x
p

1+ x2
and cos θ = 1

p
1+ x2

Since θ = tan−1 x, putting the integral back in terms of x yields:
∫

dx

(1+ x2)2 = 1
2

tan−1 x + 1
2

x
p

1+ x2

1
p

1+ x2
+ C

= 1
2

tan−1 x + x

2(1+ x2)
+ C

Note: An alternative method for getting sin θ and cos θ in terms of x would be to put tan θ = x in the
identity sec2θ = 1+ tan2θ to solve for cos θ, then use the identity sin2θ = 1−cos2θ to solve for sin θ.

By completing the square, quadratic expressions in x can be put in one of the forms
a2 ±u2 or u2−a2, enabling the use of the corresponding trigonometric substitution.
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Example 6.18

Evaluate
∫

dx

(4x2+8x−5)3/2
.

Solution: This integral cannot be evaluated by using the Power Formula, so try a trigonometric substi-
tution. Complete the square on the expression 4x2 +8x−5:

4x2 + 8x − 5 = 4(x2 +2x) − 5 = 4(x2+2x+1) − 5 − 4 = 4(x+1)2 − 9

This expression is now of the form u2 −a2 for u = 2(x+1) and a = 3. Use the substitution u = a sec θ,
which means 2(x+1)= 3 sec θ. Then 2dx = 3 sec θ tan θ dθ and so:

∫
dx

(4x2+8x−5)3/2
=

∫
dx

(4(x+1)2 − 9)3/2

= 3
2

∫
sec θ tan θ dθ

(9 sec2θ − 9)3/2
= 3

2

∫
sec θ tan θ dθ

(9(sec2θ − 1))3/2

= 1
18

∫
sec θ tan θ dθ

tan3θ
= 1

18

∫
sec θ dθ

tan2θ
= 1

18

∫
cos θ dθ

sin2θ

= 1
18

∫
csc θ cot θ dθ = − 1

18
csc θ + C

2(x+
1) p

4x2+8x−5

3
θ

To get an expression for csc θ in terms of x, draw a right triangle with
an angle θ such that sec θ = 2(x+1)

3 , as in the drawing on the right.

The side opposite θ must then be
p

4x2 +8x−5 (by the Pythagorean
Theorem), and hence:

csc θ = 2(x+1)
p

4x2 +8x−5
Putting the integral back in terms of x yields:

∫
dx

(4x2+8x−5)3/2
= − 1

18
2(x+1)

p
4x2 +8x−5

+ C

= − x+1

9
p

4x2 +8x−5
+ C

Note: Trigonometric identities could have been used to obtain csc θ by knowing sec θ.

The following integrals from Section 5.4 might be helpful for the exercises:

∫
tan u du = ln |sec u| + C (6.11)

∫
sec u du = ln |sec u + tan u| + C (6.12)

∫
csc u du = − ln |csc u + cot u| + C (6.13)
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Exercises
A
For Exercises 1-16, evaluate the given integral.

1.

∫√
9+4x2 dx 2.

∫√
2−3x2 dx 3.

∫√
4x2 −9 dx 4.

∫√
x2 +2x+10 dx

5.

∫ p
1− x2

x2 dx 6.

∫
x2 dx

p
x2 −9

7.

∫
dx

x
p

1+ x2
8.

∫
dx

x2
p

a2 + x2
(a> 0)

9.

∫
x3 dx

p
x2 +4

10.

∫
dx

(4x2−9)3/2
11.

∫
dx

(9+4x2)2 12.

∫
x2 dx

p
a2 − x2

(a> 0)

13.

∫
x3 dx

p
9− x2

14.

∫ p
4− x2

x
dx 15.

∫
(x−4) dx

p
−9x2+36x−32

16.

∫
dx

(4x2+16x+15)3/2

17. Prove formula (6.7) directly by using the substitution u= asin θ.

18. Prove formula (6.8). 19. Prove formula (6.9).

20. Show that using the substitution u = acot θ to evaluate the integral
∫p

a2 +u2 dx leads to an
antiderivative equivalent to the one in formula (6.8).

21. Show that using the substitution u = acsc θ to evaluate the integral
∫p

u2 −a2 dx leads to an
antiderivative equivalent to the one in formula (6.9).

B

22. The integrals
∫

dx
p

x2 ±a2
can be evaluated without the use of trigonometric substitutions, by using

differentials:

(a) For u2 = x2 ±a2, show that
dx

u
= d (x+u)

x+u
.

(b) Integrate both sides of the result from part (a).

Note: In general, many integrals involving
p

x2±a2 can be handled with a similar manipulation of
differentials, with varying complexity.

23. According to Newtonian physics the path of a photon grazing the surface of the Sun should be
deflected by the Sun’s gravitational field by an angle θ, given approximately by

θ =
∣∣∣∣
2GMR

c2

∫0

∞

dy

(R2 + y2)3/2

∣∣∣∣

where c= 2.998×108 m/s is the speed of light, G = 6.67×10−11 N/m2/kg2 is the gravitational constant,
M = 1.99×1030 kg is the mass of the Sun, and R = 6.96×108 m is the radius of the Sun. Show that

θ = 2GM

c2R
= 4.24×10−6 radians = 2.43×10−4 degrees ≈ 0.875 seconds of arc,

where 1 second of arc = 1/3600 of 1 degree.3

3Albert Einstein published this result in 1911, then showed in 1915 that the true angle should be double that
amount, due to the curvature of space. Experiments verified Einstein’s prediction. See pp.69-71 in SERWAY, R.A.,
C.J. MOSES AND C.A. MOYER, Modern Physics, Orlando, FL: Harcourt Brace Jovanovich Publishers, 1989.
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6.4 Partial Fractions

In the last two sections integrals involving trigonometric functions were simplified by
using various trigonometric identities. For integrals of rational functions—quotients
of polynomials—some algebraic identities (e.g. x2 −a2 = (x−a)(x+a)) will be useful in
the method of partial fractions. The idea behind this method is simple: replace a
complicated rational function with simpler ones that are easy to integrate.

For example, there is no formula for evaluating the integral
∫

dx

x2 + x

but notice that you can write

1
x2 + x

= 1
x (x+1)

= 1
x

− 1
x+1

,

called the partial fraction decomposition of 1
x2+x

, so that

∫
dx

x2 + x
=

∫(
1
x

− 1
x+1

)
dx

= ln |x| − ln |x+1| + C .

There is a systematic way to find this decomposition. First, assume that

1
x (x+1)

= A

x
+ B

x+1

for some constants A and B. Get a common denominator on the right side:

1
x (x+1)

= A (x+1) + Bx

x (x+1)

0x + 1
x (x+1)

= (A+B) x + A

x (x+1)

Now equate coefficients in the numerators of both sides to solve for A and B:

constant term : A = 1

coefficient of x : A + B = 0 ⇒ B = −A = −1

Thus,
1

x (x+1)
= A

x
+ B

x+1
= 1

x
+ −1

x+1
= 1

x
− 1

x+1

as before.
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The partial fraction method can be discussed in general, and its assumptions proved4,
but only the simplest cases—linear and quadratic factors— will be considered here. In
all cases it will be assumed that the degree of the polynomial in the numerator of the
rational function is less than the degree of the polynomial in the denominator.

Start with the most basic case, similar to the example above:

Case 1 - Distinct linear factors: A rational function p(x)
q(x) such that degree(p(x)) <

degree(q(x)), where q(x) is a product of n > 1 distinct linear factors

q(x) = (a1x+b1) (a2x+b2) · · · (anx+bn) ,

can be written as a sum of partial fractions

p(x)
q(x)

= A1

a1x+b1
+ A2

a2x+b2
+ ·· · + An

anx+bn

for some constants A1, A2, . . . , An. Those constants can be solved for by getting
a common denominator on the right side of the equation and then equating the
coefficients of the numerators of both sides.

Example 6.19

Evaluate
∫

dx

x2−7x+10
.

Solution: Since x2 −7x+10= (x−2)(x−5), then

1

x2 −7x+10
= 1

(x−2)(x−5)
= A

x−2
+ B

x−5

= (A+B) x + (−5A−2B)
(x−2)(x−5)

so that

coefficient of x : A + B = 0 ⇒ B = −A

constant term : −5A − 2B = 1 ⇒ −5A + 2A = 1 ⇒ A = −1
3

and B = 1
3

Thus,

∫
dx

x2−7x+10
=

∫(
− 1

3

x−2
+

1
3

x−5

)
dx

= −1
3

ln |x−2| + 1
3

ln |x−5| + C

4For example, see Section 5.10 in HILLMAN, A.P., AND G.L. ALEXANDERSON, A First Undergraduate Course in

Abstract Algebra, 3rd ed., Belmont, CA: Wadsworth Publishing Co., 1983.
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If one linear factor in the denominator is repeated more than once, and all other
factors are distinct, then use the following decomposition:

Case 2 - One repeated linear factor + distinct linear factors: A rational
function p(x)

q(x) such that degree(p(x)) < degree(q(x)), where q(x) is a product of n > 1
distinct linear factors and one linear factor repeated m> 1 times

q(x) = (ax+b)m (a1x+b1) (a2x+b2) · · · (anx+bn) ,

can be written as as a sum of partial fractions

p(x)
q(x)

= A1

ax+b
+ A2

(ax+b)2 + ·· · + Am

(ax+b)m
+ B1

a1x+b1
+ ·· · + Bn

anx+bn

for some constants A1, A2, . . . , Am and B1, . . . , Bn. Those constants can be solved
for by the same method as in Case 1.

Example 6.20

Evaluate
∫

x2+ x−1
x3 + x2 dx .

Solution: Since x3 + x2 = x2 (x+1), then

x2 + x−1

x3 + x2 = x2 + x−1

x2 (x+1)
= A

x
+ B

x2 + C

x+1

= Ax (x+1) + B (x+1) + Cx2

x2 (x+1)

= (A+C) x2 + (A+B) x + B

x2 (x+1)

so that

constant term : B = −1

coefficient of x : A + B = 1 ⇒ A = 1 − B = 2

coefficient of x2 : A + C = 1 ⇒ C = 1 − A = −1

Thus,
∫

x2+ x−1

x3 + x2
dx =

∫(
2
x

+ −1

x2
+ −1

x+1

)
dx

= 2 ln |x| + 1
x

− ln |x+1| + C0 (C0 = generic constant)

Case 2 can be extended to more than one repeated factor—the partial fraction de-
composition would then have more terms similar to those for the first repeated factor.
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Example 6.21

Evaluate
∫

dx

x2 (x+1)2 .

Solution: Expanding Case 2 to two repeated factors,

1

x2 (x+1)2
= A

x
+ B

x2
+ C

x+1
+ D

(x+1)2

= Ax (x+1)2 + B (x+1)2 + Cx2 (x+1) + Dx2

x2 (x+1)2

= (A+C) x3 + (2A+B+C+D) x2 + (A+2B) x + B

x2 (x+1)

so that

constant term : B = 1

coefficient of x : A + 2B = 0 ⇒ A = −2B = −2

coefficient of x3 : A + C = 0 ⇒ C = −A = 2

coefficient of x2 : 2A + B + C + D = 0 ⇒ D = −2A − B − C = 1

Thus,
∫

dx

x2 (x+1)2 =
∫(−2

x
+ 1

x2 + 2
x+1

+ 1
(x+1)2

)
dx

= −2 ln |x| − 1
x

+ 2 ln |x+1| − 1
x+1

+ C0 (C0 = generic constant)

The partial fraction decompositions for quadratic factors are similar to those for
linear factors, except the numerators in each partial fraction can now contain linear
terms. A factor of the form ax2 + bx+ c is considered quadratic only if it cannot be
factored into a product of linear terms (i.e. has no real roots) and a 6= 0.

Case 3 - Distinct quadratic factors: A rational function p(x)
q(x) such that

degree(p(x)) < degree(q(x)), and q(x) is a product of n > 1 distinct quadratic factors

q(x) = (a1x2 +b1x+ c1) (a2x2 +b2x+ c2) · · · (anx2 +bnx+ cn) ,

can be written as as a sum of partial fractions

p(x)
q(x)

= A1x+B1

a1x2 +b1x+ c1
+ A2x+B2

a2x2 +b2x+ c2
+ ·· · + Anx+Bn

anx2 +bnx+ cn

for some constants A1, A2, . . . , An and B1, B2, . . . , Bn. Those constants can be
solved for by the same method as in Case 1.
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Example 6.22

Evaluate
∫

dx

(x2+1)(x2+4)
.

Solution: Neither x2 +1 nor x2+4 has real roots, so by Case 3,

1
(x2+1)(x2+4)

= Ax+B

x2 +1
+ Cx+D

x2 +4

= (Ax+B) (x2+4) + (Cx+D) (x2+1)

(x2+1)(x2+4)

= (A+C) x3 + (B+D) x2 + (4A+C) x + (4B+D)
(x2 +1)(x2+4)

so that

coefficient of x3 : A + C = 0 ⇒ C = −A

coefficient of x2 : B + D = 0 ⇒ D = −B

coefficient of x : 4A + C = 0 ⇒ 4A − A = 0 ⇒ A = 0

constant term : 4B + D = 1 ⇒ 4B − B = 1 ⇒ B = 1
3

and D = −1
3

Thus,
∫

dx

(x2+1)(x2+4)
=

∫( 1
3

x2+1
+

− 1
3

x2 +4

)
dx

= 1
3

tan−1 x − 1
6

tan−1
( x

2

)
+ C0

by formula (5.4) in Section 5.4.

A repeated quadratic factor is handled in the same way as a repeated linear factor:

Case 4 - One repeated quadratic factor + distinct quadratic factors: A ra-
tional function p(x)

q(x) such that degree(p(x)) < degree(q(x)), where q(x) is a product
of n > 1 distinct quadratic factors and one quadratic factor repeated m> 1 times

q(x) = (ax2 +bx+ c)m (a1x2 +b1x+ c1) (a2x2 +b2x+ c2) · · · (anx2 +bnx+ cn) ,

can be written as as a sum of partial fractions

p(x)
q(x)

= A1x+B1

ax2 +bx+ c
+ ·· · + Amx+Bm

(ax2 +bx+ c)m
+ C1x+D1

a1x2 +b1x+ c1
+ ·· · + Cnx+Dn

anx2 +bnx+ cn

for some constants A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cn, and D1, . . . , Dn. Those
constants can be solved for by the same method as in Case 1.
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Example 6.23

Evaluate
∫

dx

(x2+1)2 (x2+4)
.

Solution: Neither x2 +1 nor x2+4 has real roots, and x2 +1 is repeated, so by Case 4,

1
(x2 +1)2 (x2+4)

= Ax+B

x2 +1
+ Cx+D

(x2+1)2 + Ex+F

x2+4

= (Ax+B) (x2+1)(x2+4) + (Cx+D) (x2+4) + (Ex+F) (x2+1)2

(x2+1)(x2+4)

with the right side of the equation expanded as

(A+E) x5 + (B+F) x4 + (5A+C+2E) x3 + (5B+D+2F) x2 + (4A+4C+E) x + (4B+4D+F)
(x2 +1)2 (x2 +4)

so that equating coefficients of both sides gives

coefficient of x5 : A + E = 0 ⇒ E = −A

coefficient of x4 : B + F = 0 ⇒ F = −B

coefficient of x3 : 5A + C + 2E = 0 ⇒ 5A + C − 2A = 0 ⇒ C = −3A

coefficient of x2 : 5B + D + 2F = 0 ⇒ 5B + D − 2F = 0 ⇒ D = −3B

coefficient of x : 4A + 4C + E = 0 ⇒ 4A − 12A − A = 0 ⇒ A = 0 ⇒ C = 0 and E = 0

constant term : 4B + 4D + F = 1 ⇒ 4B − 12B − B = 1 ⇒ B = −1
9

⇒ D = 1
3

and F = 1
9

Thus,

∫
dx

(x2 +1)2 (x2 +4)
=

∫(
− 1

9

x2+1
+

1
3

(x2+1)2 +
1
9

x2+4

)
dx

= −1
9

tan−1 x + 1
3

(
1
2

tan−1 x + x

2(x2 +1)

)
+ 1

18
tan−1

( x

2

)
+ C0

= 1
18

tan−1 x + x

6(x2 +1)
+ 1

18
tan−1

( x

2

)
+ C0

where the middle integral on the right is from Example 6.17 in Section 6.3.

When a rational function has a numerator with degree larger than its denominator,
dividing the numerator by the denominator leaves the sum of a polynomial and a new
rational function perhaps satisfying the conditions for Cases 1-4. When the numerator
and denominator have the same degree, a trick like this might be easier.

x2 +2
(x+1)(x+2)

= (x2 +3x+2)−3x

(x+1)(x+2)
= x2 +3x+2

(x+1)(x+2)
− 3x

(x+1)(x+2)
= 1 − 3x

(x+1)(x+2)

The last rational function on the right can be integrated using partial fractions.
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Exercises
A
For Exercises 1-12, evaluate the given integral.

1.

∫
dx

x2− x
2.

∫
x+1
x2− x

dx 3.

∫
dx

2x2+3x−2
4.

∫
dx

x2+ x−6

5.

∫
dx

x4− x2 6.

∫
x

(x−2)3 dx 7.

∫
x−1

x2 (x+1)
dx 8.

∫
x2

(x−1)2 dx

9.

∫
x−2

x2 (x−1)2 dx 10.

∫
dx

x4 − x2 11.

∫
dx

x4 +5x2+4
12.

∫
(x−1)2

(x2+1)2 dx

B

13. For all numbers a 6= b show that
∫

dx

(x−a) (x−b)
= 1

a−b
ln

∣∣∣∣
x−a

x−b

∣∣∣∣ + C .

14. Let q(x) = (x−a1) (x−a2), where a1 6= a2. Show that

q′(x)
q(x)

= 1
x−a1

+ 1
x−a2

.

15. For q(x) as in Exercise 14, show that

1
q(x)

= 1
q′(a1) (x−a1)

+ 1
q′(a2) (x−a2)

.

16. Extend Exercise 15 to three distinct linear factors: if q(x) = (x−a1) (x−a2) (x−a3) then

1
q(x)

= 1
q′(a1) (x−a1)

+ 1
q′(a2) (x−a2)

+ 1
q′(a3) (x−a3)

.

This result can be extended to any n≥ 2 distinct factors, though you do not need to prove that.

17. Find
d100

dx100

(
1

x2 −9x+20

)
. 18. Find

d2020

dx2020

(
(x2−1)−1)

.

19. It is possible to use a form of partial fractions to evaluate integrals that are not rational functions.
For example, evaluate the integral ∫

dx

x+ x4/3

by finding constants A, B and C such that

1

x+ x4/3
= 1

x (1+ x1/3)
= A

x
+ B x−2/3+C

1+ x1/3
.

Notice how in the second partial fraction the highest power of x in the numerator is one less than in
the denominator, similar to a partial fraction for a quadratic factor in a rational function.

C

20. Find a different way to evaluate the integral in Exercise 19.
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6.5 Miscellaneous Integration Methods

The integration methods presented so far are considered “standard,” meaning every
calculus student should know them. This section will discuss a few additional meth-
ods, some more common than others. One such method is the Leibniz integral rule

for “differentiation under the integral sign.”5 This powerful and useful method is best
explained with a simple example.

Recall from Section 5.4 that
∫

eαx dx = 1
α

eαx + C (6.14)

for any constant α 6= 0. This antiderivative involves the variable x and the constant α.
The idea behind the Leibniz rule is to reverse those roles: view α as the variable and x

as a constant. The antiderivative is then seen as a function of α, and so its derivative
can be taken with respect to α. The big leap that this method makes is to move the
differentiation operation inside the integral:6

d

dα

∫
eαx dx =

∫
d

dα
(eαx) dx =

∫
x eαx dx

However, differentiating the right side of the formula (6.14) shows that

d

dα

∫
eαx dx = d

dα

( 1
α

eαx + C
)
= α (x eαx) − 1 · eαx

α2 = 1
α

x eαx − 1
α2 eαx

Thus, ∫
x eαx dx = 1

α
x eαx − 1

α2 eαx + C

which can be verified via integration by parts with the tabular method:

u dv

x eαx dx

1 1
α

eαx (+) + (x) ( 1
α

eαx)

0 1
α2 eαx (–) − (1) ( 1

α2 eαx)STOP

∫
x eαx dx = 1

α
x eαx − 1

α2 eαx + C X

5The renowned physicist Richard Feynman (1918-1988) famously lamented that the technique was no longer
being taught. See p.72 in FEYNMAN, R.P., Surely You’re Joking, Mr. Feynman!, New York: Bantam Books, 1986.

6It can be proved that this is valid when the derivative of the integrand is a continuous function of α, which will
always be the case in this book. See pp.121-122 in SOKOLNIKOFF, I.S., Advanced Calculus, New York: McGraw-
Hill Book Company, Inc., 1939.
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What was actually done in the above example? A known integral,
∫

eαx dx = 1
α

eαx + C ,

was differentiated with respect to α via the Leibniz rule to produce a new integral,
∫

x eαx dx = 1
α

x eαx − 1
α2 eαx + C ,

with the constant α treated temporarily—only during the differentiation—as a vari-
able. In general, that is how the Leibniz rule is used. Typically this means if you want
to evaluate a certain integral with the Leibniz rule, then you “work backwards” to fig-
ure out which integral you need to differentiate with respect to some constant (e.g. α)
in the integrand.

Example 6.24

Use the Leibniz rule to evaluate
∫

dx

(1+ x2)2
.

Solution: By formula (5.4) in Section 5.4,
∫

dx

a2 + x2 = 1
a

tan−1 (
x
a

)
+ C

for any constant a> 0. So differentiate both sides with respect to a:

d

da

∫
dx

a2 + x2 = d

da

( 1
a

tan−1 (
x
a

)
+ C

)

∫
d

da

(
1

a2 + x2

)
dx = − 1

a2 tan−1 (
x
a

)
+ 1

a
· 1

1+
(

x
a

)2 · − x
a2

∫
− 2a

(a2 + x2)2 dx = − 1
a2 tan−1 (

x
a

)
− x

a(a2 + x2)
∫

dx

(a2 + x2)2
= 1

2a3 tan−1 (
x
a

)
+ x

2a2 (a2 + x2)
+ C

That general formula is useful in itself. In particular, for a= 1,
∫

dx

(1+ x2)2 = 1
2 tan−1 x + x

2(1+ x2)
+ C ,

which agrees with the result from Example 6.17 in Section 6.3.
Notice that there was no generic constant (e.g. a or α) in the statement of the problem. When that
happens, you will need to figure out where the constant should be in order to use the Leibniz rule.

You can also use differentiation under the integral sign to evaluate definite integrals.
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Example 6.25

Show that
∫∞

0
e−x2

dx = 1
2

p
π .

Solution: Let I =
∫∞

0 e−x2
dx. The integral is convergent, since by Exercise 11 in Section 4.4, for all x

ex2
≥ 1 + x2 ⇒ 0 ≤ e−x2

≤ 1

1+ x2

implies I is convergent by the Comparison Test, since
∫∞

0
1

1+x2 dx is convergent (and equals 1
2π) by

Example 5.32 in Section 5.5. For α≥ 0, define

φ(α) =
∫∞

0

α e−α
2x2

1+ x2 dx .

Then clearly φ(0)= 0, and differentiating under the integral sign shows

φ′(α) =
∫∞

0

−2α2e−α
2x2 + e−α

2x2

1+ x2 dx ⇒ φ′(0) =
∫∞

0

dx

1+ x2 = 1
2π .

The substitution y =αx, so that dy =αdx, shows φ(α) can be written as

φ(α) =
∫∞

0

e−y2

1+
( y

α

)2 dy ⇒ 0 ≤ lim
α→∞

φ(α) ≤ I < ∞ .

Also, for α> 0,

d

dα

(
1
α

e−α
2
φ(α)

)
= d

dα

∫∞

0

e−α
2(1+x2)

1+ x2 dx =
∫∞

0

−2α (1+ x2) e−α
2(1+x2)

1+ x2 dx

= −2α e−α
2
∫∞

0
e−α

2x2
dx , now substitute u= αx and du= αdx to get

= −2α e−α
2 1
α

∫∞

0
e−u2

du = −2 e−α
2

I , and so integrating both sides yields

∫∞

0

d

dα

(
1
α

e−α
2
φ(α)

)
dα = −2I

∫∞

0
e−α

2
dα = −2I2 .

However, by the Fundamental Theorem of Calculus.
∫∞

0

d

dα

(
1
α

e−α
2
φ(α)

)
dα = 1

α
e−α

2
φ(α)

∣∣∣∣
∞

0
=

(
lim
α→∞

φ(α)

α eα
2

)
−

(
lim
α→0

φ(α)

α eα
2

)

= 0 −
(
lim
α→0

φ(α)

α eα
2

)
→ 0

0
, so by L’Hôpital’s Rule

= − lim
α→0

φ′(α)

eα
2 +2α2 eα

2 = −φ′(0)
1+0

= − 1
2π .

Thus,
−2I2 = − 1

2π ⇒ I = 1
2

p
π

which is the desired result.
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One immediate consequence of Example 6.25 is that
∫∞

−∞
e−x2

dx =
p
π

since e−x2
is an even function. The following example shows another consequence, as

well as how useful substitutions can be in writing integrals in a different form.

Example 6.26

Show that the Gamma function Γ (t) can be written as

Γ (t) = 2
∫∞

0
y2t−1 e−y2

dy for all t> 0,

and that Γ
( 1

2

)
=

p
π.

Solution: Let x = y2, so that dx = 2y dy. Then x = 0 ⇒ y = 0 and x =∞ ⇒ y =∞, so

Γ (t) =
∫∞

0
xt−1 e−x dx =

∫∞

0
(y2)t−1 e−y2

2y dy = 2
∫∞

0
y2t−1 e−y2

dy .

In this form, with the help of Example 6.25 it is now easy to evaluate Γ
( 1

2

)
:

Γ
(1

2

)
= 2

∫∞

0
y1−1 e−y2

dy = 2
∫∞

0
e−y2

dy = 2
( 1

2

p
π
)
=

p
π

A function closely related to the Gamma function is the Beta function B(x, y), de-
fined by:

B(x, y) =
∫1

0
tx−1 (1− t)y−1 dt for all x > 0 and y> 0 (6.15)

It can be shown that7

B(x, y) = Γ (x)Γ (y)
Γ (x+ y)

for all x> 0 and y> 0. (6.16)

Example 6.27

Show that the Beta function B(x, y) can be written as

B(x, y) =
∫∞

0

ux−1

(1+u)x+y
du .

Solution: Let u= t
1−t

, so that t= u
1+u

, 1−t= 1
1+u

, and dt= du
(1+u)2

. Then t= 0 ⇒ u= 0 and t= 1 ⇒ u=∞,
so

B(x, y) =
∫1

0
tx−1 (1− t)y−1 dt =

∫∞

0

( u

1+u

)x−1
(

1
1+u

)y−1 du

(1+u)2 =
∫∞

0

ux−1

(1+u)x+y
du .

7See p.18-19 in RAINVILLE, E.D., Special Functions, New York: Chelsea Publishing Company, 1971.
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Another application of substitutions in integrals is in the evaluation of fractional

derivatives. Recall from Section 1.6 that the zero-th derivative of a function is just
the function itself, and that derivatives of order n are well-defined for integer values
n ≥ 1. It turns out that derivatives of fractional orders—e.g. 1/2—can be defined, with
the Riemann-Louiville definition being the most common:

For all 0<α< 1, the fractional derivative of order α of a function f (x) is

dα

dxα
f (x) = 1

Γ (1−α)
d

dx

∫x

0

f (t)
(x− t)α

dt . (6.17)

Example 6.28

Calculate
d1/2

dx1/2
(x) .

Solution: Here α= 1
2 and f (x)= x, so that

d1/2

dx1/2
(x) = 1

Γ (1−1/2)
d

dx

∫x

0

t

(x− t)1/2
dt = 1

p
π

d

dx

∫x

0

t dt
p

x− t

since Γ
(1

2

)
=

p
π by Example 6.26. Use the substitution u =

p
x− t, so that t = x−u2 and dt = −2u du.

Then t= 0 ⇒ u=p
x and t= x ⇒ u= 0, so

d1/2

dx1/2
(x) = 1

p
π

d

dx

∫0

p
x

(x−u2) (−2u du)
u

= 2
p
π

d

dx

∫p
x

0
(x − u2) du

= 2
p
π

d

dx

(
xu − 1

3 u3) ∣∣∣∣
u=px

u=0
= 2

p
π

d

dx

(
x3/2 − 1

3 x3/2
)

= 2
p
π

d

dx

(
2
3 x3/2

)
= 2

p
π

p
x

Part of the motivation for creating fractional derivatives was to find if it were possible
to take two “half” derivatives to form a “whole” derivative:

d1/2

dx1/2

(
d1/2

dx1/2
f (x)

)
= d

dx
f (x)

It is left as an exercise to show that the above relation does hold for the function
f (x) = x. Derivatives with fractional order 0 < α < 1 and integer order n ≥ 1 can be
combined by taking the derivative of integer order first:8

dn+α

dxn+α f (x) = dα

dxα

(
dn

dxn
f (x)

)

8For more details about fractional derivatives, as well as examples of their applications in physics and engineering,
see OLDHAM, K.B. AND J. SPANIER, The Fractional Calculus, New York: Academic Press, 1974.
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Recall from Section 6.3 that the trigonometric substitution x = r cos θ—or its sister
substitution x = r sin θ—was motivated by trying to find the area of a circle of radius
r. To simplify matters, let r = 1 so that points on the unit circle can be identified with
the angle θ via that substitution, with θ as shown in Figure 6.5.1(a) below.

1

x

y

θ

10

(x, y)= (cos θ,sin θ)

(a) Identify points by angle

x

y

slope = 1
2

slope = − 1
2

slope = 1

slope = -1

slope = 2

slope = −2

1−1

slope = 0

0

(b) Identify points by slope

Figure 6.5.1 Points on the unit circle x2 + y2 = 1

Figure 6.5.1(b) shows a different identification of points on the unit circle—by slope.
This will be the basis for a half-angle substitution for evaluating certain integrals.

Let A be the point (−1,0), then for any other point P on the unit circle draw a line
from A through P until it intersects the line x = 1, as shown in Figure 6.5.2 below:

x

y

x = 1

0 1A

P

θ/2 θ

1

t

p 1+
t2

(a) 0 ≤ θ ≤ π
2

x

y

x = 1

1A 1

t

0
θ/2 θ

p 1+
t2

(b) π
2 < θ <π

Figure 6.5.2 Half-angle substitution: t= tan
(
θ
2

)
= slope of AP

From geometry you know that the inscribed angle that the line AP makes with the
x-axis is half the measure of the central angle θ. So the slope of AP is the tangent of
that angle: tan 1

2θ = t
1 = t, which is measured along the y-axis and can take any real

value. Each point on the unit circle—except A—can be identified with that slope t.
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Figure 6.5.2 shows only positive slopes—reflect the picture about the x-axis for neg-
ative slopes. The figure shows that

sin 1
2θ = t

p
1+ t2

and cos 1
2θ = 1

p
1+ t2

so that by the double-angle identities for sine and cosine,

sin θ = 2 sin 1
2θ cos 1

2θ = 2
t

p
1+ t2

1
p

1+ t2
= 2t

1+ t2

and

cos θ = cos2 1
2θ − sin2 1

2θ = 1
1+ t2 − t2

1+ t2 = 1− t2

1+ t2 .

Since θ = 2 tan−1 t, then

dθ = d
(
2 tan−1 t

)
= 2 dt

1+ t2 .

Below is a summary of the substitution:

Half-angle substitution: The substitution t = tan 1
2θ yields:

sin θ = 2t

1+ t2 cos θ = 1− t2

1+ t2 dθ = 2 dt

1+ t2

The half-angle substitution thus turns rational functions of sin θ and cos θ into ratio-
nal functions of t, which can be integrated using partial fractions or another method.

Example 6.29

Evaluate
∫

dθ

1 + sin θ + cos θ
.

Solution: Using t= tan 1
2θ, the denominator of the integrand is

1 + sin θ + cos θ = 1+ t2

1+ t2
+ 2t

1+ t2
+ 1− t2

1+ t2
= 2t+2

1+ t2

so that

∫
dθ

1 + sin θ + cos θ
=

∫
2 dt
1+t2

2t+2
1+t2

=
∫

dt

t+1

= ln |t+1| + C

= ln
∣∣tan 1

2θ + 1
∣∣ + C
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Example 6.30

Evaluate
∫

dθ

3 sin θ + 4 cos θ
.

Solution: Using t= tan 1
2θ, the integral becomes

∫
dθ

3 sin θ + 4 cos θ
=

∫
2 dt
1+t2

3 2t
1+t2 + 4 1−t2

1+t2

=
∫ −1

2t2 −3t−2
dt

=
∫ −1

(2t+1)(t−2)
dt =

∫(
A

2t+1
+ B

t−2

)
dt

where

coefficient of t : A + 2B = 0 ⇒ A = −2B

constant term : −2A + B = −1 ⇒ 4B + B = −1 ⇒ B = −1
5

and A = 2
5

Thus,
∫

dθ

3 sin θ + 4 cos θ
=

∫( 2
5

2t+1
+

− 1
5

t−2

)
dt = 1

5
ln |2t+1| − 1

5
ln |t−2| + C

= 1
5

ln
∣∣2 tan 1

2θ + 1
∣∣ − 1

5
ln

∣∣tan 1
2θ − 2

∣∣ + C

By the half-angle substitution t = tan 1
2θ,

sin θ

1 + cos θ
=

2t

1+ t2

1+ t2

1+ t2 + 1− t2

1+ t2

=

2t

1+ t2

2
1+ t2

= t

which yields the useful half-angle identities:9

tan 1
2θ = sin θ

1 + cos θ
= 1 − cos θ

sin θ
(6.18)

Example 6.31

Evaluate
∫

sin θ

1 + cos θ
dθ .

Solution: Though you could use the half-angle substitution t = tan 1
2θ, it is easier to use the half-angle

identity (6.18) directly, since
∫

sin θ

1 + cos θ
dθ =

∫
tan 1

2θ dθ = 2 ln
∣∣sec 1

2θ
∣∣ + C

by formula (6.11) in Section 6.3.

9For a different derivation, see pp.79-80 in CORRAL, M., Trigonometry, http://mecmath.net/trig/, 2009.

http://mecmath.net/trig/
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Exercises
A
For Exercises 1-12, evaluate the given integral.

1.

∫
1 − 2 cos θ

sin θ
dθ 2.

∫
dθ

3 − 5 sin θ
3.

∫
dθ

2 − sin θ
4.

∫
dθ

4 + sin θ

5.

∫
sin θ

2 − sin θ
dθ 6.

∫
dθ

5 − 3 cos θ
7.

∫
dθ

1 + sin θ − cos θ
8.

∫
dθ

1 − sin θ + cos θ

9.

∫
cot θ

1 + sin θ
dθ 10.

∫
1 − cos θ

3 sin θ
dθ 11.

∫∞

−∞
e−x2/2 dx 12.

∫∞

−∞
x2 e−x6

dx

13. Consider the integral
∫

sin θ

1 + cos θ
dθ from Example 6.31.

(a) Evaluate the integral using the substitution u= 1+cos θ.

(b) Evaluate the integral using the half-angle substitution t= tan 1
2θ.

(c) Show that the answers from parts (a) and (b) are equivalent to the result from Example 6.31.

B

φ

3

4
5

14. Evaluate the integral
∫

dθ

3 sin θ + 4 cos θ
from Example 6.30 by noting that

∫
dθ

3 sin θ + 4 cos θ
=

∫
dθ

5
(3

5 sin θ + 4
5 cos θ

)

=
∫

dθ

5
(
cos φ sin θ + sin φ cos θ

)

=
∫

dθ

5 sin(θ+φ)
= 1

5

∫
csc(θ+φ) dθ

by the sine addition formula, where φ is the angle in the right triangle shown above. Complete the
integration and show that your answer is equivalent to the result from Example 6.30.

15. Show directly from the definition of the Beta function that B(x, y)= B(y,x) for all x > 0 and y> 0.

16. Show that the Beta function B(x, y) can be written as

B(x, y) =
∫π/2

0
2 sin2x−1(θ) cos2y−1(θ) dθ for all x > 0 and y> 0.

17. Use Exercise 16 and formula (6.16) to show that

∫π/2

0
sinm θ cosnθ dθ =

Γ

(
m+1

2

)
Γ

(
n+1

2

)

2Γ
(m+n

2
+1

) for all m >−1 and n>−1.

18. Use Exercise 28 from Section 6.1, as well as Exercise 17 above, to show that for m = 1, 2, 3, . . .,

∫π/2

0
sin2mθ dθ =

p
πΓ

(
m+ 1

2

)

2(m!)
and

∫π/2

0
sin2m+1θ dθ =

p
π (m!)

2Γ
(
m+ 3

2

) .
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19. Show that
∫∞

0

ln x

1+ x2 dx = 0. 20. Show that
∫∞

0

xa

ax
dx = Γ (a+1)

(ln a)a+1 for a> 1.

21. Use the result from Example 6.28 to show that

d1/2

dx1/2

(
d1/2

dx1/2
(x)

)
= 1 = d

dx
(x) .

22. Calculate
d1/2

dx1/2
(c) for all constants c. 23. Calculate

d1/3

dx1/3
(x) .

24. Show that
∫1

0

1
p

1− xn
dx = 1

n
B

( 1
n

, 1
2

)
for n≥ 1.

25. Show that the Gamma function Γ (t) can be written as

Γ (t) = pt

∫∞

0
ut−1 e−pu du for all t> 0 and p> 0.

26. Show that the Gamma function Γ (t) can be written as

Γ (t) =
∫1

0

(
ln

(
1
u

))t−1

du for all t> 0.

27. Using the result from Exercise 27 in Section 6.1 that

∫
eax cos bx dx = eax (a cos bx + b sin bx)

a2 +b2

for all constants a and b 6= 0, differentiate under the integral sign to show that for all α> 0
∫∞

0
x e−x sin αx dx = 2α

(1+α2)2
.

C

28. Use the Leibniz rule and formula (6.8) from Section 6.3 to show that for all a> 0,
∫

dx
p

a2 + x2
= ln

∣∣x+
√

a2 + x2
∣∣ + C .

29. Use Example 6.27 to show that the Beta function satisfies the relation

B(x,1− x) =
∫1

0

t−x + tx−1

1+ t
dt for all 0< x < 1.

(Hint: First use a substitution to show that

∫∞

0

ux−1

1+u
du=

∫∞

0

t−x

1+ t
dt.)

30. Show that for all a>−1, ∫π/2

0

dθ

1 + a sin2θ
= π

2
p

1+a
.
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6.6 Numerical Integration Methods

Section 5.2 showed how to obtain exact values for definite integrals of some simple
functions (low-degree polynomials) by using areas of rectangles. For functions with no
closed-form antiderivative, the rectangle method typically produces an approximate
value of the definite integral—the more rectangles, the better the approximation.

y = sin(x2)
y

x
0

p
π

1

For example, suppose you wanted to evaluate

∫p
π

0
sin(x2) dx

with the rectangle method. This means finding the
area of the shaded region in the figure on the right.
Computers have eliminated the need to do these sorts
of calculations by hand. Though the rectangle method is simple to implement in a
traditional programming language (e.g. via a looping construct), there are easier ways
in a domain-specific language (DSL) geared toward scientific computing. One such
DSL is MATLAB®, or its free open-source clone Octave.10

Implementing the rectangle method from scratch in Octave is a one-liner. For exam-
ple, suppose you divide the interval [0,

p
π] into 100,000 (105) subintervals of equal

length, producing 100,001 (1 + 1e5 in scientific notation) equally spaced points in
[0,

p
π] (including 0 and

p
π ). First use the left endpoints of the 105 subintervals:

octave> sum(sin(linspace(0,sqrt(pi),1+1e5)(1:end-1).^2)*sqrt(pi)/1e5)

ans = 0.8948314693913354

Now use the right endpoints:

octave> sum(sin(linspace(0,sqrt(pi),1+1e5)(2:end).^2)*sqrt(pi)/1e5)

ans = 0.8948314693913354

Finally, use the midpoints of the subintervals:

octave> sum(sin((linspace(0,sqrt(pi),1+1e5)(1:end-1)+sqrt(pi)/2e5).^2)*

sqrt(pi)/1e5)

ans = 0.8948314695305527

The true value of the integral up to 15 decimal places is 0.894831469484145, so all
three approximations are accurate to 9 decimal places.

10Octave is freely available at https://www.gnu.org/software/octave/

https://www.gnu.org/software/octave/
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The syntax in the above commands can be explained with some examples. The fol-
lowing command creates 4 equally spaced points in the interval [1,7] (including x = 1
and x= 7), thus dividing [1,7] into 3 subintervals each of length (7−1)/3= 2:

octave> linspace(1,7,4)

ans =

1 3 5 7

Get all but the last number in the above list:11

octave> linspace(1,7,4)(1:end-1)

ans =

1 3 5

Now square each number in that list of numbers (the dot before the exponentiation
operator ^ applies the squaring operation ^2 element-wise in the list):

octave> linspace(1,7,4)(1:end-1).^2

ans =

1 9 25

Now take the sine of each of those squared numbers (measured in radians):

octave> sin(linspace(1,7,4)(1:end-1).^2)

ans =

0.8414709848078965 0.4121184852417566 -0.132351750097773

Now multiply each of those numbers (the heights of the rectangles) by the width (2) of
each rectangle, then add up those areas:

octave> sum(sin(linspace(1,7,4)(1:end-1).^2)*2)

ans = 2.24247543990376

11MATLAB would require you to use two steps:

MATLAB>> x = linspace(1,7,4);

MATLAB>> x(1:end-1)
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Before the advent of modern computing, the rectangle method was considered ineffi-
cient, and so alternative methods were created. Two such methods are the trapezoid

rule and Simpson’s rule. The idea behind both methods is to take advantage of a
nonlinear function’s changing slope by using nonrectangular regions. For the trape-
zoid rule those regions are trapezoids, while Simpson’s rule uses quasi-rectangular
regions whose top edges are parabolas, as shown in Figure 6.6.1:

y

x
a bxi xi+1

y= f (x)

(a) rectangle method

y

x
a bxi xi+1

y = f (x)

(b) trapezoid rule

y

x
a bxi xi+1 xi+2

y= f (x)

(c) Simpson’s rule

Figure 6.6.1 Comparison of numerical integration methods for
∫b

a f (x)dx

For a partition P = {a = x0 < x1 < ·· · < xn−1 < xn = b} of an interval [a, b] into n ≥ 1
subintervals of equal width h = (b−a)/n, let yi = f (xi) for i = 0, 1, . . ., n. The trapezoid
rule adds up the areas of trapezoids on each subinterval [xi, xi+1], with the top edge
being the line segment joining the points (xi, yi) and (xi+1, yi+1). The approximation
formula is straightforward to derive, based on areas of trapezoids:

Trapezoid rule:

∫b

a
f (x) dx ≈ h

2
(y0 + 2y1 + 2y2 + ·· · + 2yn−1 + yn)

Simpson’s rule depends on pairs of neighboring subintervals: [x0, x1] and [x1, x2],
[x2, x3] and [x3, x4], . . . , [xn−2, xn−1] and [xn−1, xn]. Thus, n ≥ 2 must be even. The top
edge of the region over each pair [xi, xi+1] and [xi+1, xi+2] is the unique parabola joining
the 3 points (xi, yi), (xi+1, yi+1), and (xi+2, yi+2). The approximation formula is then:12

Simpson’s rule:

∫b

a
f (x) dx ≈ h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + ·· · + + 2yn−2 + 4yn−1 + yn)

12For a full derivation of both formulas, see pp.144-149 in HORNBECK, R.W., Numerical Methods, New York:
Quantum Publishers, Inc., 1975.
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Example 6.32

Approximate the value of
∫p

π

0
sin(x2) dx by using the trapezoid rule and Simpson’s rule with n = 105

subintervals.

Solution: Since x0 = 0 and xn =
p
π, then y0 = sin(x2

0) = sin 0 = 0 and yn = sin(x2
n) = sin π = 0. Thus, y0

and yn contribute nothing to the summation formulas for both rules. In particular the trapezoid rule
approximation becomes

∫p
π

0
sin(x2) dx ≈ h

2
(0 + 2y1 + 2y2 + ·· · + 2yn−1 + 0) = h ·

(
n−1∑

k=1
yk

)

which is simple to implement in Octave:

octave> x = linspace(0,sqrt(pi),1+1e5);

octave> h = sqrt(pi)/1e5;

octave> h*sum(sin(x(2:end-1).^2))

ans = 0.8948314693913405

Likewise, the Simpson’s rule approximation becomes

∫p
π

0
sin(x2) dx ≈ h

3
(4y1 + 2y2 + 4y3 + 2y4 + ·· · + + 2yn−2 + 4yn−1)

which can be implemented easily by using Octave’s powerful indexing features:

octave> (h/3)*(4*sum(sin(x(2:2:end-1).^2)) + 2*sum(sin(x(3:2:end-1).^2)))

ans = 0.8948314694841457

In the above command, the statement x(3:2:end-1) allows you to skip every other element in the list
x after position 3, by moving up the list in increments of 2 positions all the way to the next-to-last
position in the list (end-1). Similarly for x(2:2:end-1), which starts at position 2 and then moves up in
increments of 2.
Note that Simpson’s rule gives essentially the true value in this case, and the value from the trapezoid
rule is virtually the same as the value produced by the built-in trapz function in Octave/MATLAB:

octave> trapz(x,sin(x.^2))

ans = 0.8948314693913402

In general you are better off using these sorts of built-in functions instead of implementing your own.

Typically Simpson’s rule is slightly more efficient than the trapezoid rule, which is
slightly more efficient than the rectangle method. However, in the above examples all
the approximations were accurate to at least 9 decimal places (equivalent to getting
the distance between Detroit and Chicago correct within the thickness of a toothpick).
The running time of each calculation was only a few thousandths of a second. Modern
computing has generally made the efficiency differences negligible.
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Notice that the approximations in the rectangle method, the trapezoid rule and
Simpson’s rule can all be written as linear combinations of function values f (ai) mul-
tiplied by “weights” wi: ∫b

a
f (x) dx ≈

n∑

i=0
wi f (ai)

For example, the weights in Simpson’s rule are wi = h
3 , 2h

3 , or 4h
3 , depending on the

points ai in the interval [a, b]. The method of Gaussian quadrature transforms an
integral over any interval [a, b] into an integral over the specific interval [−1,1] and
then uses a standard set of points in [−1,1] and known weights for those points:13

Gaussian quadrature: Transform the integral
∫b

a f (x) dx into an integral over
[−1,1] by means of the substitution u = 1

b−a
(2x−a− b), so that x = b−a

2 u+ a+b
2 and

dx= b−a
2 du. Then

∫b

a
f (x) dx = b−a

2

∫1

−1
g(u) du ≈ b−a

2

n∑

i=1
wi g(ai)

where g(u) = f
(

b−a
2 u+ a+b

2

)
, with the points a1, . . ., an and weights w1, . . ., wn

given in Table 6.1 below for any choice of 2≤ n ≤ 10 points in [−1,1].

Table 6.1 Table of Gaussian quadrature points and weights

n a1, . . ., an w1, . . ., wn

2 ±0.577350 1
3 0 8/9

±0.774597 5/9
4 ±0.339981 0.652145

±0.861136 0.347855
5 0 0.568889

±0.538469 0.478629
±0.906180 0.236927

6 ±0.238619 0.467914
±0.661209 0.360762
±0.932470 0.171324

7 0 0.417959
±0.405845 0.381830
±0.741531 0.279705
±0.949108 0.129485

n a1, . . ., an w1, . . ., wn

8 ±0.183435 0.362684
±0.525532 0.313707
±0.796666 0.222381
±0.960290 0.101229

9 0 0.330239
±0.324253 0.312347
±0.613371 0.260611
±0.836031 0.180648
±0.968160 0.081274

10 ±0.148874 0.295524
±0.433395 0.269267
±0.679410 0.219086
±0.865063 0.149451
±0.973907 0.066671

13The details are beyond the scope of this book. See Chapter 4 in RALSTON, A. AND P. RABINOWITZ, A First Course

in Numerical Analysis, 2nd ed., New York: McGraw-Hill, Inc., 1978. See also Table 1 in STROUD, A.H. AND D.
SECREST, Gaussian Quadrature Formulas, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1966.
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Example 6.33

Approximate the value of
∫2

0

dx

1+ x3 by using Gaussian quadrature with n= 4 points.

Solution: For a= 0 and b = 2, use the substitution u= 1
b−a

(2x−a−b) = x−1, so that x = u+1 and dx = du.
Thus, g(u) = f (u+1) = 1

1+(u+1)3
. Using n= 4 in Table 6.1, the points ai and weights wi are

a1 = −0.339981 w1 = 0.652145

a2 = 0.339981 w2 = 0.652145

a3 = −0.861136 w3 = 0.347855

a4 = 0.861136 w4 = 0.347855

and so
∫2

0

dx

1+ x3
= 2−0

2

∫1

−1
g(u) du =

∫1

−1

du

1+ (u+1)3
≈

4∑

i=1
wi g(ai) =

4∑

i=1
wi ·

1

1+ (ai +1)3

≈ 0.652145
1+ (−0.339981+1)3 + 0.652145

1+ (0.339981+1)3 + 0.347855
1+ (−0.861136+1)3 + 0.347855

1+ (0.861136+1)3

≈ 1.091621

The true value of the integral to six decimal places is 1.090002.
Using more points (e.g. n= 7) is easy to implement in Octave, using element-wise operations on arrays:

octave> a = [ 0 -0.405845 0.405845 -0.741531 0.741531 -0.949108 0.949108 ];

octave> w = [ 0.417959 0.381830 0.381830 0.279705 0.279705 0.129485 0.129485 ];

octave> sum(w./(1 + (a+1).^3))

ans = 1.090016688064804

Gaussian quadrature can be applied to improper integrals. For example,
∫∞

0
f (x) e−x dx ≈

n∑

i=1
wi f (ai)

using the points ai and weights wi in Table 6.214 for n = 3,4, or 5 points in [0,∞):

Table 6.2 Table of Gaussian quadrature points and weights for
∫∞

0 f (x) e−x dx

n a1, . . ., an w1, . . ., wn

3 0.415775 0.711093
2.294280 0.278518
6.289945 0.010389

n a1, . . ., an w1, . . ., wn

4 0.322548 0.603154
1.745761 0.357419
4.536620 0.038888
9.395071 0.000539

n a1, . . ., an w1, . . ., wn

5 0.263560 0.521756
1.413403 0.398667
3.596426 0.075942
7.085810 0.003612

12.640801 0.000023

14See Table 6 in STROUD, A.H. AND D. SECREST, Gaussian Quadrature Formulas.



Numerical Integration Methods • Section 6.6 201

Example 6.34

Approximate the value of
∫∞

0
x5 e−x dx by using Gaussian quadrature with n= 3 points in Table 6.2.

Solution: For n = 3, Table 6.2 gives a1 = 0.415775, a2 = 2.294280, a3 = 6.289945, and w1 = 0.711093,
w2 = 0.278518, w3 = 0.010389. Then for f (x)= x5,

∫∞

0
x5 e−x dx ≈

n∑

i=1
wi f (ai) =

n∑

i=1
wi a5

i

≈ 0.711093(0.415775)5 + 0.278518(2.294280)5 + 0.010389(6.289945)5

≈ 119.9974709727211

The true value is Γ (6)= 5!= 120.
Note: The points ai in Table 6.2 are the roots of the Laguerre polynomials of degree n.

Exercises

A

1. A simple pendulum of length l swings through an angle of 90◦ on either side of the vertical with
period P, given by

P = 4

√
l

g

∫π/2

0

dθ
√

1 − 0.5 sin2θ

where g = 9.8 m/s2 is the acceleration due to gravity. Use the rectangle method (with left endpoints),
the trapezoid rule, and Simpson’s rule to write P as a constant multiple of

√
l/g. Preferably, use a

computer and n= 105 subintervals of equal width (or n= 10 subintervals if calculating by hand).

2. Repeat Exercise 1 using Gaussian quadrature with n= 5 points.

3. Approximate the value of
∫p

π

0
sin(x2) dx by using Gaussian quadrature with n= 7 points.

4. Repeat Exercise 3 with n= 9 points. 5. Repeat Exercise 3 with n= 10 points.

6. The points ai in Table 6.1 for Gaussian quadrature are the roots of the Legendre polynomials Pn(x),
with P0(x)= 1, P1(x)= x, and Pn(x) defined for integers n≥ 2 by the recursion formula

nPn(x) = (2n−1) x Pn−1(x) − (n−1)Pn−2 (x)

(a) Write out Pn(x) explicitly in standard polynomial form for n= 2,3,4,5.

(b) Verify that the roots of Pn(x) match the n points a1, . . ., an in Table 6.1 for n= 2,3,4,5.

(c) With no calculations, explain why
∫1
−1 P2(x)P3(x)dx =

∫1
−1 P3(x)P4(x)dx =

∫1
−1 P4(x)P5(x)dx = 0.

(d) For n= 0,1,2,3, verify that ∫1

−1
P2

n(x) dx = 2
2n+1

.

7. Repeat Example 6.34 with n= 4 points.

8. Repeat Example 6.34 with n= 5 points.

9. Use Table 6.2 to approximate the value of
∫∞

0
ln(1+ x) e−x dx with n= 5 points.



CHAPTER 7

Analytic Geometry and Plane Curves

7.1 Ellipses

If you were to ask a random person “What is a circle?” a typical response would be to
kick the can down the road: “Something that’s round.” There is a simple definition:

A circle is the set of all points in a plane that are a fixed distance from a fixed point
in that plane. The fixed point is the center of the circle, while the fixed distance
from the center is the circle’s radius.

Similarly, the question “What is an ellipse?” would likely be answered with “an oval,”
“something egg-shaped,” or “a squished circle.” A precise definition would be:

An ellipse is the set of all points in a plane such that the sum of the distances from
each of those points to two fixed points in the plane is the same constant. The two
fixed points are the foci—plural of focus—of the ellipse.

Figure 7.1.1 illustrates the above definitions, with a point P moving along each curve.

r

P

C

(a) Circle: center C, radius r = constant

P

d1 d2

F1 F2

(b) Ellipse: foci F1 and F2, d1 +d2 = constant

Figure 7.1.1 The circle and its “squished” sibling the ellipse

Along the ellipse the sum d1+d2 of the distances from P to the foci remains constant.

202
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The circle’s definition makes it easy to imagine its shape, especially for anyone who
has drawn a circle with a compass. The definition of the ellipse, on the other hand,
might not immediately suggest an “oval” shape. Its shape becomes apparent when
physically constructing an ellipse by hand, using only the definition. Stick two pins in
a board and tie the ends of a piece of string to the pins, with the string long enough so
that there is some slack (see Figure 7.1.2(a)). The pins will be the foci of the ellipse.

(a) Two pins and string on a board

P

(b) Pull the string taut with a pencil

Figure 7.1.2 Construction of an ellipse

Pull the string taut with a pencil whose point is touching the board, then move the
pencil around as far as possible on all sides of the pins. The drawn figure will be an
ellipse, as in Figure 7.1.2(b). The length of the string is the constant sum d1 + d2 of
distances from points on the ellipse to the foci. The symmetry of the ellipse is obvious.

There is some terminology connected with ellipses. The principal axis is the line
containing the foci, and the center is halfway between the foci, as in Figure 7.1.3:

principal
axis

major axis

minor
axis

F1

(focus)
F2

(focus)
C (center)V1

(vertex)
V2

(vertex)

Figure 7.1.3 The parts of an ellipse

The vertexes are the points where the ellipse intersects the principal axis. The
major axis is the chord joining the vertexes, and the minor axis is the chord through
the center that is perpendicular to the major axis. The two semi-major axes are the
halves of the major axis joining the center to the vertexes (CV1 and CV2 in Figure
7.1.3). Likewise the semi-minor axes are the two halves of the minor axis. A chord
through the center is a diameter. Notice that a circle is the special case of an ellipse
with identical foci (i.e. the foci and center are all the same point).
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Ellipses appear in nature (e.g. the orbits of planets around the Sun) and in many
applications. The ancient Greeks were able to derive many properties of the ellipse
from its purely geometric definition.1 Nowadays those properties are typically derived
using methods from analytic geometry—the study of geometric objects in the context of
coordinate systems.2 You have already seen the equation of an ellipse in the xy-plane

centered at the origin: x2

a2 + y2

b2 = 1, where a > b > 0, with the x-axis as the principal
axis. The equation is straightforward to derive from the definition of the ellipse.

x

y

(x, y)

d1 d2

(−c,0) (c,0)

In the xy-plane, let the foci of an ellipse be the
points (±c,0) for some c > 0, so that the center is the
origin (0,0) and the x-axis is the principal axis, as in
the figure on the right. Denote by 2a the constant
sum d1 +d2 of the distances from points (x, y) on the
ellipse to the foci, with a > 0. Notice that a > c, since
the distance 2c between the foci must be less than
d1 +d2 = 2a. Then by the distance formula,

d1 + d2 = 2a
√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a
(√

(x− c)2 + y2

)2

=
(
2a −

√
(x+ c)2 + y2

)2

(x− c)2 + ✓✓y
2 = 4a2 − 4a

√
(x+ c)2 + y2 + (x+ c)2 + ✓✓y

2

4a

√
(x+ c)2 + y2 = 4a2 + (x+ c)2 − (x− c)2

✓4a

√
(x+ c)2 + y2 = ✓4a2 + ✓4xc

√
(x+ c)2 + y2 = a + c

a
x

x2 + ✟✟✟2cx + c2 + y2 = a2 + ✟✟✟2cx + c2

a2 x2

(
1− c2

a2

)
x2 + y2 = a2 − c2

x2

a2 + y2

a2 − c2 = 1

x2

a2 + y2

b2 = 1 where b2 = a2 − c2 (and so a> b > 0) X

1The word ellipse is in fact due to the Greek astronomer and geometer Apollonius of Perga (ca. 262-190 B.C.),
which seems an improvement over the name “thyreos” that Euclid (ca. 360-300 B.C.) had given the shape.

2Pioneered by the French mathematician and philosopher René Descartes (1596-1650), for whom the Cartesian

coordinate system is named. The proposition “I think, therefore I am” (Cogito, ergo sum) is due to Descartes.
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x

y

−c c−a a0

b

−b

x2

a2 + y2

b2 = 1

Figure 7.1.4

The graph of the resulting ellipse x2

a2 + y2

b2 = 1
with a > b > 0 and foci at (±c,0) is shown in Fig-
ure 7.1.4. Since the the x-axis is principal axis
then the vertexes are found by setting y = 0: x =
±a. The vertexes are thus (±a,0), so the major
axis goes from (−a,0) to (a,0) and has length 2a

(i.e. the semi-major axis has length a). Simi-
larly, setting x = 0 shows the minor axis goes
from (0,−b) to (0, b), (i.e. the semi-minor axis has
length b). Since a> b > 0 and b2 = a2 − c2,
then c =

p
a2 −b2. Thus, for any ellipse of the

form x2

a2 + y2

b2 = 1 with a > b > 0, the foci will be at (±c,0), where c =
p

a2 −b2. The foci
can be used to define an important geometric property of the ellipse:

The eccentricity of an ellipse is the ratio of the distance between the foci to the

length of the major axis. In the case of an ellipse x2

a2 + y2

b2 = 1 with a > b > 0, the
eccentricity e is given by

e = c

a
=

p
a2 −b2

a
.

The eccentricity e is a measure of how “oval” an ellipse is, with 0 < e < 1. The
boundary case e = 0 is a circle, while e = 1 is a line segment; an ellipse is somewhere
in between—the closer e gets to 1, the more “squished” the ellipse. See Figure 7.1.5.

C

(a) Circle: e = 0

F1 F2

(b) Ellipse: e = 0.5

F1 F2

(c) Ellipse: e = 0.75

F1 F2

(d) Segment: e = 1

Figure 7.1.5 Eccentricity e

Earth’s elliptical orbit around the Sun is almost circular: the eccentricity is 0.017.
Only the orbits of Venus and Neptune (both at 0.007) have a lower eccentricity among
the nine planets in the solar system, while Pluto’s (0.252) has the highest.

It is left as an exercise to show that the ellipse x2

a2 + y2

b2 = 1 with a > b > 0 can be
written in terms of the eccentricity e:

y2 = (1− e2) (a2− x2) (7.1)
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Example 7.1

Find the area inside the ellipse x2

a2 + y2

b2 = 1.

Solution: By symmetry the area will be four times the area in the first quadrant. Solving for y in the
equation of the ellipse gives

y2 = b2 − b2x2

a2 ⇒ y = b

√

1− x2

a2 = b

a

√
a2 − x2

for the upper hemisphere. Thus,

Area = 4
∫a

0
y dx = 4b

a

∫a

0

√
a2 − x2 dx

= 4b

a

(
a2

2
sin−1

( x

a

)
+ 1

2
x
√

a2 − x2

∣∣∣∣
a

0

)
(by formula (6.7) in Section 6.3)

= 4b

a

(
a2

2
π

2
+ 0 − (0 + 0)

)

= πab

P

F1 F2

Figure 7.1.6

A remarkable feature of the ellipse is the reflection prop-

erty: light shone from one focus to any point on the ellipse

will reflect to the other focus. Figure 7.1.6 shows light em-
anating from the focus F1 and reflecting off a point P on
the ellipse to the other focus F2. Fermat’s Principle from
Example 4.4 in Section 4.1 showed that the incoming angle
θ1 (angle of incidence) of light from point A will equal the
outgoing angle θ2 (angle of reflection) to point B for light re-
flecting off a flat reflective surface at point P, as in Figure 7.1.7(a). Fermat’s Principle
also applies to curved surfaces—e.g. an ellipse—with the angles measured relative to
the tangent line to the curve at the point of reflection, as in Figure 7.1.7(b).

A

B

P

θ1 θ2

(a) Flat surface

tangent
line

A
B

P

θ1 θ2

(b) Curved surface

Figure 7.1.7 Fermat’s Principle for reflection: θ1 = θ2
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Notice that Fermat’s Principle is equivalent to saying that the angles α1 and α2 that
the light’s path makes with the normal line through the point of reflection are equal,
since each angle would equal 90◦−θ, as in Figure 7.1.8(a):

tangent
line

normal line
A B

P

θ θ

α1 α2

(a) α1 =α2

x

y

F1

−c

F2

c0−a a

b

N

P(x0, y0)

n= normal linetangent line

α1 α2

(b) Ellipse: show that α1 =α2

Figure 7.1.8 Fermat’s Principle with normal line

Thus, to prove the reflection property, it suffices to prove that the normal line n to
the ellipse at P bisects the angle ∠F1PF2 in Figure 7.1.8(b)—this would make α1 =α2,
so that the indicated path from F1 to P to F2 satisfies Fermat’s Principle. First, let

P = (x0, y0) be a point on the ellipse x2

a2 + y2

b2 = 1, with a > b > 0. Assume that P is not a
vertex (i.e. y0 6= 0), otherwise the reflection property holds trivially. By Exercise 15 in
Section 3.4, the equation of the tangent line to the ellipse at P = (x0, y0) is

xx0

a2 + yy0

b2 = 1 , (7.2)

so that its slope is − b2x0
a2 y0

. Hence, the negative reciprocal a2 y0
b2x0

is the slope of the normal
line n, whose equation—valid even when x0 = 0 (i.e. when y0 =±b)— is then

b2x0 (y− y0) = a2 y0 (x− x0) . (7.3)

Setting y= 0 and solving for x shows the x-intercept of n is at

x = (a2 −b2) x0 y0

a2 y0
= c2

a2 x0 = e2 x0

Let N = (e2x0,0) be that x-intercept, as in Figure 7.1.8(b). The distance F1N from the
focus F1 = (−c,0)= (−ea,0) to N is then

F1N = e2 x0 − (−ea) = e (a+ ex0)

while the distance F2N from the focus F2 = (c,0)= (ea,0) to N is

F2N = ea − e2 x0 = e (a− ex0) .

Therefore,
F1N

F2N
= e (a+ ex0)

e (a− ex0)
= a+ ex0

a− ex0
.
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By the distance formula, the distance F1P from F1 = (−ea,0) to P = (x0, y0) is given by

(F1P)2 = (x0 + ea)2 + y2
0

= x2
0 + 2eax0 + e2a2 + (1− e2) (a2 − x2

0) (by formula (7.1))

(F1P)2 = a2 + 2eax0 + e2x2
0 = (a+ ex0)2

F1P = a+ ex0 .

Similarly, the distance F2P from F2 = (ea,0) to P = (x0, y0) is given by

(F2P)2 = (x0 − ea)2 + y2
0 = x2

0 − 2eax0 + e2a2 + (1− e2) (a2 − x2
0)

(F2P)2 = a2 − 2eax0 + e2x2
0 = (a− ex0)2

F2P = a− ex0 .

F1 F2N

P

α1 α2

θ180◦−θ

Thus,
F1P

F2P
= a+ ex0

a− ex0
= F1N

F2N
,

which means that α1 =α2:3 by the Law of Sines, and with
θ =∠F2NP as in the figure on the right,

sin α2

F2N
= sin θ

F2P
= sin(180◦−θ)

F2P
= sin(180◦−θ)

F1P
· F1P

F2P
= sin α1

F1N
· F1N

F2N
= sin α1

F2N

and thus sin α2 = sin α1, so that α2 =α1 (since 0◦ <α1, α2 < 90◦). X

x

y

−c

c

−b b0

a

−a

x2

b2 + y2

a2 = 1

Figure 7.1.9

An ellipse of the form

x2

b2 + y2

a2 = 1

with a > b > 0 simply switches the roles of x and y in the
previous examples: the principal axis is now the y-axis, the
foci are at (0,±c), where c =

p
a2 −b2, and the vertexes are

at (0,±a), as in Figure 7.1.9.
Thus, the largest denominator on the left side of an equa-

tion of the form x2

ä2 + y2

ä2 = 1 tells you which axis is the prin-
cipal axis. For example, the principal axis of the ellipse
x2

25 + y2

16 = 1 is the x-axis (since 25 > 16), while the ellipse
x2

4 + y2

9 = 1 has the y-axis as its principal axis (since 9> 4).
3This follows directly from Proposition 3 in Book VI of Euclid’s Elements. See the purely geometric proof on

pp.125-126 in EUCLID, Elements, (Thomas L. Heath translation), Santa Fe, NM: Green Lion Press, 2002.
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Exercises
A

1. Construct an ellipse using the procedure shown in Figure 7.1.2. Place the two pins 7in apart and
use a 10in piece of string.

For Exercises 2-6, sketch the graph of the given ellipse, indicate the major and minor axes and exact
locations of the foci and vertexes, and find the eccentricity e.

2.
x2

25
+ y2

16
= 1 3.

x2

4
+ y2

9
= 1 4.

4x2

25
+ y2

4
= 1 5. x2 +4y2 = 1 6. 25x2+9y2 = 225

7. Show that for a> b > 0 the ellipse x2

a2 + y2

b2 = 1 with eccentricity e can be written as y2 = (1−e2) (a2−x2).

8. Use Example 7.1 to show the area inside the ellipse x2

a2 + y2

b2 = 1 with eccentricity e is πa2
p

1− e2.

9. For all a> b > 0, find the points of intersection of the ellipses x2

a2 + y2

b2 = 1 and x2

b2 + y2

a2 = 1.

10. Show that the vertexes are the closest and farthest points on an ellipse to either focus.

B

11. Show that any line of slope m that is tangent to the ellipse x2

a2 + y2

b2 = 1 must be of the form

y = mx ±
√

a2m2 + b2 .

12. A 10ft ladder with a mark 3ft from the top rests against a wall. If the top of the ladder slides down
the wall, with the foot of the ladder sliding away from the wall on the ground, as in Figure 7.1.10,
then show the mark moves along part of an ellipse.

y

x

3

7

Figure 7.1.10 Exercise 12

F

P

D

G

Figure 7.1.11 Exercise 13

T1

T2

Figure 7.1.12 Exercise 14

13. Another definition of an ellipse is the set of points P for which the ratio of the distance from P to a
fixed point F (a focus) to the distance from P to a fixed line D (the directrix) is a constant e < 1 (the
eccentricity): PF

PG
= e, as in Figure 7.1.11. Use this definition to show that the equation of an ellipse

with focus (c,0) can be written as x2

a2 + y2

b2 = 1 for some a> b > 0. Find the equation of the directrix.

14. Show that the set of intersection points of all perpendicular tangent lines to an ellipse form a circle,
as in Figure 7.1.12 (showing two such tangent lines T1 ⊥ T2).

15. A chord of an ellipse that passes through a focus and is perpendicular to the major axis is a latus

rectum. Show that for the ellipse x2

a2 + y2

b2 = 1 with a> b > 0 the length of each latus rectum is 2b2

a
.

16. Suppose that the normal line at one end of a latus rectum of an ellipse passes through an end of
the minor axis. Show that the eccentricity e is a root of the equation e4 + e2 −1 = 0, then find e.

17. Show that the set of all midpoints of a family of parallel chords in an ellipse lie on a diameter.
(Hint: Use symmetry with chords of slope m 6= 0.)
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7.2 Parabolas

Like ellipses, you have seen parabolas (e.g. y= x2) and some of their applications (e.g.
projectile trajectories), but perhaps without knowing their purely geometric definition.
The alternative definition of an ellipse described in Exercise 13 in Section 7.1 is, in
fact, similar to the definition of the parabola:

A parabola is the set of all points in a plane that are equidistant from a fixed point
(the focus) and a fixed line (the directrix).

D

FP

G

Figure 7.2.1 Parabola: PF = PG

Figure 7.2.1 illustrates the above definition, with a
point P moving along the parabola so that the distance
from P to the focus F equals the distance from P to
the directrix D. Note that the point halfway between
the focus and directrix must be on the parabola—that
point is the vertex, which is the point on the parabola
closest to the directrix. The axis of the parabola is the
line that passes through the focus and is perpendicular to the directrix. Notice that the
ratio PF

PG
equals 1, whereas that ratio for an ellipse—by the alternative definition—was

the eccentricity e < 1. The eccentricity of the parabola, therefore, is always 1.4

To construct a parabola from the definition, cut a piece of string to have the same
length AB as one side of a drafting triangle, as in Figure 7.2.2.

D

F

P

B

A

C

P

Figure 7.2.2 Construction of a parabola

Fasten one end of the string to the vertex A of the triangle and the other end to a pin
somewhere between A and B—the pin will be the focus F of the parabola. Hold the
string taut against the edge AB of the triangle at a point P on either side of the pin,
then move the edge BC of the triangle along the directrix D. The drawn figure will
be a parabola, as the lengths PF and PB will be equal (since the length of the string
being AB = AP +PF means PF = PB).

4The eccentricity e of the parabola being 1 means there is no second vertex, unlike the ellipse (where e < 1 forced

the existence of two vertexes in the alternative definition).
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x

y

(0, p)

y=−p

d1

d2

(x, y)

(x,−p)

0

−p

To derive the equation of a parabola in the xy-
plane, start with the simple case of the focus on the
y-axis at (0, p), with p > 0, and the line y = −p as
the directrix, as in the figure on the right. The ver-
tex is then at the origin (0,0). Pick a point (x, y)
whose distances d1 and d2 from the focus (0, p) and
directrix y=−p, respectively, are equal. Then

d2
1 = d2

2

(x−0)2 + (y− p)2 = (x− x)2 + (y+ p)2

x2 + ✓✓y
2 − 2py + ��p

2 = ✓✓y
2 + 2py + ��p

2

x2 = 4py

In other words, y = 1
4p

x2, which is the more familiar form of a parabola. Thus, any

curve of the form y = ax2, with a 6= 0, is a parabola whose focus and directrix can be
found by dividing a by 4: p = a

4 , so that the focus is at
(
0, a

4

)
and the directrix is the

line y=−a
4 . For example, the parabola y= x2 has its focus at

(
0, 1

4

)
and its directrix is

the line y=−1
4 .

When p > 0 the parabola 4py = x2 extends upward; for p < 0 it extends downward,
as in Figure 7.2.3(a) below:

x

y

(0, p)

y=−p

0

−p

(a) 4py = x2: p< 0

x

y

(p,0)

x =−p

0−p

(b) 4px = y2: p> 0

x

y

(p,0)

x =−p

0 −p

(c) 4px = y2: p< 0

Figure 7.2.3 Parabolas with vertex at the origin

Switching the roles of x and y yields the parabola 4px = y2, with focus at (p,0) and
directrix x =−p. For p > 0 this parabola extends rightward, while for p < 0 it extends
leftward. See Figure 7.2.3(b) and (c).

It is left as an exercise to show that in general a curve of the form y = ax2 + bx+ c

is a parabola. Just like not every oval shape is an ellipse, not every “cupped” or “U”
shape is a parabola (e.g. y= x4).
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The slope of the parabola 4py= x2 is dy

dx
= 2x

4p
= x

2p
, so that the equation of the tangent

line to the parabola at a point (x0, y0) is:

y − y0 = x0

2p
(x− x0)

2p (y− y0) = x0x − x2
0

2py − 2py0 = x0x − 4py0

2p (y+ y0) = x0x (7.4)

Likewise, switching the roles of x and y, the tangent line to the parabola 4px= y2 at a
point (x0, y0) is:

2p (x+ x0) = y0 y (7.5)

x

y

F = (p,0)

P

(x0, y0)

(−x0,0)

Q

0
β

β

Figure 7.2.4 4px = y2

Formula (7.5) simplifies the proof of the reflection prop-

erty for parabolas: light shone from the focus to any point

on the parabola will reflect in a path parallel to the axis

of the parabola. Figure 7.2.4 shows light emanating from
the focus F = (p,0) and reflecting off a point P = (x0, y0) on
the parabola 4px = y2. If that line of reflection is parallel
to the x-axis—the axis of the parabola—then the tangent
line to the parabola at (x0, y0) should make the same an-
gle β with the line of reflection as it does with the x-axis.
So extend the tangent line to intersect the x-axis and use
formula (7.5) to find the x-intercept:

2p (x+ x0) = y0 y = y0 ·0 = 0 ⇒ x = −x0

Let Q = (−x0,0), so that the distance FQ equals p+ x0. The goal is to show that the
angle of incidence ∠FPQ equals the angle of reflection β. The focal radius FP has
length

FP =
√

(p− x0)2 + (0− y0)2 =
√

p2 −2px0 + x2
0 +4px0 =

√
p2 +2px0 + x2

0 = p+ x0 .

Thus, FQ = FP in the triangle △FPQ, so that ∠FPQ =∠FQP =β, i.e. the light’s path
does indeed satisfy Fermat’s Principle for curved surfaces. X

The parabola’s reflection property shows up in some engineering applications, typi-
cally by revolving part of a parabola around its axis, producing a parabolic surface in
three dimensions called a paraboloid. For example, it used to be common for vehi-
cle headlights to use paraboloids for their inner reflective surface, with a bulb at the
focus, so that—by the reflection property—the light would shine straight ahead in a
solid beam. Many flashlights still operate on that principle. The reflection property
also works in the opposite direction, which is why satellite dishes and radio telescopes
are often wide paraboloids with a signal receiver at the focus, to maximize reception
of incoming reflected signals.
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Example 7.2

Suppose that an object is launched from the ground with an initial velocity v0 and at varying angles
with the ground. Show that the family of all the possible trajectories—which are parabolic—form a
region whose boundary (called the envelope of the trajectories) is itself a parabola.

v2
0

2g

0 v2
0
g

Solution: Recall from Example 4.3 in Section
4.1 that if the object is launched at an angle
0 < θ < π

2 with the ground, then the height y

attained by the object as a function of the hori-
zontal distance x that it travels is given by

y = − gx2

2v2
0 cos2 θ

+ x tan θ .

The curve is a parabola, with the figure on the
right showing these parabolic trajectories for 500
values of the angle θ. Clearly each parabola in-
tersects at least one other.The maximum hori-

zontal distance
v2

0
g

occurs only for θ = π
4 , as was

shown in Example 4.3. The maximum vertical

height
v2

0
2g

is attained when the object is launched straight up (i.e. θ = π
2 ), as was shown in Exercise 18

in Section 5.1. By symmetry only the angles 0 < θ ≤ π
2 in the same vertical plane need be considered. So

in the above figure, imagine if the trajectories for all possible angles were included, filling up a region
that does appear to have a parabolic boundary. This will now be shown to be true.

First, it turns out that all the parabolas for 0 < θ < π
2 have the same directrix y = v2

0
2g

. To see why,

recall from Exercise 11 in Section 4.1 that the maximum height reached by the object is
v2

0 sin2 θ

2g
, which

is thus the y-coordinate of the vertex of the parabola. That vertex is midway between the focus and
the directrix. The parabola is of the form 4py = x2 + bx, where b is a constant that does not affect the
distance between the vertex and directrix5, and 4p is a constant with p < 0 such that the directrix is
−p units above the vertex (since p < 0), just as in the case 4py = x2. The equation of the parabola then
shows that

1
4p

= − g

2v2
0 cos2 θ

⇒ p = −
v2

0 cos2 θ

2g

so that the directrix is at

y = y-coordinate of the vertex + (−p)

=
v2

0 sin2θ

2g
+ −

(
−

v2
0 cos2 θ

2g

)
=

v2
0

2g
(sin2θ + cos2 θ)

y =
v2

0

2g

It is perhaps surprising that all the parabolic trajectories share the same directrix y = v2
0

2g
, which is

independent of the angle θ. Note that the heights of each vertex
(

v2
0 sin2 θ

2g

)
and focus

(
v2

0
2g

(sin2θ−cos2 θ)
)

do depend on θ. The common directrix is the key to the remainder of the proof.
5This will be discussed further in Section 7.4.
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Now let P be a point in the first quadrant of the xy-plane below the common directrix y = v2
0

2g
, denoted

by D. Then P can be either inside, outside, or on the envelope, as in Figure 7.2.5:

D

y

x

P

O

v2
0

2g

v2
0/g

(a) Inside the envelope

D

y

x

P

O

v2
0

2g

v2
0/g

(b) Outside the envelope

D

y

x

P

O

v2
0

2g

v2
0/g

(c) On the envelope

Figure 7.2.5 Trajectory envelope and a point P

The origin O = (0,0) is on each trajectory, so by definition of a parabola the foci for all the trajectories

must be a distance
v2

0
2g

from O, i.e. the distance from O to D. That is, the foci of all the trajectories must

lie on the circle C0 of radius
v2

0
2g

centered at O. If P is any other point inside the envelope, so that it lies
on at least one trajectory, then it must be a distance r > 0 below the line D. By definition of a parabola,
P must be the same distance from the foci of any trajectories it belongs to. That is, the foci must be on
a circle C of radius r centered at P and touching the directrix D, as in Figure 7.2.6:

D

y

x

P

O

v2
0

2g

v2
0/g

CF1

F2

C0
r

(a) Two intersections F1, F2

D

y

x

P

O

v2
0

2g

v2
0/g

C0
C

r

(b) No intersections

D

y

x

P
F

O

v2
0

2g

v2
0/g

C0
C

r

(c) One intersection F

Figure 7.2.6 Circles C and C0 intersect at foci of trajectories

L

D

y

x

P

O

v2
0

2g

v2
0
g

v2
0/g

r

v2
0

2g

In Figure 7.2.6(a) C and C0 intersect at two points F1 and F2, so P

belongs to two trajectories; P must then be inside the envelope. In
Figure 7.2.6(b) C and C0 do not intersect, so P must be outside the
envelope (since it is not on a parabola with a focus on C0). If C and
C0 intersect at only one point F, as in Figure 7.2.6(c), then P must

be on the envelope. In that case, P is a distance r+ v2
0

2g
from O, which

is also the distance from P to the line y= v2
0
g

(denoted by L). Thus, by
definition of a parabola, P is on a parabola with focus O and directrix

L. The vertex is at
(
0,

v2
0

2g

)
. Therefore, the envelope is a parabola: the

boundary of the shaded region in the figure on the right. X
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In Example 7.2 all the trajectories were in the xy-plane only. Removing that restric-
tion, so that trajectories in all vertical planes through the y-axis are possible, would
result in a solid paraboloid consisting of all possible trajectories from the origin.

Parabolas also appear in suspension bridges: the suspension ca-
bles supporting a horizontal bridge (via vertical suspenders, as in
the figure on the right) have to be parabolas if the weight of the
bridge is uniformly distributed.6

Exercises

A

1. Construct a parabola using the procedure shown in Figure 7.2.2.

For Exercises 2-6, sketch the graph of the given parabola and indicate the exact locations of the focus,
vertex, and directrix.

2. 8y= x2 3. y= 8x2 4. x = y2 5. x =−3y2 6. −1000y= x2

7. Find the points of intersection of the parabolas 4py = x2 and 4px = y2 when p > 0. What is the
equation of the line through those points?

8. A vehicle headlight in the shape of a paraboloid is 3in deep and has an open edge with diameter 8in.
Where should the center of the bulb be placed in order to be at the focus, measured in inches relative
to the vertex?

9. The latus rectum of a parabola is the chord that passes through the focus and is parallel to the
directrix. Find the length of the latus rectum for the parabola 4py = x2.

10. Show that the circle whose diameter is the latus rectum of a parabola touches the parabola’s direc-
trix at one point.

11. Find the points on the parabola 4px = y2 such that the focal radii to those points have the same
length as the latus rectum.

12. From each end of the latus rectum of a parabola draw a line to the point where the directrix and
axis intersect. Show that the two drawn lines are perpendicular.

B

13. Show that any point not on a parabola is on either zero or two tangent lines to the parabola.

14. Show that y= mx−2mp−m3 p is the normal line of slope m to the parabola 4px = y2.

15. From a point P on a parabola with vertex V let PQ be the line segment perpendicular to the axis
at a point Q. Show that PQ2 equals the product of QV and the length of the latus rectum.

16. Show that the curve y = ax2 +bx+ c is a parabola for a 6= 0, using only the definition of a parabola.
Find the focus, vertex and directrix.

17. Show that the set of all midpoints of a family of parallel chords in a parabola lie on a line parallel
to the parabola’s axis.

6See pp.159-161 in SMITH, C.E., Applied Mechanics: Statics, New York: John Wiley & Sons, Inc., 1976.
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7.3 Hyperbolas

In the previous two sections you have seen curves with eccentricity e = 0 (circles),
0 < e < 1 (ellipses) and e = 1 (parabolas). The remaining case is e > 1: the hyperbola,
whose definition is similar to the second definition of the ellipse.

A hyperbola is the set of all points in a plane such that the ratio of the distance
from a fixed point (a focus) to the distance from a fixed line (a directrix) is a
constant e > 1, called the eccentricity of the hyperbola.

x

y

0

y= 1
x

Figure 7.3.1

It will be shown in Section 7.4 that the curve y = 1
x

is a hy-
perbola, which has two branches (see Figure 7.3.1). In general
a hyperbola resembles a “wider” or less “cupped” parabola, and
it has two symmetric branches (and hence two foci and two di-
rectrices) as well as two asymptotes.

The ratio of distances referred to in the definition of the hyper-
bola also appears in the second definition of the ellipse (where
the ratio is smaller than 1) and in the definition of the parabola
(where the ratio equals 1). In all three cases that ratio is the
eccentricity. See Figure 7.3.2(a) for the comparisons.

F e < 1

e = 1

e > 1

D

(a) Eccentricity e

Sun v < vE

v = vE

v > vE

D

(b) Orbit velocity v and escape velocity vE

Figure 7.3.2 Hyperbola, parabola and ellipse with focus F and directrix D

There is an analogue for Figure 7.3.2(a) in terms of orbits. For example, an object
approaching the Sun must meet or exceed the escape velocity to overcome the Sun’s
gravitational pull and avoid returning to orbit. Figure 7.3.2(b) shows the three possible
trajectories—hyperbola, parabola and ellipse—in terms of the object’s velocity v and
the escape velocity vE . Note the apparent correlation between the eccentricity of the
object’s path and its speed as a fraction of the escape velocity (i.e. v

vE
).
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D

F
P

G

Figure 7.3.3 Hyperbola: PF
PG

= e > 1

Figure 7.3.3 illustrates the definition of a hyper-
bola, consisting of points P whose distance PF from
the focus F exceeds the distance PG to the directrix
D in a way so that the ratio PF

PG
is always the same

constant e > 1 (the eccentricity).

x

y

(ea,0)
x = a

e

d2

d1

0

(x, y)

Figure 7.3.4

To derive the equation of a hyperbola with eccentricity
e > 1, assume the focus is on the x-axis at (ea,0), with
a > 0, and the line x = a

e
is the directrix, as in Figure

7.3.4. Pick a point (x, y) whose distances d1 and d2 from
the focus (ea,0) and directrix x = a

e
, respectively, satisfy

the condition for a hyperbola: d1
d2

= e > 1. Then

d2
1 = e2d2

2

(x− ea)2 + (y−0)2 = e2
((

x− a

e

)2
+ (y− y)2

)

x2 − ✘✘✘2eax + e2a2 + y2 = e2x2 − ✘✘✘2eax + a2

(e2 −1) x2 − y2 = (e2 −1)a2

x2

a2 − y2

b2 = 1

where b2 = (e2 −1)a2 > 0. The hyperbola thus has two branches (x = ±a
b

√
y2 +b2), as

in Figure 7.3.5. Let c = ea, so that c > a and b2 = c2 −a2. By symmetry the hyperbola
has two foci (±c,0) and two directrices x =±a2

c
, and the lines y=± b

a
x are asymptotes.

The vertexes are the points on the hyperbola closest to the directrices.

x

y

(c,0)
focus

vertex

(−c,0)
focus

vertex

0 a2

c
− a2

c

a−a

asymptote
y= b

a
x

asymptote
y=− b

a
x

conjugate
axis

transverse
axis

directrix directrix

Figure 7.3.5 Parts of the hyperbola x2

a2 − y2

b2 = 1, with b2 = c2 −a2

The center is the point midway between the foci. The transverse axis and conju-

gate axis are the perpendicular lines through the foci and center, respectively.
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In Figure 7.3.5 the vertexes are (±a,0), the x-axis is the transverse axis, the center
is the origin (0,0), and the conjugate axis is the y-axis. Note that the existence of two

foci and directrices—when the definition of the hyperbola mentioned only a focus and
a directrix—is simply a consequence of the symmetry about both axes imposed by the

equation x2

a2 − y2

b2 = 1. A parabola, in comparison, is symmetric about only one axis.

To see why the lines y =± b
a

x are asymptotes, consider the upper half y= b
a

p
x2 −a2

of both branches of the hyperbola. The difference between the line y = b
a

x and the
upper right branch approaches zero as x approaches infinity:

lim
x→∞

(
b

a
x − b

a

√
x2 −a2

)
= b

a
lim
x→∞

(
x −

√
x2 −a2

)
· x +

p
x2 −a2

x +
p

x2 −a2

= b

a
lim
x→∞

x2 − (x2 −a2)

x +
p

x2 −a2

= lim
x→∞

ab

x +
p

x2 −a2
= 0

Thus the line y = b
a

x is an (oblique) asymptote for the upper half y = b
a

p
x2 −a2 of the

right branch in the first quadrant of the xy-plane. So by symmetry the lines y =± b
a

x

are asymptotes for both branches, i.e. for the entire hyperbola.

Conversely, given a hyperbola in the form x2

a2 − y2

b2 = 1, let c2 = a2 + b2 to get the foci

(±c,0) and the directrices x=±a2

c
, while the eccentricity is e = c

a
.

Example 7.3

For the hyperbola x2 − y2 = 1 find the vertexes, foci, directrices, asymptotes and eccentricity.

Solution: Here a = b = 1, so that c2 = a2 + b2 = 2, i.e. c =
p

2. The vertexes are thus (±1,0), the
asymptotes are y=±x, the foci are (±

p
2,0), the directrices are x =± 1p

2
, and the eccentricity is e =

p
2.

x

y

c
a

y= a2

c

−c
−a

y=− a2

c

y= a
b

x

y=− a
b

x

Figure 7.3.6
y2

a2 − x2

b2 = 1

Switching the roles of x and y yields the hyperbola
y2

a2 − x2

b2 = 1, shown in Figure 7.3.6. The transverse
axis is the y-axis, the conjugate axis is the x-axis,
the vertexes are at (0,±a), and the foci are at (0,±c),
where c2 = a2 + b2. The directrices are y = ±a2

c
, the

asymptotes are y=±a
b

x, and the eccentricity is e = c
a
.

For example, the hyperbola y2−x2 = 1 has a= b = 1,
so that c =

p
2. The vertexes are (0,±1), the asymp-

totes are y =±x, the foci are (0,±
p

2), the directrices
are y = ± 1p

2
, and the eccentricity is e =

p
2. The hy-

perbola y2 − x2 = 1 is just the hyperbola x2 − y2 = 1
rotated 90◦.
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There is another way to define a hyperbola, in terms of two foci:

A hyperbola is the set of all points in a plane such that the absolute value of the
difference of the distances from two fixed points (the foci) is a positive constant.

Figure 7.3.7 illustrates the above definition with foci F1 and F2. The difference
d1 − d2 of the distances d1 and d2 can be positive or negative depending on which
branch the point (x, y) is on, which is why the absolute value |d1 −d2 | is used.

x

y

F2F1

d1

d2

0

(x, y)

Figure 7.3.7 Hyperbola: |d1 −d2 | = constant > 0

F2F1

P

A
P

L

Figure 7.3.8 Construction of a hyperbola

It is left as an exercise to show that this second definition yields the same equation
of the hyperbola as from the first definition. The second definition is often used as
the primary definition in many textbooks, perhaps because it provides a simple way to
construct a hyperbola by hand. Figure 7.3.8 shows the procedure for foci F1 and F2: at
the focus F1 fasten one end of a ruler of length L, and at the other end A of the ruler
fasten one end of a string of length L− d for some number 0 < d < F1F2. Fasten the
other end of the string to the focus F2 and hold the string taut with a pencil against
the ruler at a point P, while rotating the ruler about F1. The drawn figure will be
one branch of a hyperbola, since the difference PF1 −PF2 will always be the positive
constant d:

PF1 −PF2 = (L− AP) − PF2 = L − (AP +PF2) = L − (L−d) = d

Reverse the roles of F1 and F2 to draw the other branch of the hyperbola.

By Exercise 16 in Section 3.4, the tangent line to the hyperbola x2

a2 − y2

b2 = 1 at a point
(x0, y0) is

xx0

a2 − yy0

b2 = 1 , (7.6)

so that its slope is b2x0
a2 y0

when y0 6= 0. Note that by the above equation, when y0 = 0 (so
that x0 =±a) the two tangent lines are the vertical lines x=±a.
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That slope will be used in proving the reflection property for the hyperbola: Light

shone from one focus will reflect off the hyperbola in the opposite direction from the

other focus. Figure 7.3.9 shows the light’s path from focus F2 as it reflects at the point
P along the line through P and the other focus F1.

F2F1

P

Figure 7.3.9 Reflection property

x

y

F2

(c,0)

F1

(−c,0)

P

(x0, y0)

α1 α2

L

θ1

θ2

θ2

θ

A

Figure 7.3.10 Hyperbola x2

a2 − y2

b2 = 1 with foci (±c,0)

By Fermat’s Principle for curved surfaces, the reflection property is equivalent to
saying the tangent line L to the hyperbola at the point P = (x0, y0) bisects the angle
∠F1PF2, i.e. θ1 = θ2 as in Figure 7.3.10. The reflection property holds trivially when
y0 = 0 (the light reflects straight back along the x-axis), so to show that θ1 = θ2 assume
y0 6= 0. By symmetry only x0 > 0 need be considered. For the case x0 6= c, let A be the
x-intercept of the tangent line L. Then by Figure 7.3.10, since the sum of the angles
in the triangle △F1P A equals 180◦,

α1+θ2 + (180◦−θ)= 180◦ ⇒ θ2 = θ−α1 ⇒ tan θ2 = tan(θ−α1) .

Thus, since tan θ is the slope of the tangent line L (i.e. b2x0
a2 y0

), and tan α1 = y0
x0+c

, then
by the subtraction formula for the tangent function

tan θ2 = tan θ − tan α1

1 + tan θ tan α1
=

b2x0
a2 y0

− y0
x0 + c

1 + b2x0
a2 y0

· y0
x0 + c

=
b2x2

0 − a2 y2
0 + b2x0c

✭✭✭✭✭✭
a2 y0 (x0 + c)

(a2 + b2) x0 y0 + a2 y0c

✭✭✭✭✭✭
a2 y0 (x0 + c)

= a2b2+b2x0c

c2x0 y0 +a2 y0c
(since c2 = a2 +b2, and

x2
0

a2 −
y2

0
b2 = 1 ⇒ b2x2

0 − a2 y2
0 = a2b2)

= b2
✘✘✘✘✘✘
(a2 + x0c)

cy0✘✘✘✘✘✘
(a2 + x0c)

= b2

cy0

Similarly, since the sum of the angles in the triangle △F2P A equals 180◦,

α2 +θ1+θ = 180◦ ⇒ θ1 = 180◦− (θ+α2) ⇒ tan θ1 = −tan(θ+α2) .
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Thus, since tan α2 =−tan(180◦−α2)=− y0
x−c

,

tan θ1 = − tan θ + tan α2

1 − tan θ tan α2
= −

b2x0
a2 y0

+ −y0
x0 − c

1 − b2x0
a2 y0

· −y0
x0 − c

= −
b2x2

0 − a2 y2
0 − b2x0c

✭✭✭✭✭✭
a2 y0 (x0 − c)

(a2 + b2) x0 y0 − a2 y0c

✭✭✭✭✭✭
a2 y0 (x0 − c)

= − a2b2 −b2x0c

c2x0 y0 −a2 y0c
= b2

✘✘✘✘✘✘
(a2 − x0c)

cy0✘✘✘✘✘✘
(a2 − x0c)

= b2

cy0
= tan θ2 ,

i.e. θ1 = θ2 (since 0◦ < θ1, θ2 < 90◦). X Note: The case x0 = c is left as an exercise.

Ellipses, parabolas and hyperbolas are sometimes called conic sections, due to
being formed by intersections of planes with a double circular cone of unlimited extent:

(a) Ellipse (b) Parabola (c) Hyperbola

Figure 7.3.11 Conic sections

Each double cone in Figure 7.3.11 has two nappes—a cone extending upward and
one extending downward. When a plane intersects only one nappe in a closed noncir-
cular curve, as in Figure 7.3.11(a), that curve is an ellipse. A plane that is parallel to
a line on one nappe, as in Figure 7.3.11(b), intersects only that nappe in a parabola.
The intersection of a plane with both nappes, as in Figure 7.3.11(c), is a hyperbola.

O

P1

P2

Q

Figure 7.3.12

To prove that the ellipse, parabola and hyperbola really are
represented by the indicated conic sections, first a minor result is
needed from three-dimensional geometry: tangent line segments
to a sphere from the same point have equal lengths, as in Figure
7.3.12. Since the right triangles △QOP1 and △QOP2 share the
same hypotenuse QO and have legs OP1 and OP2 of equal length
(the radius of the sphere), the result QP1 = QP2 follows by the
Pythagorean Theorem.
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D

F

Q

P

G

Pc

P0

A αβ

β

C

Figure 7.3.13

For the case of a right circular double
cone (i.e. the base of each nappe is a cir-
cle in a plane perpendicular to the axis
of the cone7), let β be the complement
of the angle that the cone makes with
its axis, as in Figure 7.3.13. So β is the
angle the cone makes with any circular
base of the cone. This constant angle β,
with 0◦ <β< 90◦, is an intrinsic property
of the cone. Let Pc be a plane that in-
tersects the lower nappe of the cone in a
curve C, such that Pc makes an angle α

with any base circle of the cone. By sym-
metry, only the angles 0◦ <α≤ 90◦ need be considered.8 Inscribe a sphere in the cone
so that it touches Pc at a point F, as in Figure 7.3.13 (Pc is the tangent plane to the
sphere at F). Let P0 be the plane through the circle where the inscribed sphere touches
the cone, and let D be the line of intersection of the planes Pc and P0. It will be shown
that F and D are the focus and directrix, respectively, of the curve C.

Let P be any point on the curve C, then let Q be the point on the plane P0 that lies
on a line through P and the cone’s vertex. Drop a perpendicular line segment from P

to the point A in the plane P0. From A draw a perpendicular line segment to the point
G on the line D. Then as Figure 7.3.13 shows, △QAP and △P AG are right triangles,
with

sin α = P A

PG
and sin β = P A

PQ
.

However, since PF and PQ are both tangent line segments to the inscribed sphere
from the same point P, the result proved earlier shows that PQ = PF. Thus,

PG sin α = P A = PQ sin β = PF sin β ⇒ PF

PG
= sin α

sin β
.

Let e = PF
PG

. Then e is the same constant sin α
sin β

for any point P on the curve C. Thus, by
definition, e is the eccentricity of the curve C with focus F and directrix D. If 0◦ <α<β

then 0◦ < sin α< sin β so that 0< sin α
sin β

< 1, which means that 0< e < 1, and hence C is
an ellipse (by the second definition of an ellipse). Likewise, if α= β then e = 1, so that
C is a parabola. Finally, if β < α ≤ 90◦ then e > 1, so that C is a hyperbola (and will
intersect both nappes of the cone). Thus, the ellipse, parabola and hyperbola truly are
conic sections. X

7The proof can be extended to oblique double cones. See §364 in SALMON, G.S., A Treatise on Conic Sections,
London: Longmans, Green and Co., 1929.

8The case where α= 0◦ results in a circle, which is typically not considered a conic section.
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Exercises
A

1. Construct a hyperbola using the procedure shown in Figure 7.3.8. Place the two focus pins 7in apart
and use a 9in piece of string attached to a 12in ruler.

For Exercises 2-6, sketch the graph of the given hyperbola, indicate the exact locations of the foci and
vertexes, indicate each directrix and asymptote, and find the eccentricity e.

2.
x2

16
− y2

9
= 1 3.

x2

8
− y2

15
= 1 4.

4x2

25
− y2

4
= 1 5. x2 −4y2 = 1 6. 25y2 −9x2 = 225

7. Find the equation of the hyperbola with foci (±5,0) and vertexes (±3,0).

B

8. In the second definition of the hyperbola on p.219, let 2a be the constant absolute value of the
difference of distances from points on the hyperbola to the foci, for some a > 0. Let the foci be at
(±c,0) for some c > 0. Show that this second definition yields a hyperbola having an equation of the

form x2

a2 − y2

b2 = 1, with b > 0.

9. Prove the reflection property for the hyperbola (see pp.220-221) when x0 = c for the point P = (x0, y0)
on the hyperbola with foci at (±c,0).

10. Show that a straight line parallel to an asymptote of a hyperbola intersects the hyperbola at exactly
one point.

11. A latus rectum (plural: latus recta) of a hyperbola is a chord through either focus perpendicular to

the transverse axis. Show that the latus recta of the hyperbola x2

a2 − y2

b2 = 1 have length 2b2

a
.

12. Show that the segment of an asymptote of a hyperbola between the two directrices has the same
length as the line segment between the vertexes.

13. Show that the segment of a tangent line to a hyperbola between the hyperbola’s asymptotes has its
midpoint at the point of tangency.

14. The focal radii of a hyperbola are the line segments from the foci to points on the hyperbola. Show

that the lengths of the focal radii to points (x, y) on the hyperbola x2

a2 − y2

b2 = 1 are a+ ex and ex−a,
where e is the eccentricity.

15. Show that a tangent line to a hyperbola together with the hyperbola’s asymptotes bounds a triangle
of constant area (i.e. the area is independent of the point of tangency on the hyperbola).

16. Show that the product of the perpendicular distances from any point on the hyperbola x2

a2 − y2

b2 = 1

to the asymptotes y=± b
a

x is a constant.

17. A person at a point P = (x, y) hears the crack of a rifle located at the point F1 = (−1000,0) and the
sound of the fired bullet hitting its target located at the point F2 = (1000,0) at the same time. The
bullet’s speed is 2000 ft/sec and the speed of sound is 1100 ft/sec. Find an equation relating x and y.

18. Show that the set of all midpoints of a family of parallel chords either in one branch or between the
two branches of a hyperbola lie on a line through the center of the hyperbola.

19. Prove a second reflection property of hyperbolas: a light shone between the two branches and
directed toward one focus will reflect toward the other focus.
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7.4 Translations and Rotations

For convenience the ellipses, parabolas and hyperbolas in the previous sections were
centered at the origin and had their foci on one of the coordinate axes. In general
the center and foci of those curves can be moved anywhere by means of coordinate

transformations.

x

y

x′

y′

k

h

P = (x, y)
P ′ = (x′, y′)

x−h

y−k

O

O′

Figure 7.4.1 Translation

You have probably seen in earlier courses how the
graph of a function y= f (x) can be shifted horizontally
by an amount h and vertically by an amount k by re-
placing x and y by x−h and y−k, respectively:

y−k = f (x−h)

This coordinate transformation is called translation,
and can be applied to any curve in the xy-plane. The
origin O = (0,0) is shifted to the point O′ = (h, k), which
serves as the origin of the x′y′-plane,9 as in Figure
7.4.1. Let P = (x, y) be a point in the xy-plane. Con-
sider P as a point P ′ = (x′, y′) in the x′y′-plane, so that
relative to the origin O′, the x′ and y′ coordinates of P ′ are:

x′ = x−h

y′ = y−k

Using these translation equations (i.e. the substitutions x 7→ x−h and y 7→ y− k), the
graphs of the conic sections can be translated to any center (h, k):

Ellipse: For a> b > 0, an equation of the form

(x−h)2

a2 + (y−k)2

b2 = 1

describes an ellipse with center (h, k), vertexes (h± a, k), and foci (h± c, k), where
c2 = a2 −b2. The eccentricity is e = c

a
, and the principal axis is the line y= k.

Likewise, an equation of the form

(y−k)2

a2 + (x−h)2

b2 = 1

describes an ellipse with center (h, k), vertexes (h, k± a), and foci (h, k± c), where
c2 = a2 −b2. The eccentricity is e = c

a
, and the principal axis is the line x= h.

9The prime symbol (′) does not indicate differentiation—it acts merely to distinguish the new axes.
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Parabola: For p 6= 0, an equation of the form

(x−h)2 = 4p(y−k)

describes a parabola with vertex (h, k) and focus (h, k+ p). The directrix is the line
y= k− p and the axis is the line x= h.

Likewise, an equation of the form

(y−k)2 = 4p(x−h)

describes a parabola with vertex (h, k) and focus (h+ p, k). The directrix is the line
x= h− p and the axis is the line y= k

Hyperbola: For a 6= 0 and b 6= 0, an equation of the form

(x−h)2

a2 − (y−k)2

b2 = 1

describes a hyperbola with center (h, k), vertexes (h±a, k), and foci (h± c, k), where
c2 = a2 + b2. The eccentricity is e = c

a
, the directrices are the lines x = h± a2

c
, the

asymptotes are the lines y−k =± b
a

(x−h), and the transverse axis is the line y= k.

Likewise, an equation of the form

(y−k)2

a2 − (x−h)2

b2 = 1

describes a hyperbola with center (h, k), vertexes (h, k±a), and foci (h, k± c), where
c2 = a2 + b2. The eccentricity is e = c

a
, the directrices are the lines y = k± a2

c
, the

asymptotes are the lines y−k =±a
b
(x−h), and the transverse axis is the line x= h.

Example 7.4

x

y

y= 1

x = 2

0

2

4

(2−
p

3,1) (2+
p

3,1)

Figure 7.4.2 Ellipse (x−2)2

4 + (y−1)2 = 1

Find the vertexes and foci of the ellipse (x−2)2

4 + (y−1)2 = 1.

Solution: The translation coordinates are (h,k) = (2,1). Also,
a= 2 and b = 1. Thus, the vertexes are (h±a,k) = (2±2,1)=
(0,1) and (4,1). Since c2 = a2−b2 = 3 then c=

p
3, so the foci

are (h± c,k) = (2±
p

3,1), as shown in Figure 7.4.2.
Note that the ellipse (x−2)2

4 + (y−1)2 = 1 in the xy-plane is

the ellipse x′2
4 + y′2 = 1 in the x′y′-plane, for the translation

equations x′ = x−2 and y′ = y−1 (i.e. the x′-axis is the line
y= 1 and the y′-axis is the line x = 2).



226 Chapter 7 • Analytic Geometry and Plane Curves §7.4

Example 7.5

For a 6= 0 and constants b and c, find the vertex, focus and directrix of the parabola y = ax2 +bx+ c.

Solution: The idea here is to write y = ax2 + bx+ c in the form (x−h)2 = 4p(y− k) for some h, k, and p,
by completing the square:

ax2 + bx + c = y

a

(
x2 + b

a
x

)
= y − c

a

(
x2 + b

a
x + b2

4a2

)
= y − c + a

b2

4a2

(
x + b

2a

)2

= 1
a

(
y + b2 −4ac

4a

)

So h = − b
2a

, k = 4ac−b2

4a
, and 4p = 1

a
means p = 1

4a
. Thus, the vertex is (h,k) =

(
− b

2a
, 4ac−b2

4a

)
, the focus is

(h,k+ p) =
(
− b

2a
, 4ac−b2+1

4a

)
, and the directrix is the line y= k− p= 4ac−b2−1

4a
.

r

x

y

x
′

y
′

P = (x, y)
P ′ = (x′, y′)

θ
α−

θ

α

O

Figure 7.4.3 Rotation

Rotation is another common coordinate transforma-
tion. Consider the case of rotating the xy-plane about
the origin by an angle θ, as in Figure 7.4.3. The origin
of the resulting x′y′-plane is unchanged from the origin
O = (0,0) of the xy-plane. To find the rotation equations
for x′ and y′, let P = (x, y) be a point in the xy-plane
away from the origin. From trigonometry you know
that for r =

√
x2 + y2 6= 0 and the angle 0◦ ≤ α < 360◦

measured from the positive x-axis to OP,

x = r cos α and y = r sin α .

Considering P as a point P ′ = (x′, y′) in the x′y′-plane, OP ′ makes an angle α−θ with
the positive x′-axis, so that by the sine and cosine subtraction identities,

x′ = r cos(α−θ) = r cos α cos θ + r sin α sin θ = x cos θ + y sin θ (7.7)

and

y′ = r sin(α−θ) = r sin α cos θ − r cos α sin θ = y cos θ − x sin θ . (7.8)

Similar to the translation substitutions, the above rotation equations allow any curve
in the xy-plane to be rotated:

To rotate a curve in the xy-plane about the origin by an angle θ, make the following
substitutions:

x 7→ x cos θ + y sin θ and y 7→ −x sin θ + y cos θ (7.9)
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Example 7.6

Find the equation of the ellipse x2

4 + y2 = 1 when rotated 45◦ counterclockwise about the origin. Simplify
the equation.

x

y

x
′

y
′

45◦

0

2

−2

2−2

Figure 7.4.4

Solution: For θ = 45◦ the substitutions are:

x 7→ x cos θ + y sin θ = x cos 45◦ + y sin 45◦ = x+ y
p

2

y 7→ −x sin θ + y cos θ = −x sin 45◦ + y cos 45◦ = −x+ y
p

2

The equation of the rotated ellipse (shown in Figure 7.4.4) is then:

1
4

(
x+ y
p

2

)2

+
(−x+ y

p
2

)2

= 1

x2 + 2xy + y2 + 4(x2 − 2xy + y2) = 8

5x2 − 6xy + 5y2 − 8 = 0

In the above example note the presence of the 6xy term in the equation of the rotated
ellipse. In general if a conic section has a second-degree equation of the form

Ax2 + Bxy + C y2 + Dx + E y + F = 0 (7.10)

then B 6= 0 indicates rotation, and either D 6= 0 or E 6= 0 indicates translation.

Example 7.7

Find the value of a such that rotating the hyperbola x2

a2 − y2

a2 = 1 by 45◦ counterclockwise about the origin
results in the curve xy= 1.

Solution: Since θ = 45◦ then as in Example 7.6 the substitutions are again:

x 7→ x+ y
p

2
and y 7→ −x+ y

p
2

The equation of the rotated hyperbola is then:

1
a2

(
x+ y
p

2

)2

− 1
a2

(−x+ y
p

2

)2

= 1

x2 +2xy+ y2 − (x2−2xy+ y2)
2a2 = 1

2xy

a2
= 1

Thus, when a =
p

2 the rotated hyperbola has the equation xy = 1, which shows that the curve y = 1
x

is
a hyperbola. In general any curve of the form Bxy= 1 is a hyperbola for B 6= 0.
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The following result can be used for determining the type of conic section described
by a second-degree equation:10

The graph of Ax2+Bxy+C y2+Dx+E y+F = 0 (with A, B, C not all zero) describes
a curve whose type is based on the sign of B2−4AC:

(a) B2 −4AC < 0: an ellipse (or a circle, point, or no curve)

(b) B2−4AC = 0: a parabola (or a line, two parallel lines, or no curve)

(c) B2 −4AC > 0: a hyperbola (or two intersecting lines)

If B 6= 0 and the curve is a conic section, then the rotation angle θ is given by:

(a) θ = 45◦ if A = C

(b) tan 2θ = B
A−C

if A 6= C, with 0◦ < θ < 90◦

Recall that the rotation equations (7.7) and (7.8) for x′ and y′ in terms of x and y

provided substitutions that allowed the second-degree equation of the rotated conic
section to be found. Conversely, to transform a second-degree equation in x and y into
a “standard” conic section equation in terms of x′ and y′ (to simplify sketching the
graph), the “reverse” rotation equations for x and y in terms of x′ and y′ are needed:

x = x′ cos θ − y sin θ (7.11)

y = x′ sin θ + y′ cos θ (7.12)

Example 7.8

Determine the type of curve whose equation is 5x2 +4xy+8y2 −36= 0, and sketch its graph.

Solution: Since A = 5, B = 4, and C = 8, then B2 −4AC = −144 < 0, so the curve is an ellipse if it is a
conic section. Since B 6= 0 and A 6= C, the rotation angle θ would be given by tan 2θ = B

A−C
= 4

−3 , with
0◦ < θ < 90◦. Then 2θ is in the second quadrant, so that sin 2θ = 4

5 and cos 2θ = −3
5 . Use a half-angle

identity to find θ:

tan θ = sin 2θ
1+cos 2θ

=
4
5

1+ −3
5

= 2

Hence, sin θ = 2p
5

and cos θ = 1p
5

. Now use equations (7.11) and (7.12) to get expressions for x and y in

terms of x′ and y′:

x = x′ cos θ − y sin θ = x′−2y′
p

5

y = x′ sin θ + y′ cos θ = 2x′+ y′
p

5

10For a proof see Section 6.8 in PROTTER, M.H. AND C.B. MORREY, Analytic Geometry, 2nd ed., Reading, MA:
Addison-Wesley Publishing Company, Inc., 1975.
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x

y

x
′

y
′

64.3◦

0

3

−3

3−3

Substitute those expressions into 5x2 +4xy+8y2 −36= 0:

5
(

x′−2y′
p

5

)2

+ 4
(

x′−2y′
p

5

) (
2x′+ y′
p

5

)
+ 8

(
2x′+ y′
p

5

)2

− 36 = 0

45x′2 + 20y′2 = 180

x′2

4
+ y′2

9
= 1

So the curve’s equation in the x′y′-plane is x′2
4 + y′2

9 = 1. In

other words, the curve is just the ellipse x2

4 + y2

9 = 1 rotated by
θ = tan−1 2≈ 63.4◦, as shown in the figure on the right.

Exercises

A
For Exercises 1-3, sketch the graph of the given ellipse with the exact locations of the foci and vertexes.

1.
(x−3)2

25
+ (y−2)2

16
= 1 2.

(x+1)2

9
+ (y+3)2

4
= 1 3. 4x2 + y2 +24x−2y+21= 0

For Exercises 4-7, sketch the graph of the given parabola with the exact locations of the focus, vertex
and directrix.

4. 4(x−1)2 = 3(y+2) 5. y= 4x2+24x+21 6. 3(y+2)2 = 5(x−2) 7. 4x2 −4x+4y−5= 0

For Exercises 8-10, sketch the graph of the given hyperbola with the exact locations of the foci, vertexes,
directrices, and asymptotes.

8.
(x−3)2

25
− (y−2)2

16
= 1 9.

(x+1)2

9
− (y+3)2

4
= 1 10. 4x2− y2 +24x−2y+21 = 0

11. Find the foci, vertexes, directrices and asymptotes for the hyperbola y= 1
x

in Example 7.7.

12. Find the equation of the parabola 4y= x2 when rotated 60◦ counterclockwise about the origin.

13. Prove equations (7.11) and (7.12). (Hint: Use equations (7.7) and (7.8).)

B

14. Determine the type of curve whose equation is 8x2 −12xy+17y2−20 = 0, and sketch its graph.

15. Determine the type of curve whose equation is 7x2 +6xy− y2 −32= 0, and sketch its graph.

16. Let A′x′2+B′x′y′+C′y′2+D′x′+E′y′+F ′ = 0 be the equation obtained by substituting the “reverse”
translation equations x = x′+h and y = y′ + k into equation (7.10). Show that A = A′, B = B′ and
C = C′ (i.e. A, B and C are invariant under translation).

17. Similar to Exercise 16, substitute the “reverse” rotation equations (7.11) and (7.12) into equation
(7.10) to show that A+C and B2−4AC are invariant under rotation.

18. Sketch the graph of the conic section whose equation is x2 −2xy+ y2 +4x−4y+10 = 0 = 0. (Hint:

Handle the rotation first (as in Example 7.8), then the translation (by completing the square).)
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7.5 Hyperbolic Functions

In some textbooks you might see the sine and cosine functions called circular functions,
since any point on the unit circle x2 + y2 = 1 can be defined in terms of those functions
(see Figure 7.5.1). Those definitions motivate a similar idea for the unit hyperbola

x2 − y2 = 1, whose points can be defined in terms of hyperbolic functions.

x

y

O

P = (x, y)

1
θ

x2 + y2 = 1

a
2 = sector area = 1

2 r2θ = θ
2

x = cos θ = cos a

y = sin θ = sin a

Figure 7.5.1 Circular

y

x
x

O

P = (x, y)

1

x2− y2 = 1

a
2 = shaded area

Figure 7.5.2 Hyperbolic

For a point P = (x, y) on the unit hyperbola x2 − y2 = 1, the hyperbolic angle a is
twice the area of the shaded hyperbolic sector in Figure 7.5.2).11 The area a

2 thus
equals the area of the right triangle with hypotenuse OP and legs of length x and y (so
that the triangle’s area is 1

2 xy) minus the area under the hyperbola over the interval

[1, x]. So since the upper half of the hyperbola x2 − y2 = 1 is the function y=
p

x2 −1,

a

2
= (area of triangle) − (area under the hyperbola from 1 to x)

= 1
2

xy −
∫x

1

√
u2−1 du

a

2
= 1

2
x
√

x2 −1 −
(
1
2

x
√

x2 −1 − 1
2

ln
(
x+

√
x2 −1

))
(by formula (6.9))

a = ln
(
x+

√
x2 −1

)

ea = x+
√

x2 −1

(ea − x)2 =
(√

x2 −1
)2

e2a −2xea +��x
2 = ��x

2 −1

x = e2a +1
2ea

= ea + e−a

2
= cosh a

where cosh a is the hyperbolic cosine of a.

11The reason for using twice the area is merely to obtain a “cleaner” final result involving a instead of 2a.
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The y-coordinate of P can then be found:

y =
√

x2 −1 =

√(
ea + e−a

2

)2

−1 =

√
e2a +2+ e−2a

4
− 4

4

=

√
e2a −2+ e−2a

4
=

√(
ea − e−a

2

)2

, so since a≥ 0

y = ea − e−a

2
= sinh a

where sinh a is the hyperbolic sine of a. All six hyperbolic functions can now be
defined in general, analogous to the trigonometric (circular) functions:

The hyperbolic sine, hyperbolic cosine, hyperbolic tangent, hyperbolic

cotangent, hyperbolic secant and hyperbolic cosecant, denoted by sinh, cosh,
tanh, coth, sech and csch, respectively, are:

sinh x = ex − e−x

2
for all x cosh x = ex + e−x

2
for all x

tanh x = sinh x

cosh x
for all x coth x = 1

tanh x
for all x 6= 0

sech x = 1
cosh x

for all x csch x = 1
sinh x

for all x 6= 0

The graphs of the hyperbolic functions are shown below:

x

y

1

0

y = cosh x

y = sinh x

(a) sinh x and cosh x

x

y

1

−1

0y = tanh x

y = coth x

(b) tanh x and coth x

x

y

1

0

y= sech x

y= csch x

(c) sech x and csch x

Figure 7.5.3 Graphs of the six hyperbolic functions

The graph of y= cosh x in Figure 7.5.3(a) might look familiar: a catenary—a uniform
cable hanging from two fixed points—has the shape of a hyperbolic cosine function.
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The hyperbolic functions satisfy the following identities:

cosh2 x − sinh2 x = 1 tanh2 x + sech2 x = 1 coth2 x − csch2 x = 1

sinh(−x) = −sinh x cosh(−x) = cosh x tanh(−x) = −tanh x

sech(−x) = sech x csch(−x) = −csch x coth(−x) = −coth x

sinh(u±v) = sinh u cosh v ± cosh u sinh v sinh 2x = 2 sinh x cosh x

cosh(u±v) = cosh u cosh v ± sinh u sinh v cosh 2x = cosh2 x + sinh2 x

tanh(u±v) = tanh u ± tanh v

1 ± tanh u tanh v
tanh 2x = 2 tanh x

1 + tanh2 x

The identity cosh2 x− sinh2 x = 1 was proved when deriving the coordinates of points
on the unit hyperbola x2 − y2 = 1 in terms of the hyperbolic angle (since such a point
(x, y) = (cosh a,sinh a) must satisfy x2 − y2 = 1). The addition identities can be proved
similarly using hyperbolic angles (i.e. areas).12 However, it is simpler to use the
definitions of sinh and cosh in terms of exponential functions. For example:

sinh u cosh v+cosh u sinh v = eu − e−u

2
· ev + e−v

2
+ eu + e−u

2
· ev − e−v

2

= eu+v + eu−v − e−u+v − e−u−v + eu+v − eu−v + e−u+v − e−u−v

4

= 2eu+v −2e−u−v

4

= eu+v − e−(u+v)

2
= sinh(u+v) X

The identity for sinh 2x is then easy to prove by letting u = v = x in the above identity:

sinh 2x = sinh(x+ x) = sinh x cosh x+cosh x sinh x = 2 sinh x cosh x X

Note that the identities cosh(−x) = cosh x and sinh(−x) = −sinh x mean that cosh is
an even function and sinh is an odd function. Those two functions thus (sort of) serve
as even and odd versions of the exponential function (which is neither even nor odd).
Both cosh x and sinh x grow exponentially (the e−x term for both functions becomes
negligible as x→∞), while sinh x decreases exponentially to −∞ as x→−∞.

12See pp.25-29 in SHERVATOV, V.G., Hyperbolic Functions, Boston: D.C. Heath and Company, 1963.
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The derivatives of the hyperbolic functions and their integral equivalents are:

d

dx
(sinh x) = cosh x

d

dx
(csch x) = −csch x coth x

d

dx
(cosh x) = sinh x

d

dx
(sech x) = −sech x tanh x

d

dx
(tanh x) = sech2 x

d

dx
(coth x) = −csch2 x

∫
cosh x dx = sinh x + C

∫
csch x coth x dx = −csch x + C

∫
sinh x dx = cosh x + C

∫
sech x tanh x dx = −sech x + C

∫
sech2 x dx = tanh x + C

∫
csch2 x dx = −coth x + C

For example, by definition of cosh x:

d

dx
(cosh x) = d

dx

(
ex+ e−x

2

)
= ex − e−x

2
= sinh x X

Example 7.9

Find the derivative of y= sinh x3.

Solution: By the Chain Rule,
dy

dx
= 3x2 cosh x3.

Example 7.10

Evaluate
∫

tanh x dx.

Solution: Use the definition of tanh x and the substitutions u= cosh x, du= sinh x dx:
∫

tanh x dx =
∫

sinh x

cosh x
dx =

∫
du

u
= ln |u| + C = ln(cosh x) + C

For any constant a> 0, both y= cosh at and y= sinh at satisfy the differential equation

y′′(t) = a2 y(t) ,

which models rectilinear motion of a particle under a repulsive force proportional to
the displacement. This is just one of the many reasons why hyperbolic functions ap-
pear in so many physical applications.
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Example 7.11

In the classical theory of paramagnetism, the total number n of molecules in a gas subject to a magnetic
field of strength H is

n = 2πN

∫π

0
e

µH

kT
cos θ sin θ dθ ,

where N is the number of molecules per unit solid angle having zero potential energy, µ is the magnetic
moment, k is Boltzmann’s constant, and T is the temperature of the gas. Show that

n = 4πNkT

µH
sinh

(
µH

kT

)
.

Solution: Let a= µH

kT
, and let u= cos θ so that du=−sin θ dθ:

n = −2πN

∫−1

1
eau du = 2πN

∫1

−1
eau du = 2πN

a
eau

∣∣∣∣
1

−1
= 2πN

a

(
2 · ea − e−a

2

)

= 4πNkT

µH
sinh

(
µH

kT

)

Since d
dx

(sinh x) = cosh x = ex+e−x

2 > 0 for all x, then y = sinh x is an increasing func-
tion and thus its inverse function x = sinh−1 y is defined. The remaining inverse hy-

perbolic functions can be defined similarly, with the following domains and ranges
(switching the roles of x and y, as usual) plus their graphs:

function sinh−1 x cosh−1 x tanh−1 x csch−1 x sech−1 x coth−1 x

domain all x x≥ 1 |x| < 1 all x 6= 0 0< x ≤ 1 |x| > 1

range all y y≥ 0 all y all y 6= 0 y≥ 0 all y 6= 0

x

y

1

y = cosh−1 x

y = sinh−1 x

(a) sinh−1 x and cosh−1 x

x

y

1−1

y= coth−1 x

y= tanh−1 x

(b) tanh−1 x and coth−1

x

y

1

y= sech−1 x

y= csch−1 x

(c) sech−1 x and csch−1 x

Figure 7.5.4 Graphs of the six inverse hyperbolic functions
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The inverse hyperbolic functions can be expressed in terms of the natural logarithm:

sinh−1 x = ln(x+
√

x2 +1) cosh−1 x = ln(x+
√

x2 −1) for x≥ 1

tanh−1 x = 1
2

ln
1+ x

1− x
for |x| < 1 coth−1 x = 1

2
ln

x+1
x−1

for |x| > 1

sech−1 x = ln
1+

p
1− x2

x
for 0< x ≤ 1 csch−1 x = ln


1

x
+

√
1
x2 +1


 for x 6= 0

Notice that the above formula for cosh−1 x was actually proved at the beginning of this
section. The formula for sinh−1 x follows from the definition of an inverse function:

y = sinh−1 x ⇒ x = sinh y = ey− e−y

2
⇒ ey−2x− e−y = 0

⇒ e2y−2xey−1 = 0

⇒ u2 −2xu−1 = 0 for u = ey

⇒ u = 2x±
√

4x2 −4(1)(−1)
2

= x±
√

x2 +1

⇒ ey = u = x+
√

x2 +1 since ey > 0

⇒ y = ln(x+
√

x2 +1) X

The remaining formulas can be proved similarly.

Example 7.12

y

x
O

P

(x, y)= (cosh a,sinh a)

A = (1,0)

x2− y2 = 1

a
2 = shaded area of OAP

Show that for the hyperbolic angle a of a point P = (x, y) on the
unit hyperbola x2 − y2 = 1, the area a

2 of the hyperbolic sector
OAP (the shaded region in the figure on the right) is

a

2
= 1

2
cosh−1 x .

Solution: It was shown earlier that the area of OAP is
a

2
= 1

2
ln(x+

√
x2 −1)

so by the formula cosh−1 x = ln(x+
p

x2−1) the result follows.
This makes sense, since x = cosh a and so cosh−1 x = cosh−1(cosh a) = a, by definition of an inverse.

You can use either the general formula for the derivative of an inverse function or the
above formulas to find the derivatives of the inverse hyperbolic functions:
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d

dx
(sinh−1 x) = 1

p
x2 +1

d

dx
(cosh−1 x) = 1

p
x2 −1

for x≥ 1

d

dx
(tanh−1 x) = 1

1− x2 for |x| < 1
d

dx
(coth−1 x) = 1

1− x2 for |x| > 1

d

dx
(sech−1 x) = −1

x
p

1− x2
for 0< x≤ 1

d

dx
(csch−1 x) = −1

|x|
p

1+ x2
for x 6= 0

For example, here is one way to find the derivative of tanh−1 x:

d

dx
(tanh−1 x) = d

dx

(
1
2

ln
1+ x

1− x

)
= 1

2
d

dx
(ln(1+ x) − ln(1− x))

= 1
2

(
1

1+ x
− −1

1− x

)
= = 1− x+ (1+ x)

2(1+ x)(1− x)
= 1

1− x2 X

Exercises

A

1. Prove the identities for sinh(−x), cosh(−x), tanh(−x), coth(−x), sech(−x), and csch(−x) on p.232.

2. Prove the identities for cosh(u±v), tanh(u±v), and tanh 2x on p.232.

For Exercises 3-15 prove the given identity. Your proofs can use other identities.

3. (cosh x+sinh x)r = cosh rx+sinh rx for all r 4. sinh 3x = 3 sinh x+4 sinh3 x

5. sinh A cosh B = 1
2 (sinh(A+B) + sinh(A−B)) 6. tanh2 x+sech2 x = 1

7. sinh A sinh B = 1
2 (cosh(A+B) − cosh(A−B)) 8. coth2 x−csch2 x = 1

9. cosh A cosh B = 1
2 (cosh(A+B) + cosh(A−B)) 10. coth−1 (1

x

)
= tanh−1 x

11. cosh 2x = cosh2 x+sinh2 x = 2 cosh2 x−1 = 1+2 sinh2 x 12. sinh2 x
2 = cosh x − 1

2

13. cosh2 x
2 = cosh x + 1

2
14. tanh2 x

2 = cosh x − 1
cosh x + 1

15. tanh x
2 = cosh x − 1

sinh x
= sinh x

cosh x + 1

16. Prove the identities for tanh−1 x, coth−1 x, sech−1 x, and csch−1 x on p.235.

17. Prove the derivative formulas for sinh x, tanh x, coth x, sech x, and csch x on p.233.

18. Prove the derivative formulas for sinh−1 x, cosh−1 x, coth−1 x, sech−1 x, and csch−1 x on p.236.

19. Show that cosh x =O(ex) and sinh x =O(ex). 20. Show that
d

dx
(tan−1(sinh x)) = sech x .

21. Verify that the curve y= tanh x has asymptotes y=±1.
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22. Show that sinh dx = dx and cosh dx = 1 for any infinitesimal dx. (Hint: Use 1
1+dx

= 1− dx from

Exercise 3 in Section 1.3 along with edx = 1+dx from Exercise 29 in Section 2.3.)

23. Use Exercise 22 and the addition formula for sinh x to show that d
dx

(sinh x)= cosh x.

24. Sketch the graph of f (x) = e−2x sinh x. Find all local maxima and minima, inflection points, and
vertical or horizontal asymptotes.

25. Denoting the speed of light by c, the Lorentz transformations for two inertial frames S and S′ are

x′ = x − vt
√

1 − (v/c)2
and t′ = t − vx/c2

√
1 − (v/c)2

where S′ moves with speed v > 0 parallel to the x-axis of S. Let v/c= tanh ξ. Show that

x′ = −ct sinh ξ + x cosh ξ and t′ = t cosh ξ − (x/c) sinh ξ .

26. Evaluate the integral I =
∫3

2
dx

1−x2 in two different ways:

(a) Use d
dx

(coth−1 x)= 1
1−x2 for |x| > 1 to show that I = coth−1 3 − coth−1 2.

(b) Use the substitution u = 1
x

in the integral, then use d
dx

(tanh−1 x) = 1
1−x2 for |x| < 1 to show that

I = tanh−1 1
3 − tanh−1 1

2 . Is this answer equivalent to the answer from part (a)? Explain.

B

27. The general solution of the differential equation y′′ = a2 y is y(t) = y1(t) = c1eat + c2e−at, where a is
a positive constant, and c1 and c2 are arbitrary constants.

(a) Verify that y(t) = y2(t) = k1 cosh at+k2 sinh at is also a solution of y′′ = a2 y.

(b) Show that for any c1 and c2, y1(t) = c1eat+ c2e−at can be written as y1(t) = k1 cosh at+k2 sinh at

for some constants k1 and k2 in terms of c1 and c2.

28. Verify that for positive constants β, p, l and c the function

η(x) = βx

p
− βc sinh(px/c)

p2 cosh(pl/c)

is a solution of the differential equation (related to water displacement in a canal of length 2l)

d2η

dx2 − p2

c2 η = −βxp

c2 .

29. For any constant a and for s> |a| the Laplace transform L (s) of the function f (t)= sinh at is

L (s) =
∫∞

0
e−st sinh at dt .

Show that L (s) = a
s2−a2 .

C

30. In quantum mechanics the scaling factor eπ/s0 of the three-particle Efimov trimer is the solution
s= s0 > 0 of the equation

s cosh
(
πs
2

)
=

8 sinh
(
πs
6

)
p

3
,

Use a numerical method to approximate s0, then calculate eπ/s0 .



238 Chapter 7 • Analytic Geometry and Plane Curves §7.5

31. Continuing Example 7.11, the total magnetic moment M is defined as

M = 2πNµ

∫π

0
e

µH

kT
cos θ sin θ cos θ dθ .

(a) Use the value of n from Example 7.11 to show that M
nµ

= L(a), where L(a) = coth a− 1
a

is the

Langevin function and a= µH

kT
.

(b) Show that for a= µH

kT
, µmax > 0, and x = µmaxH

kT
,

∫µmax

0
L(a) dµ = 1

x
ln

(
sinh x

x

)
.

32. The age t0 of the universe (in years) is given by

t0 = τ0

∫
1

0

dx
√

2q0
x

+1−2q0

,

where τ0 = 2× 1010 years is the Hubble time and q0 ≥ 0 is the deceleration parameter. For the
cosmological model with 0< q0 < 1

2 , use the substitution x = 2q0
1−2q0

sinh θ to show that

t0 = τ0

(
1

1−2q0
− 2q0

(1−2q0)3/2
cosh−1

(
1

√
2q0

))
.

What fraction of τ0 is t0 (i.e. what is t0
τ0

) when q0 = 1
4 ? (Hint: Use Exercise 11 or 12.)

33. Circular rotations preserve the area of circular sectors (see Figure 7.5.5(a)). For any constant c> 0
the hyperbolic rotation φ : (x, y) 7→ (cx, y/c) moves points along the hyperbola xy = k (for k > 0), as
shown in Figure 7.5.5(b) for c> 1. This hyperbolic rotation preserves the area of hyperbolic sectors.

x

y

O 1−1

θ
θ

rotate OBQ by α

to OB′Q′

B

Q

B′
Q′

α

(a) Unit circle x2+ y2 = 1

y

x
0

(x, y)

(cx, y/c)

(b) Hyperbola xy= k

y

x
O

P ′

P = A′

(cosha,sinh a)

A = (1,0)

(c) Unit hyperbola x2− y2 = 1

Figure 7.5.5 Circular and hyperbolic rotations

As an example of why this is true, let a> 0 and consider the unit hyperbola in Figure 7.5.5(c). Then:

(a) Let c > 0. When c 6= 1 the mapping φ : (x, y) 7→ (cx, y/c) does not move points along the unit
hyperbola. Find the formula for φ on the unit hyperbola as follows: use the rotation equations
from Section 7.4 to rotate the unit hyperbola 45◦ to a hyperbola of the form xy = k, apply φ to a
generic point on that hyperbola, then rotate that hyperbola by −45◦ back to the unit hyperbola.

(b) Use part (a) to find the value of c such that φ maps A = (1,0) to P = (cosha,sinh a).

(c) Let P ′ be the point that φ maps P to, and let A′ = P. Use part (b) to find the coordinates of P ′,
then show that the hyperbolic sectors OAP and OA′P ′ have the same area a/2.
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7.6 Parametric Equations

Recall that Section 6.5 presented two different ways to “identify” or represent points
on the unit circle—by angle and by slope, as in Figure 7.6.1:

x

y

1

θ

10

(x, y)= (cos θ,sin θ)

(a) Identify points by angle θ

x

y

slope = t

1−1

θ

(x, y)

0

(b) Identify points by slope t

Figure 7.6.1 Points on the unit circle x2 + y2 = 1

When identifying by the angle θ, all points (x, y) on the unit circle can be written as

x = cos θ and y = sin θ

for any angle θ. When identifying by the slope t of lines through the point (−1,0), recall
from the derivation of the half-angle substitution that sin θ = 2t

1+t2 and cos θ = 1−t2

1+t2 . So
all points (x, y) on the unit circle except (−1,0) can be written as

x = 1− t2

1+ t2 and y = 2t

1+ t2

for any slope t. These two distinct “identifications” are called parametrizations of
the unit circle, with parameter θ in the first case and parameter t in the second.

In general, one way to describe a plane curve C (i.e. a curve in the xy-plane) is to
write its x and y-coordinates as functions of a variable t:

x = x(t) and y = y(t)

These are parametric equations of C, which consists of all points (x, y) such that
x= x(t) and y= y(t) for the parameter t in some interval I. The shorthand for this is:

C : x= x(t), y= y(t), t in I

Notice the flexibility that parametric equations provide, since plane curves can take
any shape, not limited to the graph of a single function y = f (x). In fact, a curve
y = f (x) is the special case where the parametric equations are x = t and y = f (t). In
physical settings the parameter t often denotes time, but it can represent anything
and any symbol can be used in its place. A curve can have many parametrizations.



240 Chapter 7 • Analytic Geometry and Plane Curves §7.6

Example 7.13

Show that for any constants ω 6= 0 and r > 0, and for t measured in radians,

x = h + r cos ωt and y = k + r sin ωt for −∞< t<∞

is a parametrization of the circle (x−h)2 + (y−k)2 = r2 with center (h,k) and radius r.

Solution: Since ωt is similar to the angle θ in Figure 7.6.1(a), it suffices to show that (x−h)2+(y−k)2 = r2:

(x−h)2 + (y−k)2 = r2 cos2ωt + r2 sin2ωt = r2
X

The constant ω determines how fast and in which direction the circle is traced as the parameter t varies.
For example, for ω= 2 the circle C is traced counterclockwise at twice the speed of the parametrization
C : x = h+ rcos t, y = k+ rsin t. In all cases the circle is re-traced every 2π/ω radians. For that reason
the interval for t is often restricted to the interval [0,2π/ω], so that the circle is traced only once.

Example 7.14

x

y

(x, y)= (a cos t,b sin t)

−a a

b

−b

Show that for a> 0 and b > 0 the parametric equations

x = a cos t and y = b sin t

for 0≤ t≤ 2π describe an ellipse.

Solution: Since

x2

a2
+ y2

b2
= a2 cos2 t

a2
+ b2 sin2 t

b2
= cos2 t + sin2 t = 1

for all t, then the points (x, y) = (a cos t,b sin t) lie on the ellipse x2

a2 + y2

b2 = 1. It should be obvious that
the entire ellipse is traced, but it is left as an exercise to show what the parameter t represents.

Example 7.15

y

x
O

(x, y)= (cosh t,sinh t)

1

x2 − y2 = 1

t
2 = shaded area

Show that the parametric equations

x = cosh t and y = sinh t

for −∞< t<∞ describe one branch of a hyperbola.

Solution: Since

x2 − y2 = cosh2 t − sinh2 t = 1

for all t, then the points (x, y) = (cosh t,sinh t) lie on the unit
hyperbola x2 − y2 = 1. This was in fact shown in Section 7.5, where t is half the area of the shaded
region in the above figure for t > 0. For t < 0 the shaded region is reflected below the x-axis. Since
cosh t ≥ 1 and sinh t can take any value, then the entire right branch of the hyperbola is traced as t

varies. Likewise the left branch has parametric equations x = −cosh t and y = sinh t. The hyperbola
is thus parametrized by area (or negative area for t < 0). In general, for a > 0 and b > 0 the hyperbola
x2

a2 −
y2

b2 = 1 has parametric equations x =±a cosh t and y = b sinh t for all t.
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Example 7.16

Bézier curves13 are used in Computer Aided Design (CAD) to join the ends of an open polygonal path
of noncollinear control points with a smooth curve that models the “shape” of the path. The curve is
created via repeated linear interpolation, illustrated in Figure 7.6.2 and described below for n= 3 points:

B0

B1

B2

A0

A1P

40%
40%

40%

(a) t= 0.4 = 40%

B0

B1

B2

B

(b) Many values of t in [0,1]

Figure 7.6.2 Bézier curve B with 3 control points B0, B1, B2

For three control points B0, B1, B2, pick 0≤ t≤ 1. Say t= 0.4, which you can think of as a percentage:
0.4 = 40%. Let A0 and A1 be the points 40% of the way from B0 to B1 and from B1 to B2, respectively,
as in Figure 7.6.2(a). Then the point P that is 40% of the way from A0 to A1 is on the Bézier curve B

joining B0 and B2. Do this for every t in [0,1] to fill out the curve B, as in Figure 7.6.2(b).
It can be shown via de Casteljau’s algorithm that the Bézier curve B for any three control points

B0 = (x0, y0), B1 = (x1, y1) and B2 = (x2, y2) in the xy-plane has parametric equations

x = (1− t)2x0 + 2t (1− t) x1 + t2x2 and y = (1− t)2 y0 + 2t (1− t) y1 + t2 y2 (7.13)

for 0≤ t≤ 1. Write out and simplify the explicit parametric equations for the Bézier curve B with control
points B0 = (1,2), B1 = (2,4) and B2 = (4,1).

Solution: The parametric equations for B0 = (x0, y0)= (1,2), B1 = (x1, y1)= (2,4), B2 = (x2, y2)= (4,1) are:

x = (1− t)2(1) + 2t (1− t) (2) + t2(4) = 1−2t+ t2 +4t−4t2 +4t2 = t2 +2t+1

y = (1− t)2(2) + 2t (1− t) (4) + t2(1) = 2−4t+2t2 +8t−8t2 + t2 = −5t2 +4t+2

y

x

B0

B1

B2

1 2 3 4

1

2

3

0

B

The Bézier curve B : x = t2 + 2t+ 1, y = −5t2 + 4t+ 2, 0 ≤ t ≤ 1 for
B0, B1, B2 is shown in the figure on the right. It is left as an exercise
to show that this curve is part of a parabola. In general Bézier curves
can be created for n≥ 3 control points in the plane, with the parametric
equations being polynomials of degree n−1 in the parameter t. In the
exercises you will be guided in how to derive the parametric equations
in the cases n = 3 and n = 4. Bézier curves can also be constructed
for control points in three-dimensional space. A similar construct—a
Bézier surface—is used in three dimensions to model the boundary of
a polyhedron (i.e. a solid whose faces are polygons).

13Developed and popularized in the 1960s by two engineers, Pierre Bézier and Paul de Casteljau, for vehicle body
modeling at the French automotive manufacturers Renault and Citroën, respectively.
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A curve with parametric equations x = x(t) and y = y(t) might not be the graph
of a single function y = f (x), but the derivative dy

dx
can still be found by using the

differentials of x and y as functions of t: dy= y′(t) dt and dx= x′(t) dt, so that

dy

dx
= y′(t) dt

x′(t) dt
= y′(t)

x′(t)
=

dy

dt
dx

dt

(7.14)

when dx
dt

6= 0. The second derivative d2 y

dx2 can then be found via the Chain Rule:

d

dt

(
dy

dx

)
=

(
d

dx

(
dy

dx

))
· dx

dt
= d2 y

dx2 · dx

dt
⇒ d2 y

dx2 =

d

dt

(
dy

dx

)

dx

dt

(7.15)

For t in [a, b] with x1 = x(a) and x2 = x(b), the integral
∫x2

x1
ydx is given by:

∫x2

x1

y dx =
∫b

a
y(t) x′(t) dt (7.16)

Example 7.17

A cycloid is the path of a point P on a circle rolling along a straight line. Figure 7.6.3 shows the cycloid
C traced by a circle of radius a rolling along the x-axis so that P touches the origin during the roll:

P
y

a

y

x
0 x aθ 2πa

t

θ

C

Figure 7.6.3 Cycloid C for a circle of radius a

Find parametric equations for C and find dy

dx
.

Solution: For the angles t and θ—measured in radians—shown in Figure 7.6.3, t+ θ +π/2 = 2π, so
t = 3π/2− θ. The point P touches the origin as the circle rolls, so the horizontal distance from the
circle’s center to the y-axis is the length of the circular arc with central angle θ, namely aθ. So by the
parametrization of the circle as in Example 7.13, but with center (h,k) = (aθ,a), radius r = a, and ω= 1,

x = aθ + a cos t = a
(
θ + cos

( 3π
2 −θ

))
= a(θ − sin θ)

y = a + a sin t = a
(
1 + sin

( 3π
2 −θ

))
= a(1 − cos θ)

Thus, C : x = a(θ − sin θ), y= a(1 − cos θ), −∞< θ <∞ is a parametrization of the cycloid C.
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As in formula (7.14) the derivative dy

dx
is given by:

dy

dx
= y′(θ)

x′(θ)
= a sin θ

a(1 − cos θ)
= sin θ

1 − cos θ
= cot 1

2θ

Thus, dy

dx
is undefined when cos θ = 1, namely, when θ = 2πk for all integers k, i.e. when x = a(θ− sin θ) =

a(2πk − sin 2πk) = 2πka. Notice from Figure 7.6.3 that the cycloid has cusps at those values of x.

B

AA cycloid appears in the solution of the famous brachistochrone problem:14

find the plane curve joining two points A and B—where B is at a lower height
than A but not directly under it—along which an object slides frictionless
under the force of gravity alone from A to B in the shortest time. It turns out
that the optimal path is not a straight line, but part of an inverted (upside-
down) cycloid with a cusp at A, as in the figure on the right.15

Exercises

A

1. For a > b > 0, in the ellipse x2

a2 + y2

b2 = 1 inscribe a circle of radius b centered at the origin, called the
minor auxiliary circle. This circle is parametrized by x = bcos t and y = bsin t for 0≤ t≤ 2π, with the
angle t shown in Figure 7.6.4. From each point on that circle draw a horizontal line segment to the
point P on the ellipse in the same quadrant, as shown. Show that P = (acos t,bsin t).
Note: The angle t is called the eccentric angle of the ellipse, and it is the parameter for the parametriza-
tion of the ellipse in Example 7.14.

x

y

P = (x, y)

−a a

b

−b

t

(bcos t,bsin t)

Figure 7.6.4 Exercise 1

x

y

P = (x, y)

−a a

b

−b

t

(acos t,asin t)

Figure 7.6.5 Exercise 2

2. Similar to Exercise 1, circumscribe a circle of radius a (called the major auxiliary circle) around the

ellipse x2

a2 + y2

b2 = 1. This circle is parametrized by x = acos t and y = asin t for 0 ≤ t ≤ 2π, with the
eccentric angle t shown in Figure 7.6.5. From each point on that circle draw a vertical line segment
to the point P on the ellipse in the same quadrant, as shown. Show again that P = (acos t,bsin t).

3. Show that the cycloid in Example 7.17 has global maxima at x = (2k+1)πa for all integers k, and
that the cycloid is always concave down.

4. Show that the area under the cycloid in Example 7.17 over the interval [0,2πa] is 3πa2.

14First solved in 1696 by the Swiss physicist and mathematician Johann Bernoulli (1667-1748).
15See pp.60-62 in CLEGG, J.C., Calculus of Variations, Edinburgh: Oliver & Boyd, Ltd., 1968. For Bernoulli’s proof
see pp.644-655 in SMITH, D.E., A Source Book in Mathematics, New York: Dover Publications, Inc., 1959.
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5. The parametrization C : x = 1−t2

1+t2 , y = 2t
1+t2 , −∞< t <∞ of the unit circle C shown earlier makes the

unit circle a rational curve, since x and y are rational functions of the parameter t. Is the ellipse
x2

a2 + y2

b2 = 1 a rational curve? Justify your answer.

6. Let P0 = (x0, y0) and P1 = (x1, y1) be distinct points in the xy-plane. For t in [0,1] define

x(t) = (1− t) x0 + t x1 and y(t) = (1− t) y0 + t y1

and let P(t)= (x(t), y(t)).

(a) Show that C : x = x(t), y= y(t), 0≤ t≤ 1 is a parametrization of the line segment from P0 to P1.

(b) Show that the parameter t is the proportion of the length P0P(t) to the length P0P1: P0P(t)
P0P1

= t.

7. In an ellipsograph a rod of length a has a peg at one end and another peg a distance b from the other
end, so that the rod can slide along two thin perpendicular rails, with the pegs in the rails as in
Figure 7.6.6. Show that a marker at the endpoint P traces an ellipse as the rod moves. (Hint: Treat

the rails as the x and y-axes. Find parametric equations, with a different angle than in Exercise 1.)

a
−b

b

P

Figure 7.6.6 Exercise 7

a

x

y

O A

B

P = (x, y)
θ

C

Figure 7.6.7 Exercise 8

B

8. The end P of a thread is held taut as it is unwound from a circle of radius a starting from a point A,
as in Figure 7.6.7. Show that the path C that the end traces—called the involute of the circle—has
parametric equations x = a(cosθ+θsinθ), y= a(sinθ−θ cosθ).

9. Recall that a parabola of the form y = ax2+bx+c has a constant second derivative d2 y

dx2 = 2a. Consider
the Bézier curve B in Example 7.16.

(a) Find d2 y

dx2 for B. Is it a constant?

(b) Show that B is part of a parabola. Does this contradict part (a)? Explain. (Hint: Show the curve

has a second-degree equation of the form (7.10).)

(c) Find the point where the curve B has a global maximum.

10. Use Exercise 6 to derive the formulas (7.13) for the parametric equations of the general Bézier
curve for n= 3 control points.

11. To form the Bézier curve for n= 4 control points B0 = (x0, y0), B1 = (x1, y1), B2 = (x2, y2), B3 = (x3, y3),
for 0≤ t≤ 1 use the three points that are 100t% of the way along the line segments B0B1, B1B2, B2B3

as the control points in the n= 3 case. Show that the resulting parametrization is:

x = (1− t)3x0+3t(1− t)2x1+3t2(1− t)x2 + t3x3 and y = (1− t)3 y0+3t(1− t)2 y1+3t2(1− t)y2+ t3 y3

12. Each point on a plane curve lies on some line through the origin. Use that fact to show that
the equation y2 = x2 + x3 defines a rational curve (see Exercise 5). (Hint: For all real t, find the

intersections of the lines y= tx with the curve. Consider also the special case of the line x = 0.)

13. Sketch the graph of the curve C : x = 2t−4t3 , y = t3 −3t4, −∞< t<∞.
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7.7 Polar Coordinates

Suppose that you wanted to write the equation of a spiral, like the one in Figure 7.7.1.
The curve is clearly not the graph of a function y = f (x) in Cartesian coordinates, as
it violates the vertical line test. However, this spiral is simple to express using polar

coordinates.16 Recall that any point P distinct from the origin (denoted by O) in the
xy-plane is a distance r > 0 from the origin, and the ray

−−→
OP makes an angle θ with the

positive x-axis, as in Figure 7.7.2. Imagine
−−→
OP swings around the “pole” at the origin.

x

y

0 1 2 3

Figure 7.7.1 Spiral

r

x

y

O

θ

P = (r,θ)

Figure 7.7.2 Polar coordinates (r,θ)

−r

x

y

O

θ

P = (−r,θ)

Figure 7.7.3 Negative r: (−r,θ)

The pair (r,θ) contains the polar coordinates of P, and the positive x-axis is called
the polar axis of this coordinate system. For the angle θ measured in radians, (r,θ)=
(r,θ+2πk) for all integers k. Thus, the polar coordinates of a point are not unique. By
convention r can be negative, by defining (−r,θ)= (r,θ+π) for any angle θ: the ray

−−→
OP

is drawn in the opposite direction from the angle θ, as in Figure 7.7.3. When r = 0, the
point (r,θ)= (0,θ) is the origin O, regardless of the value of θ.

Example 7.18

Express the spiral in Figure 7.7.1 in polar coordinates, such that the distance between any two points
separated by 2π radians is always 1.

Solution: The goal is to find some equation involving r and θ (measured in radians) that describes the
spiral. The distance between any two points separated by 2π radians is always 1, for example:

θ = 0 ⇒ r = 1

θ = 2π ⇒ r = 2

θ = 4π ⇒ r = 3

. . .

θ = 2πk ⇒ r = 1+k

for all integers k ≥ 0. In fact r = 1+ k when θ = 2πk for all real k ≥ 0, by the assumption about the
distance. So solving for k in terms of θ yields the polar equation r = 1+ θ

2π for all θ ≥ 0.

16Created by the Flemish mathematician Grégoire de Saint-Vincent (1584-1667) and Italian mathematician
Bonaventura Cavalieri (1598-1647) in the 17th century, later used by Newton in his Method of Fluxions (1671).
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You might be familiar with graphing paper, for plotting points or functions given in
Cartesian coordinates. Such paper consists of a rectangular grid, where the horizontal
and vertical lines represent where x and y, respectively, are constants, at regular
intervals. Similar graphing paper exists for polar coordinates, as in Figure 7.7.4.

0◦

15◦

30◦

45◦

60◦

75◦90◦
105◦

120◦

135◦

150◦

165◦

180◦

195◦

210◦

225◦

240◦

255◦
270◦ 285◦

300◦

315◦

330◦

345◦

O

Figure 7.7.4 Polar coordinate graphing paper

This polar grid is radial, not rectangular. The concentric circles around the origin O

are where r is constant (e.g. r = 1, r = 2), while the lines through the origin are where θ

is constant, at regular intervals for each. The angle θ shown here is in degrees, though
radians are often preferred for their “unitless” nature.
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In general, polar coordinates are useful in describing plane curves that exhibit sym-
metry about the origin (though there are other situations), which arise in many phys-
ical applications.

r

x

y

O

θ

y

x

(r,θ)(x, y)

Figure 7.7.5

Figure 7.7.5 shows how to convert between polar coordinates
and Cartesian coordinates. Namely, for a point with polar coordi-
nates (r,θ) and Cartesian coordinates (x, y):

Polar to Cartesian:

x = r cos θ y = r sin θ (7.17)

Cartesian to Polar:

r = ±
√

x2 + y2 tan θ = y

x
if x 6= 0 (7.18)

In formula (7.18), if x = 0 then θ = π/2 or θ = 3π/2. If x 6= 0 and y 6= 0 then the
two possible solutions for θ in the equation tanθ = y

x
are in opposite quadrants (for

0≤ θ< 2π). If the angle θ is in the same quadrant as the point (x, y), then r =
√

x2 + y2

(i.e. r is positive); otherwise r =−
√

x2 + y2 (i.e. r is negative).

Example 7.19

Write the equation of the unit circle x2 + y2 = 1 in polar coordinates.

Solution: By formula (7.18), r2 = x2 + y2 = 1, so in polar coordinates the equation is simply r = 1. In
general the circle x2 + y2 = a2 of radius a> 0 has the simpler expression r = a in polar coordinates.

Example 7.20

Write the equation x2 + (y−4)2 = 16 in polar coordinates.

Solution: This is the equation of a circle of radius 4 centered at the point (0,4). Expand the equation:

x2 + (y−4)2 = 16

x2 + y2 − 8y + 16 = 16

x2 + y2 = 8y

r2 = 8rsin θ (by formulas (7.17) and (7.18))

r = 8 sin θ

Is it valid to cancel r from both sides in the last step? Yes. The point (0,0) is on the circle, so canceling
r does not eliminate r = 0 as a potential solution of the equation (e.g. θ = 0 would make r = 8sin θ = 0).
Thus, the polar equation is r = 8sin θ.

Notice that this polar equation is actually less intuitive than its Cartesian equivalent. From the equa-
tion x2 + (y−4)2 = 16 it is easy to identify the curve as a circle and read off its radius and center; these
properties are not so obvious from the polar equation. Since the circle’s center is not the origin, there is
no symmetry about the origin, which is when polar coordinates are often better suited.
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Derivatives in Polar Coordinates

Suppose that the polar coordinates (r,θ) for a plane curve are related by a function:
r = r(θ). Then by formula (7.17), x = r(θ) cos θ and y = r(θ) sin θ are now parametric
equations for the curve in the parameter θ. Thus, by the Product Rule and formulas
(7.14) and (7.15) from Section 7.6, with dx= x′(θ) dθ and dy= y′(θ) dθ:

For a plane curve with polar equation r = r(θ),

dy

dx
= r′(θ) sin θ + r(θ) cos θ

r′(θ) cos θ − r(θ) sin θ
and

d2 y

dx2 =

d

dθ

(
dy

dx

)

r′(θ) cos θ − r(θ) sin θ
. (7.19)

Example 7.21

Sketch the graph of r = 1+cos θ.

Solution: First sketch the graph treating (r,θ) as Cartesian coordinates, for 0 ≤ θ ≤ 2π as in Figure
7.7.6(a). Then use that graph to trace out a rough graph in polar coordinates, as in Figure 7.7.6(b).17

r

θ0 π 2π

2

(a) θr-plane

y

x
20

1

−1

( 3
2 , π3

)

( 3
2 , 5π

3

)

( 1
2 , 2π

3

)

( 1
2 , 4π

3

)

(b) Polar coordinates (r,θ)

Figure 7.7.6 Graph of r = 1+cos θ

To find the maxima, minima, and inflection points it is still necessary to find dy
dx

and d2 y

dx2 . It is left as an
exercise to use formula (7.19) and double-angle identities to show that

dy

dx
= −cos θ+cos 2θ

sin θ+sin 2θ
and

d2 y

dx2 = − 3(1+cos θ)
(sin θ+sin 2θ)3

and that for θ in [0,2π], dy

dx
= 0 only when θ = π

3 and 5π
3 , while dy

dx
is undefined for θ = 0, 2π

3 , π, 4π
3 , and

2π. Since d2 y

dx2

∣∣∣
θ= π

3

< 0 and d2 y

dx2

∣∣∣
θ= 5π

3

> 0 then the curve has a local maximum when θ = π
3 and a local

minimum when θ = 5π
3 . It can also be shown that d2 y

dx2 changes sign around θ = 0, 2π
3 , π, 4π

3 , so that the
inflection points occur at those values of θ, as shown (with the correct concavity) in Figure 7.7.6(b).

17There are far too many interesting plane curves to cover here. For an extensive collection, see LAWRENCE, J.D.,
A Catalog of Special Plane Curves, New York: Dover Publications, Inc., 1972. See also SEGGERN, D.H. VON, CRC

Handbook of Mathematical Curves and Surfaces, Boca Raton, FL: CRC Press, Inc., 1990.
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Integration in Polar Coordinates

In some cases polar coordinates can simplify evaluation of a definite integral or find-
ing an area. To determine the polar form of a definite integral, suppose that r is a
function of θ: r = f (θ). A polar region swept out by r = f (θ) between θ = α and θ = β

would look like the shaded region in Figure 7.7.7 with area A:

θ =α

θ =β
y

x

r = f (θ)

O

Figure 7.7.7 Area A

r

r+
dr ds

y

x
dθ

(r,θ)

(r+dr,θ+dθ)

Figure 7.7.8 Area dA

c a

bA C

B

Figure 7.7.9 Area = 1
2 bc sin A

A typical infinitesimal wedge of that region—shown in Figure 7.7.8—is produced by
an infinitesimal change dθ in the angle θ, which results in an infinitesimal change
dr in r. By the Microstraightness Property, the curve r = f (θ) is a straight line with
infinitesimal length ds over that infinitesimal angle dθ. The area dA of the wedge thus
equals the area of the triangle with sides of lengths r and r+ dr with included angle
dθ and a side of length ds. Since sin dθ = dθ and dr = f ′(θ) dθ, then by the formula for
the area of a triangle (as shown in Figure 7.7.9),18

dA = 1
2 (r) (r+dr) sin dθ

= 1
2 r2dθ + 1

2 r (dr) dθ

= 1
2 r2dθ + 1

2 r ( f ′(θ) dθ) dθ

= 1
2 r2dθ + 0 = 1

2 r2dθ

since (dθ)2 = 0. The area A of the region is the sum of these infinitesimal areas dA:

For a plane curve with polar equation r = f (θ), the area A of the region swept out
between θ =α and θ =β is:

A =
∫θ=β

θ=α
dA =

∫β

α

1
2 r2dθ =

∫β

α

1
2 ( f (θ))2dθ (7.20)

If f is periodic then choose the angle interval [α,β] so that the area is swept out
only once.

18The formula 1
2 bc sin A for the area of a triangle △ABC is derived in most trigonometry texts. For example, see

p.54 in CORRAL, M., Trigonometry, http://mecmath.net/trig/, 2009.

http://mecmath.net/trig/
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Example 7.22

Use polar coordinates to show that the area of a circle of radius R is πR2.

Solution: Let the origin be the center of the circle. Then r = R is the polar equation of the circle, with
0≤ θ ≤ 2π sweeping out exactly one full circle. The area A inside the circle is then

A =
∫2π

0

1
2 r2dθ =

∫2π

0

1
2 R2dθ = 1

2 R2θ

∣∣∣∣
2π

0
= 1

2 R2 (2π−0) = πR2 . X

Note the simplicity of this integral compared to the trigonometric substitution required when using
Cartesian coordinates, as in Section 6.3. Notice also that using a larger interval—say [0,4π]—for θ

would result in an incorrect area (4πR2) even though the region inside the curve is the same.

Example 7.23

Find the area inside the curve r = 1+cos θ.

Solution: Choose 0≤ θ ≤ 2π as in Example 7.21, so that the area A is:

A =
∫2π

0

1
2 r2dθ =

∫2π

0

1
2 (1+cos θ)2dθ =

∫2π

0

(
1
2

+ cos θ + cos2θ

2

)
dθ

=
∫2π

0

(
1
2

+ cos θ + 1+cos 2θ
4

)
dθ =

∫2π

0

(
3
4

+ cos θ + cos 2θ
4

)
dθ

= 3
4
θ + sin θ + 1

8
sin 2θ

∣∣∣∣
2π

0
= 3π

2

Exercises
A
For Exercises 1-8 write the given equation in polar coordinates.

1. (x−3)2 + y2 = 9 2. y= x 3. x2 − y2 = 1 4. 3x2 +4y2 −6x = 9

5. y =−x 6. y= x+1 7. y= x2 8. y= x3

9. Write the polar equation r2 = 4 cos 2θ in Cartesian coordinates.

10. Find the tangent line to r = cos 2θ at
( 1

2 , π6
)
. 11. Find the tangent line to r = 8 sin2θ at

(
2, 5π

6

)
.

12. Recall the curve r = 1+cos θ from Example 7.21.

(a) Verify that for this curve,

dy

dx
= −cos θ+cos 2θ

sin θ+sin 2θ
and

d2 y

dx2
= − 3(1+cos θ)

(sin θ+sin 2θ)3
.

(b) Verify that for θ in [0,2π], dy
dx

= 0 only when θ = π
3 and 5π

3 , and is undefined for θ = 0, 2π
3 , π, 4π

3 ,
and 2π.

(c) Verify that d2 y

dx2

∣∣∣∣
θ= π

3

< 0 and d2 y

dx2

∣∣∣∣
θ= 5π

3

> 0.

(d) Verify that d2 y

dx2 changes sign around θ = 0, 2π
3 , π, and 4π

3 .
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For Exercises 13-15, sketch the graph of the given curve and indicate all local maxima and minima.

13. r = 1+sin θ 14. r = 1−cos θ 15. r = sin 2θ

16. Find the area inside r = 1+sin θ. 17. Find the area inside r = sin 2θ.

B

18. Sketch a rough graph of the meridian voltage component Eθ for a half-wavelength linear antenna:

Eθ = r(θ) =
cos(π2 cos θ)

sin θ

19. Show that the distance d between two points (r1,θ1) and (r2,θ2) in polar coordinates is

d =
√

r2
1 + r2

2 − 2r1r2 cos(θ1 −θ2) .

20. For a point P = (r,θ) on the curve r = r(θ), let α be the angle that the tangent line through P makes
with the positive x-axis. Let ψ=α−θ be the angle between the tangent line and the line through P

and the origin. Show that tan ψ= r(θ)
r′(θ) . (Hint: Use formulas (7.19) and (3.2).)

21. For the parabola with focus at (0,0), vertex at (0,−p), and directrix y=−2p (with p> 0), show that
the polar equation is

r = 2p

1 − sin θ
.

22. For the ellipse with foci (0,0) and (2c,0), vertexes (c±a,0), and eccentricity e = c
a

(with 0 < c < a),
show that the polar equation is

r = a(1 − e2)
1 − e cos θ

.

23. For the hyperbola with foci (0,0) and (2c,0), vertexes (c±a,0), and eccentricity e = c
a

(with 0< a< c),
show that the polar equation is

r = a(e2 − 1)
1 + e cos θ

.

F1 F2

y

x−a 0 a

d1 d2

P = (x, y)

η

24. The bipolar coordinates19 (ξ,η) of a point P = (x, y) relative to
two poles F1 = (−a,0) and F2 = (a,0) are given by ξ= ln d1

d2
and

η=∠F1PF2, where d1 = F1P and d2 = F2P, as in the figure on
the right . Then −∞< ξ<∞ except at F1 (which corresponds
to ξ = −∞) and F2 (ξ = ∞), while 0 ≤ η ≤ π for points on or
above the x-axis, and π< η< 2π below the x-axis.

(a) Show that

x = a sinh ξ

cosh ξ − cos η
and y = a sin η

cosh ξ − cos η
.

(Hint: Use the distance formula, the Law of Cosines, and the Law of Sines.)

(b) Show that for constants τ 6= 0 and σ 6= 0 or π, the curves ξ= τ and η=σ are the respective circles

(x − a coth τ)2 + y2 = a2

sinh2 τ
and x2 + (y − a cot σ)2 = a2

sin2σ
.

19Inspired by the lines of force and equipotential lines for an electric dipole. See pp.55-56 in STRATTON, J.A.,
Electromagnetic Theory, New York: McGraw-Hill Book Company, Inc., 1941.



CHAPTER 8

Applications of Integrals

8.1 Area Between Curves

The “area under a curve” was defined in Chapter 5 as the area below some curve
y = f (x) and above the x-axis over some interval. That was a special case of the area

between curves, where in general one curve y= f1(x) is not necessarily always above
another curve y= f2(x) over the entire interval, as in Figure 8.1.1 for an interval [a, b].

y

x
a bx x+dx0

y= f2(x)

y= f1(x)

dA
h(x)= | f1(x)− f2(x)|

dx

Figure 8.1.1 The area A between two curves y= f1(x) and y= f2(x) over [a,b]

The area A of the region between the curves in Figure 8.1.1 cannot be negative.
Thus, a typical infinitesimal area element dA of the region is of the form h(x) dx, where
the height function h(x) is the nonnegative difference in the y-coordinates of the
curves at each x in [a, b]: h(x)=

∣∣ f1(x)− f2(x)
∣∣. Hence:

The area A between two curves y= f1(x) and y= f2(x) over an interval [a, b] is:

A =
∫b

a
dA =

∫b

a

∣∣ f1(x)− f2(x)
∣∣ dx (8.1)

The interval [a, b] can be replaced by any interval—finite or infinite—over which
the integral is defined. Neither curve is required to be above the x-axis.

252
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Example 8.1

h(x)

y

x
0 2

y= ex

y= e−x

Find the area between y= ex and y= e−x over [0,2].

Solution: Since ex ≥ e−x for x in [0,2], the height function h(x) for the region
between the curves over [0,2] is h(x) =

∣∣ex − e−x
∣∣ = ex − e−x. The area A of

the region is thus

A =
∫2

0
(ex − e−x) dx

= ex + e−x

∣∣∣∣
2

0
= e2 + e−2 − (1+1)

= 2(cosh 2 − 1) .

Example 8.2

y

x
0 1

y
= x

y= x2

Find the area of the region bounded by y= x2 and y = x.

Solution: A “bounded” region will always mean a region of finite area, as op-
posed to unbounded regions. The curves y= x2 and y= x intersect at x = 0 and
x = 1, so the region the curves bound is the shaded region shown in the figure
on the right. Since x ≥ x2 for 0 ≤ x ≤ 1, then the height function for the region
is h(x)= |x2 − x| = x− x2. The region’s area A is then

A =
∫1

0
(x− x2) dx

= 1
2

x− 1
3

x2
∣∣∣∣
1

0
= 1

2
− 1

3
= 1

6
.

Example 8.3

y

x
0 π

4
π
3

y= sin x

y= cos x

1

Find the area of the region bounded by y= sin x and y= cos x over [0,π/3].

Solution: As shown in the figure on the right, the curves intersect at x = π
4 ,

and cos x ≥ sin x for 0 ≤ x ≤ π
4 , while sin x ≥ cos x for π

4 ≤ x ≤ π
3 . The area A

of the region thus needs to be split into two integrals:

A =
∫π/3

0
|sin x − cos x| dx

=
∫π/4

0
(cos x − sin x) dx +

∫π/3

π/4
(sin x − cos x) dx

=
(
sin x + cos x

∣∣∣∣
π/4

0

)
+

(
−cos x − sin x

∣∣∣∣
π/3

π/4

)

=
(

1
p

2
+ 1
p

2

)
− (0−1) +

(
−1

2
−
p

3
2

)
−

(
− 1
p

2
− 1
p

2

)

= 4
p

2−3−
p

3
2
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Formula (8.1) can be extended to find the area between any number of curves, by
splitting the integral over subintervals with different height functions.

Example 8.4

Find the area of the region bounded by y= 6− x2, y= x and y=−5x above the x-axis.

y=−5x

y= x

y

x
0−1 2

y= 6− x2

Solution: As shown in the figure on the right, above the x-axis the curve
y = 6− x2 intersects the line y= x at x = 2 and intersects the line y=−5x

at x =−1. Since 6−x2 ≥−5x over [−1,0] and 6−x2 ≥ x over [0,2], the area
A of the shaded region needs to be split into two integrals:

A =
∫0

−1

∣∣6− x2 − (−5x)
∣∣ dx +

∫2

0

∣∣6− x2 − x
∣∣ dx

=
∫0

−1
(6− x2+5x) dx +

∫2

0
(6− x2− x) dx

=
(
6x− 1

3
x3 + 5

2
x2

∣∣∣∣
0

−1

)
+

(
6x− 1

3
x3 − 1

2
x2

∣∣∣∣
2

0

)

= 0 −
(
−6+ 1

3
+ 5

2

)
+

(
12− 8

3
−2

)
− 0 = 21

2

For some areas between curves it might be easier to switch the roles of x and y, so that
instead of a vertical height function you would use a horizontal width function.

Example 8.5

Find the area of the region bounded by x = y2 −2 and y = x.

y

x
0−2 −1 2

w(y)
y= x

x = y2 −2

Solution: As shown in the figure on the right, the parabola x = y2 −2
intersects the line y = x at x = −1 and x = 2. The region has differ-
ent height functions h(x) for −2 ≤ x ≤ −1 and −1 ≤ x ≤ 2, so that two
integrals would be required for the area A. However, notice that the
width function w(y) has one definition over the entire region between
the curves x = y2 − 2 and x = y: w(y) =

∣∣y− (y2 − 2)
∣∣ = y− (y2 − 2).

Thus, instead of integrating the vertical strips dA = h(x)dx along the
x-axis, integrate the horizontal strips dA = w(y)dy along the y-axis,
from y=−1 to y= 2:

A =
∫2

−1
w(y) dy =

∫2

−1

∣∣y− (y2 −2)
∣∣ dy

=
∫2

−1
(y− (y2 −2)) dy

= 1
2

y2 − 1
3

y3 +2y

∣∣∣∣
2

−1

=
(
2− 8

3
+4

)
−

(
1
2
+ 1

3
−2

)
= 9

2
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θ =α

θ =β

y

x

r1

r2

O

Figure 8.1.2

The area between curves given by polar equations can be
found similarly. For example, consider curves r = r1(θ) and
r = r2(θ) with r1(θ) ≥ r2(θ) when α≤ θ ≤ β as in Figure 8.1.2.
The area A of the region between the curves and those angles
is simply the difference between the “outer” and “inner” areas,
each given by formula (7.20):

A =
∫β

α

1
2 r2

1dθ −
∫β

α

1
2 r2

2dθ =
∫β

α

1
2 (r2

1 − r2
2) dθ

In general, to include cases where the “outer” and “inner” curves switch positions, take
the absolute value of the difference:

The area A between two polar curves r = r1(θ) and r = r2(θ) for α≤ θ ≤β is:

A =
∫β

α

1
2

∣∣r2
1 − r2

2

∣∣ dθ (8.2)

Example 8.6

θ =
π
6

θ
=

π 3

y

x

r = 1+cosθ

O

r = 1−cosθ

Find the area between r = 1+cos θ and r = 1−cos θ for π
6 ≤ θ ≤ π

3 .

Solution: Let r1(θ) = 1+ cos θ and r2(θ) = 1− cos θ. Since r1(θ) > r2(θ) for
π
6 ≤ θ ≤ π

3 , the area A of the region (shown in the figure on the right) is

A =
∫π/3

π/6

1
2

∣∣r2
1 − r2

2

∣∣ dθ =
∫π/3

π/6

1
2 ((1+cos θ)2 − (1−cos θ)2) dθ

=
∫π/3

π/6
2 cos θ dθ = 2 sin θ

∣∣∣∣
π/3

π/6
= 2

(p
3

2
− 1

2

)
=

p
3 − 1

y

x

Figure 8.1.3

Monte Carlo integration is a technique for approxi-
mating the area of a region by taking a large number of
random points in a rectangle that encloses the region (see
Figure 8.1.3). The idea is simple:

# of points in the region
# of points in the rectangle

≈ area of the region
area of the rectangle

For example, if 20% of the random points in the rectangle
fall inside the region, then—by randomness—you would
expect the area of the region to be about 20% of the area of
the rectangle. The more random points you take, the better the approximation. Since
the area of the rectangle is known, as well as the number of random points inside the
region and the rectangle, the area of the region is easy to approximate.
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Example 8.7

y= ex2y

1

2

3

x
0 1 2 3

x2 + y2 = 9

y= 2cos x2

Use Monte Carlo integration to approximate the area of the region
in the first quadrant above the curves y = ex2

and y = 2 cos x2, and
inside the circle x2 + y2 = 9.

Solution: The region is the shaded area shown in the figure on the
right, enclosed in a rectangle of width 2 and height 3. The area of the
rectangle is 6, and a point (x, y) in the rectangle is inside the region
if only if the following conditions are met:

y > ex2
and y > 2 cos x2 and x2 + y2 < 9

Notice that these conditions are all in the form of inequalities. The
Monte Carlo integration is then simple to perform in Octave, using 10 million random points:

octave> N = 1e7;

octave> x = 2*rand(1,N);

octave> y = 3*rand(1,N);

octave> 6*(sum(y > exp(x.^2) & y > 2*cos(x.^2) & x.^2 + y.^2 < 9))/N

ans = 0.94612

The actual value—accurate to 5 decimal places—is 0.94606.
The rand(1,N) command returns an array of N random numbers between 0 and 1. So the statement

x = 2*rand(1,N) stores N random numbers between 0 and 2 in an array for the x-coordinates, and the
statement y = 3*rand(1,N) stores N random numbers between 0 and 3 in an array for the y-coordinates.
The statement y > exp(x.^2) returns a value of 1 if the condition y > ex2

is met, 0 otherwise. Similarly
for the statements y > 2*cos(x.^2) and x.^2 + y.^2 < 9. Joining those three statements with & sym-
bols returns a value of 1 if all three conditions are met, 0 otherwise. The sum command thus counts how
many of the N points are inside the region. Dividing that count by N gives the ratio of points inside the
region, then multiplying by 6 (the area of the rectangle) gives the approximate area of the region.

Note that the size of the rectangle can affect the approximation—generally the larger the rectangle
the more points must be used. Note also in this example that finding the area by using definite integrals
would require numerical integration methods, since f (x) = ex2

and f (x) = 2 cos x2 cannot be integrated
in a closed form. In fact, even finding the points of intersection of the three curves—in order to split the
integrals—would require a numerical root-finding method (e.g. Newton’s method).

Exercises

A
For Exercises 1-6, find the area of the region bounded by the given curves.

1. y = x2 and y= 2x+3 2. x =−y2 +2y and x = 0 3. y = x2 −1 and y= x3 −1

4. y = x4 and y= x 5. x = y2 and x = y+2 6. y = 4−4x2 and y= 1− x2

7. Find the area between y= 4x− x2 and y = x over [0,4].

8. Find the area between y= cosh x and y= sinh x over [0,∞).

9. Find the area of the region defined by the inequalities 0 ≤ x ≤ y− x ≤ 1− y ≤ 1.
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10. Find the area between r = 1+cos θ and r = 2+2cos θ.

11. Find the area between r = 1+cos θ and r = 2+cos θ.

B

x2− y2 = 1
y

2

x
1 2

x2+ y2 = 4

O

P

12. Find the area of the region in the first quadrant between the unit
hyperbola x2 − y2 = 1 and the circle x2 + y2 = 4 (i.e. the shaded region
shown in the figure on the right) in two ways:

(a) Integration using formula (8.1).

(b) Draw a line segment from the origin O to the point of intersection
P on the hyperbola, then use the areas of the resulting circular
sector and hyperbolic sector, without resorting to integration.
Does your answer agree with part (a)? Explain.

13. Find the area common to the four circles of radius 5 shown in Figure 8.1.4. (Hint: Use symmetry.)

5

5

5

5

Figure 8.1.4 Exercise 13

y=mx+b

y = ax2A

(a) Area A

B

C

D

T

y= mx+b

y= ax2

(b) Area T

Figure 8.1.5 Exercise 14

14. Let A be the area of the region bounded by the parabola y = ax2 and the line y = mx+ b, where a,
m, and b are positive constants (see Figure 8.1.5(a)). Let T be the area of the triangle △BCD, where
B and C are where the line intersects the parabola, and the point D on the parabola has the same
x-coordinate as the midpoint of the line segment BC (see Figure 8.1.5(b)). Show that A = 4

3 T.

15. In Example 8.7 the region was enclosed in the rectangle R = { (x, y) : 0 ≤ x ≤ 2 , 0 ≤ y ≤ 3 }. Use
Monte Carlo integration to approximate the area of the region again, using a different enclosing
rectangle R:

(a) R = { (x, y) : 0≤ x ≤ 2 , 1≤ y≤ 3 }

(b) R = { (x, y) : 0≤ x ≤ 3 , 0≤ y≤ 3 }

Are the results significantly different than before?

16. Approximate the area of the region bounded by y= x2 and y = cos x in two different ways:

(a) Use Monte Carlo integration with 10 million points.

(b) Use a numerical root-finding method to find the points of intersection of the curves, then use
those points in a numerical integration method to find the area.

C

17. A dog is chained to a fixed point at the circular base of a cylindrical silo. The silo’s radius is 50 ft
and the chain can wrap exactly halfway around the silo. How much total area can the dog roam, not
counting the area inside the silo?
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8.2 Average Value of a Function

planet

d
✸

Sun

Figure 8.2.1

According to Kepler’s laws of planetary motion, a planet
revolving around the Sun follows an elliptical orbit, with
the Sun at one focus of the ellipse, as in Figure 8.2.1. The
distance d between the planet and the Sun varies over the
ellipse, reaching a minimum distance and a maximum dis-
tance (by the Extreme Value Theorem). How would you find
the average distance between the planet and the Sun over
one complete orbit? The idea is to generalize the usual notion of an average of num-
bers.

Recall that for n numbers x1, x2, . . . , xn the average, denoted by x̄, is simply the sum
of the numbers divided by how many numbers there are, namely

x̄ = x1 + x2 + ·· · + xn

n
.

In statistics x̄ is called the mean of x1, x2, . . . , xn. This definition makes sense for a
finite set of numbers, but in the case of a planet revolving around the Sun, there are an
uncountably infinite number of distances between the planet and the Sun, making the
above definition impossible to use. A way of taking a sum over an infinite continuum
of values is needed instead. Such a method has already been encountered: the definite
integral, which is merely a sum of a continuum of infinitesimal quantities.

f (x0)

f (x1)

f (x2)
f (xn−1)

f (xn)

y

x
a= x0 x1 x2 . . . xn−1 xn = b

. . .

Figure 8.2.2 ∆xi = xi − xi−1 = (b−a)/n

To motivate the definition of the average value
of a function f over a closed interval [a, b], de-
noted by 〈 f 〉, consider a partition

P = {a= x0 < x1 < x2 < ·· · < xn−1 < xn = b}

that divides [a, b] into n subintervals [xi−1, xi]
of equal length ∆xi = xi − xi−1 = (b−a)/n, as in
Figure 8.2.2. The n function values f (x1), f (x2),
. . . , f (xn) constitute only a finite subset of all
the function values f (x) over [a, b], so their av-
erage would be an approximation of the true function average 〈 f 〉, namely:

〈 f 〉 ≈ f (x1) + f (x2) + ·· · + f (xn)
n

=
n∑

i=1

f (xi)
n

By properties of summations, divide the entire sum by the constant b−a and multiply
each term in the sum by b−a to get:
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〈 f 〉 ≈ 1
b−a

n∑

i=1
f (xi) ·

b−a

n
= 1

b−a

n∑

i=1
f (xi)∆xi

Note that the last summation on the right is just a Riemann sum for the definite in-
tegral

∫b
a f (x) dx, with the points x∗

i
chosen to be the right endpoints of the intervals

[xi−1, xi] for i = 1 to n. Thus, taking the limit of that sum as n →∞ (which means in-
cluding more and more function values in the average) yields the following definition:

The average value 〈 f 〉 of a function f over a closed interval [a, b] is:1

〈 f 〉 = 1
b−a

∫b

a
f (x) dx (8.3)

Example 8.8

Find the average value of f (x)= x2 over [0,1].

Solution: By definition, with a= 0 and b = 1,

〈 f 〉 = 1
1−0

∫1

0
f (x) dx =

∫1

0
x2 dx = x3

3

∣∣∣∣
1

0
= 13

3
− 03

3
= 1

3

Note that this says that if you took all the numbers between 0 and 1 and squared them, then the average
of those squares would be 1/3.

Example 8.9

Find the average value of f (x)= x2 over [−1,1].

Solution: By definition, with a=−1 and b = 1,

〈 f 〉 = 1
1− (−1)

∫1

−1
f (x) dx = 1

2

∫1

−1
x2 dx = x3

6

∣∣∣∣
1

−1
= 13

6
− (−1)3

6
= 1

3

Note that this is the same as the average over [0,1], as shown in the previous example. This should
make sense, since the function f (x)= x2 is symmetric about the y-axis, so the values of f (x) from [−1,0]
are the same as those from [0,1]. The values from [−1,1] just duplicate the values from [0,1] and hence
do not change the average.

Example 8.10

Find the average value of f (x)= sin x over [0,π].

Solution: By definition, with a= 0 and b = π,

〈 f 〉 = 1
π−0

∫π

0
f (x) dx = 1

π

∫π

0
sin x dx = − 1

π
cos x

∣∣∣∣
π

0
= − 1

π
(cos π − cos 0) = − 1

π
(−1−1) = 2

π

1In some statistics or mathematics texts you might see the notation f̄ for the average value.
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Example 8.11

x

y

0 5−5

3

−3

(x, y)

(4,0)

d

Figure 8.2.3 x2

25 + y2

9 = 1

Find the average distance from the ellipse x2

25+
y2

9 = 1 to the point
(4,0).

Solution: Let d represent the distance from any point (x, y) on
the ellipse to the point (4,0), as in Figure 8.2.3. If (x, y) is on

the ellipse x2

25 + y2

9 = 1 then y2 = 9(1− x2

25 )= 9
25 (25− x2). So by the

distance formula, d is given by

d2 = (x−4)2 + (y−0)2 = (x−4)2 + y2

= (x−4)2 + 9
25

(25− x2)

= 25(x−4)2 + 9(25− x)2

25
= 25x2 − 200x + 400 + 225 − 9x2

25

= 16x2 − 200x + 625
25

d2 = (4x−25)2

25
, and so taking square roots gives

d = ± 4x−25
5

= −4x−25
5

= 25−4x

5

for −5 ≤ x ≤ 5, since d = (4x−25)/5 < 0 on [−5,5] and the distance cannot be negative. Note that by
symmetry of the ellipse about the x-axis, only the upper half of the ellipse is needed for the average
distance, since the lower half just duplicates the distances. Hence, the average distance is

〈d〉 = 1
5− (−5)

∫5

−5

25−4x

5
dx = 1

50
(25x−2x2)

∣∣∣∣
5

−5
= 1

50
(125−50 − (−125−50)) = 5 .

Notice that the point (4,0) is a focus of the ellipse x2

25 + y2

9 = 1 (why?), which as it turns out makes the
calculation of the average distance fairly simple.

What if you wanted the average value of a function f that is not easily integrable?
One alternative to numerical integration techniques is the Monte Carlo method.
The idea behind it is simple: go back to the usual definition of an average, by taking
a large number N of random numbers x1, x2, . . . , xN in [a, b] and then using the
approximation

〈 f 〉 ≈ f (x1) + f (x2) + ·· · + f (xN )
N

.

This might seem like taking a step backward from calculus, and it is, but it is sur-
prisingly useful, as well as simple to implement with a computer. In addition, it can
be shown that as the number of random points in [a, b] increases, the approximations
converge to the actual average.
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Example 8.12

The Monte Carlo method is easy to implement in Octave/MATLAB. Typically only a “one-liner” is
needed, owing to Octave’s vectorization—i.e. the ability to perform mathematical operations on entire
arrays of objects all at once.

For example, recall from Example 8.8 that the average value of f (x)= x2 over [0,1] is 1/3 = 0.33333 . . . .
Approximate the average value using an array of 100 million (108) random numbers in [0,1]:

octave> mean(rand(1,1e8).^2)

ans = 0.3333292094741531

The dot in the rand(1,1e8).^2 command applies the squaring operation (^2) to each of the 108 random
numbers in the array returned by the rand(1,1e8) command. The aggregate mean function then calcu-
lates the array’s mean. Trigonometric, exponential and other functions can be applied to arrays, with
the function evaluating each array element individually. In general the command (b−a).*rand(1,N)+a

will return an array of N random numbers in the interval (a,b).

For example, the function f (x) = sin(x2) cannot be integrated in a closed form, but its average value
over [π,2π] can be approximated easily in Octave (actual average = -0.04154374531416104):

octave> mean(sin((pi.*rand(1,1e8)+pi).^2))

ans = -0.04153426177596753

Exercises

A
For Exercises 1-9, find the average value of the function f (x) over the given interval.

1. f (x)= 1, over [0,3] 2. f (x)= x, over [0,1] 3. f (x)= x2, over [0,2]

4. f (x)= x3, over [0,2] 5. f (x)= sin 2x, over [0,π/2] 6. f (x)= ex, over [−1,4]

7. f (x)= x3, over [−1,1] 8. f (x)= sin x, over [−π/2,π/2] 9. f (x)= 1
x

, over [1,3]

10. Electrical signals are commonly represented by a periodic waveform x(t), which is a function of
time t and has period T (i.e. T is the smallest positive number such that x(t+T)= x(t) for all t). The
average power of the waveform is defined as the average value of its square over a single period:

〈
x2(t)

〉
= 1

T

∫T

0
x2(t) dt .

(a) Find the average power of the waveform x(t) = A cos(ωt+φ), where A > 0 and ω> 0 and φ are all
constants.

(b) The root mean square of a waveform, abbreviated as rms, is the square root of the average
power. Calculate the rms of the waveform from part (a). Write your answer in decimal form as
a percentage of the amplitude A.
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E

R

s C11. An electric circuit with a supplied voltage (electromotive force)
E, a capacitor with capacitance C, and a resistor with resistance
R, is shown in the picture on the right. When a switch s in the
circuit is opened at time t = 0 the current I through the circuit
begins to decrease exponentially as a function of time t (mea-
sured in seconds after the switch is opened), given by

I = E

R
e−t/RC

for t≥ 0.

(a) Sketch a rough graph of I as a function of t.

(b) Note that at time t= 0 the current is I = E
R

(measured in amperes), which is the familiar formula
from Ohm’s Law. That is the peak value of I. What is the current I at time t= 5RC? Write your
answer in decimal form as a percentage of the peak current E

R
(e.g. 0.42 E

R
, which would be 42%

of the peak current).

(c) Find the average current in the circuit over the time interval [0,5RC]. Write your answer in
decimal form as a percentage of the peak current.

12. A spring with spring constant k and damping constant ν connects two point particles with mass m

in a gravitational wave detector. A gravitational wave passes through the detector at time t= 0 and
induces oscillation in the spring, with a period of 2π/Ω and energy E at time t≥ 0 given by

E(t) = 1
4

mR2 (
Ω

2 sin2 (Ωt+φ) + ω2
0 cos2 (Ωt+φ)

)
,

where ω2
0 = 2k/m, φ= tan−1 (2νΩ/(m(ω2

0 −Ω
2)), and R is a constant.

(a) Show that the average energy 〈E〉 over one period [0,2π/Ω] of oscillation is

〈E〉 = 1
8

mR2 (ω2
0 + Ω

2) .

(b) Suppose a large number of identical detectors of this type are uniformly distributed in a planar
array at a density of σ detectors per unit area. The energy Eσ(t) imparted to each detector at
time t≥ 0 by a gravitational wave is

Eσ(t) = νΩ2R2 sin2 (Ωt+φ) .

Show that the average energy 〈Eσ〉 over one period [0,2π/Ω] of oscillation is

〈Eσ〉 = 1
2
νΩ2R2 .

B

13. For the ellipse x2

a2 + y2

b2 = 1, with a> b > 0, the foci are the points (c,0) and (−c,0), where c=
p

a2 −b2.
Find the average distance from the ellipse to either of its foci in terms of the constants a, b, and c.

14. Write a computer program to use the Monte Carlo method with 1 million random points to approx-

imate the average distance from the ellipse x2

25 + y2

9 = 1 to the point (0,0). Use symmetry to choose
the smallest interval for the points. Could you have used formula (8.3) instead? Explain.
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8.3 Arc Length and Curvature

Just like the area of a plane region can be found using calculus, so too can the length
of a plane curve. Along the way the mystery mentioned in a footnote in Chapter 1
will finally be solved: what is the length of the hypotenuse of a right triangle with
infinitesimal sides?

For a function y = f (x) denote by s the length of the piece of that curve over an
interval [a, b], as in Figure 8.3.1 (a). Call s the curve’s arc length over [a, b].

y

x
a b

s

y= f (x)

(a) Arc length s

dx

dy
ds

(b) Infinitesimal triangle

1

dy

dx

ds
dx

(c) Noninfinitesimal triangle

Figure 8.3.1 Arc length

By the Microstraightness Property, for a≤ x< b the curve is a straight line of length
ds over the infinitesimal interval [x, x+dx], as in Figure 8.3.1 (b), where ds > 0 is the
infinitesimal change in s over that interval. Notice that you cannot simply apply the
Pythagorean Theorem here, since that would make ds =

√
(dx)2 + (dy)2 =

p
0+0 = 0,

which is false. The trick is to divide all sides of this infinitesimal right triangle by
dx, which yields the similar—and noninfinitesimal—right triangle shown in Figure
8.3.1(c). The Pythagorean Theorem can then be applied to that triangle:

ds

dx
=

√

12+
(

dy

dx

)2

⇒ ds =

√

1+
(

dy

dx

)2

dx

Summing up those infinitesimal lengths ds then yields the arc length s:

The arc length s of a curve y= f (x) over [a, b] is:

s =
∫b

a
ds =

∫b

a

√

1+
(

dy

dx

)2

dx (8.4)

That such a formula exists is of course good news, but as you have probably guessed,
the integral cannot be evaluated in a closed form except for a few functions.2 In most
cases numerical integration methods will be required.

2This will be the last “good news/bad news” scenario in this book. That’s the good news.
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Example 8.13

y

x
0 1

y= cosh x

s1

Find the arc length of the curve y= cosh x over [0,1].

Solution: Since dy

dx
= sinh x, then the arc length s is:

s =
∫1

0

√

1+
(

dy

dx

)2

dx =
∫1

0

√
1+sinh2 x dx

=
∫1

0
cosh x dx = sinh x

∣∣∣∣
1

0
= sinh 1 − sinh 0 = sinh 1 ≈ 1.1752

Example 8.14

y

x
0−L/2 L/2

y= acosh x
a

s
h

a

A catenary—a hanging uniform cable whose ends are fastened at the same
height h a distance L apart—has its lowest point—the apex—a distance
a > 0 above the ground. It can be shown3 that with the apex at (0,a), the
equation of the catenary is y= a cosh x

a
. Find the arc length of the catenary.

Solution: The figure on the right shows the catenary. By symmetry the
total arc length s is twice the arc length over [0,L/2]:

s = 2
∫L/2

0

√

1+
(

dy

dx

)2

dx = 2
∫L/2

0

√
1+sinh2 x

a
dx

= 2
∫L/2

0
cosh x

a
dx = 2a sinh x

a

∣∣∣∣
L/2

0
= 2a sinh L

2a

Elliptic Integrals

x

y

x2

a2 + y2

b2 = 1

−a a

b

−b

Suppose you tried to find the circumference s of the ellipse
x2

a2 + y2

b2 = 1, with a > b > 0, which has eccentricity e = c
a

,

where c =
p

a2 −b2. By symmetry, s is quadruple the arc

length of the upper hemisphere y= b

√
1− x2

a2 over [0,a]:

s = 4
∫a

0

√

1+
(

dy

dx

)2

dx = 4
∫a

0

√

1+
(
− bx

a
p

a2 − x2

)2

dx

= 4
∫a

0

√
a2(a2 − x2)+b2x2

a2(a2 − x2)
dx

= 4
a

∫a

0

√
a4 − (a2 −b2)x2

a2 − x2 dx

Now try the trigonometric substitution x= asin θ, dx= acos θ dθ:
3See pp.162-163 in SMITH, C.E., Applied Mechanics: Statics, New York: John Wiley & Sons, Inc., 1976.
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s = 4
a

∫π/2

0

√
a4 − (a2 −b2)a2 sin2θ

a2 −a2 sin2θ
a cos θ dθ

= 4
∫π/2

0

√
a2 − (a2 −b2) sin2θ

✘✘✘✘✘
1−sin2θ

✘✘✘cos θ dθ

= 4a

∫π/2

0

√

1− a2 −b2

a2 sin2θ dθ

s = 4a

∫π/2

0

√
1− e2 sin2θ dθ (since e2 = c2

a2 = a2 −b2

a2 )

The last integral is a special case of the elliptic integral of the second kind

E(k,φ) =
∫φ

0

√
1−k2 sin2θ dθ ,

with k = e and φ= π
2 . This special case is denoted by E(k)= E(k, π2 ). Thus, the circum-

ference s of the ellipse is:
s = 4aE(e) = 4aE(e, π2 )

The integral E(k) for 0 < k < 1 cannot be evaluated in a closed form. There are ta-
bles4 for certain values of k between 0 and 1, but a number of scientific computing
applications have built-in functions to evaluate elliptic integrals.

For example, suppose you want to find the circumference s of the ellipse x2

25 +
y2

9 = 1.

Then a = 5, b = 3, c =
p

a2 −b2 = 4, and e = c
a
= 0.8, so s = 4aE(e) = 20E(0.8). In the

Python-based open-source mathematical software system Sage5, the elliptic integral
E(k,φ) is provided by the function elliptic_e(φ,k2). Use k = e = 0.8 and φ= π

2 :

In [1]: 20*elliptic_e(pi/2,0.8^2)

Out[1]: 25.5269988633981

The circumference is thus approximately 25.5269988633981. In Octave/MATLAB the
function ellipke(e2) evaluates the elliptic integral E(e), with one extra step:

MATLAB>> [K,E] = ellipke(0.8^2);

MATLAB>> 20*E

ans = 25.526998863398131

4See p.609 in ABRAMOWITZ, M. AND I.A. STEGUN, Handbook of Mathematical Functions, New York: Dover
Publications, Inc., 1965.

5Available at https://www.sagemath.org

https://www.sagemath.org
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The parametric formula for arc length can be derived by dividing all sides of the
infinitesimal right triangle in Figure 8.3.1(b) by dt, then applying the Pythagorean
Theorem to the resulting noninfinitesimal right triangle:

ds

dt
=

√(
dx

dt

)2

+
(

dy

dt

)2

⇒ ds =

√(
dx

dt

)2

+
(

dy

dt

)2

dt

Sum up those infinitesimal lengths ds to obtain the arc length s:

The arc length s of a parametric curve x = x(t), y= y(t), a≤ t ≤ b is:

s =
∫b

a
ds =

∫b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt (8.5)

Example 8.15

y

x
10

1 x= cos3 t

y= sin3 t

Find the arc length of the parametric curve x = cos3 t, y= sin3 t, 0≤ t≤ π/2.

Solution: Since dx
dt

=−3cos2 t sin t and dy

dt
= 3sin2 t cos t, then the arc length s is:

s =
∫π/2

0

√(
dx

dt

)2

+
(

dy

dt

)2

dt =
∫π/2

0

√
(−3 cos2 t sin t)2 + (3 sin2 t cos t)2 dt

=
∫π/2

0

√
9 cos4 t sin2 t + 9 sin4 t cos2 t dt =

∫π/2

0
3

√
sin2 t cos2 t (cos2 t + sin2 t) dt

=
∫π/2

0
3 sin t cos t dt (since cos t≥ 0 and sin t≥ 0 for 0≤ t≤ π/2)

= 3
2

sin2 t

∣∣∣∣
π/2

0
= 3

2

The polar formula for arc length can be considered a special case of the parametric
formula. A polar curve r = r(θ) for α ≤ θ ≤ β has Cartesian coordinates x = r(θ) cos θ

and y= r(θ) sin θ, so that

dx

dθ
= dr

dθ
cos θ − r sin θ and

dy

dθ
= dr

dθ
sin θ + r cos θ .

It is left as an exercise to show that putting these derivatives into formula (8.5)—using
the parameter θ instead of t—yields the polar arc length formula:

The arc length s of a polar curve r = r(θ) for α≤ θ≤β is:

s =
∫β

α
ds =

∫β

α

√

r2 +
(

dr

dθ

)2

dθ (8.6)
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Example 8.16

Prove that the circumference of a circle of radius R is 2πR.

Solution: Use the polar curve r = R for 0≤ θ ≤ 2π. Then dr
dθ

= 0, so:

s =
∫2π

0

√

r2 +
(

dr

dθ

)2

dθ =
∫2π

0

√
R2 +02 dθ =

∫2π

0
R dθ = Rθ

∣∣∣∣
2π

0
= 2πR X

Curvature

y

x

10

1

y= x2

Figure 8.3.2

In Chapter 4 you saw one simple measure of curvature:
the second derivative. From Figure 8.3.2 it is clear that the
parabola y = x2 is less curved at the point (1,1) than at the

origin, yet d2 y

dx2 = 2 at each point. So the second derivative—

the rate of change of the slopes dy

dx
of the tangent lines—does

not fully capture the curvature of a curve; more information
is needed. It turns out that the rate of change of the angles of
the tangent lines is the key to curvature.

First consider a curve with arc length s between two points A and B on the curve.
Let α be the angle between the tangent lines to the curve at A and B, as in Figure
8.3.3(a).

α

A

B

s

(a) Small curvature

α
A

B

s

(b) Larger curvature and α

Figure 8.3.3 Curvature between A and B: same s, different α

For the same arc length s but larger angle α as in Figure 8.3.3(b), the curvature ap-
pears greater. This suggests that curvature should measure α relative to s:

The average curvature κ̄AB of a curve between two points A and B on the curve
is

κ̄AB = α

s
(8.7)

where s is the arc length of the curve between A and B, and α is the angle between
the tangent lines to the curve at A and B, called the angle of contingence.
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Similar to how the instantaneous rate of change of a function at a point is the aver-
age rate of change over an infinitesimal interval, the curvature of a curve at a point
can be defined as the average curvature over an infinitesimal length of the curve:

The curvature κ of a curve at a point A on the curve is

κ = dφ

ds
(8.8)

where s is the arc length function of the curve and φ is the angle that the tangent
line to the curve at A makes with the positive x-axis.

The idea is that moving an infinitesimal length ds along the curve induces an infinites-
imal difference dφ in the angles of the tangent lines. Roughly, as B moves toward A:

lim
B→A

κ̄AB = lim
B→A

α

s
= dφ

ds
= κ

Curvature can be viewed as the instantaneous rate of change of direction of a curve,
but with respect to arc length (i.e. distance traveled) instead of time.

For a curve y= f (x), recall from formula (3.2) in Section 3.1 that φ=φ(x) = tan−1 f ′(x)
at each point (x, f (x)) on the curve. Thus, by the Chain Rule:

κ = dφ

ds
= d (tan−1 f ′(x))

ds
=

f ′′(x) dx

1+ ( f ′(x))2

ds

So since ds=
√

1+ ( f ′(x))2 dx by formula (8.4), then:

The curvature κ of a curve y= f (x) is:

κ = f ′′(x)

(1 + ( f ′(x))2)3/2
(8.9)

The above formula makes κ a function of x. Note also that κ= 0 for a straight line, and
that the curve y= f (x) is concave up if κ> 0 and concave down if κ< 0.

Example 8.17

Find the curvature of the curve y = x2 for x = 0 and x = 1.

Solution: For f (x)= x2, f ′(x)= 2x and f ′′(x)= 2, so for any x the curvature κ= κ(x) is:

κ = f ′′(x)

(1+ ( f ′(x))2)3/2
= 2

(1+4x2)3/2

In particular, κ(0)= 2 and κ(1)= 2
53/2 ≈ 0.1789. So y = x2 has more curvature at the origin than at (1,1).
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For a parametric curve x = x(t), y = y(t), the curvature κ will be a function of the
parameter t. Since dy

dx
= y′(t)

x′(t) by formula (7.14) in Section 7.6, then by formula (7.15):

d2 y

dx2 =

d

dt

(
dy

dx

)

dx

dt

=

d

dt

(
y′(t)
x′(t)

)

x′(t)
= x′(t) y′′(t) − y′(t) x′′(t)

(x′(t))3

So by formula (8.9):

κ =

d2 y

dx2

(
1+

(
dy

dx

)2)3/2
=

x′(t) y′′(t) − y′(t) x′′(t)
(x′(t))3

(
1 +

(
y′(t)
x′(t)

)2
)3/2

= x′(t) y′′(t) − y′(t) x′′(t)

(
(x′(t))2

)3/2

(
1 +

(
y′(t)
x′(t)

)2
)3/2

Simplify the denominator to obtain the parametric curvature formula:

The curvature κ of a parametric curve x= x(t), y= y(t) is:

κ = x′(t) y′′(t) − y′(t) x′′(t)
(
(x′(t))2 + (y′(t))2

)3/2
(8.10)

The derivation of the curvature formula in polar coordinates is left as an exercise:

The curvature κ of a polar curve r = r(θ) is:

κ = (r(θ))2 + 2(r′(θ))2 − r(θ) r′′(θ)
(
(r(θ))2 + (r′(θ))2

)3/2
(8.11)

Example 8.18

Find the curvature of a circle of radius R.

Solution: Use the polar curve r = r(θ) = R, so that r′(θ) = 0= r′′(θ):

κ = (r(θ))2 + 2(r′(θ))2 − r(θ) r′′(θ)
(
(r(θ))2 + (r′(θ))2

)3/2
= R2 + 2 ·02 − R ·0

(R2 + 02)3/2
= R2

R3
= 1

R

A circle thus has constant curvature, as you would expect by symmetry. It turns out that any planar
curve with constant curvature is either a line or part of a circle.6

6See pp.62-63 in O’NEILL, B., Elementary Differential Geometry, New York: Academic Press, Inc., 1966.
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Exercises
A
For Exercises 1-10, find the arc length of the given curve over the given interval.

1. y = x3/2 ; 1≤ x ≤ 4 2. y= x2 ; 0≤ x≤ 1 3. y = x2/3 ; 1≤ x ≤ 8

4. y = x2

4
− ln x

2
; 1≤ x ≤ 2 5. y= x4

4
+ 1

8x2
; 1≤ x ≤ 2 6. y = ln

ex +1
ex −1

; 1≤ x ≤ 2

7. x = et cos t, y= et sin t ; 0≤ θ ≤π 8. x = cos t + t sin t, y = sin t − t cos t ; 0≤ t≤π

9. polar curve r = 1+cos θ ; 0≤ θ ≤ 2π 10. polar curve r = eθ ; 0≤ θ ≤ 2

11. Find the arc length of the curve in Example 8.15 for 0≤ t≤ π.

12. Use formula (8.5) to find the circumference of the unit circle using two different parametrizations:

(a) x = cos t, y= sin t, 0≤ t≤ 2π (b) x = 1− t2

1+ t2 , y= 2t

1+ t2 , −∞< t<∞

For Exercises 13-18 find the curvature of the given curve at the indicated points.

13. y= sin x at x = 0 and x= π
2 14. y= ln x at x = 1 15. x2

a2 + y2

b2 = 1 at (a,0) and (0,b)

16. y= ex at x = 0 17. x2 − y2 = 1 at (1,0) 18. r = 1+cos θ at θ = 0

B

19. Prove formula (8.6). 20. Prove formula (8.11).

21. Let α and β be nonzero constants. Show that the arc length s of y =β sin x
α

over the interval [0,x0]
can be put in terms of the elliptic integral E(k,φ):

s =
√

α2 +β2 · E

(√
β2

α2 +β2 ,
x0

α

)

22. For −1< k < 1 and −1≤ x ≤ 1, define u(x) and K by

u(x) =
∫x

0

dt
p

1− t2
p

1−k2 t2
and K = u(1) =

∫1

0

dt
p

1− t2
p

1−k2 t2

so that all the square roots are defined and positive.

(a) Show that u is an increasing function of x and thus has an inverse function, call it x = sn u, with
domain [−K ,K] and range [−1,1].

(b) Define cn u=
p

1−sn2 u and dn u=
p

1−k2 sn2 u. Show that:

d

du
(sn u) = cn u dn u ,

d

du
(cn u) = −sn u dn u , and

d

du
(dn u) = −k2 sn u cn u

The functions sn u, cn u, and dn u are called the Jacobian elliptic functions.

(c) Suppose that sin φ= sn u. Show that E(k,φ) =
∫u

0
dn2 v dv.

23. The ends of a 50 ft long catenary are fastened 40 ft apart. Use a numerical method to find how
much the apex dips below the ends. (Hint: Solve for a in Example 8.14, then use symmetry.)
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8.4 Surfaces and Solids of Revolution

Long before calculus was invented the ancient Greeks (e.g. Archimedes) discovered
the formulas for the volume and surface area of familiar three-dimensional objects
such as the sphere.7 Volumes and surface areas of arbitrary solids and surfaces can
be found using multivariable calculus. However, single-variable calculus can be used
in the special case of the objects possessing symmetry about an axis, via methods that
involve revolving a curve or region in the xy-plane around an axis.

For example, revolve a curve y = f (x) ≥ 0 around the x-axis, for a ≤ x ≤ b. This
produces a surface of revolution in three dimensions, as in Figure 8.4.1(a).

y

x
a b

y = f (x)

(a) Revolve y= f (x) around x-axis

y

x
a x b

y= f (x)

(b) dS over [x,x+dx]

f (x) f (x+dx)

y

x

ds

dx

(c) Side view of frustrum

Figure 8.4.1 Surface of revolution over [a,b] with lateral surface area S

r2

r1

l

Figure 8.4.2

To find the total lateral surface area S, pick x in [a, b) then find
the infinitesimal surface area dS swept out over the infinitesimal
interval [x, x+ dx], as in Figure 8.4.1(b). By the Microstraight-
ness Property, the curve y = f (x) is a straight line segment of
length ds over that interval, so that the infinitesimal surface is a
frustrum—a right circular cone with the vertex chopped off by a
plane parallel to the base circle. From geometry8 you might re-
call the formula for the lateral surface area of the frustrum in Figure 8.4.2: π (r1+r2) l.
Use that formula with r1 = f (x), r2 = f (x+dx) = f (x)+dy, and l = ds =

√
1+ ( f ′(x))2 dx

(by formula (8.4) in Section 8.3) as in Figure 8.4.1(c), so that dS is

dS = π ( f (x)+ ( f (x)+dy))
√

1+ ( f ′(x))2 dx

= 2π f (x)
√

1+ ( f ′(x))2 dx + π

√
1+ ( f ′(x))2 dydx

= 2π f (x)
√

1+ ( f ′(x))2 dx + 0

since dydx= f ′(x) (dx)2 = 0. The surface area S is then the sum of all the areas dS:
7See Propositions 33 and 34 in On the Sphere and Cylinder, Book I, appearing in HEATH, T.L., The Works of

Archimedes, Mineola, NY: Dover Publications, Inc., 2002. This work is also available at https://archive.org
8See pp.136-137 in WELCHONS A.M. AND W.R. KRICKENBERGER, Solid Geometry, Boston: Ginn & Co., 1936.

https://archive.org
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The surface area S of the surface of revolution obtained by revolving the curve
y= f (x)≥ 0 around the x-axis for a≤ x≤ b is:

S =
∫b

a
dS =

∫b

a
2π f (x)

√
1+ ( f ′(x))2 dx (8.12)

For a general curve y= f (x), possibly negative in [a, b], the surface area S is:

S =
∫b

a
dS =

∫b

a
2π |y| ds =

∫b

a
2π

∣∣ f (x)
∣∣
√

1+ ( f ′(x))2 dx (8.13)

y

x
a b

y =
∣∣ f (x)

∣∣

y = f (x)

Note that formula (8.13) holds by symmetry and formula (8.12).
A curve y= f (x)< 0 and the curve y=

∣∣ f (x)
∣∣=− f (x) are sym-

metric with respect to the x-axis, as in the figure on the right.
Thus, both curves sweep out the same surface of revolution
when revolved around the x-axis. This means formula (8.13)
also holds if y = f (x) changes sign in [a, b]: similar to the
area between two curves, you would split the integral over
different subintervals depending on the sign.

Example 8.19

Show that the surface area of a sphere of radius r is 4πr2.

y

x−r r

y=
p

r2 − x2

Solution: Use the circle x2+y2 = r2. The upper half of that circle is the
curve y = f (x) =

p
r2 − x2 over the interval [−r,r], as in the figure on

the right. Revolving that curve around the x-axis produces a sphere
of radius r, whose surface area S is:

S =
∫r

−r
2π f (x)

√
1+ ( f ′(x))2 dx

=
∫r

−r
2π

√
r2 − x2

√

1+
( −x
p

r2 − x2

)2

dx

=
∫r

−r
2π✘✘✘✘√

r2 − x2

√
r2

✘✘✘
r2 − x2 dx

= 2πrx

∣∣∣∣
r

−r

= 4πr2
X

A similar derivation using a frustrum yields the surface area S of the surface of
revolution obtained by revolving a curve y= f (x) around the y-axis, for 0≤ a≤ x≤ b:

S =
∫b

a
dS =

∫b

a
2π |x| ds =

∫b

a
2πx

√
1+ ( f ′(x))2 dx (8.14)
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Now suppose you revolve the region between a curve y = f (x) ≥ 0 and the x-axis
around the x-axis, for a ≤ x ≤ b (see Figure 8.4.3(a)). This produces a solid of revo-

lution in three dimensions, as in Figure 8.4.3(b). Notice that this solid consists of the
surface of revolution as before along with its interior.

y

x
a b

y= f (x)

(a) Revolve region around x-axis

y

x
a x b

y = f (x)

(b) Solid

f (x) f (x+dx)

y

x

ds

dx

dy

(c) Infinitesimal strip

Figure 8.4.3 Solid of revolution over [a,b] with volume area V

The goal is to find the volume V of this solid. The idea is to divide the solid into slices,
like a loaf of bread. First, the infinitesimal volume dV of the frustrum swept out by a
strip of infinitesimal width dx at x in [a, b)—shown in Figure 8.4.3(c)—is needed. By
the Microstraightness Property the curve y = f (x) is a straight line of length ds over
the interval [x, x+dx]. There is thus a right triangle at the top of the strip—unshaded
in Figure 8.4.3(c)—whose area A is zero: A = 1

2 (dy)(dx)= 1
2 f ′(x)(dx)2 = 0.

f (x)

dx

Figure 8.4.4

That triangle thus contributes no volume when revolved around the
x-axis: the volume dV swept out by that strip all comes from the
shaded rectangle of height f (x) and width dx. That rectangle sweeps
out a right circular cylinder of radius f (x) and height dx (see Figure
8.4.4). The volume of a right circular cylinder of radius r and height h

is defined as the area of the base circle times the height: πr2h. Hence,

dV = π ( f (x))2 dx .

The total volume V of the solid is then the sum of all those infinitesimal volumes dV :

The volume V of the solid of revolution obtained by revolving the region between
the curve y= f (x) and the x-axis around the x-axis for a≤ x≤ b is:

V =
∫b

a
dV =

∫b

a
π ( f (x))2 dx (8.15)

This method for finding the volume is called the disc method, since the cylinder of
volume dV resembles a disc. Think of the discs as being similar to infinitesimally thin
slices of a loaf of bread. Notice that absolute values are not needed in formula (8.15)
since f (x) is squared, so the formula holds even when f (x) is negative.
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Example 8.20

Show that the volume of a sphere of radius r is 4
3πr3.

y

x−r r

y=
p

r2 − x2

Solution: Use the circle x2 + y2 = r2. Revolve the region between the
upper half of the circle y = f (x) =

p
r2 − x2 and the x-axis around the

x-axis over the interval [−r,r], as in the figure on the right. The solid
of revolution swept out is a sphere of radius r, whose volume V is:

V =
∫r

−r
π ( f (x))2 dx =

∫r

−r
π (r2 − x2) dx = πr2x − 1

3
πx3

∣∣∣∣
r

−r

=
(
πr3 − 1

3
πr3

)
−

(
−πr3 + 1

3
πr3

)
= 4

3
πr3

X

Instead of memorizing formula (8.15), try to remember the more generic approach
of revolving an infinitesimal rectangular strip around an axis, which might not be the
x-axis. The idea is to find the radius r and height h—typically dx or dy—of the disc
swept out by that strip, so that the disc’s volume is dV =πr2h. Then integrate dV over
the appropriate interval to find the volume V of the entire solid.

Example 8.21

Suppose the region bounded by the curve y = x2 and the x-axis for 0 ≤ x ≤ 1 is revolved around the line
x = 1. Find the volume of the resulting solid of revolution.

x = 1y

x
0 x 1

y = x2

r
hx2 = y

1

Solution: The region is shaded in the figure on the right. Since the
region is revolved around a vertical axis, the disc method will use
discs with height dy, not dx. At a point x in [0,1] go up to the curve
y = x2 and draw a horizontal rectangular strip to the line x = 1, as
shown in the figure. Let h = dy and revolve that strip around the
line x = 1, producing a disc of radius r− 1− x and height h = dy.
Since y = x2 implies x =p

y, the volume dV of that disc is

dV = πr2h = π (1− x)2 dy = π (1−p
y)2 dy = π (1−2

p
y+ y) dy .

The volume V of the entire solid is then the sum of those volumes dV along the y-axis for 0 ≤ y≤ 1:

V =
∫1

0
dV =

∫1

0
π (1−2

p
y+ y) dy = π

(
y− 4

3
y3/2+ 1

2
y2

) ∣∣∣∣
1

0
= π

(
1− 4

3
+ 1

2

)
= π

6

y

x
a−a 0 b−b

y= f (x)

The shell method can be used for finding the vol-
ume of a solid with a “hole” in the middle, as in the
solid of revolution produced by revolving the shaded
region in the figure on the right around the y-axis. The
hole in the solid between x=−a and x= a is a result of
the gap between the y-axis and the region.
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To find the volume V of that solid, at a point x in [a, b) form an infinitesimal strip of
width dx from the x-axis up to the curve y= f (x), as in Figure 8.4.5(a).

y

x
0 a x b

y = f (x)

(a) Revolve region around y-axis

f (x) f (x+dx)

y

x

ds

dx

dy

(b) Infinitesimal strip

f (x)

x dx

(c) Cylindrical shell

Figure 8.4.5 Shell method

Just like the strip in the disc method, the right triangle at the top of this strip—as
in Figure 8.4.5(b)—has zero area and thus does not contribute to the volume dV of the
right circular cylindrical shell swept out by the strip, shown in Figure 8.4.5(c). The
volume of that shell is just the volume of the “outer” cylinder of radius x+ dx minus
the volume of the “inner” cylinder of radius x, both with height f (x):

dV = π (x+dx)2 f (x) − πx2 f (x)

= ✘✘✘✘✘
πx2 f (x) + 2πx f (x) dx + π✟✟✟✟✯0

(dx)2 f (x) − ✘✘✘✘✘
πx2 f (x)

= 2πx f (x) dx

The volume V of the entire solid is then the sum of those volumes dV , using an abso-
lute value to handle any sign for f (x):

The volume V of the solid of revolution obtained by revolving the region between
the curve y= f (x) and the x-axis around the y-axis for 0≤ a≤ x≤ b is:

V =
∫b

a
dV =

∫b

a
2πx

∣∣ f (x)
∣∣ dx (8.16)

Example 8.22

Suppose the region bounded by the curve y = x2 and the x-axis for 0 ≤ x ≤ 1 is revolved around the
y-axis. Find the volume of the resulting solid of revolution.

y

x
0 x 1

y= x21

Solution: The region is shaded in the figure on the right. The vertical strip at
x in [0,1) with infinitesimal width dx and height

∣∣ f (x)
∣∣ = f (x) is shown in the

figure. That strip produces the shell with volume dV in formula (8.16), so by the
shell method the volume V of the solid of revolution is:

V =
∫1

0
dV =

∫1

0
2πx

∣∣ f (x)
∣∣ dx =

∫1

0
2πx · x2 dx = π

2
x4

∣∣∣∣
1

0
= π

2
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The volume dV in formula (8.16) can be generalized to dV = 2πrhw, where r is the
distance from the axis of revolution to a generic vertical strip of infinitesimal width w

in the region, and h is the height of the strip.
Example 8.23

Suppose the region bounded by the curves y = x2 and y = x is revolved around the y-axis. Find the
volume of the resulting solid of revolution.

y

x
0 x 1

y= x

y= x2

1

Solution: The region is shaded in the figure on the right, along with a vertical
strip with infinitesimal width w = dx at the distance r = x from the y-axis in
the region and height h = x − x2. That strip produces the shell with volume
dV = 2πrhw = 2πx(x− x2)dx, so that the volume V of the solid of revolution is:

V =
∫1

0
dV =

∫1

0
2πx (x− x2) dx = 2π

3
x3 − π

2
x4

∣∣∣∣
1

0
= π

6

Exercises

A
For Exercises 1-3, find the surface area of the surface of revolution produced by revolving the given
curve around the x-axis for the given interval.

1. y =
p

4− x2 for 1 ≤ x ≤ 2 2. y= cosh x for 0≤ x ≤ 1 3. y = x3

6 + 1
2x

for 1≤ x ≤ 3

For Exercises 4-6, find the volume of the solid of revolution produced by revolving the region between
the given curve and the x-axis around the x-axis for the given interval.

4. y = x3 for 0≤ x ≤ 1 5. y= sin x for 0≤ x ≤π 6. y =p
x for 0≤ x ≤ 1

For Exercises 7-9, find the volume of the solid of revolution produced by revolving the region between
the given curve and the x-axis around the y-axis for the given interval.

7. y = sin(x2) for 0 ≤ x ≤p
π 8. y= sin x for 0≤ x ≤π 9. y = x2 − x3 for 0≤ x ≤ 1

10. Revolve the region in Example 8.23 around the line x = 1 and find the volume of the resulting solid.

11. Revolving the ellipse x2

a2 + y2

b2 = 1 around the x-axis produces an ellipsoid, for a > b > 0. Show that

the surface area of the ellipsoid is 2πb2 (
1+ a

eb
sin−1 e

)
, where e is the eccentricity of the ellipse.

12. Show that the volume inside the ellipsoid from Exercise 11 is 4
3 πab2.

13. Find the surface area and volume of a right circular cone of radius r and height h.

14. Formulas (8.13), (8.15) and (8.16) can be extended to include regions over infinite intervals—the
integrals in those formulas simply become improper integrals. Consider the region between the
curve y= 1

x
and the x-axis over the interval [1,∞). Revolve that region around the x-axis.

(a) Show that the surface area of the resulting surface of revolution is infinite.

(b) Show that the volume of the resulting solid of revolution is π.

15. For 0 < a < b, revolving the region inside the circle (x− b)2 + y2 = a2 around the y-axis produces a
donut-shaped solid of revolution called a torus. Show that the volume of the torus is 2π2a2b.

16. Use formula (8.14) and symmetry to show that the torus from Exercise 15 has surface area 4π2ab.
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8.5 Applications in Physics and Statistics

This chapter concludes with a few applications showing how some familiar discrete
sums can be replaced by integrals, which are essentially continuous sums.

Center of Gravity

Suppose a thin uniform rod has n > 1 masses m1, . . . , mn attached, with m1 and mn

at the ends. The center of gravity of the masses is the point where—due to the
Earth’s gravity—the rod would be balanced if a fulcrum were placed there (see Figure
8.5.1(a)). Imagine the rod as part of the x-axis and the weights as point masses—with
each mass mk at xk—and let the center of gravity be at x̄, as in Figure 8.5.1(b).

m1 m2 · · · mn−1 mn

(a) Rod balanced on fulcrum

x
x1 x2 x̄ xn−1 xn

m1 m2 · · · mn−1 mn

(b) Masses and x̄ on x-axis

Figure 8.5.1 Center of gravity x̄ for masses m1, . . . ,mn

The rod is balanced if the masses do not rotate the rod, i.e. the total torque is zero.
Torque is defined here as force times position relative to x̄. Each mass mk applies
a force mk g to the rod—where g is the (downward) acceleration due to the Earth’s
gravity—at position (xx − x̄) relative to x̄. The total torque is thus zero if

(m1 g) (x1− x̄) + (m2 g) (x2 − x̄) + ·· · + (mn g) (xn − x̄) = 0

so that solving for x̄ yields:

x̄ = m1 gx1 +·· ·+mn gxn

m1 g+·· ·+mn g
= m1x1 +·· ·+mnxn

m1 +·· ·+mn

=
∑n

k=1 mkxk∑n
k=1 mk

(8.17)

Each quantity mkxk is called the moment of the mass mk. Thus, x̄ is the sum of
the moments divided by the total mass. This idea can be extended to regions in the
xy-plane, using an integral of a continuum of moments instead of a finite sum. The
center of gravity of a planar region is defined as the point such that any force along
a line through that point produces no rotation of the region about that line.9 There
should thus be zero torque in both the x and y directions, so the idea is to apply formula
(8.17) in both directions to obtain the region’s center of gravity (x̄, ȳ).

9For a proof that such a point exists, see p.206 in BROWN, F.L., Engineering Mechanics, 2nd ed., New York: John
Wiley & Sons, Inc., 1942. Some texts use the terms “center of mass” or “centroid” instead of “center of gravity,” and
there are differences in the meanings. However, for the situation presented here, where the gravitational field is
assumed to have constant magnitude and direction throughout the region, they all mean the same thing.
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A region can be thought of as a lamina—a thin plate with uniform density. Take the
area of the region as its mass, which makes sense given the uniform density. For the
region between two curves y = f1(x) and y = f2(x) over [a, b], with f1(x) ≥ f2(x), take
a vertical slice of width dx at some x, as in Figure 8.5.2(a). By the same arguments
used in Section 8.4, all the area from that strip comes from the rectangle of height
f1(x)− f2(x) and width dx (see the shaded rectangle in Figure 8.5.2(b)).

y

x
0 a x b

y= f1(x)

y= f2(x)

(a) Region between y = f1(x) and y= f2(x)

f1(x)− f2(x)

y

x

ds

dx

dy

(x+ 1
2 dx, 1

2 ( f1(x)+ f2(x)))

(b) Infinitesimal strip over [x,x+dx]

Figure 8.5.2 Center of gravity of a region

By the assumption of uniform density, the center of gravity of that rectangle is
clearly its geometric center, whose coordinates are

(
x+ 1

2 dx, 1
2 ( f1(x)+ f2(x))

)
. The en-

tire mass of the strip can be treated as if it is concentrated at that point. The moment

mx of the strip about the x-axis is its mass times the position of its center of gravity
relative to the x-axis (i.e. its y coordinate):

mx = ( f1(x)− f2(x)) dx · (1
2 ( f1(x)+ f2(x))) = 1

2 (( f1(x))2 − ( f2(x))2) dx

Similarly the moment my of the strip about the y-axis is its mass times the x coordi-
nate of its center of gravity:

my = ( f1(x)− f2(x)) dx · (x+ 1
2 dx) = x ( f1(x)− f2(x)) dx + 1

2 ( f1(x)− f2(x)) (dx)2

= x ( f1(x)− f2(x)) dx

The moments Mx and My of the entire region about the x-axis and y-axis, respectively,
are defined as the sum of the respective moments mx and my of all strips over [a, b]:

Mx =
∫b

a
mx =

∫b

a

1
2 (( f1(x))2 − ( f2(x))2) dx and My =

∫b

a
my =

∫b

a
x ( f1(x)− f2(x)) dx

Note in formula (8.17) that the denominator is the sum of all the masses in the system.
For the region that total mass would simply be its area M:

M =
∫b

a
( f1(x)− f2(x)) dx

Dividing the moments Mx adn My by M yields the formula for the center of gravity:
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The center of gravity (x̄, ȳ) of the region between the curves y = f1(x) and y = f2(x)
over [a, b], with f1(x)≥ f2(x), is given by:

x̄ =
My

M
=

∫b

a
x ( f1(x)− f2(x)) dx

∫b

a
( f1(x)− f2(x)) dx

and ȳ = Mx

M
=

∫b

a

1
2 (( f1(x))2 − ( f2(x))2) dx

∫b

a
( f1(x)− f2(x)) dx

(8.18)

Example 8.24

Find the center of gravity of the region bounded by the curve y= x2 and the x-axis for 0≤ x ≤ 1.

y

x
0 x̄ 1

y= x21

ȳ

Solution: The region is shaded in the figure on the right. Using y = f1(x) = x2

and y= f2(x)= 0 in formula (8.18) yields

Mx =
∫1

0

1
2 ( f1(x))2 dx =

∫1

0

1
2 x4 dx = 1

10 x5
∣∣∣∣
1

0
= 1

10

My =
∫1

0
x f1(x) dx =

∫1

0
x3 dx = 1

4 x4
∣∣∣∣
1

0
= 1

4

M =
∫1

0
f1(x) dx =

∫1

0
x2 dx = 1

3 x3
∣∣∣∣
1

0
= 1

3

so that the center of gravity (x̄, ȳ) is:

x̄ =
My

M
= 1/4

1/3
= 3

4
and ȳ = Mx

M
= 1/10

1/3
= 3

10

Example 8.25

y

x
0 x̄ 1

y= x

y= x2

1

ȳ

Find the center of gravity of the region bounded by the curves y= x and y = x2.

Solution: The region is shaded in the figure on the right. Using y= f1(x)= x and
y= f2(x)= x2 in formula (8.18) yields

Mx =
∫1

0

1
2 (( f1(x))2− ( f2(x))2) dx =

∫1

0

1
2 (x2 − x4) dx = 1

6 x3 − 1
10 x5

∣∣∣∣
1

0
= 1

15

My =
∫1

0
x ( f1(x)− f2(x)) dx =

∫1

0
(x2 − x3) dx = 1

3 x3 − 1
4 x4

∣∣∣∣
1

0
= 1

12

M =
∫1

0
( f1(x)− f2(x)) dx =

∫1

0
(x− x2) dx = 1

2 x2 − 1
3 x3

∣∣∣∣
1

0
= 1

6

so that the center of gravity (x̄, ȳ) is:

x̄ =
My

M
= 1/12

1/6
= 1

2
and ȳ = Mx

M
= 1/15

1/6
= 2

5
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Work

Suppose that a constant force displaces an object along a line in the same direction
in which the force is applied. The work done by the force is defined as the force times
the displacement. For example, if the constant force F moves an object from position
x= a to x = b on the x-axis, as in Figure 8.5.3(a), then the work W done by the force is:

W = force × displacement = force × (final position − initial position) = F · (b−a)

x
a b

F

(a) Constant force F

dx
F(x)

F(x+dx)

(b) Variable force F over [x,x+dx]

Figure 8.5.3 Work W as the effect of a force F displacing an object from x = a to x = b

Suppose now that the force F is a function of position x over [a, b]: F = F(x). By the
Microstraightness Property, over an infinitesimal interval [x, x+dx] the curve y= F(x)
is a straight line, as in Figure 8.5.3(b). How should the work dW performed by F over
this infinitesimal interval be defined? After all, F is not constant over [x, x+ dx]—it
takes every value between F(x) and F(x+dx). It is left as an exercise to show that any

value in that range can be used—they all result in the same amount F(x) dx for the
work performed.10

For example, suppose you use the value halfway between F(x) and F(x+dx) as the
value of F: 1

2 (F(x)+F(x+dx)). Then the work dW as force times displacement is:

dW = 1
2

(F(x)+F(x+dx)) dx = 1
2

(F(x)+F(x)+F ′(x) dx) dx

= F(x) dx + 1
2

F ′(x)✟✟✟✟✯0
(dx)2

= F(x) dx

Define the total work W over [a, b] as the sum of all the dW :

The work performed by a force F(x) in displacing an object along the x-axis from
x= a to x = b is:

W =
∫b

a
dW =

∫b

a
F(x) dx (8.19)

10Note how this is different than claiming that F is “essentially constant over small intervals,” as most textbooks
do. Instead, the additional infinitesimal force beyond F(x) contributes zero work over [x, x+dx].
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Before continuing, some possible confusion needs to be cleared up. First, force is
always a vector—it has both a magnitude and a direction. For the forces considered
here, which act in a single dimension (e.g. along the x-axis), by convention the direc-
tion of the force is indicated by its sign: positive in the direction toward +∞, negative
in the direction toward −∞. So a force of 3 N acts in the opposite direction as a force
of −3 N, but they have the same magnitude |3| = 3.

Second, work is not a vector—it is a scalar, meaning it has a magnitude but no
direction. That magnitude can have any sign, though. Work is positive if the object is
displaced in the same direction as the force, but is negative if the displacement is in
the opposite direction of the force. For example, if you lift an object straight up from
the ground, then you did positive work—the object moved in the same direction as the
force you used. However, the force of gravity did negative work on the object as you
lifted, since gravity works downward yet the object moved upward.

FFµ

N

−mg

Last, zero work is done by a force if no displacement in its direc-
tion occurs. In particular, forces acting perpendicular to the line of
displacement perform no work. For example, consider an object of
mass m on a flat horizontal table top as in the figure on the right. If
you push that object to the right with a force F (performing positive
work), then both the downward force of gravity −mg and the upward normal force N

exerted by the table perform zero work on the object. The force of friction Fµ from the
table surface does negative work, as it opposes the force F. As an another example, no
work is performed by holding a 100 lb object still and above the ground.

Example 8.26

x

0

compress stretchHooke’s law states that a coiled spring has an elastic restoring force

F = −kx, where x is the displacement of the end of the spring from
its equilibrium position as the spring is stretched or compressed,
and k > 0 is the spring constant—or stiffness coefficient—specific to
the spring. This force always tries to restore the spring to its equi-
librium position, and the law holds only for a limited range of x.
For a spring laid horizontally imagine it lies on the x-axis with the
equilibrium position at x = 0, as in the figure on the right.

(a) Find the spring constant k if a force of 2 N stretches the spring by 4 cm.

(b) Use part (a) to find the work performed by compressing the spring 3 cm.

Solution: (a) The force required to stretch the spring by an amount x is F = kx, since that force must
counter the restoring force. Thus, k = F

x
= 2N

4cm = 2N
0.04m = 50 N/m.

(b) By part (a) the force required to compress the string to position x is F(x) = kx = 50x, since again it
must counter the restoring force. Thus, since 3 cm is 0.03 m, the work W performed is:

W =
∫−0.03

0
F(x) dx =

∫−0.03

0
50x dx = 25x2

∣∣∣∣
−0.03

0
= 25(−0.03)2 − 0 = 0.0225 Nm
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Probability

Suppose you flip two evenly balanced pennies and let X be the number of heads
in the result. Then X is a discrete random variable—discrete because it can take
only a discrete set of values (0, 1 and 2); random because its value is left to chance.
The probability of a penny being flipped heads is 50%= 1

2 , i.e. that is its theoretical
likelihood since heads and tails are equally likely. The sample space S of all possible
outcomes is the set S = {TT,TH, HT, HH}, where H is heads and T is tails (e.g. HT

means the first penny came up heads and the second came up tails). Figure 8.5.4(a)
shows a bar chart of the probabilities—as numbers between 0 and 1—with P(X = x)
denoting the probability of the event that X equals the number x. Notice that the
sum of the probabilities is 1, and P(X = x)= 0 if x is not 0, 1, or 2.

P(X = x)

x
0 1 2

1
4

1
2

pr
ob

ab
il

it
y

(a) Discrete: P(X = x)

f (x)

x
a b

(b) Continuous: P(a< X < b)

Figure 8.5.4 Probability: discrete vs continuous random variables

The idea behind a continuous random variable X is to fill in those gaps between
the bars in Figure 8.5.4(a), so that X would represent a continuous quantity, e.g. time,
distance, temperature. Rather than finding P(X = x) you would find the probability
that X is in a continuum such as an interval, e.g. P(a< X < b) (see Figure 8.5.4(b)).

For a continuous random variable X define P(X = x) = 0 for all real x, and define
the probability density function for X as a function f (x)≥ 0 such that:

(a)

∫∞

−∞
f (x) dx = 1

(b) P(a< X < b) =
∫b

a
f (x) dx for all a< b (including a=−∞ and b =∞)

Notice that since P(X = a) = 0 then P(a ≤ X < b) = P(a < X < b). In general, < and
≤ are interchangeable for events involving continuous random variables (as well as >
and ≥). In the remainder of this section it will be assumed that all random variables
are continuous, for which the sample space is typically all of R or some interval, finite
or infinite (e.g. (0,∞)).
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Example 8.27

Let X be the lifetime—i.e. the time to failure—of an electronic component. If the average lifetime of the
component is 700 days, then the probability density function f (x) for the random variable X is

f (x) =
{

λ e−λx if x ≥ 0,

0 if x < 0
(8.20)

where λ = 1
700 and x is the number of days. In this case X is said to have the exponential distribution

with parameter λ. Find the probability that the lifetime of the component is:

(a) between 600 and 800 days

(b) greater than 700 days

Solution: (a) The probability is:

P(600< X < 800) =
∫800

600
f (x) dx =

∫800

600

1
700 e−

x
700 dx = −e−

x
700

∣∣∣∣
800

600
= −e−

800
700 + e−

600
700 ≈ 0.1055

Thus, there is about a 10.55% chance that the component’s lifetime will be between 600 and 800 days.
(b) The probability is:

P(X > 700) =
∫∞

700
f (x) dx =

∫∞

700

1
700 e−

x
700 dx = −e−

x
700

∣∣∣∣
∞

700
= 0 + e−1 ≈ 0.3679

Exercises
A
For Exercises 1-3, find the center of gravity of the region bounded by the given curves over the given
interval.

1. y = x3 and y= 0 ; 0≤ x ≤ 1 2. y=−x+1 and y= 0 ; 0≤ x ≤ 1 3. y = x2 and y= x3 ; 0≤ x ≤ 1

4. Find the center of gravity of the region inside the circle x2+ y2 = r2 and above the x-axis.

5. Find the center of gravity of the region inside the circle x2+ y2 = r2 in the first quadrant.

6. Find the center of gravity of the region inside the ellipse x2

a2 +
y2

b2 = 1 and above the x-axis.

7. Find the center of gravity of the region between the circle x2+ y2 = 4 and the ellipse x2

4 + y2 = 1 above
the x-axis.

8. Would formula (8.18) for the center of gravity change if the mass of a region were proportional—but
not equal—to its area, say, by a constant positive proportion δ 6= 1? Explain.

9. If a spring requires 3 N of force to be compressed 5 cm, how much work would be performed in
stretching the spring 8 cm?

10. The gravitational force F(x) exerted by the Earth on an object of mass m at a distance x from the
center of the Earth is

F(x) = −
mgr2

e

x2

where re is the radius of the Earth. If the object is released from rest at a distance ro from the center
of the Earth, find the work performed by gravity in bringing the object to the Earth’s surface.
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11. Recall that the ideal gas law states that PV = RT, where R is a constant, P is the pressure, V is
the volume, and T is the temperature. It can be shown that the work W done by an ideal gas in
expanding the volume from Va to Vb is

W =
∫Vb

Va

P dV .

Calculate W .

12. Verify that
∫∞

−∞
f (x) dx = 1 for the function f (x) in formula (8.20) in Example 8.27 for all λ> 0.

13. Find P(X < 300) in Example 8.27.

14. The distribution function F(x) for a random variable X is defined as F(x)= P(X ≤ x) for all x. Show
that F ′(x)= f (x), where f (x) is the probability density function for X .

B

15. Formula (8.18) can be extended to regions over an infinite interval, provided the area is finite. Use
that fact to find the center of gravity of the region between y= e−x and the x-axis for 0≤ x <∞.

16. The expected value (or mean) E[X ] of a random variable X with probability density function f (x) is

E[X ] =
∫∞

−∞
x f (x) dx .

Show that E[X ]= 1
λ

if X has the exponential distribution with parameter λ> 0.
Note: The expected value can be thought of as the weighted average of all possible values of X , with
weights determined by probability. It is analogous to the idea of a center of gravity.

17. A random variable X is said to have a normal distribution if its probability density function f (x) is

f (x) = 1

σ
p

2π
e

(x−µ)2

2σ2 for all x

where σ> 0 and µ are constants. This is the famous “bell curve” in statistics.

(a) Verify that
∫∞

−∞
f (x) dx = 1. (Hint: Use Example 6.25 and a substitution.)

(b) Show that E[X ]=µ.

(c) Use numerical integration to show that P(−1< X < 1) ≈ 0.6827 when µ= 0 and σ= 1.

18. A random variable X has the beta distribution if its probability density function f (x) is

f (x) =
{

1
B(a,b) xa−1 (1− x)b−1 if 0≤ x≤ 1

0 elsewhere

for positive constants a and b, where B(a,b) is the Beta function. Show that E[X ]= a
a+b

.

19. Show that any value between F(x) and F(x+dx) for the force over [x,x+dx] gives same the formula
dW = F(x) dx for the work performed over that interval. (Hint: Consider F(x+αdx) for 0≤α≤ 1.)

20. A drop of water of mass M is released from rest at a height sufficient for the drop to evaporate
completely, losing mass m each second (i.e. at a constant rate). Ignoring air resistance, show that

the work performed by gravity on the drop up to complete evaporation is g2M2

6m2 .
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21. This exercise is related to Einstein’s famous law E = mc2. The relativistic momentum p of a particle
of mass m moving at a speed v along a straight line (say, the x-axis) is

p = mv
√

1− v2

c2

,

where c is the speed of light. The relativistic force on the particle along that line is

F = dp

dt
,

which is the same formula as Newton’s Second Law of motion in classical mechanics. Assume that
the particle starts at rest at position x1 and ends at position x2 along the x-axis. The work done by
the force F on the particle is:

W =
∫x2

x1

F dx =
∫x2

x1

dp

dt
dx

(a) Show that
dp

dv
= m

(
1− v2

c2

)3/2
.

(b) Use the Chain Rule formula
dp

dt
= dp

dv

dv

dx

dx

dt

to show that

F dx = v
dp

dv
dv .

(c) Use parts (a) and (b) to show that

W =
∫v

0

dp

dv
v dv =

∫v

0

mv
(
1− v2

c2

)3/2
dv .

(d) Use part (c) to show that

W = mc2

√
1− v2

c2

− mc2 .

(e) Define the relativistic kinetic energy K of the particle to be K =W , and define the total energy E

to be

E = mc2

√
1− v2

c2

.

So by part (d), K = E−mc2. Show that

E2 = p2c2 + (mc2)2 .

(Hint: Expand the right side of that equation.)

(f) What is E when the particle is at rest?

22. A median of a triangle is a line segment from a vertex to the midpoint of the opposite side, and the
three medians intersect at a common point. Show that this point is a triangle’s center of gravity.



CHAPTER 9

Infinite Sequences and Series

9.1 Sequences and Series

In the 5th century B.C. the ancient Greek philosopher Zeno of Elea devised several
paradoxes, the most famous of which—The Dichotomy—asserts that if space is in-
finitely divisible then motion is impossible. The argument goes like this: imagine a
line segment of finite length, say 1 m, with a person at one end as in Figure 9.1.1.

0 . . . 1
8

1
4

1
2 1

Figure 9.1.1 Zeno’s motion paradox

Before traversing the entire distance the person would first need to travel one half
the distance. Before doing that, though, he would need to travel one fourth the dis-
tance, and before that one eighth the distance, and so on. There is thus no “first”
distance for him to traverse, meaning his motion cannot even begin!

Obviously motion is possible, or you would not be reading this. Does that mean
Zeno’s reasoning is flawed? More on that later. In the meantime, notice a few things
in Figure 9.1.1. First, the distance markers 1

2 , 1
4 , 1

8 , . . . form an infinite sequence of
numbers approaching 0. Second, the sum of the distances between successive markers
is an infinite series which should equal the total segment length 1:

1
2

+ 1
4

+ 1
8

+ ·· · = 1

It will be shown shortly that the sum is indeed 1, which turns out to have no bearing
on Zeno’s paradox. First some definitions are needed.

286
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A sequence is an ordered list of objects, which in this book will always be real
numbers. Sequences can be finite or infinite: finite if there is a last number in the list,
infinite if every number in the list is followed by another number (i.e. a “successor”).
Sequences should not be confused with sets—order matters in a sequence but not in a
set, and numbers may repeat in a sequence but not in a set.

For example, the sequences 〈1,2,3〉 and 〈1,3,2〉 are different, since order matters.
However, the numbers in those sequences comprise the same set {1,2,3}.

The simplest example of an infinite sequence is N, the set of natural numbers:
0,1,2,3, . . .. In fact, the numbers a0,a1,a2, . . . in any infinite sequence of real num-
bers can be written as the range of a function f mapping N into R:

f (n) = an (9.1)

Typically notation such as { an }∞n=0 is used for representing an infinite sequence, or
simply { an } when the initial value of the index n is understood (and n is always an in-
teger). The intuitive notion of the limit of an infinite sequence can be stated formally:

A real number L is the limit of an infinite sequence { an }, written as

lim
n→∞

an = L or simply an → L ,

if for any given number ǫ> 0 there exists an integer N such that
∣∣an −L

∣∣< ǫ for all n > N . (9.2)

In this case the sequence { an } is said to converge to L and is called a convergent

sequence. A sequence that is not convergent is divergent.

In other words, a sequence { an } converges to L if the terms an can be made arbi-
trarily close to L for n sufficiently large. In most cases the formal definition will not
be needed, since by formula (9.1) the same rules and formulas from Chapters 1 and 3
for the limit of a function f (x) as x approaches ∞ apply to sequences (e.g. sums and
products of limits, L’Hôpital’s Rule). All you have to do is replace x by n.

Example 9.1

For integers n≥ 1 define an = 1
2n . Find lim

n→∞
an if it exists.

Solution: Since lim
x→∞

1
2x

= 0 then replacing x by n shows that

lim
n→∞

an = lim
n→∞

1
2n

= 0 .
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Example 9.2

For integers n≥ 0 define an = 2n+1
3n+2 . Is { an } a convergent sequence? If so then find its limit.

Solution: By L’Hôpital’s Rule, treating an integer n≥ 0 as a real-valued variable x,

lim
n→∞

an = lim
n→∞

2n+1
3n+2

= lim
n→∞

2
3

= 2
3

.

Thus the sequence is convergent and its limit is 2
3 .

Example 9.3

For integers n≥ 0 define an = en

3n+2 . Is { an } a convergent sequence? If so then find its limit.

Solution: By L’Hôpital’s Rule, treating an integer n≥ 0 as a real-valued variable x,

lim
n→∞

an = lim
n→∞

en

3n+2
= lim

n→∞
en

3
= ∞

Thus the sequence is divergent.

Example 9.4

The famous Fibonacci sequence1 { Fn } starts with the numbers 0 and 1, then each successive term is
the sum of the previous two terms: F0 = 0, F1 = 1,

Fn = Fn−1 + Fn−2 for integers n≥ 2 (9.3)

Equation (9.3) is a recurrence relation. The first ten Fibonacci numbers are 0,1,1,2,3,5,8,13,21,34.
Clearly { Fn } is a divergent sequence, since Fn →∞. For n≥ 2 define an = Fn/Fn−1. The first few values
are:

a2 = F2

F1
= 1

1
= 1 , a3 = F3

F2
= 2

1
= 2 , a4 = F4

F3
= 3

2
= 1.5 , a5 = F5

F4
= 5

3
≈ 1.667

Show that { an } is convergent. In other words, in the Fibonacci sequence the ratios of each term to the
previous term converge to some number.

Solution: There are many ways to prove this, perhaps the simplest being to assume the sequence is
convergent and then find the limit (which would be impossible if the sequence were divergent). So
assume that an → a for some real number a. Then divide both sides of formula (9.3) by Fn−1, so that

Fn

Fn−1
= 1 + Fn−2

Fn−1
⇒ an = 1 + 1

an−1
for integers n≥ 2

Now take the limit of both sides of the last equation as n→∞:

lim
n→∞

an = lim
n→∞

(
1 + 1

an−1

)
⇒ a = 1 + 1

a
⇒ a2 −a−1 = 0 ⇒ a = 1±

p
5

2

Since a must be positive then a= 1+
p

5
2 . Thus, the sequence is convergent and converges to 1+

p
5

2 ≈ 1.618.
Note: This number is the famous golden ratio, the subject of many claims regarding its appearance in
nature and supposed aesthetic appeal as a ratio of sides of a rectangle.2

1Due to the Italian mathematician Leonardo Fibonacci (ca. 1170-1250).
2For example, see HUNTLEY, H.E., The Divine Proportion, New York: Dover Publications, Inc., 1970.
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An infinite series is the sum of an infinite sequence. If the infinite sequence is
{ an }∞n=0 then the series can be written as

∞∑

n=0
an = a0 +a1 +a2 +·· ·+an +·· ·

or simply as
∑

an when the initial value of the index n is understood. There is a
natural way to define the sum of such a series:

The sum of an infinite series
∞∑

n=0
an is

∞∑

n=0
an = lim

n→∞
sn (9.4)

where { sn }∞n=0 is the sequence of partial sums of the series:

sn =
n∑

k=0
ak = a0 +a1 +a2 +·· ·+an for n ≥ 0

If the partial sums { sn } converge to a real number s then the series is convergent,
and converges to s; if { sn } diverges than the series is divergent.

One important convergent series is a geometric progression:

a+ar+ar2 +ar3 +·· ·+arn +·· · (9.5)

with a 6= 0 and |r | < 1. Multiply the n-th partial sum sn by r:

rsn = r (a+ar+ar2 +ar3 +·· ·+arn−1 +arn) = ar+ar2 +ar3 +ar4 +·· ·+arn +arn+1

Now subtract rsn from sn:

sn − rsn = a+ar+ar2 +ar3 +·· ·+arn − (ar+ar2 +ar3 +ar4 +·· ·+arn +arn+1)

sn − rsn = a−arn+1 so that

lim
n→∞

sn = lim
n→∞

a (1− rn+1)
1− r

= a

1− r

since rn+1 → 0 as n →∞ when |r | < 1. Thus:

For a 6= 0 and |r | < 1 the geometric progression
∞∑

n=0
arn is convergent:

∞∑

n=0
arn = a+ar+ar2 +ar3 +·· ·+arn +·· · = a

1− r
(9.6)
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Example 9.5

Show that
∞∑

n=1

1
2n

= 1.

Solution: This is a geometric progression with a= 1
2 and r = 1

2 . So by formula (9.6) the sum is:

∞∑

n=1

1
2n

=
∞∑

n=0

(
1
2

)
·
(

1
2

)n

= a

1− r
=

1
2

1− 1
2

= 1 X

Example 9.6

Write the repeating decimal 0.17= 0.17171717 . . . as a rational number.

Solution: This is a geometric progression with a= 0.17= 17
100 and r = 0.01 = 1

100 :

0.171717 . . . = 0.17+0.0017+0.000017+·· · = 0.17(0.01)0 +0.17(0.01)1 +0.17(0.01)2 +·· ·

=
∞∑

n=0
0.17(0.01)n = a

1− r
= 0.17

1−0.01
= 0.17

0.99
= 17

99

Back to Zeno’s motion paradox, by Example 9.5 the sum of the infinite number of
distances between successive markers in Figure 9.1.1 is 1, as expected. This fact is
often mistaken as proof that Zeno was wrong, yet it does not actually address Zeno’s
argument, since the person is attempting to begin motion at the tail end—the “infinite
end”—of the geometric progression, not at the beginning (i.e. at n = 0). Zeno’s point
remains that there is no “first step” at that tail end.

In fact, even if you were to reverse the person’s position to start at the other end, so
that he would first move a distance 1

2 , then a distance 1
4 , and so on, as in Figure 9.1.2,

then a new problem is introduced: the person keeps moving no matter how close he is
to the end point. There is now no “last step” and motion is thus still impossible.

0 . . . 1
8

1
4

1
2 1

1
2

1
4

1
8

· · ·

Figure 9.1.2 Zeno’s motion paradox in reverse

The convergence of the geometric progression has misled many people to argue that
Zeno is wrong, by claiming it shows an infinite number of movements can be completed
in a finite amount of time. But this line of argument fails on (at least) two counts. First,
Zeno never argued about time—it is irrelevant to his paradox. The more fundamental
flaw is that the introduction of time brings along the concept of speed, typically taken
to be constant (though it need not be). Speed is distance over time, but it is precisely
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the distance part of that ratio that Zeno rejects—that distance can never be traveled.
In other words, it is circular—and hence faulty—reasoning to “prove” that motion is
possible by assuming it is possible.

The geometric progression also doesn’t help when considering only the distances and
ignoring time. Even assuming each of those distances could be traveled, the partial
sums approach 1 but never actually reach it. The limit of a sequence is defined in terms
of an inequality—you can get arbitrarily close to the limit, and that is all. The equality
in formula (9.6) is merely a shorthand way of saying that. It is an abstraction based
on properties of the real number system, not necessarily based on physical reality.

Zeno’s paradox is not purely mathematical—it is about space and hence is physical,
with a tinge of philosophy. Physicists have recognized this—and noted the flaw in
the purely mathematical line of attack—and devised new arguments against Zeno,
some more sophisticated than others. However, they all invariably end up in some
sort of circular reasoning. All this calls into question the original assumption: the
infinite divisibility of space. If space had some smallest unit that could not be divided
any further then there is no paradox—motion over a finite distance could always be
decomposed into a large but finite number of irreducible steps.3

Exercises

A
For Exercises 1-8, determine if the given sequence is convergent. If so then find its limit.

1. { n e−n }∞n=0 2.

{
n2

3n2 + 7n − 2

}∞

n=1
3.

{
n2

3n3 + 7n − 2

}∞

n=1
4.

{
n3

3n2 + 7n − 2

}∞

n=1

5.
{ n

ln n

}∞
n=2

6.

{
n !

(n+2)!

}∞

n=0
7.

{
sin

(nπ

2

) }∞
n=0

8. { (−1)n cos nπ }∞n=0

For Exercises 9-12 determine whether the given series is convergent. If so then find its sum.

9.

∞∑
n=0

2
(

2
3

)n

10.

∞∑
n=1

7−n 11.

∞∑
n=0

3n + 5n+1

6n
12.

∞∑
n=0

n

For Exercises 13-16 use a geometric progression to write the given repeating decimal as a rational
number.

13. 0.113 14. 0.9 15. 0.249 16. 0.017

B

17. In Example 9.4 define bn = Fn/Fn+1 for n≥ 0 and show that { bn }∞n=0 converges to
p

5−1
2 .

3As of this writing there is not yet a definitive answer as to whether space is continuous or discrete (quantized).
A “smallest unit” would have to be below the Planck level—around 10−33 cm, well below current measurement
capabilities. Some recent advances in the field of loop quantum gravity suggest the possibility of quantized space.
See CHAMSEDDINE, A.H., CONNES, A. & MUKHANOV, V., “Geometry and the quantum: basics.” J. High Energy

Phys. 2014, 98 (2014). https://doi.org/10.1007/JHEP12(2014)098

https://doi.org/10.1007/JHEP12(2014)098
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18. Show that formula (4.1) for Newton’s method with f (x) = x2 − 2 and x0 = 1 yields the sequence
{ xn }∞n=0 with

xn = 1
2

xn−1 + 1
xn−1

for n≥ 1 ,

then assuming { xn } is convergent show that it must converge to
p

2. (Hint: See Example 9.4.)

19. In this exercise you will prove a formula for the general number Fn in the Fibonacci sequence.

Denote the positive and negative solutions to the equation x2−x−1 = 0 by φ+ = 1+
p

5
2 and φ− = 1−

p
5

2 ,
respectively. Note that φ+ is the golden ratio mentioned in Example 9.4.

(a) Use the equation x2 − x−1= 0 to show that

φn+1
+ = φn

+ + φn−1
+ and φn+1

− = φn
− + φn−1

− .

(b) Use part (a) and induction to show that

Fn =
φn
+ − φn

−p
5

for n≥ 0.

20. A ball is dropped from a height of 4 ft above the ground, and upon each bounce off the ground the
ball bounces straight up to a height equal to 65% of its previous height. Find the theoretical total
distance the ball could travel if it could bounce indefinitely. Why is this physically unrealistic?

21. A continued fraction is a type of infinite sum involving a fraction with a denominator that continues
indefinitely:

a = a0 +
1

a1 +
1

a2 +
1

a3 + ·· ·

(a) Show that the golden ratio φ+ = 1+
p

5
2 (a solution of x2− x−1 = 0) can be written as

φ+ = 1 +
1

1 +
1

1 +
1

1 + ·· ·

.

(Hint: Look for a recurrence relation in the fraction.)

(b) Show that
p

2 = 1 +
1

2 +
1

2 +
1

2 + ·· ·

.

22. Show that the golden ratio φ+ = 1+
p

5
2 can be written as φ+ =

√
1+

√
1+

p
1+·· ·.

23. Write a computer program to approximate the result in Exercise 22 using 100 terms. After how
many iterations do the approximate values start repeating?

24. Would the existence of infinitesimals as a measure of space resolve Zeno’s paradox? Explain.
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9.2 Tests for Convergence

There are many ways to determine if a sequence converges—two are listed below. In
all cases changing or removing a finite number of terms in a sequence does not affect
its convergence or divergence:

1. Monotone Bounded Test: A sequence that is bounded and monotone—i.e.
either always increasing or always decreasing—is convergent.

2. Comparison Test: If { bn } diverges to ∞ and if { an } is a sequence such that
an ≥ bn for all n > N for some N, then { an } also diverges to ∞.
Likewise, if { cn } diverges to −∞ and an ≤ cn for all n > N for some N, then { an }
also diverges to −∞.

x

a1 a2 a3 a4 · · · → M

Figure 9.2.1

The Comparison Test makes sense intuitively, since some-
thing larger than a quantity going to infinity must also go
to infinity. The Monotone Bounded Test can be understood
by thinking of a bound on a sequence as a wall that the se-
quence can never pass, as in Figure 9.2.1. The increasing sequence { an } in the figure
moves toward M but can never pass it. The sequence thus cannot diverge to ∞, and
it cannot fluctuate back and forth since it always increases. Thus it must converge
somewhere before or at M.4 Notice that the Monotone Bounded Test tells you only
that the sequence converges, not what it converges to.

Example 9.7

Show that the sequence { an }∞n=1 defined for n≥ 1 by

an = 1 · 3 · 5 · · · (2n−1)
2 · 4 · 6 · · · (2n)

is convergent.

Solution: Notice that { an } is always decreasing, since

an+1 = 1 · 3 · 5 · · · (2n−1) · (2n+1)
2 · 4 · 6 · · · (2n) · (2n+2)

= an · 2n+1
2n+2

< an · (1) = an

for n≥ 1. The sequence is also bounded, since 0 < an and

an = 1
2
· 3

4
· 5

6
· · · 2n−1

2n
< 1 for n≥ 1

since each fraction in the above product is less than 1. Thus, by the Monotone Bounded Test the
sequence is convergent.
Note that for a decreasing sequence only the lower bound is needed for the Monotone Bounded Test, not
the upper bound. Similarly, for an increasing sequence only the upper bound matters.

4For a proof see pp.48-49 in BUCK, R.C., Advanced Calculus, 2nd ed., New York: McGraw-Hill Book Co., 1965.
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Some tests for convergence of a series are listed below:

1. n-th Term Test: If
∑

an converges then lim
n→∞

an = 0.

2. Ratio Test: For a series
∑

an of positive terms let

R = lim
n→∞

an+1

an

.

Then

(a) if R < 1 then the series converges,

(b) if R > 1 (including R =∞) then the series diverges,

(c) if R = 1 then the test fails.

3. Integral Test: For a series
∞∑

n=1
an of positive terms let f (x) be a decreasing

function on [1,∞) such that f (n)= an for all integers n ≥ 1. Then

∞∑

n=1
an and

∫∞

1
f (x) dx

either both converge or both diverge.

4. p-series Test: The series
∞∑

n=1

1
np

converges for p > 1, and diverges for p ≤ 1.

5. Comparison Test: If 0≤ an ≤ bn for n > N for some N, and if
∑

bn is convergent
then

∑
an is convergent. Similarly, if 0 ≤ bn ≤ an for n > N for some N, and if∑

bn is divergent then
∑

an is divergent.

6. Limit Comparison Test: For two series
∑

an and
∑

bn of positive terms let

L = lim
n→∞

an

bn

.

Then

(a) if 0< L <∞ then
∑

an and
∑

bn either both converge or both diverge,

(b) if L = 0 and
∑

bn converges then
∑

an converges,

(c) if L =∞ and
∑

bn diverges then
∑

an diverges.

7. Telescoping Series Test: Suppose
∑

an =∑
(bn−bn+1) for some sequence { bn }.

Then
∑

an converges if and only if bn → L, in which case
∑

an = b1−L.
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Most of the above tests have fairly short proofs or at least intuitive explanations.
For example, the n-th Term Test follows from the definition of convergence of a series:
if

∑
an converges to a number L then since each term an = sn − sn−1 is the difference

of successive partial sums, taking the limit yields

lim
n→∞

an = lim
n→∞

(sn − sn−1) = L−L = 0

by definition of the convergence of a series. X

Since the n-th Term Test can never be used to prove convergence of a series, it is often
stated in the following logically equivalent manner:

n-th Term Test: If lim
n→∞

an 6= 0 then
∑

an diverges.

Example 9.8

Show that
∞∑

n=1

n

2n+1
= 1

3
+ 2

5
+ 3

7
+·· · is divergent.

Solution: Since

lim
n→∞

n

2n+1
= 1

2
6= 0

then by the n-th Term Test the series diverges.

The Ratio Test takes a bit more effort to prove.5 When the ratio R in the Ratio Test
is larger than 1 then that means the terms in the series do not approach 0, and thus
the series diverges by the n-th Term Test. When R = 1 the test fails, meaning it is
inconclusive—another test would need to be used. When the test shows convergence
it does not tell you what the series converges to, merely that it converges.

Example 9.9

Determine if
∞∑

n=1

n

2n
is convergent.

Solution: For the series general term an = n
2n ,

R = lim
n→∞

an+1

an

= lim
n→∞

n+1
2n+1

n

2n

= lim
n→∞

n+1
2n

= 1
2

< 1 ,

so by the Ratio Test the series converges.

5See pp.612-613 in TAYLOR, A.E. AND W.R. MANN, Advanced Calculus, 2nd ed., New York: John Wiley & Sons,
Inc., 1972.
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Figure 9.2.2 shows why the Integral Test works.

a1

a2 a3 a4 a5

y

x

0 1 2 3 4 5

y= f (x)

(a)

∫∞

1
f (x) dx >

∞∑

n=2
an

a1
a2 a3 a4

y

x

0 1 2 3 4 5

y = f (x)

(b)

∫∞

1
f (x) dx <

∞∑

n=1
an

Figure 9.2.2 Integral Test

In Figure 9.2.2(a) the area
∫∞

1 f (x) dx is greater than the total area S of all the
rectangles under the curve. Since each rectangle has height an and width 1, then
S =∑∞

2 an. Thus, since removing the single term a1 from the series does not affect the
convergence or divergence of the series, the series converges if the improper integral
converges, and conversely the integral diverges if the series diverges. Similarly, in
Figure 9.2.2(b) the area

∫∞
1 f (x) dx is less than the total area S = ∑∞

1 an of all the
rectangles, so the integral converges if the series converges, and the series diverges if
the integral diverges. Notice how in both graphs the rectangles are either all below
the curve or all protrude above the curve due to f (x) being a decreasing function.

Example 9.10

Show that the p-series
∞∑

n=1

1
np

converges for p> 1 and diverges for p= 1.

Solution: For p ≥ 1 let f (x) = 1
xp on [1,∞). Then f (x) is decreasing, and f (n) = an = 1

np for all integers
n≥ 1. For p> 1,

∫∞

1
f (x) dx =

∫∞

1

dx

xp
= −1

(p−1) xp−1

∣∣∣∣
∞

1
= 0 −

( −1

(p−1)(1)p−1

)
= 1

p−1
< ∞

so the integral converges. Thus, by the Integral Test, the series converges for p> 1. For p= 1,
∫∞

1
f (x) dx =

∫∞

1

dx

x
= ln x

∣∣∣∣
∞

1
= ∞

so the integral diverges. So by the Integral Test, the series diverges for p= 1. The harmonic series

∞∑

n=1

1
n

= 1 + 1
2

+ 1
3

+ 1
4

+ ·· ·

thus diverges even though an = 1
n
→ 0 (which is hence not a sufficient condition for a series to converge).

Note that this example partly proves the p-series Test. The remaining case (p< 1) is left as an exercise.
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The divergence part of the Comparison Test is clear enough to understand, but for
the convergence part with 0≤ an ≤ bn for all n larger than some N, ignore the (finite)
number of terms before aN and bN . Since

∑
bn converges then its partial sums must

be bounded. The partial sums for
∑

an then must also be bounded, since 0 ≤ an ≤ bn

for n > N. So since an ≥ 0 means that the partial sums for
∑

an are increasing, by
the Monotone Bounded Test the partial sums for

∑
an must converge, i.e.

∑
an is

convergent.

Example 9.11

Determine if
∞∑

n=1

1
nn

is convergent.

Solution: Since nn ≥ n2 > 0 for n> 2, then

0 < 1
nn

≤ 1
n2

for n > 2. Thus, since
∑∞

n=1
1
n2 converges (by the p-series Test with p = 2 > 1, as in Example 9.10), the

series
∑∞

n=1
1

nn converges by the Comparison Test.

For the Limit Comparison Test with an

bn
→ L <∞ and L > 0, by definition of the limit

of a sequence, an

bn
can be made arbitrarily close to L. In particular there is an integer

N such that
L

2
< an

bn

< 3L

2
for all n > N. Then

0 < an < 3L

2
bn and

∑
bn converges ⇒

∑
an converges

by the Comparison test. Likewise,

0 < L

2
bn < an and

∑
bn diverges ⇒

∑
an diverges

by the Comparison Test again. The cases L = 0 and L =∞ are handled similarly.

Example 9.12

Determine if
∞∑

n=1

n+3
n · 2n

is convergent.

Solution: Since
∑∞

n=1
1

2n is convergent (as part of a geometric progression) and

lim
n→∞

(n+3)/(n · 2n)
1/2n

= lim
n→∞

n+3
n

= 1

then by the Limit Comparison Test
∑∞

n=1
n+3
n ·2n is convergent..
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A series
∑

an is telescoping if an = bn − bn+1 for some sequence { bn }. Assume the
series

∑
an and sequence { bn } both start at n = 1. Then the partial sum sn for

∑
an is

sn = a1 + a2 + ·· · + an = (b1 −b2) + (b2 −b3) + ·· · + (bn −bn+1) = b1−bn+1

for n ≥ 1. Thus, since b1 is a fixed number, limn→∞ sn exists if and only if limn→∞ bn+1
exists, i.e.

∑
an converges if and only if { bn } converges. So if bn → L then sn → b−L,

i.e.
∑

an converges to L, which proves the Telescoping Series Test. Note that the
number b1, as the first number in the sequence { bn }, could be replaced by whatever
the first number is, in case the index n starts at a number different from 1.

Example 9.13

Determine if
∞∑

n=1

1
n (n+1)

is convergent. If it converges then can you find its sum?

Solution: For the sequence { bn } with bn = 1
n

for n≥ 1, each term in the series can be written as

1
n (n+1)

= 1
n

− 1
n+1

= bn − bn+1

Thus, since { bn } converges to 0, by the Telescoping Series Test the series also converges, to b1 −0= 1.

Convergent series have the following properties (based on similar properties of limits):

Let
∑

an and
∑

bn be convergent series, and let c be a number. Then:
(a)

∑
(an ±bn) is convergent, with

∑
(an ±bn)=∑

an ±
∑

bn

(b)
∑

can is convergent, with
∑

can = c · ∑an

Exercises

A
For Exercises 1-5 show that the given sequence { an }∞n=1 is convergent.

1. an = 2 · 4 · 6 · · · (2n)
3 · 5 · 7 · · · (2n+1)

2. an = 1 − 2n

n!
3. an = 2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n−1)
· 1

2n+2

4. an = 1
n

(
2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n−1)

)2

5. an = 1
2
· 3

2
· 3

4
· 5

4
· 5

6
· 7

6
· · · 2n−1

2n
· 2n+1

2n

For Exercises 6-17 determine whether the given series is convergent.

6.

∞∑
n=0

sin
(nπ

2

)
7.

∞∑
n=1

1
n (n+2)

8.

∞∑
n=1

1
2n

9.

∞∑
n=1

n

(n+1)2n
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10.

∞∑
n=2

1

n
p

ln n
11.

∞∑
n=1

n !
(2n) !

12.

∞∑
n=1

n

en
13.

∞∑
n=1

1

cosh2 n

14.

∞∑
n=1

n !
2n

15.

∞∑
n=1

1
p

n
16.

∞∑
n=1

1
n (2n−1)

17.

∞∑
n=1

ln(n+1)
n2

For Exercises 18-21 determine whether the given series is convergent. If convergent then find its sum.

18.

∞∑
n=1

1
(2n+1)(2n+3)

19.

∞∑
n=1

1
(2n+3)(2n+5)

20.

∞∑
n=1

2
(3n+1)(3n+4)

21.

∞∑
n=1

1
4n2 −1

B

22. Continue Example 9.10 with a proof of the p-series Test for p< 1.

23. Show that { an }∞n=1 is convergent, where

an = 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+ ·· · + 1
n!

for n≥ 1. (Hint: Use the Monotone Bounded test by using a bound on 1
n! for n> 2.)

24. Consider the series
∞∑

n=1

1
2n−1

= 1 + 1
3

+ 1
5

+ 1
7

+ ·· · .

(a) Show that the series is divergent.

(b) The textbook Applied Mathematics for Physical Chemistry (3rd ed.), J. Barrante, provides the
following argument that the above series converges: Since

1 + 1
4

+ 1
9

+ 1
16

+ ·· · < 1 + 1
3

+ 1
5

+ 1
7

+ ·· · < 1 + 1
2

+ 1
3

+ 1
4

+ ·· ·

where the series on the left converges (by the p-series Test with p= 2) and the series on the right
diverges (by the p-series Test with p = 1), and since each term in the middle series is between
its corresponding terms in the left series and right series, then there must be a p-series for some
value 1 < p < 2 such that each term in the middle series is less than the corresponding term in
that p-series. That is,

1 + 1
4

+ 1
9

+ 1
16

+ ·· · < 1 + 1
3

+ 1
5

+ 1
7

+ ·· · < 1 + 1
2p

+ 1
3p

+ 1
4p

+ ·· ·

for that value of p between 1 and 2. But p > 1 for that p-series on the right, so it converges,
which means that the middle series converges! Find and explain the flaw in this argument.

25. Wallis’ formula6 for π is given by the infinite product

π

2
= 2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · 2n

2n−1
· 2n

2n+1
· · · · .

Notice that this is the limit of the reciprocal of the sequence in Exercise 5. Write a computer program
to approximate the limit using 1 million iterations. How close is your approximation to π

2 ?

6Due to the English mathematician and theologian John Wallis (1616-1703). For a proof of the formula see pp.738-
739 in TAYLOR, A.E. AND W.R. MANN, Advanced Calculus, 2nd ed., New York: John Wiley & Sons, Inc., 1972.
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9.3 Alternating Series

In the last section the harmonic series

∞∑

n=1

1
n

= 1 + 1
2
+ 1

3
+ 1

4
+ 1

5
+ ·· ·

was shown to diverge. If you were to alternate the signs of successive terms, as in

∞∑

n=1

(−1)n−1

n
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− ·· · (9.7)

then it turns out that this new series—called an alternating series—converges, due
to the following test:

Alternating Series Test: If
∑

an is an alternating series—i.e. the signs of the
terms an alternate between positive and negative—such that the absolute values
of the terms are decreasing to 0, then the series converges.

The condition for the test means that |an+1 | ≤ |an | for all n and |an |→ 0 as n →∞. To
see why the test works, consider the alternating series given above by formula (9.7),
with an = −1n−1

n
. The odd-numbered partial sums s1, s3, s5, . . ., can be written as

s1 = 1 , s3 = 1 −
(
1
2
− 1

3

)

︸ ︷︷ ︸
> 0

, s5 = 1 −
(
1
2
− 1

3

)

︸ ︷︷ ︸
> 0

−
(
1
4
− 1

5

)

︸ ︷︷ ︸
> 0

, . . .

while the even-numbered partial sums s2, s4, s6, . . ., can be written as

s2 = 1 − 1
2

, s4 = 1 − 1
2
+

(
1
3
− 1

4

)

︸ ︷︷ ︸
> 0

, s6 = 1 − 1
2
+

(
1
3
− 1

4

)

︸ ︷︷ ︸
> 0

+
(
1
5
− 1

6

)

︸ ︷︷ ︸
> 0

, . . .

Thus the odd-numbered partial sums { s2n−1 } are decreasing from s1 = 1, and the even-
numbered ones { s2n } are increasing from s2 = 1− 1

2 = 1
2 , with 1

2 < sn < 1 for all n, i.e. the
partial sums are bounded. So by the Monotone Bounded Test, both sequences { s2n−1 }
and { s2n } must converge. Since s2n − s2n−1 = a2n = −1

2n
for all n ≥ 1, then

lim
n→∞

(s2n − s2n−1) = lim
n→∞

−1
2n

= 0 ⇒ lim
n→∞

s2n = lim
n→∞

s2n+1

Thus, the partial sums sn have a common limit, so the series converges. Notice that
the key to the convergence was having the terms decreasing in absolute value to zero.
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Example 9.14

Determine if
∞∑

n=2

(−1)n

ln n
is convergent.

Solution: For the general term an = (−1)n

ln n
, since ln(n+1) > ln n for n ≥ 2 and ln n →∞ as n →∞, then

|an | decreases to 0 as n→∞. Thus, by the Alternating Series Test the series converges.

The series
∑∞

n=1
(−1)n−1

n
converges by the Alternating Series Test, though the series

∑∞
n=1

1
n

diverges. This makes
∑∞

n=1
(−1)n−1

n
an example of a conditionally convergent

series:

A series
∑

an is conditionally convergent if
∑

an converges but
∑ |an | diverges.

If
∑ |an | converges then

∑
an is absolutely convergent.

For example,
∑∞

n=1
(−1)n−1

n
is not absolutely convergent, since

∑∞
n=1

1
n

diverges.

Example 9.15

Is
∞∑

n=1

(−1)n−1

n2 conditionally convergent or absolutely convergent?

Solution: Since
∑∞

n=1
1
n2 converges (by the p-series Test) then

∑∞
n=1

(−1)n−1

n2 is absolutely convergent.

It turns out that absolute convergence implies ordinary convergence:

Absolute Convergence Test: If
∑ |an | converges then

∑
an converges.

The test is obvious if the terms an are all positive, so assume the series has both pos-
itive terms (denoted by the sequence

{
apos

}
) and negative terms (denoted by

{
aneg

}
).

Then the series can be decomposed into the difference of two series:
∑

an =
∑

apos −
∑

|aneg |

Since each of the sums on the right side of the equation is part of the convergent
series

∑ |an |, then each sum itself converges (being part of a finite sum). Thus their
difference, namely

∑
an, is finite, i.e.

∑
an converges.

The test can be stated in the following logically equivalent manner:

Absolute Convergence Test: If
∑

an diverges then
∑ |an | diverges.
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One unusual feature of a conditionally convergent series is that its terms can be re-
arranged to converge to any number, a result known as Riemann’s Rearrangement

Theorem. For example, the alternating harmonic series

1 − 1
2
+ 1

3
− 1

4
+ 1

5
− ·· ·

consists of one divergent series of positive terms subtracted from another series of
positive terms, namely:

1 − 1
2
+ 1

3
− 1

4
+ 1

5
− ·· · =

(
1 + 1

3
+ 1

5
+ 1

7
+ ·· ·

)
−

(
1
2
+ 1

4
+ 1

6
+ ·· ·

)

The idea is that since the first series on the right diverges then that series has some
partial sum that could be made just larger than any positive number A. Likewise,
since the second series on the right that is being subtracted also diverges, it has some
partial sum that when subtracted from the first partial sum results in a number just
less than A. Continue like this indefinitely, first adding a partial sum to get a number
just bigger than A then subtracting another partial sum to get just less than A. Since
the terms in each series approach zero, the overall series can be made to converge to A!
It also turns out that an absolutely convergent series does not have this feature—any
rearrangement of terms results in the same sum.7

Exercises

A
For Exercises 1-5 determine whether the given alternating series is convergent. If convergent, then
determine if it is conditionally convergent or absolutely convergent.

1.

∞∑
n=1

(−1)n−1

p
n

2.

∞∑
n=1

(−1)n−1 n !
2n

3.

∞∑
n=1

(−1)n−1

2n−1
4.

∞∑
n=2

(−1)n

n ln n
5.

∞∑
n=1

(−1)n−1

n !

6. Rearrangements of a divergent alternating series can make it appear to converge to different num-
bers. For example, find different rearrangements of the terms in the divergent series

∞∑

n=0
(−1)n = 1 − 1 + 1 − 1 + ·· ·

so that the series appears to converge to 0, 1, -1, and 2.

7. A guest arrives at the Aleph Null Hotel,8 which has an infinite number of rooms, numbered Room 0,
Room 1, Room 2, and so on. The hotel manager says all the rooms are taken, but he can still give the
guest his own room. How is that possible? Would it still be possible if an infinite number of guests
showed up, each wanting his own room? Explain your answers.

7For formal proofs of these statements, see pp.442-444 in KLAMBAUER, G., Aspects of Calculus, New York:
Springer-Verlag, 1986.

8The symbol ℵ0 is called aleph null and represents the cardinality of N, i.e. its size. ℵ0 is the smallest infinity.



Power Series • Section 9.4 303

9.4 Power Series

A power series is an infinite series whose terms involve constants an and powers of
x− c, where x is a variable and c is a constant:

∑
an (x− c)n. In many cases c will be 0.

For example, the geometric progression

∞∑

n=0
rn = 1 + r + r2 + r3 + ·· · = 1

1− r

converges when |r | < 1, i.e. for −1 < r < 1, as shown in Section 9.1. Replacing the
constant r by a variable x yields the power series

∞∑

n=0
xn = 1 + x + x2 + x3 + ·· · = 1

1− x
(9.8)

that converges to 1
1−x

when −1< x< 1. Note that the series diverges for |x| ≥ 1, by the
n-th Term Test.

In general a power series of the form
∑

fn(x), where fn(x) = an(x− c)n is a sequence
of functions, has an interval of convergence defined as the set of all x such that the
series converges. The interval can be any combination of open or closed, as well as
the extreme cases of a single point or all real numbers. On its interval of convergence
the power series is thus a function of x. The radius of convergence R of a power
series is defined as half the length of the interval of convergence. In the case where
the interval of convergence is all of R you would say R =∞.

For example, for the above power series
∑∞

n=0 fn(x), where fn(x) = xn for n ≥ 0, the
interval of convergence is −1< x< 1, so the radius of convergence is R = 1. Notice that

f (x) =
∞∑

n=0
xn for −1< x < 1

is thus a well-defined function on the interval (−1,1), where it happens to equal 1
1−x

.
This power series can be thought of as a polynomial of infinite degree.

To find the interval of convergence of a power series
∑

fn(x), you typically would
use the Ratio Test on the absolute values of the terms (since the Ratio Test requires
positive terms):

r(x) = lim
n→∞

∣∣∣∣
fn+1(x)
fn(x)

∣∣∣∣ (9.9)

Note that the limit r(x) in this case is a function of x. When taking the limit, though,
treat x as fixed. By the Ratio Test the power series will then converge for all x such
that r(x) < 1, and diverge when r(x) > 1. When r(x) = 1 the test is inconclusive, so you
would have to check those cases individually to see if those values of x should be added
to the interval of convergence (along with the points where r(x)< 1).
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Example 9.16

Find the interval of convergence of the power series
∞∑

n=0

xn

n !
.

Solution: For fn(x)= xn

n ! ,

r(x) = lim
n→∞

∣∣∣∣
fn+1(x)
fn(x)

∣∣∣∣ = lim
n→∞

∣∣∣∣
xn+1/(n+1)!

xn/n !

∣∣∣∣ = |x| · lim
n→∞

∣∣∣∣
1

n+1

∣∣∣∣ = |x| · 0 = 0

for any fixed x. Thus, r(x) = 0< 1 for all x, so the interval of convergence is all of R, i.e. −∞< x <∞.

Example 9.17

Find the interval of convergence of the power series
∞∑

n=1

xn

n
.

Solution: For fn(x)= xn

n
,

r(x) = lim
n→∞

∣∣∣∣
fn+1(x)
fn(x)

∣∣∣∣ = lim
n→∞

∣∣∣∣
xn+1/(n+1)

xn/n

∣∣∣∣ = lim
n→∞

∣∣∣∣
nx

n+1

∣∣∣∣ = |x| · lim
n→∞

∣∣∣∣
n

n+1

∣∣∣∣ = |x| · 1 = |x|

for any fixed x. Thus, the series converges when r(x)= |x| < 1 and diverges when r(x) = |x| > 1.
The cases r(x) = |x| = 1 need to be checked individually. For x = 1 the series is

∑∞
n=1

1
n

, which diverges.

For x =−1 the series is
∑∞

n=1
(−1)n−1

n
, which converges. Thus, the interval of convergence is −1≤ x < 1.

Example 9.18

Find the interval of convergence of the power series
∞∑

n=0
n ! xn .

Solution: For fn(x)= n ! xn,

r(x) = lim
n→∞

∣∣∣∣
fn+1(x)
fn(x)

∣∣∣∣ = lim
n→∞

∣∣∣∣
(n+1)! xn+1

n ! xn

∣∣∣∣ = |x| · lim
n→∞

|n+1| =
{

0 if x = 0,

∞ if x 6= 0.

Thus, r(x) =∞> 1 for all x 6= 0, so the series diverges for x 6= 0. So since r(x) = 0 < 1 only for x = 0, the
interval of convergence is the single point x = 0.

It turns out that power series can be both differentiated and integrated term by term:9

For a power series f (x)=
∞∑

n=0
an (x− c)n that converges for |x− c| < R, both

f ′(x) =
∞∑

n=1
n an (x− c)n−1 and

∫
f (x) dx = C +

∞∑

n=0

an

n+1
(x− c)n+1 (9.10)

converge for |x− c| < R.

9The proofs require uniform convergence, a stronger condition than ordinary convergence. See pp.129-134 in
BROMWICH, T.J., An Introduction to the Theory of Infinite Series, 2nd ed., London: Macmillan & Co. Ltd., 1955.
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Notice that the above statement says nothing about the convergence of f ′(x) or∫
f (x) dx at the endpoints of the interval |x− c| < R. In each case convergence at the

endpoints can be checked individually.

Example 9.19

Write the power series form of the derivative of f (x)=
∞∑

n=0
xn and find its interval of convergence. Can

f ′(x) be written in a non-series form?.

Solution: Differentiate f (x) term by term:

f ′(x) = d

dx

(
∞∑

n=0
xn

)
= d

dx
(1 + x + x2 + x3 + ·· · ) = 0 + 1 + 2x + 3x2 + ·· · =

∞∑

n=1
nxn−1

Since f (x) converges for −1 < x < 1 then so does f ′(x). Checking the endpoints, at x = 1 and x =−1 the
series for f ′(x) are

∑∞
n=1 n and

∑∞
n=1(−1)n−1 n, respectively, both of which diverge by the n-th Term Test.

Thus, the interval of convergence for f ′(x) is−1< x < 1.

Since f (x)= 1
1−x

for −1< x < 1 then f ′(x)= 1
(1−x)2

for −1< x < 1. Thus,

∞∑

n=1
nxn−1 = 1 + 2x + 3x2 + ·· · = 1

(1− x)2
for −1< x < 1.

Bessel Functions

Many physical applications—especially those involving oscillations and mechanical
vibrations—involve solving differential equations of the form

d2 y

dx2 + 1
x

dy

dx
+ y = 0 , (9.11)

known as Bessel’s equation. This equation has a solution J0(x), known as Bessel’s

function of order zero,10 defined in terms of a power series:

J0(x) =
∞∑

n=0

(−1)n x2n

(n !)2 · 22n
= 1 − x2

22 + x4

22 · 42 − x6

22 · 42 · 62 + ·· · (9.12)

The Ratio Test shows that J0(x) converges for all x, since for any fixed x,

r(x) = lim
n→∞

∣∣∣∣∣∣∣∣∣

(−1)n+1 x2n+2

((n+1)!)2 · 22n+2

(−1)n
x2n

(n !)2 · 22n

∣∣∣∣∣∣∣∣∣
= x2 · lim

n→∞

∣∣∣∣
1

4(n+1)2

∣∣∣∣ = 0 < 1 .

10Due to the German astronomer Friedrich Wilhelm Bessel (1784-1846), from a study of elliptic planetary motion.
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The general Bessel equation of order m,

d2 y

dx2 + 1
x

dy

dx
+

(
1− m2

x2

)
y = 0 (9.13)

for m= 0,1,2, . . ., has a solution Jm(x), called Bessel’s function of order m:

Jm(x) =
∞∑

n=0

(−1)n 1
n ! · (n+m) !

(x

2

)2n+m

(9.14)

For example, the Bessel function J1(x) of order 1 is

J1(x) =
∞∑

n=0

(−1)n 1
n ! · (n+1)!

( x

2

)2n+1
= x

2
− x3

22 · 4
+ x5

22 · 42 · 6
− x7

22 · 42 · 62 · 8
+ ·· ·

Term by term differentiation shows that J ′
0(x)=−J1(x):

d

dx
(J0(x)) = d

dx

(
1 − x2

22 + x4

22 · 42 − x6

22 · 42 · 62 + x8

22 · 42 · 62 · 82 − ·· ·
)

= − x

2
+ x3

22 · 4
− x5

22 · 42 · 6
+ x7

22 · 42 · 62 · 8
− ·· · = −J1(x)

Graphs of J0(x) and J1(x) are shown in Figure 9.4.1 below. As you can see, J0(x) and
J1(x) behave as sort of “poor man’s” cosine and sine functions, respectively.

0 5 10 15 20 25
-1

-0.5

0

0.5

1

x

y

J
0
(x)

J
1
(x)

Figure 9.4.1 Bessel functions J0(x) and J1(x)
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Exercises
A
For Exercises 1-8 find the interval of convergence of the given power series.

1.

∞∑
n=1

nxn

(n+1)2 2.

∞∑
n=1

nxn

2n
3.

∞∑
n=1

n2 (x−2)n 4.

∞∑
n=0

(x+4)n

2n

5.

∞∑
n=1

(x+1)n

nn
6.

∞∑
n=1

nn xn 7.

∞∑
n=0

(−1)n xn 8.

∞∑
n=1

nxn

n+1

9. Note that power series of the form
∑∞

n=0 anxn have an issue at x = 0 when n = 0: 00 is an indeter-
minate form—it can equal anything (or nothing). What value has it implicitly been assigned so far?
What would be the technically correct way to write the series

∑∞
n=0 anxn so that this issue goes away?

10. Show that ∞∑

n=1
n xn = x

(1− x)2 for −1< x < 1.

11. Write the following infinite series as a rational number:

1
10

+ 2
100

+ 3
1000

+ 4
10000

+ ·· ·

B

12. Differentiating term by term, verify that the Bessel function J0(x) satisfies Bessel’s equation (see
equation (9.11)).

13. Show that for all m ≥ 1 the Bessel functions Jm(x) converge for all x.

14. For all m ≥ 1 verify that the Bessel functions Jm(x) satisfy the general Bessel equation of order m

(see equation(9.13)).

15. For the Bessel functions J0(x) and J1(x) show that:

(a)
d

dx
(x J1(x)) = x J0(x)

(b)
∫

J0(x) J1(x) dx = − 1
2 J2

0 (x)

(c)
∫

x J0(x) J1(x) dx = − 1
2 x J2

0 (x) + 1
2

∫
J2

0 (x) dx

(d) For all integers n≥ 2,
∫

xn J0(x) dx = xn J1(x) + (n−1) xn−1 J0(x) − (n−1)2
∫

xn−2 J0(x) dx .

(Hint: Use part (a) and integration by parts twice.)

16. For all integers m ≥ 2 show that the Bessel functions Jm(x) satisfy the relations:

(a) m Jm(x) + x J′
m(x) = x Jm−1(x)

(b) Jm−1(x) − Jm+1(x) = 2J′
m(x)

17. Use long division to obtain the first three terms of 1
xJ2

0 (x)
, then integrate term by term to show that

J0(x)
∫

dx

xJ2
0 (x)

= J0(x) · ln x + x2

4
− 3x4

128
+ ·· · .

This function is a Bessel function of the second kind and is another solution of Bessel’s equation.
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9.5 Taylor’s Series

In the previous section a few functions, e.g. f (x) = 1
1−x

, turned out to be the sum of a
power series. This section will discuss a general method for representing a function as
a power series, called a Taylor’s series.11 Suppose that a function f (x) can be written
as

f (x) =
∞∑

n=0
an (x− c)n

either for all x or for |x− c| < R, for some R > 0. Then f (c) = a0, and differentiating
term by term yields

f ′(x) =
∞∑

n=1
n an (x− c)n−1 ⇒ f ′(c) = 1 · a1

f ′′(x) =
∞∑

n=2
n (n−1)an (x− c)n−2 ⇒ f ′′(c) = 2 · 1 · a2

f ′′′(x) =
∞∑

n=3
n (n−1)(n−2)an (x− c)n−3 ⇒ f ′′′(c) = 3 · 2 · 1 · a3

· · · · · ·

f (k)(x) =
∞∑

n=k

n (n−1)(n−2) · · · (n−k+1)an (x− c)n−k ⇒ f (k)(c) = k! ak

so that in general (since f (0)(x)= f (x) and 0!= 1):

an = f (n)(c)
n!

for n ≥ 0 (9.15)

These { an } are the Taylor’s series coefficients of f (x) at x= c. The full power series
representation of f (x) can now be stated:

Taylor’s formula: If f (x) has a power series representation in powers of x− c,
where x= c is inside the interval of convergence, then that representation is unique
in that interval and is given by

f (x) =
∞∑

n=0

f (n)(c)
n!

(x− c)n (9.16)

for all x in the interval. This is the Taylor’s series for f (x) about x= c.

11Named after English mathematician Brook Taylor (1685-1731), though such series were known to others (e.g.
James Gregory, Johann Bernoulli) before Taylor.
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Example 9.20

Find the Taylor’s series for f (x)= ex about x = 0.

Solution: Since d
dx

(ex)= ex, then for all n≥ 0,

f (n)(x) = ex ⇒ f (n)(0) = e0 = 1 .

Thus, by Taylor’s formula with c= 0:12

ex =
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=0

xn

n!

= 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ ·· ·

For what x is this Taylor’s series valid? Recall that Example 9.16 showed the interval of convergence is
all of R. Thus the above Taylor’s series holds for all x.

Before continuing, you might be wondering why you should even bother with finding
the Taylor’s series—after all, in the above example why replace a simple function like
ex by a far more complicated expression? One reason is that it often helps simplify
some computations, especially in integrals. The idea is to use only a few terms in the
series, i.e. a polynomial, as an approximation, since polynomials are generally easier
to work with. Perhaps surprisingly, in many practical applications no more than two
terms are needed, and often only one.

For example, using only the first two terms of the Taylor’s series for ex in Example
9.20, ex ≈ 1+ x is a good approximation when x is close to 0 (i.e. |x| ≪ 1). Using more
terms does not necessarily help—for |x| ≪ 1 and n > 1, xn will be effectively 0. So the
added complexity would not make the approximation significantly better.

Example 9.21

The energy density E of electromagnetic radiation at wavelength λ from a black-body at temperature
T degrees Kelvin is given by Planck’s Law of black-body radiation,

E(λ) = 8πhc

λ5(ehc/λkT −1)

where h is Planck’s constant, c is the speed of light, and k is Boltzmann’s constant. Show that for λ≫ 1:

E(λ) ≈ 8πkT

λ4

Solution: Since ex ≈ 1+ x for |x|≪ 1 by the Taylor series for ex, let x = hc/λkT. Then x ≪ 1 and so

E(λ) = 8πhc

λ5(ehc/λkT −1)
≈ 8πhc

λ5
((

1+ hc
λkT

)
−1

) ≈ 8πhc

λ5 hc
λkT

≈ 8πkT

λ4

12The special case of c = 0 in Taylor’s formula yields what is sometimes called the Maclaurin’s series for f (x),
though that terminology is typically not used in fields of study outside mathematics.
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Example 9.22

Find the Taylor’s series for f (x)= sin x about x = 0.

Solution: The derivatives of f (x)= sin x repeat every four derivatives:

f (x) = sin x , f ′(x) = cos x , f ′′(x) = −sin x , f ′′′(x) = −cos x , f (4)(x) = sin x

So at x = 0:
f (0) = 0 , f ′(x) = 1 , f ′′(x) = 0 , f ′′′(x) = −1 , f (4)(x) = 0

So for n≥ 0,

f (n)(0) =





0 if n is even,

1 if n= 1,5,9, . . .,

−1 if n= 3,7,11, . . ..

Thus, by Taylor’s formula with c= 0

sin x =
∞∑

n=0

f (n)(0)
n!

xn

= x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− ·· ·

=
∞∑

n=0
(−1)n x2n+1

(2n+1)!

By the Ratio Test this series converges for all x, since for any fixed x,

r(x) = lim
n→∞

∣∣∣∣∣∣∣∣∣

(−1)n+1 x2n+3

(2n+3)!

(−1)n
x2n+1

(2n+1)!

∣∣∣∣∣∣∣∣∣
= x2 · lim

n→∞

∣∣∣∣
1

(2n+3)(2n+2)

∣∣∣∣ = 0 < 1 .

Example 9.23

Find the Taylor’s series for f (x)= cos x about x = 0.

Solution: The Taylor’s series can be found using the same procedure as in Example 9.22, but it is
simpler to just differentiate the Taylor’s series for sin x term by term for all x:

cos x = d

dx
(sin x) = d

dx

(
x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− ·· ·

)

= 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− ·· ·

=
∞∑

n=0
(−1)n x2n

(2n)!

Since the Taylor’s series for sin x converges for all x then so does its derivative. Thus the Taylor’s series
for cos x converges for all x.
Notice that the Taylor’s series for cos x has only even powers of x, while the series for sin x has only odd
powers of x. This makes sense since cos x and sin x are even and odd functions, respectively.
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Example 9.24

The function ln x is not defined at x = 0 and hence has no Taylor’s series about x = 0. Instead, find the
Taylor’s series for f (x)= ln(1+ x) about x = 0.

Solution: Take successive derivatives:

f (x) = ln(1+ x) , f ′(x) = 1
1+ x

, f ′′(x) = − 1

(1+ x)2
, f ′′′(x) = 1 · 2

(1+ x)3
, f (4)(x) = −1 · 2 · 3

(1+ x)4

So f (0)= 0 and for n≥ 1:

f (n)(x) = (−1)n−1 (n−1)!
(1+ x)n

⇒ f (n)(0) = (−1)n−1 (n−1)!

Thus, by Taylor’s formula,

ln(1+ x) =
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=1
(−1)n−1 (n−1)! xn

n!

=
∞∑

n=1

(−1)n−1 xn

n

= x − x2

2
+ x3

3
− x4

4
+ x5

5
− ·· ·

Use the Ratio Test to find the interval of convergence:

r(x) = lim
n→∞

∣∣∣∣∣∣∣∣

(−1)n xn+1

n+1

(−1)n−1 xn

n

∣∣∣∣∣∣∣∣
= |x| · lim

n→∞

∣∣∣∣
n

n+1

∣∣∣∣ = |x| · 1 = |x|

So the series converges when |x| < 1. Check the cases r(x) = |x| = 1 individually. For x = 1 the series
is the alternating harmonic series

∑
n=1

(−1)n−1

n
, which converges. For x =−1 the series is −∑

n=1
1
n

, the
negative of the harmonic series, which diverges. Thus, the series converges for −1 < x ≤ 1.

Example 9.25

Find the Taylor’s series for f (x)= ex2
about x = 0.

Solution: The Taylor’s series can be found using the same procedure as in Example 9.20, but it is simpler
to just replace each occurrence of x in the Taylor’s series for ex by x2 (since the series for ex converges
for all x). In other words, make the substitution u= x2 in the Taylor’s series for eu about u= 0:

eu =
∞∑

n=0

un

n!

ex2 =
∞∑

n=0

(x2)n

n!
=

∞∑
n=0

x2n

n!

= 1 + x2 + x4

2!
+ x6

3!
+ x8

4!
+ x10

5!
+ ·· ·
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Define the n-th degree Taylor polynomial Pn(x) for a function f (x) about x= c by

Pn(x) =
n∑

k=0

f (k)(c)
k!

(x− c)k

= f (c) + f ′(c)
1!

(x− c) + f ′′(c)
2!

(x− c)2 + ·· · + f (n)(c)
n!

(x− c)n

for x in the interval of convergence for the full Taylor’s series. In other words, Pn(x) is
the n-th partial sum of the Taylor’s series. Since some of the coefficients could be zero,
Pn(x) is a polynomial of degree at most n. Thus, Pn(x) = O(xn). For that reason Pn(x)
is sometimes called the O(xn) approximation to f (x).

Figure 9.5.1 shows a comparison of sin x with a few of its approximations:

−8 −6 −4 −2 0 2 4 6 8

−1

−0.5

0

0.5

1

x

y

 

 

O(x
7
) approx.

O(x
11

) approx.

O(x
15

) approx.

sin(x)

Figure 9.5.1 sin x and Taylor’s series approximations

As you can see, the Taylor polynomials of degree 7, 11 and 15 are all good approxi-
mations over the interval [−2,2], with the O(x15) approximation still being fairly good
over [−6,6]. Clearly those approximations all become poor quite quickly for |x| > 6;
they approach ±∞, unlike sin x.

The following theorem shows how to measure the accuracy of the approximations:
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Remainder Theorem:13If Pn(x) is the n-th degree Taylor polynomial about x = c

for a function f (x) in some interval containing x = c, then for all x in that interval,

f (x) = Pn(x) + Rn(x) , (9.17)

where

Rn(x) = f (n+1)(c+θ(x− c))
(n+1)!

(x− c)n+1 (9.18)

for some number θ between 0 and 1. Alternatively,

Rn(x) = 1
n!

∫x

c
(x− t)n f (n+1)(t) dt . (9.19)

Since the number θ is unknown in equation (9.18), usually only an upper bound on
the remainder Rn(x) can be found by that formula. For practical purposes formula
(9.19) for Rn(x) might be easier to use (via numerical integration).

A common misconception is that hand-held calculators use Taylor’s series to com-
pute values of functions like sin x, cos x, ex, etc. However, that is typically well be-
yond their capability, especially for large values of x—far too many terms would be
required. Instead, many calculators use an algorithm called CORDIC14 (Coordinate
Rotation Digital Computer), and—perhaps surprisingly—lookup tables. CORDIC uses
the computationally inexpensive operation of bit-shifting to translate large input val-
ues into a smaller range, then uses tables stored in memory for values in that range,
along with interpolation for numbers between those in the tables.15

Exercises

A
For Exercises 1-9 write out the first three nonzero terms in the Taylor’s series for the given function
f (x) about the given value c. You may use any method you like.

1. f (x)= sin x ; c= π/2 2. f (x)= sinh x ; c= 0 3. f (x)= cosh x ; c= 0

4. f (x)= tan x ; c= 0 5. f (x)= tanh x ; c= 0 6. f (x)= sec x ; c= 0

7. f (x)= 1
1+ x2 ; c= 0 8. f (x)= 1

1+ x2 ; c= 1 9. f (x)=
p

1+ x2 ; c= 0

10. Use Example 9.19 from Section 9.4 to write out the first three nonzero terms in the Taylor’s series
for f (x)= 1

(1−x)3
about x = 0.

13For a proof see pp.171-172 in KLAMBAUER, G., Aspects of Calculus, New York: Springer-Verlag, 1986.
14See Ch.7 in SCHMID, H., Decimal Computation, New York: John Wiley & Sons, Inc., 1974.
15To see how inaccurate calculators can be, compute tan(355/226) in radian mode on a calculator. The true value
to 3 decimal places is −7497258.185, but few calculators produce an answer close to that.



314 Chapter 9 • Infinite Sequences and Series §9.5

11. Use the derivative of the Taylor’s series for
p

1+ x2 from Exercise 9 to write out the first three
nonzero terms in the Taylor’s series for f (x) = x2

p
1+x2

about x = 0.

For Exercises 12-15 replace the function f (x) by its Taylor’s series about x = 0 to evaluate the given
indefinite integral

∫
f (x) dx (up to the first three nonzero terms in the series).

12.

∫
sin x

x
dx 13.

∫
cos(x2) dx 14.

∫
e−x2

dx 15.

∫√
1+ x6 dx

16. Use d
dx

(tan−1 x)= 1
1+x2 along with Exercise 7 to find the Taylor’s series for f (x)= tan−1 x about x = 0,

along with its interval of convergence.

17. Use Exercise 16 to show that

π = 4
(
1 − 1

3
+ 1

5
− 1

7
− ·· ·

)
.

18. Use the first three nonzero terms in the Taylor’s series about x = 0 for e−x2/2 to evaluate the definite
integral ∫1

−1

1
p

2π
e−x2/2 dx .

Note: The actual value (rounded to 4 decimal places) is 0.6826.

19. Recall that the surface area S of the solid obtained by revolving the curve y= x2 around the x-axis
between x = 0 and x = 2 is given by the integral

S =
∫2

0
2πx2

√
1 + 4x2 dx .

The exact value of the integral rounded to 3 decimal places is S = 53.226. Use the first two nonzero
terms in the Taylor’s series for

p
1+4x2 about x = 0 to approximate the integral. How close is this

approximation to the actual value? Does the approximation become better if you use the first three
nonzero terms in the Taylor’s series? Justify your answer.

20. The tangential component of a space shuttle’s velocity during reentry is approximately

v(t) = vc tanh
(

g

vc

t + tanh−1
(

v0

vc

))

where v0 is the velocity at time t = 0 and vc is the terminal velocity. If tanh−1
(

v0
vc

)
= 1

2 then show

that v(t)≈ gt+ 1
2 vc.

21. The velocity of a water wave of length L in water of depth h satisfies the equation v2 = gL

2π tanh
(

2πh
L

)
.

Show that v ≈
√

gh.

22. A disk of radius a has a charge of constant density σ. A point P lies at a distance r directly above
the disk. The electrical potential V at point P is given by V = 2πσ(

p
r2 +a2 − r). Show that V ≈ πa2σ

r

for large r (i.e. r ≫ 1).

23. The fifth-degree Padé approximation uses rational functions to approximate tanh x:

tanh x ≈ x5 +105x3+945x

15x4 +420x2 +945
Compare the values of the Padé approximation and the fifth-degree Taylor’s series approximation
from Exercise 5, evaluated at x = 1. Which is better? The actual value of tanh(1) is 0.7615941559558.
How do the two approximations compare at x = 2?
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Answers and Hints to Selected Exercises

Chapter 1

Section 1.1 (p. 6)

1. 2t 2. 19.6t 3. −32t+2 4. 3t2

Section 1.2 (p. 14)

1. 0 3. 2x+2 5. − 1
(x+1)2 7. − 2

x3

9. 1
2
p

x+1
11. 2x+3

2
p

x2+3x+4

Section 1.3 (p. 20)

5. Hint: Use the sine double-angle for-
mula. 7. Hint: Use Exercise 5 and the
sine addition formula.

Section 1.4 (p. 26)

1. 2x−1 3. 4x5 + 9
x7 5. x cos x+ sin x

7. x cos x−sin x
x2 9. 2−2t2

(1+t2)2 11. ad−bc
(cx+d)2

13. 2πr

Section 1.5 (p. 30)

1. −20(1−5x)3 3. − 1p
1−2x

5. 1−x
2
p

x(x+1)2

7. −8(1−t)3

(1+t)5 9. 2sinx cos x 11. 15sec2(5x)

13. 2xsec(x2) tan(x2) 15. β(1 − β2)−3/2

17. sin(cos x) sin x 21. Hint for part(b):
Use part(a) and the Chain Rule to find Sp,
then recall how to convert from radians
per second to revolutions per minute.

Section 1.6 (p. 35)

1. 6x+2 3. −9cos3x 5. 2
x3

Chapter 2

Section 2.1 (p. 40)

1. f −1(x)= x,
(
f −1)′

(x)= 1
3. f −1(x)=p

x,
(
f −1)′

(x)= 1
2
p

x

5. f −1(x)= 1
x
,
(
f −1)′ (x)=− 1

x2

7. f −1(x)= 1p
x
,
(
f −1)′

(x)=−1
2 x−3/2

Section 2.2 (p. 44)

1. 6sec2 3x tan3x 3. −3csc2 3x 5. 3
9+x2

7. − 3
1+9x2 9. 1

1+x2 11. 6sin−1 3xp
1−9x2

13. 1
1+x2 15. cot−1 x− x

1+x2

315
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Section 2.3 (p. 52)

1. 2e2x 3. −e−x−ex 5. 2ex

(1−ex)2 7. eex
ex

9. 1
x

11.
6x(ln(tanx2))2 sec2 x2

tanx2

15. xx2
(x+2x ln x)

17. xsin x
(
cos x ln x+ sin x

x

)
19. 15.5 hours

21. 12 hours

Section 2.4 (p. 55)

1.
ln3(3x−3−x)

2 3. (ln2)2 22x

2x

5. 2x
(ln2)(x2+1) 7.

cos(log2πx)
x ln2 9. 3x2

Chapter 3

Section 3.1 (p. 61)

1. y = 4x−3 3. y =−6x+10 5. y = 4x

7. y= x+3 9. y= 240x+176 11. y= 2x

13. y= 3x+ 31
27 , y= 3x+1 15. 75.96◦

17. 0◦ 19. 116.6◦ 21. 5.71◦

23. y=−1
4 x+ 11

2
25. y=−1

4 x− 81
4 , y=−1

4 x+ 1159
108

Section 3.2 (p. 72)

1. 7
3 3. 0 5. −1 7. 0 9. 2 11. 0

14. 1
2 15. 0 17. 0

Section 3.3 (p. 78)

1. continuous 3. discontinuous
5. discontinuous 7. discontinuous
9. continuous 11. continuous
13. continuous 15. discontinuous
17. continuous 19. 1 21. e−1

25. Hint: Use the Intermediate Value
Theorem.

Section 3.4 (p. 81)

1.
−3x2 y+4y2+2x

x3−8xy−1 3.
2(x−y+1)−3(x+y)2

2(x−y+1)+3(x+y)2

5.
2x(1−(x2−y2))
y(2(y2−x2)−1) 7. − y

x

9. −−2x−y+3x2 y2esin(xy)+x3 y3esin(xy) cos(xy)
x4 y2esin(xy) cos(xy)+2x3 yesin(xy)−3y2−x

13. − x2+y2

y3

Section 3.5 (p. 83)

1. 80π ft/s 3. 2.4 ft/s 5. 10 ft/s
7. −76π cm3/min 9. 45.14 mph
11. 155.8 ft/min

Section 3.6 (p. 88)

1. (2x − 2) dx 2. 4x sin(x2) cos(x2) dx

11. Hint: Mimic Example 3.35.

Chapter 4

Section 4.1 (p. 98)

1. (1,1) 3. 125,000 sq yd 5. U = V
2

7. R = r 9. 2ab 13. Q =
√

2DP
I+W

15. r =
√

r2
0 + x2

0 17. 380.62 minutes

19. 12π
p

3 21. 12.8 ft 22. Hint: Place
the right angle of the triangle at the origin

in the xy-plane. 25. x=
√

RN
r

27. x= ap
2

33. (a2/3 +b2/3)3/2

34. Hint: You can leave your answer in
terms of R and an angle satisfying a cer-
tain equation.

Section 4.2 (p. 108)

2. local maximum at x = 0, local mini-
mum at x = 2, inflection pt at x = 1, in-
creasing for x < 0 and x > 2, decreasing
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for 0 < x < 2, concave up for x > 1, con-
cave down for x < 1 3. local maximum at
x = 1, inflection pt at x = 2, increasing for
x < 1, decreasing for x > 1, concave up for
x > 2, concave down for x < 2, horizontal
asymptote: y = 0 5. local maximum at
x = 0, inflection pts at x =± 1p

3
, increasing

for x < 0, decreasing for x > 0, concave up
for x < − 1p

3
and x > 1p

3
, concave down for

− 1p
3
< x < 1p

3
, horizontal asymptote: y = 0

7. local maximum at x = ln2, inflection pt
at x = ln4, increasing for x < ln2, decreas-
ing for x> ln2, concave up for x > ln4, con-
cave down for x < ln4, horizontal asymp-
tote: y= 0

Section 4.3 (p. 117)

1. x= 0.450184 3. x= 0.567143
5. x = 1.414213 11. global maximum at
x= 2.8214 14. 50

Section 4.4 (p. 122)

1. No 3. Yes 6. No 18. Hint: Calcu-
late f ′(x) and use the cosine addition for-
mula.

Chapter 5

Section 5.1 (p. 131)

1. x3

3 + 5x2

2 −3x+C 3. 4ex +C

5. −5cos x+C 7. 6ln|x|+C

9. −4
3 x3/2 +C 11. x2

2 + 3
7 x7/3 +C

13. 3secx+C 15. −7cot x+C

Section 5.2 (p. 139)

3. 1
2 4. 1

3 5. 1 6. 1
4

Section 5.3 (p. 145)

1. 1
3 3. 1

4 5. 1
2 7. 1 9. 2e−2e−1

11. 16
3

Section 5.4 (p. 150)

1. 3sin5x−4cos5x
5 +C

3. −1
2 e−x2 + 1

3 sin x3 + C

5. ln(1+ ex)+C

7. 2
5 (x+4)5/2 − 8

3 (x+4)3/2 +C

9. tan x− x+C 11. 3
10 tan−1 (5x

2

)
+C

13. 10 15. 1192
15 17. 1 19. − 1

48
21. π

6 23. 1
2

Section 5.5 (p. 158)

1. 1
2 3. 1 5. divergent 7. 1

ln2
9. divergent 11. 6 13. divergent
15. π

2 19. Yes 20. No

Chapter 6

Section 6.1 (p. 165)

1. x2 ln x
2 − x2

4 +C 2. (x2 −2x+2)ex+C

3. xsin x+cos x+C

5. x2ax

lna
− 2xax

ln2 a
+ 2ax

ln3 a
+C

7. x ln x2 −2x+C

9. Hint: Use a double-angle identity.
11. xsin−1 x+

p
1− x2 +C

13. xtan−1 3x− 1
6 ln(1+9x2)+C

15. −3
8 sin xcos3x+ 1

8 cos xsin3x+C

17. 1
4 x4 ln2 x− 1

8 x4 ln x+ 1
32 x4 +C 19. 16

3

20. 2
p

2+2
15 21. xsin(lnx)

2 − xcos(ln x)
2 +C

23. x2 tan−1 x
2 − x

2 +
tan−1 x

2 +C

24. xcot−1px+p
x+cot−1px+C

25. Hint: Try the substitution t =p
x.
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Section 6.2 (p. 171)

1. − 1
14 cos 7x+ 1

6 cos 3x+C

3. − 1
14 sin 7x+ 1

6 sin 3x+C

5. −2
5 cos5/2 x+ 2

9 cos9/2 x+C

7. −1
4 sin 2x+ 1

48 sin2 2x+ 5
16 x+ 3

64 sin 4x+C

9. 1
3 tan3 x+ tan x+C 11. 1

4 sin4 x+C

Section 6.3 (p. 177)

1. 1
2 x

p
9+4x2 + 9

4 ln |2x+
p

9+4x2 |+C

3. 1
2 x

p
4x2 −9− 9

4 ln |2x+
p

4x2 −9|+C

5. −sin−1 x −
p

1−x2

x
+C

7. ln|x|− ln |1+
p

1+ x2 |+C

9. 1
3 (x2 +4)3/2 −4

p
x2 +4+C

11. 1
108 tan−1 (2x

3

)
+ x

18(9+4x2) +C

13. −9
p

9− x2 + 1
3 (9− x2)3/2 +C

15. −1
9

p
−9x2 +36x−32− 2

3 sin−1 (3x−6
2

)
+C

Section 6.4 (p. 184)

1. − ln|x|+ ln|x−1|+C

3. 1
5 ln|2x−1|− 1

5 ln|x+2|+C

5. 1
x
+ 1

2 ln|x−1|− 1
2 ln|x+1|+C

7. 2ln|x|+ 1
x
−2ln|x+1|+C

9. −3ln|x|+ 2
x
+3ln|x−1|+ 1

x−1 +C

11. 1
3 tan−1 x− 1

6 tan−1 (
x
2

)
+C

Section 6.5 (p. 193)

1. tan 1
2θ− ln |sin θ |+C

3. 2p
3

tan−1
(

2tan 1
2θ−1

p
3

)
+C

5. 4p
3

tan−1
(

2tan 1
2θ−1

p
3

)
−θ+C

7. ln
∣∣tan 1

2θ
∣∣− ln

∣∣tan 1
2θ+1

∣∣+C

9. ln
∣∣tan 1

2θ
∣∣−2ln

∣∣tan 1
2θ+1

∣∣+C

11.
p

2π 23. 3
2Γ

( 2
3

) x2/3

Section 6.6 (p. 201)

1. The true value is P ≈ 7.4163
√

l/g (i.e.
the integral is ≈ 1.8541)
2. 7.416331870724302

√
l/g

3. 0.8948311310564181
7. 119.9785845899309
9. 0.5967390281992041 (The true value is
0.5963473623231939)

Chapter 7

Section 7.1 (p. 209)

2. Foci: (±3,0), vertexes: (±5,0), e = 3
5

3. Foci: (0,±
p

5), vertexes: (0,±3), e =
p

5
3

5. Foci:
(
±

p
3

2 ,0
)
, vertexes: (±1,0), e =

p
3

2

9.
(
± a2b2

a2+b2 ,± a2b2

a2+b2

)
13. Hint: Use the

two points you know for certain are on the
ellipse to find the location of the directrix.
16. Hint: Use Exercise 15 and formula
(7.3).

Section 7.2 (p. 215)

2. Focus: (0,2), vertex: (0,0), directrix:
y=−2
3. Focus:

(
0, 1

32

)
, vertex: (0,0), directrix:

y=− 1
32

4. Focus:
(1

2 ,0
)
, vertex: (0,0), directrix:

x=−1
2

5. Focus:
(−1

12 ,0
)
, vertex: (0,0), directrix:

x= 1
12

7. (0,0) and (4p,4p); y= x 9. |4p|
11. (3p,±2

p
3p)

16. Focus:
(
−b
2a

, 4ac−b2+1
4a

)
, vertex:(

−b
2a

, 4ac−b2

4a

)
, directrix: y= 4ac−b2−1

4a
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Section 7.3 (p. 223)

2. Foci: (±5,0), vertexes: (±4,0), directri-
ces: x=±16

5 , asymptotes: y=±3
4 x, e = 5

4
3. Foci: (±

p
23,0), vertexes: (±2

p
2,0), di-

rectrices: x=± 8p
23

,

asymptotes: y=±
p

15
2
p

2
x, e =

p
23

2
p

2

4. Foci: (±
p

41
2 ,0), vertexes: (±5

2 ,0), direc-
trices: x =± 25

2
p

41
, asymptotes: y=±4

5 x,

e =
p

41
5

5. Foci: (±
p

5
2 ,0), vertexes: (±1,0), directri-

ces: x=± 2p
5
, asymptotes: y=±1

2 x, e =
p

5
2

6. Foci: (0,±
p

34), vertexes: (0,±3), di-
rectrices: y = ± 9p

34
, asymptotes: y = ±3

5 x,

e =
p

34
3

7. x2

9 − y2

16 = 1 17. x2

302500 −
y2

697500 = 1

Section 7.4 (p. 229)

1. Foci: (0,2) and (6,2), vertexes: (−2,2)
and (8,2)
3. Foci: (−3,1± 2

p
3), vertexes: (−3,−3)

and (−3,5)
5. Focus: (−3,−239

16 ), vertex: (−3,−15), di-
rectrix: y=−241

16
7. Focus:

(1
2 ,−7

4

)
, vertex:

(1
2 ,−3

2

)
, direc-

trix: y=−5
4

9. Foci: (−1±
p

13), vertexes: (−4,−3) and
(2,−3), directrices: x = −1± 9p

13
, asymp-

totes: y=±2
3 (x+1)−3

11. Foci: (
p

2,
p

2) and (−
p

2,−
p

2), ver-
texes: (1,1) and −1,−1), directices: y =
−x±

p
2, asymptotes: x= 0 and y= 0

15. hyperbola

Section 7.5 (p. 236)

12. Hint: Use Exercise 11.
24. local maximum at x = ln

p
3, inflection

pt at x= ln3, horizontal asymptote: y= 0
26. (b) Hint: See Exercise 10.
27. (b) k1 = c1 + c2, k2 = c1 − c2
30. s0 ≈ 1.006237835313385,
eπ/s0 = 22.69438187638412
33. (a) x = cx+cy

2 − y−x

2c
, y= cx+cy

2 + y−x

2c

(b) c = cosh a+sinh a

(c) Hint: Use Example 7.12.

Section 7.6 (p. 243)

5. Yes 6. (a) Hint: Solve for t in terms
of x then substitute into y.
(b) Hint: Use the distance formula.
8. Hint: Does BP = �AB? 9. (a) − 7

(2t+1)3

(c)
(36

25 , 14
5

)
12. x= t2−1, y= t(t2−1)

Section 7.7 (p. 250)

1. r = 6 cos θ 3. r2 = sec 2θ
5. θ = 3π

4 7. r = sec θ tan θ

9. x4 +2x2 y2 + y4 = 4x2 −4y2

11. y−1=−3
p

3
5 (x+

p
3)

13. local maxima at
(
2, π2

)
and

(
0, 3π

2

)
,

local minima at
(1

2 , 7π
6

)
and

(1
2 , 11π

6

)

15. local maxima at
(

2
p

2
3 ,α

)
and(

−2
p

2
3 ,2π−α

)
, local minima at(

−2
p

2
3 ,π−α

)
and

(
2
p

2
3 ,π+α

)
,

where α= tan−1
p

2 17. π
2

Chapter 8

Section 8.1 (p. 256)

1. 32
3 2. 4

3 3. 1
12 5. 9

2 7. 19
3 9. 9

140
11. 3π 13. 25

(
π
3 +1−

p
3
)
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17. 6250π3

3 sq ft

Section 8.2 (p. 261)

1. 1 3. 4
3 5. 2

π
7. 0 9. 1

2 ln3

Section 8.3 (p. 270)

1. 8
27 (103/2)− 1

27 (133/2)≈ 7.634

2.
p

5
2 + 1

4 sinh−1 2≈ 1.479
3. 8

27 (103/2)− 1
27 (133/2)≈ 7.634

5. 3
4 + ln

p
2≈ 1.097

7.
p

2(eπ−1)≈ 31.312
9. 8 11. 3 13. κ(0)= 0, κ(π2 )=−1
15. κ(0)= a

b2 at (a,0), κ(π2 )= b
a2 at (0, b)

17. −1 23. 13.27 ft

Section 8.4 (p. 276)

1. 4π 2. π
2 (2+sinh2) 3. 208π

9

5. π2

2 7. 2π 9. π
10 10. π

6

13. S =πr
p

r2 +h2, V = 1
3πr2h

Section 8.5 (p. 283)

1.
(4

5 , 2
7

)
3.

(3
5 , 12

35

)
5.

( 4r
3π , 4r

3π

)

7.
(
0, 11

4π

)
9. 0.192 Nm

11. RT

(
1

V 2
a
− 1

V 2
b

)
13. 0.3486 15.

(
1, 1

4

)

18. Hint: Use Exercise 28 in Section 6.1.
20. Hint: Use the equation from Section
5.1 for free fall motion to write time as a
function of height.

Chapter 9

Section 9.1 (p. 291)

1. Converges to 0 2. Converges to 1
3

3. Converges to 0 5. Divergent

7. Divergent 9. 6 11. 32 13. 113
999

14. 1 15. 1
4 20. 132

7 ft 24. No

Section 9.2 (p. 298)

6. Divergent 7. Convergent
8. Divergent 9. Convergent
10. Divergent 11. Convergent
12. Convergent 13. Convergent
14. Divergent 15. Divergent
16. Convergent 17. Convergent
18. 1

6 19. 1
10 20. 1

6 21. 1
2

Section 9.3 (p. 302)

1. Conditionally convergent
3. Conditionally convergent
5. Absolutely convergent
7. Answer to second question: Yes

Section 9.4 (p. 307)

1. −1≤ x < 1 2. −2< x < 2 3. 1< x < 3
4. −6 < x <−2 5. −∞< x <∞ 6. x = 0
7. −1 < x < 1 10. Hint: Use Example
9.19

Section 9.5 (p. 313)

1. 1− (x−π
2 )2

2! + (x−π
2 )4

4! −·· ·
2. x+ x3

3! +
x5

5! +·· · 3. 1+ x2

2! +
x4

4! +·· ·
4. x+ x3

3 + 2x5

15 +·· · 5. x− x3

3 + 2x5

15 −·· ·
6. 1+ x2

2 + 5x4

24 +·· · 7. 1− x2 + x4 −·· ·
8. 1

2 −
(x−1)

2 + (x−1)2

4 −·· ·
9. 1+ x2

2 − x4

8 +·· · 11. x2 − x4

2 + 3x6

8 −·· ·
13. x− x5

10 +
x9

216 −·· · 15. x+ x7

14 −
x13

104 +·· ·
18. 0.68485 19. 97.18; −132.605
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Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manu-
als providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The “Document”,
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below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain any mathemat-
ics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political posi-
tion regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Document
is released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suit-
able for revising the document straightforwardly with generic text editors or (for im-
ages composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transpar-
ent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or
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PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following

pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned be-
low, such as “Acknowledgments”, “Dedications”, “Endorsements”, or “History”.)
To “Preserve the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered
to be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in
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addition. Copying with changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added mate-
rial. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
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E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgments” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
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titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple iden-
tical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgments”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
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follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works per-
mit. When the Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Doc-
ument, then if the Document is less than one half of the entire aggregate, the Doc-
ument’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may in-
clude translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgments”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.
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However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this is
the first time you have received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days after your receipt of
the notice.

Termination of your rights under this section does not terminate the licenses of par-
ties who have received copies or rights from you under this License. If your rights
have been terminated and not permanently reinstated, receipt of a copy of some or all
of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example
of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of
that license published by that same organization.

http://www.gnu.org/copyleft/
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“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC,
and subsequently incorporated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the title
page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation Li-
cense”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.
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