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Introduction

The emphasis in this course is on problems—doing calculations and story problems. To master problem
solving one needs a tremendous amount of practice doing problems. The more problems you do the
better you will be at doing them, as patterns will start to emerge in both the problems and in successful
approaches to them. You will learn quickly and effectively if you devote some time to doing problems
every day.

Typically the most difficult problems are story problems, since they require some effort before you can
begin calculating. Here are some pointers for doing story problems:

1.
2.

Carefully read each problem twice before writing anything.
Assign letters to quantities that are described only in words; draw a diagram if appropriate.

Decide which letters are constants and which are variables. A letter stands for a constant if its value
remains the same throughout the problem.

Using mathematical notation, write down what you know and then write down what you want to
find.

. Decide what category of problem it is (this might be obvious if the problem comes at the end of a

particular chapter, but will not necessarily be so obvious if it comes on an exam covering several
chapters).

. Double check each step as you go along; don’t wait until the end to check your work.

Use common sense; if an answer is out of the range of practical possibilities, then check your work
to see where you went wrong.






Success in calculus depends on your background in algebra, trigonometry, analytic geometry and func-
tions. In this chapter, we review many of the concepts you will need to know to succeed in this course.

1.1 Algebra

1.1.1 Sets and Number Systems

A set can be thought of as any collection of distinct objects considered as a whole. Typically, sets are rep-
resented using set-builder notation and are surrounded by braces. Recall that (,) are called parentheses
or round brackets; [,] are called square brackets; and {, } are called braces or curly brackets.

Example 1.1: Sets

The collection {a,b,1,2} is a set. It consists of the collection of four distinct objects, namely, a, b,
1 and 2.

Let S be any set. We use the notation x € S to mean that x is an element inside of the set S, and the
notation x ¢ S to mean that x is not an element of the set S.

Example 1.2: Set Membership

IfS={a,b,c}, thena € S butd ¢ S.

The intersection between two sets S and 7 is denoted by SN T and is the collection of all elements
that belong to both S and 7. The union between two sets S and 7 is denoted by SUT and is the collection
of all elements that belong to either S or T (or both).

Example 1.3: Union and Intersection

Let S ={a,b,c} and T = {b,d}. Then SNT = {b} and SUT = {a,b,c,d}. Note that we do not
write the element b twice in SUT even though b is in both S and T .

Numbers can be classified into sets called number systems.

N || the natural numbers {1,2,3,...}

7 the integers {...,-3,-2,—-1,0,1,2,3,...}

Q || the rational numbers Ratios of integers: {§ i p.q EL,qF O}

R the real numbers Can be written using a finite or infinite decimal expansion
C || the complex numbers These allow us to solve equations such as x> +1 =0




4 m Review

In the table, the set of rational numbers is written using set-builder notation. The colon, :, used in this
manner means such that. Often times, a vertical bar | may also be used to mean such that. The expression

{g ' p.q € L,qF 0} can be read out loud as the set of all fractions p over g such that p and g are both
integers and ¢ is not equal to zero.

Example 1.4: Rational Numbers

The numbers —%, 2.647, 17, 0.7 are all rational numbers. You can think of rational numbers as
fractions of one integer over another. Note that 2.647 can be written as a fraction:

1000 2647

Also note that in the expression 0.7, the bar over the 7 indicates that the 7 is repeated forever:

077777777 ... = ;

All rational numbers are real numbers with the property that their decimal expansion either terminates
after a finite number of digits or begins to repeat the same finite sequence of digits over and over. Real
numbers that are not rational are called irrational.

Example 1.5: Irrational Numbers

Some of the most common irrational numbers include:
* /2. Can you prove this is irrational? (The proof uses a technique called contradiction.)

e . Recall that & (pi) is defined as the ratio of the circumference of a circle to its diameter
and can be approximated by 3.14159265.

* ¢. Sometimes called Euler’s number, e can be approximated by 2.718281828459. We will
review the definition of e in a later chapter.

Let S and T be two sets. If every element of § is also an element of 7', then we say S is a subset of T
and write S C T'. Furthermore, if S is a subset of 7" but not equal to 7', we often write S C T. The five sets
of numbers in the table give an increasing sequence of sets:

NCZcQcRcC

That is, all natural numbers are also integers, all integers are also rational numbers, all rational numbers
are also real numbers, and all real numbers are also complex numbers.

1.1.2 Law of Exponents

The Law of Exponents is a set of rules for simplifying expressions that governs the combination of expo-
nents (powers). Recall that Va denotes the nth root. For example v/8 = 2 represents that the cube root of
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8 is equal to 2.

Definition 1.6: Law of Exponents

Definitions
If m,n are positive integers, then:
ntimes n
I X'*=%x-...-X 3. % =x—n,forx7é0
2. x"=1, forx #0 4. xmn = Yxm or (W/x)", forx >0
Combining
+b x4 a—b b b a A
1. xxb = x4 2. = =x"" forx#0 3. (x4)7 = x1 = xba = (xb)
X
Distributing
a
L (y)* =24y, forx >0,y >0 2. (E) ZX_Z’forXZO,y>O
Y Yy

In the next example, the word simplify means to make simpler or to write the expression more com-
pactly.

Example 1.7: Laws of Exponents

Simplity the following expression as much as possible assuming x,y > 0:

3x2y3x

y2V/x

Solution. Using the Law of Exponents, we have:

3x2y3x 3x 2y 1
5 = —, since \/x =x2,
Y V/x y2x2
3x 2yx ) y?
= T, since & =y,
X2 y
3y . x 2 x! 3 1
= 3 since T :—l:x 2:—3,
X2 X2 X2 X2
3 . 3
= —y, since x2 = vV x3
Vi3
2

An answer of 3yx_3/ is equally acceptable, and such an expression may prove to be computationally
simpler, although a positive exponent may be preferred. s
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1.1.3 The Quadratic Formula and Completing the Square

The technique of completing the square allows us to solve quadratic equations and also to determine the
center of a circle/ellipse or the vertex of a parabola.

The main idea behind completing the square is to turn:
ax®> +bx+c

into
a(x—h)?>+k
One way to complete the square is to use the following formula:
2 2
ax’ +bx+c=a x—i—ﬁ — b——l—c

2a 4a?
But this formula is a bit complicated, so some students prefer following the steps outlined in the next
example.

Example 1.8: Completing the Square

Solve 2x* 4+ 12x — 32 = 0 by completing the square.

Solution. In this instance, we will not divide by 2 first (usually you would) in order to demonstrate what
you should do when the ‘a’ value is not 1.

2x24+12x—32=0 Start with original equation.
2x? +12x =32 Move the number over to the other side.
2(x? 4 6x) = 32 Factor out the a from the ax? + bx expression.
6 - $=3 — 32=9 Take the number in front of x,
divide by 2,

then square it.

2(x* +6x+9)=32+2-9 Add the result to both sides,
taking a = 2 into account.

2(x+3)2 =50 Factor the resulting perfect square trinomial.
You have now completed the square!

(x4+3)2=25 — x=2o0rx=—8 To solve for x, simply divide by a = 2
and take square roots.
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&

Suppose we want to solve for x in the quadratic equation ax® 4+ bx + ¢ = 0, where a # 0. The solution(s)
to this equation are given by the quadratic formula.

The Quadratic Formula

—b++/b?—4ac
2a ’

The solutions to ax® + bx+ ¢ = 0 (with a # 0) are x =

Proof. To prove the quadratic formula we use the technique of completing the square. The general tech-
nique involves taking an expression of the form x> + rx and trying to find a number we can add so that we
end up with a perfect square (that is, (x+#)?). It turns out if you add (r/2)? then you can factor it as a
perfect square.

For example, suppose we want to solve for x in the equation ax? 4+ bx + ¢ = 0, where a # 0. Then we
can move c to the other side and divide by a (remember, a # 0 so we can divide by it) to get

To write the left side as a perfect square we use what was mentioned previously. We have r = (b/a) in this
case, so we must add (r/2)? = (b/2a)? to both sides

2l (2 T . :
a 2a)  a 2a
We know that the left side can be factored as a perfect square

b 2 ¢, (b 2
x+— | =—- —
2a a 2a

The right side simplifies by using the exponent rules and finding a common denominator

b\ et
2a 4q2

N b L | —4ac + b?
X+ —= -
2a 4a?

_ —b+Vb>—4ac
N 2a
In essence, the quadratic formula is just completing the square. )

Taking the square root we get

which can be rearranged as

X
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1.1.4 Inequalities, Intervals and Solving Basic Inequalities

Inequality Notation

Recall that we use the symbols <, >, <, > when writing an inequality. In particular,
* a < b means a is to the left of b (that is, a is strictly less than b),
* a < b means a is to the left of or the same as b (that is, a is less than or equal to b),
* a > b means a is to the right of b (that is, a is strictly greater than b),

* a > b means a is to the right of or the same as b (that is, a is greater than or equal to b).

To keep track of the difference between the symbols, some students use the following mnemonic.

‘ The < symbol looks like a slanted L which stands for “Less than”. \

Example 1.9: Inequalities

The following expressions are true:

1<2, 5<-=2, 1L2, 1<1, 4>n>3, 7.23>-7.23.

The real numbers are ordered and are often illustrated using the real number line:

-2.5

| | | | | | V2 | W7 |
T T T T T T T T T
-4 -3 -2 -1 0 1 2 3 4

Intervals

Assume a, b are real numbers with a < b (i.e., a is strictly less than ). An interval is a set of every real
number between two indicated numbers and may or may not contain the two numbers themselves. When
describing intervals we use both round brackets and square brackets.

(1) Use of round brackets in intervals: (, ). The notation (a,b) is what we call the open interval from
a to b and consists of all the numbers between a and b, but does not include a or b. Using set-builder

notation we write this as:
(a,b)={xeR :a<x<b}

We read {x € R : a < x < b} as “the set of real numbers x such that x is greater than a and less than 5” On
the real number line we represent this with the following diagram:

~
\

a b
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Note that the circles on a and b are not shaded in, we call these open circles and use them to denote
that a, b are omitted from the set.

(2) Use of square brackets in intervals: [, |. The notation [a,b] is what we call the closed interval
from a to b and consists of all the numbers between a and b and including a and b. Using set-builder
notation we write this as

la,b] ={xeR|a<x<b}

On the real number line we represent this with the following diagram:

° ®
a b

Note that the circles on a and b are shaded in, we call these closed circles and use them to denote that
a and b are included in the set.

To keep track of when to shade a circle in, you may find the following mnemonic useful:

The round brackets (, ) and non-shaded circle both form an “O” shape which stands for “Open and
Omit”.

Taking combinations of round and square brackets, we can write different possible types of intervals
(we assume a < b):

(a,b)={xeR:a<x<b}|[abj={xeR:a<x<b}| [a,b)={xeR:a<x<b}

O O @ @ @ O
a b a b a b
(a,b)={xeR:a<x<b} | (ao)={xeR:x>a} [a,0) ={x€R : x>a}

® ®
b a

a a
(—oo,b) ={xeR:x<b} | (—oo,b]={xeR :x<b} | (—oo,00) =R = all real numbers

O .
b b

Note: Any set which is bound at positive and/or negative infinity is an open interval.
Inequality Rules

Before solving inequalities, we start with the properties and rules of inequalities.
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Inequality Rules

Add/subtract a number to both sides:
e Ifa<b,thena+c<b+canda—c<b—c.

Adding two inequalities of the same type:
e fa<bandc<d,thena+c<b+d.
Add the left sides together, add the right sides together.
Multiplying by a positive number:
e Jetc>0.Ifa<b,thenc-a<c-b.

Multiplying by a negative number:

e Jetc<O0.Ifa<b,thenc-a>c-b.
Note that we reversed the inequality symbol!

Similar rules hold for each of <, > and >.
Solving Basic Inequalities

We can use the inequality rules to solve some simple inequalities.

Example 1.10: Basic Inequality

Find all values of x satisfying
3x+1>2x-3

Write your answer in both interval and set-builder notation. Finally, draw a number line indicating
your solution set.

Solution. Subtracting 2x from both sides gives x+ 1 > —3. Subtracting 1 from both sides gives x > —4.
Therefore, the solution is the interval (—4,c). In set-builder notation the solution may be written as
{x € R: x > —4}. We illustrate the solution on the number line as follows:

oy
\ 9,

-4

Sometimes we need to split our inequality into two cases as the next example demonstrates.

Example 1.11: Double Inequalities

Solve the inequality
4>3x—-2>2x—1
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Solution. We need both 4 > 3x —2 and 3x —2 > 2x— 1 to be true:

4>3x—2 and 3x—2>2x—1,
6 > 3x and x—2>—1,
2>x and x> 1,
x <2 and x> 1.

Thus, we require x > 1 but also x < 2 to be true. This gives all the numbers between 1 and 2, including
1 but not including 2. That is, the solution to the inequality 4 > 3x —2 > 2x — 1 is the interval [1,2). In
set-builder notation this is the set {x ¢ R : 1 <x < 2}. &

Example 1.12: Positive Inequality

Solve 4x —x2 > 0.

Solution. We provide two methods to solve this inequality.

First method. Factor 4x —x? as x(4 —x). The product of two numbers is positive when either both are
positive or both are negative, i.e., if either x > 0 and 4 —x > 0, or else x < 0 and 4 —x < 0. The latter
alternative is impossible, since if x is negative, then 4 — x is greater than 4, and so cannot be negative. As
for the first alternative, the condition 4 — x > 0 can be rewritten (adding x to both sides) as 4 > x, so we
need: x > 0 and 4 > x (this is sometimes combined in the form 4 > x > 0, or, equivalently, 0 < x < 4). In
interval notation, this says that the solution is the interval (0,4).

Second method. Write 4x — x? as —(x? — 4x), and then complete the square, obtaining
—((x—2)2—4) —4— (x—2)

For this to be positive we need (x —2)? < 4, which means that x — 2 must be less than 2 and greater than
—2: =2 < x—2 < 2. Adding 2 to everything gives 0 < x < 4.

Both of these methods are equally correct; you may use either in a problem of this type. s

We next present another method to solve more complicated looking inequalities. In the next example
we will solve a rational inequality by using a number line and test points. We follow the guidelines below.
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Guidelines for Solving Rational Inequalities

1. Move everything to one side to get a 0 on the other side.
2. If needed, combine terms using a common denominator.
3. Factor the numerator and denominator.
4

. Identify points where either the numerator or denominator is 0. Such points are called split
points.

5. Draw a number line and indicate your split points on the number line. Draw closed/open
circles for each split point depending on if that split point satisfies the inequality (division by
zero is not allowed).

6. The split points will split the number line into subintervals. For each subinterval pick a test
point and see if the expression in Step 3 is positive or negative. Indicate this with a + or —
symbol on the number line for that subinterval.

7. Now write your answer in set-builder notation. Use the union symbol U if you have multiple
intervals in your solution.

Example 1.13: Rational Inequality

Write the solution to the following inequality using interval notation:

2—x
> 1.
2+x

Solution. One method to solve this inequality is to multiply both sides by 2 + x, but because we do not
know if 24 x is positive or negative we must split it into two cases (Case 1: 2+x > 0 and Case 2: 2+ x < 0).

Instead we follow the guidelines for solving rational inequalities:

2
Start with original problem: al >1
24x
. . 2—x
Move everything to one side: —-1>0
2+x
2— 2
Find a common denominator: t_ X >0
2+x 2+4+x
2—x)—(2
Combine fractions: (2=x) -2+ >0
2+x
2—x—2—
Expand numerator: i >0
24+x
—2x

(%)

Simplif tor: >
implify numerator Tx
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Now we have the numerator and denominator in fully factored form. The split points are x = 0 (makes
the numerator 0) and x = —2 (makes the denominator 0). Let us draw a number line with the split points
indicated on it:

-2 0

The point x = 0 is included since if we sub x = 0 into (*) we get 0 > 0 which is true. The point x = —2
is not included since we cannot divide by zero. We indicate this with open/closed circles on the number
line (remember that open means omit):

o ®
-2 0
Now choosing a test point from each of the three subintervals we can determine if the expression % is
positive or negative. When x = —3, it is negative. When x = —1, it is positive. When x = 1, it is negative.
Indicating this on the number line gives:
- . + - =
-2 0

Since we wish to solve % > 0, we look at where the + signs are and shade that area on the number

line:

—_ o + . —_
-2 0
Since there is a closed circle at 0, we include it. Therefore, the solution is (—2,0]. &

Example 1.14: Rational Inequality

Write the solution to the following inequality using interval notation:

2
—— >3x+3
x+2

Solution. We provide a brief outline of the solution. By subtracting (3x+ 3) from both sides and using a
common denominator of x 4+ 2, we can collect like terms and simplify to get:

—(3x% +9x+4)

0
x+2 -

The denominator is zero when x = —2. Using the quadratic formula, the numerator is zero when x =

_9%\/@ (these two numbers are approximately —2.46 and —0.54). Since the inequality uses “>" and

0 > 0 is false, we do not include any of the split points in our solution. After choosing suitable test points

(3x*+9x+4)

and determining the sign of —— we have
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+ - + -
) O )
-2.46 -2 -0.54

Looking where the + symbols are located gives the solution:

—9-4/33 —9+/33
(-2

When writing the final answer we use exact expressions for numbers in mathematics, not approximations
(unless stated otherwise). &

1.1.5 The Absolute Value

The absolute value of a number x is written as |x| and represents the distance x is from zero. Mathemati-
cally, we define it as follows:

x| = x, ifx>0
] —x, ifx<O0

Thus, if x is a negative real number, then —x is a positive real number. The absolute value does not just
turn minuses into pluses. That is, |2x — 1| # 2x+ 1. You should be familiar with the following properties.

Absolute Value Properties

1. |x| >0.

2. |xy| = [x][y].

3. |1/x] = 1/|x| when x # 0.

4. | —x| = |x|.

5. |x+y| < |x| + |y|- This is called the triangle inequality.
6. Va2 = |x].

Example 1.15: v/x2 = |x|

Observe that \/(—3)? gives an answer of 3, not —3.

When solving inequalities with absolute values, the following are helpful.
Case 1: a > 0.

* |x| = a has solutions x = +a.

* |x| <ameans x> —aand x < a (that is, —a < x < a).
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* |x| < ameans x > —a and x < a (that is, —a < x < a).
* |x| >ameansx < —aorx>a.

* |x| >a means x < —a orx > a.

Case 2: a < 0.

* |x| = a has no solutions.
* Both |x| < a and |x| < a have no solutions.

* Both |x| > a and |x| > a have solution set {x|x € R}.

Case 3: a =0.

* |x| = 0 has solution x = 0.

|x| < 0 has no solutions.

|x| <0 has solution x = 0.

|x| > 0 has solution set {x € R|x # 0}.
|x| > 0 has solution set {x|x € R}.

1.1.6 Solving Inequalities that Contain Absolute Values

We start by solving an equality that contains an absolute value. To do so, we recall that if @ > O then the
solution to |x| = a is x = +a. In cases where we are not sure if the right side is positive or negative, we
must perform a check at the end.

Example 1.16: Absolute Value Equality

Solve for x in |2x+ 3| =2 — x.

Solution. This means that either:

2x+3=4(2—-x) or 2x+3=—-(2—x)

2x+3=2—x or 2x+3=-2+4x
3x=-1 or x=-5
x=-1/3 or x=-5

Since we do not know if the right side “a =2 —x” is positive or negative, we must perform a check of our
answers and omit any that are incorrect.

If x=—1/3, then we have LS = |[2(—1/3)+3|=|-2/3+3|=|7/3|=7/3and RS=2—(—1/3) =
7/3. In this case LS = RS, so x = —1/3 is a solution.

If x = —5, then we have LS = [2(—=5)+3| = |- 10+3|=|-7|=7and RS=2—(-5) =2+5="1.
In this case LS = RS, so x = —5 is a solution. &

We next look at absolute values and inequalities.
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Example 1.17: Absolute Value Inequality

Solve |x—5| < 7.

Solution. This simply means —7 <x—35 < 7. Adding 5 to each gives —2 < x < 12. Therefore the solution
is the interval (—2,12). L)

In some questions you must be careful when multiplying by a negative number as in the next problem.

Example 1.18: Absolute Value Inequality

Solve |2 —2z| < 7.

Solution. This simply means —7 < 2 —z < 7. Subtracting 2 gives: —9 < —z < 5. Now multiplying by
—1 gives: 9 > z > —5. Remember to reverse the inequality signs! We can rearrange this as —5 <z < 9.
Therefore the solution is the interval (—5,9). &

Example 1.19: Absolute Value Inequality

Solve |2 —z| > 1.

Solution. Recall that for a > 0, |x| > a means x < —a or x > a. Thus, either 2 —z < —7 or 2 —z > 7. Either
9 <zor —5 >z Either z > 9 or z < —5. In interval notation, either z is in [9,00) or z is in (—oo, —5]. All
together, we get our solution to be: (—eo, —5]U[9,e0). &

In the previous two examples the only difference is that one had < in the question and the other had
>. Combining the two solutions gives the entire real number line!

Example 1.20: Absolute Value Inequality
Solve 0 < [x—5| < 7.

Solution. We split this into two cases.

(1) For 0 < |x — 5| note that we always have that an absolute value is positive or zero (i.e., 0 < |x — 5|
is always true). So, for this part, we need to avoid 0 = |x — 5| from occurring. Thus, x cannot be 5, that is,
X #5.

(2) For |x—5| <7, we have —7 <x—5 < 7. Adding 5 to each gives —2 < x < 12. Therefore the
solution to |x — 5| < 7 is the interval [—2,12].

To combine (1) and (2) we need combine x # 5 with x € [—2,12]. Omitting 5 from the interval [—2,12]
gives our solution to be: [—2,5) U (5, 12]. &
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Exercises for 1.1

Exercise 1.1.1 Simplify the following expressions as much as possible assuming x,y > 0:
By~1/3

3 /y2x2
3x Y 3y’2\3/x_4

(a)

b
5 =5
16x%y 1/2\3/)?

(« ( I ) 25
Exercise 1.1.2 Find the constants a,b,c if the expression
4x1y2 3/x
2x\/§

is written in the form ax"y°.

Exercise 1.1.3 Find the roots of the quadratic equation

X2 —2x—24=0

Exercise 1.1.4 Solve the equation
X 1

-2
4x—16 x—3

Exercise 1.1.5 Solve the following inequalities. Write your answer as a union of intervals.

(a) 3x+1>6 f) x> +1>2x
(b) 0<Tx—1<1 (g) x> >4x
x*(x—1) (h) x> > 4x*
(c) (x+2)(x+3)3 =0 1
(i) —>2
(d) *>+1>0 X
. X 2
(e) 2+1<0 e

Exercise 1.1.6 Solve the equation |6x+2| = 1.

17

Exercise 1.1.7 Find solutions to the following absolute value inequalities. Write your answer as a union

of intervals.
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(a) |x| >2 (d) |x+2|<3x—6
(b) x—3]<1 (e) [2x+5]+4>1
(c) 2x+5|>4 (f) S<|x+1] <8

Exercise 1.1.8 Solve the equation /1 —x+x=1.

1.2 Analytic Geometry

In what follows, we use the notation (x,y;) to represent a point in the (x,y) coordinate system, also called
the xy-plane. Previously, we used (a,b) to represent an open interval. Notation often gets reused and
abused in mathematics, but thankfully, it is usually clear from the context what we mean.

In the (x,y) coordinate system we normally write the x-axis horizontally, with positive numbers to the
right of the origin, and the y-axis vertically, with positive numbers above the origin. That is, unless stated
otherwise, we take “rightward” to be the positive x-direction and “upward” to be the positive y-direction.
In a purely mathematical situation, we normally choose the same scale for the x- and y-axes. For example,
the line joining the origin to the point (a,a) makes an angle of 45° with the x-axis (and also with the
y-axis).

In applications, often letters other than x and y are used, and often different scales are chosen in the
horizontal and vertical directions.

Example 1.21: Data Plot

Suppose you drop a coin from a window, and you want to study how its height above the ground
changes from second to second. It is natural to let the lettert denote the time (the number of seconds
since the object was released) and to let the letter h denote the height. For each t (say, at one-second
intervals) you have a corresponding height h. This information can be tabulated, and then plotted
on the th-coordinate plane, as shown in figure 1.1.

seconds | 0 1 2 3 4
meters | 80 75.1 604 359 1.6

80 -

60

40

20

I I I t
0 1 2 3 4

Figure 1.1: A data plot, height versus time.
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We use the word “quadrant” for each of the four regions into which the plane is divided by the axes:
the first quadrant is where points have both coordinates positive, or the “northeast” portion of the plot, and
the second, third, and fourth quadrants are counted off counterclockwise, so the second quadrant is the
northwest, the third is the southwest, and the fourth is the southeast.

Suppose we have two points A and B in the xy-plane. We often want to know the change in x-coordinate
(also called the “horizontal distance”) in going from A to B. This is often written Ax, where the meaning
of A (a capital delta in the Greek alphabet) is “change in”. Thus, Ax can be read as “change in x” although
it usually is read as “delta x”. The point is that Ax denotes a single number, and should not be interpreted
as “delta times x”. Similarly, the “change in y” is written Ay and represents the difference between the
y-coordinates of the two points. It is the vertical distance you have to move in going from A to B.

Example 1.22: Change in x and y
IfA=(2,1) and B= (3,3) the change in x is
Ax=3-2=1

while the change iny is
Ay=3—-1=2.

The general formulas for the change in x and the change in y between a point (x,y;) and a point

(x2,y2) are:
Ax = xp —x1, Ay =y, —y1.

Note that either or both of these might be negative.
1.2.1 Lines

If we have two distinct points A(xy,y;) and B(xp,y>), then we can draw one and only one straight line
through both points. By the slope of this line we mean the ratio of Ay to Ax. The slope is often denoted by
the letter m.

Slope Formula

The slope of the line joining the points (x1,y;) and (x2,y>) is:

oAy (2—y1) _ rise
Ax  (xp—x1) Tun’

Example 1.23: Slope of a Line Joining Two Points

5—(-2 7
The line joining the two points (1,—2) and (3,5) has slope m = % =3
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The most familiar form of the equation of a straight line is:
y=mx+b.

Here m is the slope of the line: if you increase x by 1, the equation tells you that you have to increase
y by m; and if you increase x by Ax, then y increases by Ay = mAx. The number b is called the y-
intercept, because it is where the line crosses the y-axis (when x = 0). If you know two points on a line,
the formula m = (y, —y;)/(x2 — x1) gives you the slope. Once you know a point and the slope, then the
y-intercept can be found by substituting the coordinates of either point in the equation: y; = mx| + b, i.e.,
b =y —mx;. Alternatively, one can use the “point-slope” form of the equation of a straight line: start
with (y —y1)/(x —x1) = m and then multiply to get

(y—y1) =m(x—x1),

the point-slope form. Of course, this may be further manipulated to get y = mx — mx; + y;, which is
essentially the “y = mx+ b” form.

It is possible to find the equation of a line between two points directly from the relation m = (y —
v1)/(x—=x1) = (y2—y1)/(x2 — x1), which says “the slope measured between the point (x;,y;) and the
point (x,y;) is the same as the slope measured between the point (x,y;) and any other point (x,y) on the
line.” For example, if we want to find the equation of the line joining our earlier points A(2, 1) and B(3,3),
we can use this formula:

y—1 3—-1
m = = — =
x—2 3-=-2
Of course, this is really just the point-slope formula, except that we are not computing m in a separate step.
We summarize the three common forms of writing a straight line below:

2, so that y—1=2(x-2), ie., y=2x—3.

Slope-Intercept Form of a Straight Line

An equation of a line with slope m and y-intercept b is:

y=mx+b.

Point-Slope Form of a Straight Line

An equation of a line passing through (x1,y;) and having slope m is:

y—Jy1 :m(x_xl)-

General Form of a Straight Line

Any line can be written in the form
Ax+By+C=0,

where A, B, C are constants and A, B are not both 0.
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The slope m of a line in the form y = mx + b tells us the direction in which the line is pointing. If m
is positive, the line goes into the 1st quadrant as you go from left to right. If m is large and positive, it
has a steep incline, while if m is small and positive, then the line has a small angle of inclination. If m is
negative, the line goes into the 4th quadrant as you go from left to right. If m is a large negative number
(large in absolute value), then the line points steeply downward. If m is negative but small in absolute
value, then it points only a little downward.

If m = 0, then the line is horizontal and its equation is simply y = b.
All of these possibilities are illustrated below.

il 20 20 AN

slope =0 slope =1/2 slope=1 slope = 2 slope =-1/2 slope =-1 slope = -2

There is one type of line that cannot be written in the form y = mx+ b, namely, vertical lines. A vertical
line has an equation of the form x = a. Sometimes one says that a vertical line has an “infinite” slope.

It is often useful to find the x-intercept of a line y = mx + b. This is the x-value when y = 0. Setting
mx+ b equal to 0 and solving for x gives: x = —b/m.

Example 1.24: Finding x-intercepts

To find x-intercept(s) of the line y = 2x — 3 we set y = 0 and solve for x:
0=2x-3 — xX=_.

Thus, the line has an x-intercept of 3 /2.

It is often necessary to know if two lines are parallel or perpendicular. Let m; and m; be the slopes of
the nonvertical lines L and L,. Then:

* L; and L, are parallel if and only if m| = my.

.| —
* L; and L, are perpendicular if and only if my = —. (Equivalently, m; = —).
m my

In the case of perpendicular lines, we say their slopes are negative reciprocals. Below is a visual represen-
tation of a pair of parallel lines and a pair of perpendicular lines.
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Parallel Lines Perpendicular Lines

y

-

N

Example 1.25: Equation of a Line

For each part below, find an equation of a line satistying the requirements:
a. Through the two points (0,3) and (—2,4).
b. With slope 7 and through point (1,—2).
c. With slope 2 and y-intercept 4.
d. With x-intercept 8 and y-intercept —3.

e. Through point (5,3) and parallel to the line 2x+4y+2 = 0.

2
f. With y-intercept 4 and perpendicular to the line y = —gx +3.

Solution. (a) We use the slope formula on (x,y;) = (0,3) and (x2,y2) = (—2,4) to find m:
_@®-6) 1 1

C(=2)—-(0) -2 2
Now using the point-slope formula we get an equation to be:

1 1
y=3= _E(X_O) - y= —§x+3.

(b) Using the point-slope formula with m = 7 and (x;,y;) = (1,—2) gives:
y—(-2)=7x—-1) — y=T7x-9.

(c) Using the slope-intercept formula with m =2 and b = 4 we get y = 2x+4.

(d) Note that the intercepts give us two points: (xj,y;) = (8,0) and (x2,y2) = (0,—3). Now follow the
steps in part (a):

m— —-3-0_3
-~ 0-8 &
Using the point-slope formula we get an equation to be:
3 3

y—(-3)= g(x—O) - y= gx—3.
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(e) The line 2x 4+ 4y + 2 = 0 can be written as:

1 1
4y=—-2x—-2 = ——x——.
y X -y 2X73
This line has slope —1/2. Since our line is parallel to it, we have m = —1/2. Now we have a point

(x1,¥1) = (5,3) and slope m = —1/2, thus, the point-slope formula gives:

1
y—3= —E(X—S).

2
(f) The line y = —gx—f— 3 has slope m = —2/3. Since our line is perpendicular to it, the slope of our line

is the negative reciprocal, hence, m = 3/2. Now we have b = 4 and m = 3/2, thus by the slope-intercept
formula, an equation of the line is

3

Example 1.26: Parallel and Perpendicular Lines

Are the two lines Tx+2y+3 = 0 and 6x — 4y + 2 = 0 perpendicular? Are they parallel? If they are
not parallel, what is their point of intersection?

Solution. The first line is:

7 3
Tx+2y+3=0 — 2y=-Tx-3 — y=-—3x-3.
It has slope m; = —7/2. The second line is:
3 1
6bx—4y+2=0 — —4y=-6x—2 — y:§x+§.

It has slope mp = 3/2. Since m; - my # —1 (they are not negative reciprocals), the lines are not perpendic-
ular. Since m| # my the lines are not parallel.

We find points of intersection by setting y-values to be the same and solving. In particular, we have

7 3 3 n 1
222 Ty
Solving for x gives x = —2/5. Then substituting this into either equation gives y = —1/10. Therefore, the

lines intersect at the point (—2/5,—1/10). &

1.2.2 Distance between Two Points and Midpoints

Given two points (x1,y;) and (xp,y>), recall that their horizontal distance from one another is Ax = x, — x;
and their vertical distance from one another is Ay = y, — y;. Actually, the word “distance” normally
denotes “positive distance”. Ax and Ay are signed distances, but this is clear from context. The (positive)
distance from one point to the other is the length of the hypotenuse of a right triangle with legs |Ax| and
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|Ay|, as shown in figure 1.2. The Pythagorean Theorem states that the distance between the two points is
the square root of the sum of the squares of the horizontal and vertical sides:

(x2.¥2)

Ay

x,y
(x1,y1) -

Figure 1.2: Distance between two points (here, Ax and Ay are positive).

Distance Formula

The distance between points (x1,y;) and (x,y>) is

distance = \/(Ax)2 + (Ay)2 = \/(Xz —x1)2+ (2 —y1)%

Example 1.27: Distance Between Two Points

The distance, d, between points A(2,1) and B(3,3) is

d=1\/(3-22+(3-1)2=V5.

As a special case of the distance formula, suppose we want to know the distance of a point (x,y) to the
origin. According to the distance formula, this is

V=024 (=02 = V252

A point (x,y) is at a distance r from the origin if and only if \/x%+y% = r, or, if we square both sides:
2+ y2 = r2. As we will see, this is the equation of the circle of radius, r, centered at the origin.

Furthermore, given two points we can determine the midpoint of the line segment joining the two
points.

Midpoint Formula

The midpoint of the line segment joining two points (x1,y;) and (x,y») is the point with coordi-
nates:

ipoint (xl +x2 y1+y2).

2 72
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Example 1.28: Midpoint of a Line Segment

Find the midpoint of the line segment joining the given points: (1,0) and (5,-2).

Solution. Using the midpoint formula on (x,y1) = (1,0) and (x2,y2) = (5,—2) we get:

((1)+(5) (0)+(—2)> —(3,-1).

2 ’ 2
Thus, the midpoint of the line segment occurs at (3,—1). &

1.2.3 Conics

In this section we review equations of parabolas, circles, ellipses and hyperbolas. We will give the equa-
tions of various conics in standard form along with a sketch. A useful mnemonic is the following.

In each conic formula presented, the terms ‘x — A’ and ‘y — k” will always appear. The point (&, k)
will always represent either the centre or vertex of the particular conic.

Note that & or k (or both) may equal 0.

Vertical Parabola: The equation of a vertical parabola is:

y—k=a(x—h)?

v+ v+
h,k

[\ a>0 AN

1 1 a<0

1 (h, k) 1

L M

* (h,k) is the vertex of the parabola.  If a > 0, the parabola opens upward.
* a is the vertical stretch factor.  If a <0, the parabola opens downward.

Horizontal Parabola: The equation of a horizontal parabola is:

x—h=a(y—k)?
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—
=
=
S|
Vv
o

* (h,k) is the vertex of the parabola.

* a is the horizontal stretch factor.

Circle: The equation of a circle is:

* If a > 0, the parabola opens right.

* If a <0, the parabola opens left.

* (h,k) is the centre of the circle.

Ellipse: The equation of an ellipse is:

(x

* (h,k) is the centre of the ellipse.

* a is the horizontal distance from the centre to the edge of the ellipse.
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* b is the vertical distance from the centre to the edge of the ellipse.

Horizontal Hyperbola: The equation of a horizontal hyperbola is:

(x—h)?  (—k? _

a2 B !
* (h,k) is the centre of the hyperbola. * a is the horizontal distance from the centre to
the edge of the box.
* a,b are the reference box values. The box has * b is the vertical distance from the centre to the
a centre of (h,k). edge of the box.

Given the equation of a horizontal hyperbola, one may sketch it by first placing a dot at the point (%, k).
Then draw a box around (4,k) with horizontal distance a and vertical distance b to the edge of the box.
Then draw dotted lines (called the asymptotes of the hyperbola) through the corners of the box. Finally,
sketch the hyperbola in a horizontal direction as illustrated below.

y y

T I A TR N S T M|
L L L L L L L
T I A TR N S T M|
L L L L L L L
<
S|
T I T TR S Tl M|
L L L LG

Vertical Hyperbola: The equation of a vertical hyperbola is:

(x=h)?> (—k?

2 B -
* (h,k) is the centre of the hyperbola. * a is the horizontal distance from the centre to
the edge of the box.
e a,b are the reference box values. The box has ¢ b is the vertical distance from the centre to the
a centre of (h,k). edge of the box.

Given the equation of a vertical hyperbola, one may sketch it by following the same steps as with a
horizontal hyperbola, but sketching the hyperbola going in a vertical direction.

y y

T I A TR N S T M|
L L L L L L L
T I A TR N S T M|
L L L L L L L
<
S|
T I T TR S Tl M|
L L L LG
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Determining the Type of Conic

An equation of the form
Ax*4+Bxy+Cy’ +Dx+Ey+F =0

gives rise to a graph that can be generated by performing a conic section (parabolas, circles, ellipses,
hyperbolas). Note that the Bxy term involves conic rotation. The Dx, Ex, and F terms affect the
vertex and centre. For simplicity, we will omit the Bxy term. To determine the type of graph we
focus our analysis on the values of A and C.

* If A = C, the graph is a circle.
* If AC > 0 (and A # C), the graph is an ellipse.
* If AC = 0, the graph is a parabola.

* If AC <0, the graph is a hyperbola.

Example 1.29: Center and Radius of a Circle

Find the centre and radius of the circle y*> +x* — 12x+ 8y +43 = 0.

Solution. We need to complete the square twice, once for the x terms and once for the y terms. We’ll do
both at the same time. First let’s collect the terms with x together, the terms with y together, and move the
number to the other side.

(x> = 12x) + (y* + 8y) = —43
We add 36 to both sides for the x term (—12 — =J2 = —6 — (—6)? = 36), and 16 to both sides for the y
term (8 — 5 =4 — (4)>=16):
(¥ —12x+36) + (> +8y+16) = —43+36 + 16
Factoring gives:
(x—6)2+(y+4)> =32
Therefore, the centre of the circle is (6, —4) and the radius is 3. s

Example 1.30: Type of Conic

What type of conic is 4x*> —y*> — 8x+8 = 0? Put it in standard form.

Solution. Here we have A =4 and C = —1. Since AC < 0, the conic is a hyperbola. Let us complete the
square for the x and y terms. First let’s collect the terms with x together, the terms with y together, and

move the number to the other side.
(4x* —8x) —y* = -8

Now we factor out 4 from the x terms.

4(x* —2x) —y* = -8
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Notice that we don’t need to complete the square for the y terms (it is already completed!). To complete
the square for the x terms we add 1 since —2 — _72 = —1 — (—1)? = 1, taking into consideration that the
a value is 4:
4(x* —2x+1)—y* =—8+4-1
Factoring gives:
4(x—1)>—y*=—4

A hyperbola in standard form has &1 on the right side and a positive x* on the left side, thus, we must

divide by 4:
2

y
1) - =1
(w-12-L
Now we can see that the equation represents a vertical hyperbola with centre (1,0) (and with a value
v/1=1, and b value v4 = 2). &

Example 1.31: Equation of Parabola

Find an equation of the parabola with vertex (1,—1) that passes through the points (—4,24) and
(7,35).

Solution. We first need to determine if it is a vertical parabola or horizontal parabola. See figure 1.3 for a
sketch of the three points (1,—1), (—4,24) and (7,35) in the xy-plane.

y
o (7,35)

(—4,24) o

[
(17_1)

Figure 1.3: Figure for Example 1.31.

Note that the vertex is (1,—1). Given the location of the vertex, the parabola cannot open downwards.
It also cannot open left or right (because the vertex is between the other two points - if it were to open to
the right, every other point would need to be to the right of the vertex; if it were to open to the left, every
other point would need to be to the left of the vertex). Therefore, the parabola must open upwards and it
is a vertical parabola. It has an equation of

y—k=a(x—h)>%

As the vertex is (h,k) = (1,—1) we have:
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To determine a, we substitute one of the points into the equation and solve. Let us substitute the point
(x,y) = (—4,24) into the equation:
24— (—1)=a(—4-1)> — 25=25¢ — a=1.
Therefore, the equation of the parabola is:
y+1=(@x—1)>%

Note that if we substituted (7,35) into the equation instead, we would also get a = 1. )

Exercises for 1.2

Exercise 1.2.1 Find the equation of the line in the form y = mx+ b:
(a) through (1,1) and (—5,-3).
1,2) with slope —2.

—1,1) and (5,-3).

(
(b) through (
(c) through (

(

(d) through (2,5) and parallel to the line 3x+9y+6 = 0.

(e) with x-intercept 5 and perpendicular to the line y = 2x+4.

Exercise 1.2.2 Change the following equations to the form y = mx + b, graph the line, and find the y-
intercept and x-intercept.

(@) y—2x=2
(b) x+y=6
(c) x=2y—1
(d) 3=2y

(e) 2x+3y+6=0

Exercise 1.2.3 Determine whether the lines 3x+ 6y =7 and 2x+4y = 5 are parallel.

Exercise 1.2.4 Suppose a triangle in the xy-plane has vertices (—1,0), (1,0) and (0,2). Find the equations
of the three lines that lie along the sides of the triangle in y = mx+ b form.

Exercise 1.2.5 Let x stand for temperature in degrees Celsius (centigrade), and let y stand for temperature
in degrees Fahrenheit. A temperature of 0°C corresponds to 32°F, and a temperature of 100°C corresponds
to 212°F. Find the equation of the line that relates temperature Fahrenheit y to temperature Celsius x in
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the form y = mx+b. Graph the line, and find the point at which this line intersects y = x. What is the
practical meaning of this point?

Exercise 1.2.6 A car rental firm has the following charges for a certain type of car: $25 per day with 100
free miles included, $0.15 per mile for more than 100 miles. Suppose you want to rent a car for one day,
and you know you’ll use it for more than 100 miles. What is the equation relating the cost y to the number
of miles x that you drive the car?

Exercise 1.2.7 A photocopy store advertises the following prices: 5c per copy for the first 20 copies,
4c per copy for the 21st through 100th copy, and 3c per copy after the 100th copy. Let x be the number of
copies, and let y be the total cost of photocopying. (a) Graph the cost as x goes from 0 to 200 copies. (b)
Find the equation in the form y = mx + b that tells you the cost of making x copies when x is more than
100.

Exercise 1.2.8 Market research tells you that if you set the price of an item at $1.50, you will be able to
sell 5000 items, and for every 10 cents you lower the price below $1.50 you will be able to sell another
1000 items. Let x be the number of items you can sell, and let P be the price of an item. (a) Express P
linearly in terms of x, in other words, express P in the form P = mx—+b. (b) Express x linearly in terms of
P.

Exercise 1.2.9 An instructor gives a 100-point final exam, and decides that a score 90 or above will be
a grade of 4.0, a score of 40 or below will be a grade of 0.0, and between 40 and 90 the grading will
be linear. Let x be the exam score, and let y be the corresponding grade. Find a formula of the form
y = mx+ b which applies to scores x between 40 and 90.

Exercise 1.2.10 Find the distance between the pairs of points:
(a) (—1,1)and (1,1).
(b) (5,3) and (—7,-2).

(c¢) (1,1) and the origin.

Exercise 1.2.11 Find the midpoint of the line segment joining the point (20,—10) to the origin.

Exercise 1.2.12 Find the equation of the circle of radius 3 centered at:

(a) (0,0) (d) (0.3)
(b) (5.6) (e) (0,—3)
(c) (=5.-6) () (3.0)

Exercise 1.2.13 For each pair of points A(x1,y1) and B(x2,y?) find an equation of the circle with center
at A that goes through B.
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(a) A(2,0), B(4,3) (b) A(—2,3), B(4,3)

Exercise 1.2.14 Determine the type of conic and sketch it.
(a) x> +y*+10y=0
(b) 9x*> —90x+y>+81 =0
(c) 6x+y*—8y=0
Exercise 1.2.15 Find the standard equation of the circle passing through (—2,1) and tangent to the line

3x — 2y = 6 at the point (4,3). Sketch. (Hint: The line through the center of the circle and the point of
tangency is perpendicular to the tangent line.)

1.3 Trigonometry

In this section we review the definitions of trigonometric functions.
1.3.1 Angles and Sectors of Circles

Mathematicians tend to deal mostly with radians and we will see later that some formulas are more elegant
when using radians (rather than degrees). The relationship between degrees and radians is:

7 rad = 180°.

Using this formula, some common angles can be derived:

Degrees | 0° | 30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360°

Radians | 0 27

B
INES
w|y
IS

|

|

|

S

|

Example 1.32: Degrees to Radians

T
to get —.

T
Tc rt 45° to radians, multiply b
O conve. O radians, mu 1py y 180° 4

Example 1.33: Radians to Degrees

o

5
To convert Fn’ radians to degrees, multiply by to get 150°.

T
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From now on, unless otherwise indicated, we will always use radian measure.

In the diagram below is a sector of a circle with central angle 0 and radius r subtending an arc with
length s.

When 6 is measure in radians, we have the following formula relating 6, s and r:

K
0=- or s=r0.
r

Sector Area

The area of the sector is equal to:

1
Sector Area = §r29.

Example 1.34: Angle Subtended by Arc

If a circle has radius 3 cm, then an angle of 2 rad is subtended by an arc of 6 cm (s =r0 =3-2=06).

Example 1.35: Area of Circle

If we substitute 0 = 21 (a complete revolution) into the sector area formula we get the area of a
circle:

1
A= 5rz(zn) = 1’

1.3.2 Trigonometric Functions

There are six basic trigonometric functions:

* Sine (abbreviated by sin) * Tangent (abbreviated by tan)

* Cosine (abbreviated by cos) » Cosecant (abbreviated by csc)
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» Secant (abbreviated by sec) » Cotangent (abbreviated by cot)

We first describe trigonometric functions in terms of ratios of two sides of a right angle triangle con-
taining the angle 6.

o
Nt
0’@“ Opposite
of® (opp)
0 [
Adjacent (adj)

With reference to the above triangle, for an acute angle 6 (that is, 0 < 6 < 7/2), the six trigonometric
functions can be described as follows:

h
sin@ = opp csch = P
hyp opp

dj h
cosf = a9 secO = ﬂ
hyp adj
di
tan 0 = ﬂ cotl = 249
adj opp

Notice that sin is the ratio of the opposite and hypotenuse. We use the mnemonic SOH to remember
this ratio. Similarly, CAH and TOA remind us of the cos and tan ratios.

The mnemonic SOH CAH TOA is useful in remembering how trigonometric functions of acute
angles relate to the sides of a right triangle.

This description does not apply to obtuse or negative angles. To define the six basic trigonometric
functions we first define sine and cosine as the lengths of various line segments from a unit circle, and
then we define the remaining four basic trigonometric functions in terms of sine and cosine.

Take a line originating at the origin (making an angle of 8 with the positive half of the x-axis) and

suppose this line intersects the unit circle at the point (x,y). The x- and y-coordinates of this point of
intersection are equal to cos 8 and sin 0, respectively.
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('T?y) =

(cosf,sinf)
1
\\6

For angles greater than 27 or less than —27, simply continue to rotate around the circle. In this way,
sine and cosine become periodic functions with period 27:

sin @ = sin (6 + 27k) cos 6 = cos (0 + 27k)

for any angle 6 and any integer k.

Above, only sine and cosine were defined directly by the circle. We now define the remaining four
basic trigonometric functions in terms of the functions sin 6 and cos 6:

1
0= —— 0 =
cos O see cos 6 es¢ sin 0 sin 6

1.3.3 Computing Exact Trigonometric Ratios

The unit circle is often used to determine the exact value of a particular trigonometric function.
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Reading from the unit circle one can see that cos 57 /6 = —/3/2 and sin57/6 = 1/2 (remember the
that the x-coordinate is cos 8 and the y-coordinate is sin ). However, we don’t always have access to the
unit circle. In this case, we can compute the exact trigonometric ratios for 6 = 57/6 by using special
triangles and the CAST rule described below.

The first special triangle has angles of 45°,45°,90° (i.e., /4,7 /4,/2) with side lengths 1, 1,v2,
while the second special triangle has angles of 30°,60°,90° (i.e., /6,7 /3, t/2) with side lengths 1,2, V3.
They are classically referred to as the 1-1-v/2 triangle, and the 1-2-1/3 triangle, respectively, shown below.

V2 /4 2 /3

/4 7 7 /6
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The first triangle should be easy to remember. To remember the second triangle, place the largest
number (2) across from the largest angle (90° = 7 /2). Place the smallest number (1) across from
the smallest angle (30° = 7 /6). Place the middle number (v/3 ~ 1.73) across from the middle angle
(60° = 7/3). Double check using the Pythagorean Theorem that the sides satisfy a® +b*> = ¢2.

The special triangles allow us to compute the exact value (excluding the sign) of trigonometric ratios,
but to determine the sign, we can use the CAST rule.

The CAST Rule

The CAST rule says that in quadrant I all three of sin 8, cos 8, tan 0 are positive. In quadrant II,
only sin @ is positive, while cos 0, tan 8 are negative. In quadrant III, only tan @ is positive, while
sin 0, cos O are negative. In quadrant IV, only cos 0 is positive, while sin 8, tan 0 are negative. To
remember this, simply label the quadrants by the letters C-A-S-T starting in the bottom right and
labelling counter-clockwise.

sinf > 0 All >0

S A

11 |
[11 IV

T C

tanf > 0 cosf >0

Example 1.36: Determining Trigonometric Ratios Without Unit Circle

Determine sin5m /6, cos 5 /6, tan57/6, sec57 /6, csc5m/6 and cot5m /6 exactly by using the spe-
cial triangles and CAST rule.

Solution. We start by drawing the xy-plane and indicating our angle of 57t/6 in standard position (positive
angles rotate counterclockwise while negative angles rotate clockwise). Next, we drop a perpendicular to
the x-axis (never drop it to the y-axis!).
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Notice that we can now figure out the angles in the triangle. Since 180° = &, we have an interior angle
of m — 57 /6 = /6 inside the triangle. As the angles of a triangle add up to 180° = x, the other angle
must be 7/3. This gives one of our special triangles. We label it accordingly and add the CAST rule to
our diagram.

T C

From the above figure we see that 57/6 lies in quadrant II where sin 6 is positive and cos 6 and tan 6
are negative. This gives us the sign of sin8, cos 0 and tan 8. To determine the value we use the special
triangle and SOH CAH TOA.

Using sin® = opp/hyp we find a value of 1/2. Since sin 0 is positive in quadrant II, we have

. Sm +1
SIn — = —.
6 2

Using cos @ = ad j/hyp we find a value of v/3/2. But cos 8 is negative in quadrant II, therefore,

COS— = ———.

6 2

Using tan @ = opp/ad j we find a value of 1/+/3. But tan 6 is negative in quadrant II, therefore,

tan — = ———

6 3



1.3. Trigonometry = 39

To determine sec 0, csc 0 and cot & we use the definitions:

cscs—n— ! =42 secs—n— ! ——i -
6 sin%’r ’ 6 cos%” V3 6 tan%”

Example 1.37: CAST Rule

Ifcos@ =3/7 and37m/2 < 6 < 2, then find cot 6.

Solution. We first draw a right angle triangle. Since cos @ = ad j/hyp = 3/7, we let the adjacent side have
length 3 and the hypotenuse have length 7.

A
=\
opp="7

adj=3

Using the Pythagorean Theorem, we have 32 4 (opp)? = 72. Thus, the opposite side has length 1/40.

P 1
WP
OPP = +/40
0
adj=3
To find cot @ we use the definition:
cotO =

tan0’

Since we are given 37/2 < 6 < 27, we are in the fourth quadrant. By the CAST rule, tan 6 is negative in
this quadrant. As tan® = opp/adj, it has a value of 1/40/3, but by the CAST rule it is negative, that is,

tan@ = — ﬂ
3
Therefore,
cot = 3
V40’
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1.3.4 Graphs of Trigonometric Functions

The graph of the functions sinx and cosx can be visually represented as:

B S

Both sinx and cosx have domain (—e,0) and range [—1, 1]. That is,
—1 <sinx<1 —1<cosx<1.

The zeros of sinx occur at the integer multiples of 7, that is, sinx = 0 whenever x = nx, where n is an
integer. Similarly, cosx = 0 whenever x = /2 + nx, where n is an integer.

The six basic trigonometric functions can be visually represented as:

sine
cosine
tangent
cosecant —=:=-=--
secant —-=—--
cotangent —-=----

1

i
i i

X

\ n
\ W/

Both tangent and cotangent have range (—eo,0), whereas cosecant and secant have range (—oo, —1]U
[1,00). Each of these functions is periodic. Tangent and cotangent have period 7, whereas sine, cosine,
cosecant and secant have period 27.

1.3.5 Trigonometric Identities

There are numerous trigonometric identities, including those relating to shift/periodicity, Pythagoras type
identities, double-angle formulas, half-angle formulas and addition formulas. We list these below.
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1. Shifts and periodicity

sin(60+2m) = sin6 cos(0+2m) = cos6 tan(60 +2w) = tan6

sin(6+x) = —sin® | cos(6+m) = —cosO| tan(6+7m) = tanb

sin(—@) = —sin6 cos(—0) = cosH tan(—0) = —tan6

sin<£—9> = cosf cos(E—G) = sin6 tan(E—G) = cotf

2 2 5
2. Pythagoras type formulas 4. Half-angle formulas
1+ cos(20)
2
e sin’0 +cos26 =1 * COs sz
* tan® 6 + 1 = sec” 6 . sin?p — L=c0s(26)
2

. 20 = 2
1 +cot” 6 =csc™ 6 5. Addition formulas

3. Double-angle formulas * sin(6 +¢) = sin6 cos ¢ +cos Osin ¢
* cos(0+ @) =cosOcos¢p —sinOsing
* sin(26) = 2sin O cos O . tan(6 + ¢) = tan 6 + tan ¢
2 . 9 1 —tanOtan¢
cos(20) = cos“ 0O —sin“ 6 i ‘ ‘
. — 2cos20—1 * sin(6 — @) = sinO cosp —cos B sin
= 1-—2sin?8. * cos(0 —¢) = cos B cos ¢ +sinOsin ¢

Example 1.38: Double Angle

Find all values of x with 0 < x < 7 such that sin2x = sinx.

Solution. Using the double-angle formula sin2x = 2 sinxcosx we have:
2sinxcosx = sinx

2sinxcosx —sinx =0
sinx(2cosx—1)=0

Thus, either sinx = 0 or cosx = 1/2. For the first case when sinx = 0, we get x = 0 or x = 7. For the
second case when cosx = 1/2, we get x = /3 (use the special triangles and CAST rule to get this). Thus,
we have three solutions: x =0, x =7/3, x = 7. &
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Exercises for 1.3

Exercise 1.3.1 Find all values of 0 such that sin(0) = —1; give your answer in radians.
Exercise 1.3.2 Find all values of 6 such that cos(20) = 1/2; give your answer in radians.

Exercise 1.3.3 Compute the following:

(a) sin(37) (d) csc(4m/3)
(b) sec(5m/6) (e) tan(7m/4)
(c) cos(—m/3) (f) cot(13m/4)

Exercise 1.3.4 Ifsin@ = 2 and < 6 < 7, then find sec .

Exercise 1.3.5 Suppose thattan0 =xand t < 0 < 37”, find sin 0 and cos 0 in terms of x.

Exercise 1.3.6 Find an angle 0 such that —% < 6 < T and sin@ = sin 237”

Exercise 1.3.7 Use an angle sum identity to compute cos(mw/12).
Exercise 1.3.8 Use an angle sum identity to compute tan(57/12).

Exercise 1.3.9 Verify the following identities

(a) cos>(1)/(1—sin(t)) = 1 +sin(t)
(b) 2csc(20) =sec(0)csc(0)
(c) sin(30) —sin(0) =2cos(20)sin(6)

Exercise 1.3.10 Sketch the following functions:
(a) y=2sin(x)
(b) y=sin(3x)

(¢) y=sin(—x)

Exercise 1.3.11 Find all of the solutions of 2sin(t) — 1 —sin(t) = 0 in the interval [0,27).
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1.4 Additional Exercises

These problems require a comprehensive knowledge of the skills reviewed in this chapter. They are not
in any particular order. A proficiency in these skills will help you a long way as your learn the calculus
material in the following chapters.

Exercise 1.4.1 Rationalize the denominator for each of the following expressions. That is, re-write the
expression in such a way that no square roots appear in the denominator. Also, simplify your answers if
possible.

1

(a) ﬁ

b 3h
Vit+h+1—+vx+1

(

Exercise 1.4.2 Solve the following equations.

(a) 2—5(x—3)=4—10x

(b) 2x* —5x=3

(c) x*—x—3=0

(d) > +x+3=0

(e) Vx2+9=2x
Exercise 1.4.3 By means of counter-examples, show why it is wrong to say that the following equations
hold for all real numbers for which the expressions are defined.

(a) (x—2)>=x>—-2?

1 . 1
x+h x h

(c) /X2 +y>=x+y

(b)

Exercise 1.4.4 Find an equation of the line passing through the point (—2,5) and parallel to the line
x+3y—2=0.

-1

Exercise 1.4.5 Solve <1.

X —

Exercise 1.4.6 Explain why the following expression never represents a real number (for any real number

xX):Vx—=2++v1—x
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[3(x+h)>+4] — [3x* +4]

Exercise 1.4.7 Simplify the expression as much as possible.

h
x+h x
2(x+h)—1  2x—1

Exercise 1.4.8 Simplify the expression as much as possible.

h

Exercise 1.4.9 Simplify the expression — sinx(cosx+ 3sinx) — cosx(—sinx+ 3 cosx).

Exercise 1.4.10 Solve the equation cosx = ? on the interval 0 < x < 2m.

Exercise 1.4.11 Find an angle 0 such that 0 < 0 < 1w and cos 8 = cos 38T”.

e[+ [4 — x|

Exercise 1.4.12 What can you say about when x is a large (positive) number?

Exercise 1.4.13 Find an equation of the circle with centre in (—2,3) and passing through the point
(1,—1).

Exercise 1.4.14 Find the centre and radius of the circle described by x* +y* +6x —4y+ 12 = 3.

Exercise 1.4.15 If y = 9x> +6x+7, find all possible values of y.

3x2y3z*1 )2

Exercise 1.4.16 Simplify <W

3x+2
Exercise 1.4.17 Ify = 1x+4 , then what is x in terms of y?
X

Exercise 1.4.18 Divide x> +3x—5 by x+ 2 to obtain the quotient and the remainder. Equivalently, find
polynomial Q(x) and constant R such that

x> +3x—5 R
EETE I




2.1 What is a Function?

A function y = f(x) is a rule for determining y when we’re given a value of x. For example, the rule
y = f(x) =2x+1 is a function. Any line y = mx+ b is called a linear function. The graph of a function
looks like a curve above (or below) the x-axis, where for any value of x the rule y = f(x) tells us how far
to go above (or below) the x-axis to reach the curve.

Functions can be defined in various ways: by an algebraic formula or several algebraic formulas, by
a graph, or by an experimentally determined table of values. In the latter case, the table gives a bunch of
points in the plane, which we might then interpolate with a smooth curve, if that makes sense.

Given a value of x, a function must give at most one value of y. Thus, vertical lines are not functions.
For example, the line x = 1 has infinitely many values of y if x = 1. It is also true that if x is any number
(not 1) there is no y which corresponds to x, but that is not a problem—only multiple y values is a problem.

One test to identify whether or not a curve in the (x,y) coordinate system is a function is the following.

Theorem 2.1: The Vertical Line Test

A curve in the (x,y) coordinate system represents a function if and only if no vertical line intersects
the curve more than once.

In addition to lines, another familiar example of a function is the parabola y = f(x) = x>. We can draw
the graph of this function by taking various values of x (say, at regular intervals) and plotting the points
(x, f(x)) = (x,x?). Then connect the points with a smooth curve. (See figure 2.1.)

The two examples y = f(x) = 2x+ 1 and y = f(x) = x? are both functions which can be evaluated at
any value of x from negative infinity to positive infinity. For many functions, however, it only makes sense
to take x in some interval or outside of some “forbidden” region. The interval of x-values at which we’re
allowed to evaluate the function is called the domain of the function.

y=f(x)=x y=f(x)=yx y=/f(x)=1/x

Figure 2.1: Graphs of Functions.

45
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Example 2.2: Domain of the Square-Root Function

The square-root function y = f(x) = \/x is the rule which says, given an x-value, take the nonneg-
ative number whose square is x. This rule only makes sense if x > 0. We say that the domain of
this function is x > 0, or more formally {x € R : x > 0}. Alternately, we can use interval notation,
and write that the domain is [0,c0). The fact that the domain of y = /x is [0,00) means that in the
graph of this function (see figure 2.1) we have points (x,y) only above x-values on the right side of
the x-axis.

Another example of a function whose domain is not the entire x-axis is: y = f(x) = 1/x, the reciprocal
function. We cannot substitute x = 0 in this formula. The function makes sense, however, for any nonzero
x, so we take the domain to be: {x € R : x # 0}. The graph of this function does not have any point (x,y)
with x = 0. As x gets close to 0 from either side, the graph goes off toward infinity. We call the vertical
line x = 0 an asymptote.

To summarize, two reasons why certain x-values are excluded from the domain of a function are the
following.

Restrictions for the Domain of a Function

1. We cannot divide by zero, and

2. We cannot take the square root of a negative number.

When the domain of a function is restricted, we say that the function is undefined at that point. We
will encounter some other ways in which functions might be undefined later.

Another reason why the domain of a function might be restricted is that in a given situation the x-values
outside of some range might have no practical meaning. For example, if y is the area of a square of side x,
then we can write y = f(x) = x°. In a purely mathematical context the domain of the function y = x? is all
of R. However, in the story-problem context of finding areas of squares, we restrict the domain to positive
values of x, because a square with negative or zero side makes no sense.

In a problem in pure mathematics, we usually take the domain to be all values of x at which the
formulas can be evaluated. However, in a story problem there might be further restrictions on the domain
because only certain values of x are of interest or make practical sense.

In a story problem, we often use letters other than x and y. For example, the volume V of a sphere
is a function of the radius r, given by the formula V = f(r) = %nr3. Also, letters different from f may
be used. For example, if y is the velocity of something at time ¢, we may write y = v(¢) with the letter v

(instead of f) standing for the velocity function (and ¢ playing the role of x).

The letter playing the role of x is called the independent variable, and the letter playing the role of y
is called the dependent variable (because its value “depends on” the value of the independent variable).
In story problems, when one has to translate from English into mathematics, a crucial step is to determine
what letters stand for variables. If only words and no letters are given, then we have to decide which letters
to use. Some letters are traditional. For example, almost always, ¢ stands for time.
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Example 2.3: Open Box

An open-top box is made from an a X b rectangular piece of cardboard by cutting out a square of
side x from each of the four corners, and then folding the sides up and sealing them with duct tape.
Find a formula for the volume V of the box as a function of x, and find the domain of this function.

Solution. The box we get will have height x and rectangular base of dimensions a — 2x by b — 2x. Thus,
V = f(x) = x(a—2x)(b—2x).

Here a and b are constants, and V is the variable that depends on x, i.e., V is playing the role of y.

This formula makes mathematical sense for any x, but in the story problem the domain is much less.
In the first place, x must be positive. In the second place, it must be less than half the length of either of
the sides of the cardboard. Thus, the domain is

1
{xeR 0<x< E(minimumofa andb)}.

In interval notation we write: the domain is the interval (0,min(a,b)/2). You might think about whether
we could allow 0 or (the minimum of a and b) to be in the domain. They make a certain physical sense,
though we normally would not call the result a box. If we were to allow these values, what would the
corresponding volumes be? Does that volume make sense? &

Example 2.4: Circle of Radius r Centered at the Origin

Is the circle of radius r centered at the origin the graph of a function?

Solution. The equation for this circle is usually given in the form x*> 4+ y? = r%. To write the equation in
the form y = f(x) we solve for y, obtaining y = ++/r> — x%. But this is not a function, because when we
substitute a value in the interval (—r, r) for x there are two corresponding values of y. To get a function, we
must choose one of the two signs in front of the square root. If we choose the positive sign, for example,
we get the upper semicircle y = f(x) = v/r2 —x? (see figure 2.2). The domain of this function is the
interval [—r,r], i.e., x must be between —r and r (including the endpoints). If x is outside of that interval,
then 2 — x? is negative, and we cannot take the square root. In terms of the graph, this just means that

there are no points on the curve whose x-coordinate is greater than r or less than —r. s

Figure 2.2: Upper semicircle y = /7% — x2.



48 = Functions

Example 2.5: Domain

Find the domain of

Solution. To answer this question, we must rule out the x-values that make 4x — x> negative (because we
cannot take the square root of a negative number) and also the x-values that make 4x — x> zero (because
if 4x — x> = 0, then when we take the square root we get 0, and we cannot divide by 0). In other words,
the domain consists of all x for which 4x — x? is strictly positive. The inequality 4x — x> > 0 can be easily
solved. In interval notation, the domain is the interval (0,4). s

A function does not always have to be given by a single formula as the next example demonstrates.

Example 2.6: Piecewise Velocity

Suppose that y = v(t) is the velocity function for a car which starts out from rest (zero velocity) at
time t = O; then increases its speed steadily to 20 m/sec, taking 10 seconds to do this; then travels
at constant speed 20 m/sec for 15 seconds; and finally applies the brakes to decrease speed steadily
to 0, taking 5 seconds to do this. The formula for y = v(t) is different in each of the three time
intervals: first y = 2x, then y = 20, then y = —4x+ 120. The graph of this function is shown in
figure 2.3.

20

10

0 I I —
10 25 30

Figure 2.3: A velocity function.

Our focus in this textbook will be on elementary functions. Examples of elementary functions in-
clude both algebraic functions, such as polynomials, rational functions, and powers, and transcendental
functions, such as exponential, logarithmic, and trigonometric functions.

Exercises for 2.1

Exercise 2.1.1 Find the domain of each of the following functions:
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(a) y=x"+1 (h) y=f(x)=Vx
(b) y=f(x)=v2x—3 i) y=1_2
(c) y=f(x)=1/(x+1)
(d)y:f(x):1/()€2—1) (j)y:f<x): 1—(1/)6)
(e) y=f(x)=+/—1/x k) y=f(x)=1/4/1—(3x)?
IS W) y=F) = VFH1/G-1)
y=f(x)=+vx+ X—

(8) y=f(x)=1/r? 2, where r and h are

positive constants (m) y=f(x)=1/(v/x—1)

Exercise 2.1.2 A farmer wants to build a fence along a river. He has 500 feet of fencing and wants to
enclose a rectangular pen on three sides (with the river providing the fourth side). If x is the length of the
side perpendicular to the river, determine the area of the pen as a function of x. What is the domain of this
function?

Exercise 2.1.3 A can in the shape of a cylinder is to be made with a total of 100 square centimeters
of material in the side, top, and bottom; the manufacturer wants the can to hold the maximum possible
volume. Write the volume as a function of the radius r of the can; find the domain of the function.

Exercise 2.1.4 A can in the shape of a cylinder is to be made to hold a volume of one liter (1000 cubic
centimeters). The manufacturer wants to use the least possible material for the can. Write the surface
area of the can (total of the top, bottom, and side) as a function of the radius r of the can; find the domain
of the function.

2.2 Transformations and Compositions

2.2.1 Transformations

Transformations are operations we can apply to a function in order to obtain a new function. The most
common transformations include translations (shifts), stretches and reflections. We summarize these be-
low.

Function Conditions How to graph F(x) given the graph of f(x)
F(x)=f(x)+c c>0 Shift f(x) upwards by c¢ units
F(x)=f(x)—c c>0 Shift f(x) downwards by ¢ units
F(x) = f(x+c¢) c>0 Shift f(x) to the left by ¢ units
F(x)=f(x—c¢) c>0 Shift f(x) to the right by ¢ units

F(x) =—f(x) Reflect f(x) about the x-axis

F(x) = f(—x) Reflect f(x) about the y-axis

F(x)=|f(x)| Take the part of the graph of f(x) that lies
below the x-axis and reflect it about the x-axis
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For horizontal and vertical stretches, different resources use different terminology and notation. Use
the one you are most comfortable with! Below, both a, b are positive numbers. Note that we only use the
term stretch in this case:

Function Conditions How to graph F(x) given the graph of f(x)
F(x) =af(x) a>0 Stretch f(x) vertically by a factor of a
F(x) = f(bx) b>0 Stretch f(x) horizontally by a factor of 1/b

In the next case, we use both the terms stretch and shrink. We also split up vertical stretches into two
cases (0 <a < 1 and a > 1), and split up horizontal stretches into two cases (0 < b < 1 and b > 1). Note
that having 0 < a < 1 is the same as having 1/c with ¢ > 1. Also note that stretching by a factor of 1/c is
the same as shrinking by a factor c.

Function Conditions How to graph F(x) given the graph of f(x)
F(x) =cf(x) c>1 Stretch f(x) vertically by a factor of ¢
F(x)=(1/c)f(x) c>1 Shrink f(x) vertically by a factor of ¢
F(x) = f(cx) c>1 Shrink f(x) horizontally by a factor of ¢
F(x)=f(x/c) c>1 Stretch f(x) horizontally by a factor of ¢

Some resources keep the condition 0 < ¢ < 1 rather than using 1/c. This is illustrated in the next table.

Function Conditions How to graph F(x) given the graph of f(x)
F(x)=df(x) d>1 Stretch f(x) vertically by a factor of d
F(x)=df(x) 0<d<1 Shrink f(x) vertically by a factor of 1/d
F(x) = f(dx) d>1 Shrink f(x) horizontally by a factor of d
F(x) = f(dx) 0<d<l1 Stretch f(x) horizontally by a factor of 1/d

Example 2.7: Transformations and Graph Sketching

In this example we will use appropriate transformations to sketch the graph of the function

y=|vx+2-1]—1

Solution. We start with the graph of a function we know how to sketch, in particular, y = y/x: To obtain
the graph of the function y = v/x+ 2 from the graph y = y/x, we must shift y = /x to the left by 2 units.
To obtain the graph of the function y = v/x+2 — 1 from the graph y = v/x+ 2, we must shift y = v/x+ 2
downwards by 1 unit.

?’__ y=vx+2 y__ y=vr+2-1
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To obtain the graph of the function y = |v/x+ 2 — 1| from the graph y = v/x+2 — 1, we must take the
part of the graph of y = y/x+2 — 1 that lies below the x-axis and reflect it (upwards) about the x-axis.
Finally, to obtain the graph of the function y = |\/x+2 — 1| — 1 from the graph y = |\/x+2 — 1|, we must
shift y = |v/x+2 — 1| downwards by 1 unit:

o y= otz

2.2.2 Combining Two Functions

Let f(x) and g(x) be two functions. Then we can form new functions by adding, subtracting, multiplying,
or dividing. These new functions, f+ g, f — g, fg and f/g, are defined in the usual way.

Operations on Functions

Suppose Dy is the domain of f and D, is the domain of g. Then the domains of f +g, f —g and
fg are the same and are equal to the intersection Dy M D, (that is, everything that is in common to both
the domain of f and the domain of g). Since division by zero is not allowed, the domain of f/g is
{xe DyND, : g(x) # 0}.

Another way to combine two functions f and g together is a procedure called composition.

Function Composition

Given two functions f and g, the composition of f and g, denoted by f o g, is defined as:

(fog)x) = f(g(x)).

The domain of fogis {x € D, : g(x) € D}, that is, it contains all values x in the domain of g such
that g(x) is in the domain of f.

Example 2.8: Domain of a Composition

Let f(x) = x* and g(x) = \/x. Find the domain of f o g.
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Solution. The domain of f is Dy = {x € R}. The domain of g is Dg = {x € R: x > 0}. The function
(fog)(x) = flg(x)) is:

flebe) = (va)’ ==
Typically, h(x) = x would have a domain of {x € R}, but since it came from a composed function, we

must consider g(x) when looking at the domain of f(g(x)). Thus, the domain of fogis {x € R:x>0}.
)

Example 2.9: Combining Two Functions

Let f(x) =x>+3 and g(x) =x—2. Find f +g., f —g. fg. f/g. fog and go f. Also, determine the
domains of these new functions.

Solution. For f + g we have:
(f+8)(x) = f(x)+g(x) = (@ +3)+ (x—2) =& +x+1,
For f — g we have:
(f—g) @) =f(x)—glx) = (P +3) - (x—=2) =X +3 —x+2=x> —x+5.

For fg we have:
(fo)(x) = f(x) - g(x) = (®+3)(x—2) =x" —2x* +3x — 6.

(-2

For f/g we have:

For f o g we have:

(fog)(x)=fls(x)) = flx—2) = (x=2)*+3 =x" —dx+7.

For go f we have:
(gof)(x) = g(f(x) =g(¥ +3) = (¥ +3) —2=x"+1.
The domains of f+g, f —g, fg, fogand go f is {x € R}, while the domain of f/gis {x € R : x #2}.
&

As in the above problem, fog and go f are generally different functions.

Exercises for 2.2

Exercise 2.2.1 Starting with the graph of y = \/x, the graph of y = 1/x, and the graph of y = \/ 1 — x2
(the upper unit semicircle), sketch the graph of each of the following functions:

(a) f(x)=vx—2 (c) f(x)=4+Vx+2
(b) f(x) =—1-1/(x+2) (d) y=f(x) =x/(1-x)
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(e) y=f(x) = —V—x (i) flx)=1/(x+1)

(f) f(x) =2+4/1—(x—1) () f(x) =4+24/1—(x—5)?/9
() f(x) =4+ ~(x—2) (k) f(x)=1+1/(x~1)

(h) F(x) = 24/1—(x/3)2 () f(x) = /100 —25(x—1)2 +2

Exercise 2.2.2 The graph of f(x) is shown below. Sketch the graphs of the following functions.

2_
1_
0 I I I
1 2 3
1
(a) y=f(x—1) (e) y=2f(3(x—2))+1
(b) y=1+f(x+2) (f) y=(1/2)f(3x—3)
(c) y=1+42f(x) (8) y=rf(1+x/3)+2
(d) y=2f(3x) (h) y=|f(x)—2|

Exercise 2.2.3 Suppose f(x) = 3x—9 and g(x) = \/x. What is the domain of the composition (go f)(x)?

2.3 Exponential Functions

An exponential function is a function of the form f(x) = a*, where a is a constant. Examples are 2%, 10*
and (1/2)*. To more formally define the exponential function we look at various kinds of input values.

It is obvious thata®> =a-a-a-a-aanda®> =a-a- a, but when we consider an exponential function a*
we can’t be limited to substituting integers for x. What does a*> or a= 13 or " mean? And is it really true
that a>>a~ 13 = a>3~137 The answer to the first question is actually quite difficult, so we will evade it; the

answer to the second question is “yes.”

We’ll evade the full answer to the hard question, but we have to know something about exponential
functions. You need first to understand that since it’s not “obvious” what 2* should mean, we are really
free to make it mean whatever we want, so long as we keep the behavior that is obvious, namely, when x
is a positive integer. What else do we want to be true about 2*? We want the properties of the previous
two paragraphs to be true for all exponents: 2*2¥ = 2 and (2*)” = 2",



54 w Functions

After the positive integers, the next easiest number to understand is 0: 2° = 1. You have presumably
learned this fact in the past; why is it true? It is true precisely because we want 2920 = 24P (o be true
about the function 2*. We need it to be true that 2°2% = 29%% = 2% and this only works if 2 = 1. The same
argument implies that a® =1 for any a.

The next easiest set of numbers to understand is the negative integers: for example, 27> = 1 / 23, We
know that whatever 2> means it must be that 27323 = 27313 =20 — 1, which means that 273 must be
1/ 23. In fact, by the same argument, once we know what 2* means for some value of x, 2~ must be 1 /2*
and more generally a™* = 1/a".

Next, consider an exponent 1/¢, where g is a positive integer. We want it to be true that (2*)" = 2",
s0 (21/9)7 = 2. This means that 2'/9 is a g-th root of 2, 2'/9 = ¥/2 . This is all we need to understand that
204 = (21/4)P = (¥/2)P and aP/? = (a'/)P = (Ya )P.

What’s left is the hard part: what does 2* mean when x cannot be written as a fraction, like x = V2 or
x = n? What we know so far is how to assign meaning to 2* whenever x = p/q. If we were to graph a*
(for some a > 1) at points x = p/q then we’d see something like this:

»t
ust®
----------------

This is a poor picture, but it illustrates a series of individual points above the rational numbers on the
x-axis. There are really a lot of “holes” in the curve, above x = 7, for example. But (this is the hard part)
it is possible to prove that the holes can be “filled in”, and that the resulting function, called a”, really does
have the properties we want, namely that a*a® = a*™ and (a*)’ = a. Such a graph would then look like
this:
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Three Types of Exponential Functions

There are three kinds of exponential functions f(x) = a* depending on whether a > 1, a =1 or
O<a<l:

T 7
vvvvvvvvv

Properties of Exponential Functions

The first thing to note is that if @ < 0 then problems can occur. Observe that if a = —1 then (—1)* is not
defined for every x. For example, x = 1/2 is a square root and gives (—1) 1/2 — \/=T which is not a real
number.

Exponential Function Properties
* Only defined for positive a: a* is only defined for all real x if a > 0
* Always positive: a* > 0, for all x

* Exponent rules:

1. da® =a™ 3. (@)Y =a¥=a" = ()"
a* _
2. - = a 4. a*b* = (ab)"

* Long term behaviour: If @ > 1, then @* — w0 as x — o and a* — 0 as x — —oo.

The last property can be observed from the graph. If a > 1, then as x gets larger and larger, so does a”.
On the other hand, as x gets large and negative, the function approaches the x-axis, that is, a* approaches
0.

Example 2.10: Reflection of Exponential

Determine an equation of the function after reflecting y = 2* about the line x = —2.

Solution. First reflect about the y-axis to get y = 27*. Now shift by 2 x 2 = 4 units to the left to get
y =24 Sjde note: Can you see why this sequence of transformations is the same as reflection in the
line x = —2? Can you come up with a general rule for these types of reflections? s
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Example 2.11: Determine the Exponential Function

Determine the exponential function f(x) = ka* that passes through the points (1,6) and (2, 18).

Solution. We substitute our two points into the equation to get:
x= l,y:6—>6:ka1

x=2,y=18 — 18 = ka*

This gives us 6 = ka and 18 = ka®. The first equation is k = 6/a and subbing this into the second gives:
18 = (6/a)a’. Thus, 18 = 6a and a = 3. Now we can see from 6 = ka that k = 2. Therefore, the exponential

function is
flx)=2-3"

&

There is one base that is so important and convenient that we give it a special symbol. This number
is denoted by e = 2.71828... (and is an irrational number). Its importance stems from the fact that it
simplifies many formulas of Calculus and also shows up in other fields of mathematics.

Example 2.12: Domain of Function with Exponential

Find the domain of f(x) =

Vee+1

Solution. For domain, we cannot divide by zero or take the square root of negative numbers. Note that
one of the properties of exponentials is that they are always positive! Thus, e¢*+ 1 > 0 (in fact, as ¢* > 0
we actually have that ¢* + 1 is at least one). Therefore, e* + 1 is never zero nor negative, and gives no
restrictions on x. Thus, the domain is R. &

Exercises for 2.3

Exercise 2.3.1 Determine an equation of the function y = a* passing through the point (3,8).
Exercise 2.3.2 Find the y-intercept of f(x) = 4* +6.

Exercise 2.3.3 Find the y-intercept of f(x) =2 (%)x

Exercise 2.3.4 Find the domain of y = e * + ex.
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2.4 Inverse Functions

In mathematics, an inverse is a function that serves to “undo” another function. That is, if f(x) produces
y, then putting y into the inverse of f produces the output x. A function f that has an inverse is called
invertible and the inverse is denoted by f~!. It is best to illustrate inverses using an arrow diagram:

f i

1 a a 1
2 > b b > 2
3 > c c > 3
4 d d 4

Notice how f maps 1 to a, and f~! undoes this, that is, f~! maps a back to 1. Don’t confuse f~!(x)

with exponentiation: the inverse £~ is different from ——

fx)”
Not every function has an inverse. It is easy to see that if a function f(x) is going to have an inverse,
then f(x) never takes on the same value twice. We give this property a special name.

A function f(x) is called one-to-one if every element of the range corresponds to exactly one element
of the domain. Similar to the Vertical Line Test (VLT) for functions, we have the Horizontal Line Test
(HLT) for the one-to-one property.

Theorem 2.13: The Horizontal Line Test

A function is one-to-one if and only if there is no horizontal line that intersects its graph more than
once.

Example 2.14: Parabola is Not One-to-One

The parabola f(x) = x? it not one-to-one because it does not satisfy the horizontal line test. For
example, the horizontal line y = 1 intersects the parabola at two points, when x = —1 and x = 1.

We now formally define the inverse of a function.

Let f(x) and g(x) be two one-to-one functions. If (f o g)(x) =x and (go f)(x) = x then we say that

f(x) and g(x) are of each other. We denote g(x) (the inverse of f(x)) by g(x) = £~ (x).

Thus, if £ maps x to y, then f~! maps y back to x. This gives rise to the cancellation formulas:
FY(f(x))=x, forevery xin the domain of f(x),

f(f~'(x))=x, forevery x in the domain of f~!(x).
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Example 2.16: Finding the Inverse at Specific Values

If f(x) = x° +2x" +x+ 1, find £~1(5) and f~1(1).

Solution. Rather than trying to compute a formula for f~! and then computing f~!(5), we can simply
find a number ¢ such that f(c) = 5. Note that subbing in some simple values (x = —3,-2,1,0,1,2,3) and
evaluating f(x) we eventually find that (1) = 1°+2(17)4+ 141 =5 and £(0) = 1. Therefore, f~'(5) =1
and f~1(1) =0. &

To compute the equation of the inverse of a function we use the following guidelines.

Guidelines for Computing Inverses

1. Write down y = f(x).
2. Solve for x in terms of y.
3. Switch the x’s and y’s.
4. The resultis y = f~!(x).

Example 2.17: Finding the Inverse Function

We find the inverse of the function f(x) = 2x> + 1.

Solution. Starting with y = 2x> + 1 we solve for x as follows:
y—1:2x3 — — =X — X=1/—.

3 x—1
2

This example shows how to find the inverse of a function algebraically. But what about finding the
inverse of a function graphically? Step 3 (switching x and y) gives us a good graphical technique to find
the inverse, namely, for each point (a,b) where f(a) = b, sketch the point (b,a) for the inverse. More
formally, to obtain f~!(x) reflect the graph f(x) about the line y = x.

Therefore, f~!(x) = &
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Exercises for 2.4

Exercise 2.4.1 Is the function f(x) = |x| one-to-one?

Exercise 2.4.2 If h(x) = ¢* +x+ 1, find h~1(2).

x+2
x—2

Exercise 2.4.3 Find a formula for the inverse of the function f(x) =

2.5 Logarithms

Recall the three kinds of exponential functions f(x) = a* depending on whether0 <a < l,a=1ora> 1:

AAAAAAAAAAAAAAAA

f(z) = a” flz) =17 f(z) = a”

a>1 O<ax<l1

So long as a # 1, the function f(x) = a* satisfies the horizontal line test and therefore has an inverse.
We call the inverse of a* the logarithmic function with base a and denote it by log,. In particular,

log,x=y <= &’ =nx.
The cancellation formulas for logs are:
log,(a*) =x, foreveryxeR,

a°%™ — x for every x > 0.



60 Functions

Since the function f(x) = a* for a # 1 has domain R and range (0, o), the logarithmic function has domain
(0,00) and range R. For the most part, we only focus on logarithms with a base larger than 1 (i.e., a > 1)
as these are the most important.

a>1 g
U,
T T T T T T T |/| __( T T T T T T T IX
2 4+
v 4+
/ —
/ ]
/7 i
7/ it

Notice that every logarithm passes through the point (1,0) in the same way that every exponential
function passes through the point (0, 1).

Some properties of logarithms are as follows.

Logarithm Properties

Let A, B be positive numbers and b > 0 (b # 1) be a base.

* log,(AB) =log, A +log, B,

A
* log, (§> = log, A —log;, B,

* log,(A") = nlog, A, where n is any real number.

Example 2.18: Compute Logarithms

To compute log,(24) —log,(3) we can do the following:

24
log2(24) ~ Ioga(3) = logs ( 5 ) = loga(8) =3

since 2° = 8.

The Natural Logarithm

As mentioned earlier for exponential functions, the number e ~ 2.71828 ... is the most convenient base to
use in Calculus. For this reason we give the logarithm with base e a special name: the natural logarithm.
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We also give it special notation:
log,x = Inx.

You may pronounce In as either: “el - en”, “lawn”, or refer to it as “natural log”. The above properties
of logarithms also apply to the natural logarithm.

Often we need to turn a logarithm (in a different base) into a natural logarithm. This gives rise to the
change of base formula.

Change of Base Formula

o Inx
xX=—".
Ea Ina

Example 2.19: Combine Logarithms

Write InA+21InB —InC as a single logarithm.

Solution. Using properties of logarithms, we have,

InA+2InB—InC =InA+1InB*>—1InC
= In(AB*) —InC

AB?
=In——ro
C

Example 2.20: Solve Exponential Equations using Logarithms

If €2 = 6%, then solve for x.

Solution. Taking the natural logarithm of both sides and noting the cancellation formulas (along with

Ine = 1), we have:
ex+2 — 6e2x

Ine**? = In(6e%)
x+2 = In6+Ine*
x+2 = In6+2x

x = 2—1In6
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Example 2.21: Solve Logarithm Equations using Exponentials

IfIn(2x — 1) = 21n(x), then solve for x.

Solution. “Taking e” of both sides and noting the cancellation formulas, we have:
eln(fo 1) _ 2ln (x)
(2x—1) = )

2x—1 = x

Therefore, the solution is x = 1. &

Exercises for 2.5

Exercise 2.5.1 Expand log;o((x+45)"(x—2)).

3

Exercise 2.5.2 Expand log, SSXW
X — X

Exercise 2.5.3 Write log, 3x + 171og, (x —2) — 21og, (x* 4+ 4x+ 1) as a single logarithm.

Exercise 2.5.4 Solve log, (1 ++/x) = 6 for x.

Exercise 2.5.5 Solve 25 = 8 for x.

Exercise 2.5.6 Solve log,(log;(x)) =1 for x.

2.6 Inverse Trigonometric Functions

The trigonometric functions frequently arise in problems, and often it is necessary to invert the functions,
for example, to find an angle with a specified sine. Of course, there are many angles with the same sine,
so the sine function doesn’t actually have an inverse that reliably “undoes” the sine function. If you know
that sinx = 0.5, you can’t reverse this to discover x, that is, you can’t solve for x, as there are infinitely
many angles with sine 0.5. Nevertheless, it is useful to have something like an inverse to the sine, however
imperfect. The usual approach is to pick out some collection of angles that produce all possible values of
the sine exactly once. If we “discard” all other angles, the resulting function does have a proper inverse.

The sine takes on all values between —1 and 1 exactly once on the interval [—7/2,7/2].
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y sin(x)
14
_1 1 1' 1 n X
21 il el 21 2T
14

If we truncate the sine, keeping only the interval [—7x /2,7 /2], then this truncated sine has an inverse
function. We call this the inverse sine or the arcsine, and write it in one of two common notation:

y = arcsin(x), or y = sin~ ! (x)

y arcsin(x)
l‘l'[
2
1
2T
' :
-1 1 X
1L
st
_1-1
2

Recall that a function and its inverse undo each other in either order, for example, (\3/})3 = x and
Vx3 = x. This does not work with the sine and the “inverse sine” because the inverse sine is the inverse
of the truncated sine function, not the real sine function. It is true that sin(arcsin(x)) = x, that is, the
sine undoes the arcsine. It is not true that the arcsine undoes the sine, for example, sin(57/6) = 1/2 and
arcsin(1/2) = 1 /6, so doing first the sine then the arcsine does not get us back where we started. This is
because 57/6 is not in the domain of the truncated sine. If we start with an angle between —7 /2 and 7 /2
then the arcsine does reverse the sine: sin(7/6) = 1/2 and arcsin(1/2) = & /6.

Example 2.22: Arcsine of Common Values

Compute sin~'(0), sin~!(1) and sin~!(—1).

Solution. These come directly from the graph of y = arcsinux:

sin~! (0) =0 sin~! (1) == sin~ ! (~1) = —

YRS
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&

We can do something similar for the cosine function. As with the sine, we must first truncate the cosine
so that it can be inverted, in particular, we use the interval [0, 7].

y

cos(x)

Note that the truncated cosine uses a different interval than the truncated sine, so that if y = arccos(x)
we know that 0 <y < 7.

arccos(x)

cos 1 (0)== cos 1(1)=0 cos I(=1)=nx

&

Finally we look at the tangent; the other trigonometric functions also have “partial inverses” but
the sine, cosine and tangent are enough for most purposes. The truncated tangent uses an interval of

(—m/2,7/2).
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: tan(x)

Reflecting the truncated tangent in the line y = x gives the arctangent function.

y arctan(x)

Example 2.24: Arctangent of Common Values

Compute tan~'(0). What value does tan~' x approach as x gets larger and larger? What value does
tan~! x approach as x gets large (and negative)?

Solution. These come directly from the graph of y = arctanx. In particular, tan~!(0) = 0. As x gets larger
and larger, tan—! x approaches a value of %, whereas, as x gets large but negative, tan~! x approaches a
value of —7. &

The cancellation rules are tricky since we restricted the domains of the trigonometric functions in order
to obtain inverse trig functions:
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Cancellation Rules

sin(sin~'x) =x, x € [-1,1]
¥/ 717]
2°2

cos(cos 'x) =x, xe[-1,1]

sin_l(sinx) =x,xc [—

cos !(cosx) =x, x€0,7]

tan(tan~'x) =x, x € (—oo,00)

Tn
tan” ! (tanx) =x, x€ (—— —)

Example 2.25: Arcsine of 1/2

Find sin~! (1/2).

Solution. Since sin~!(x) outputs values in [—7/2, 7/2], the answer must be in this interval. Let 6 =
sin~!(1/2). We need to compute 6. Take the sine of both sides to get sin® = sin(sin~!(1/2)) = 1/2 by
the cancellation rule. There are many angles 6 that work, but we want the one in the interval [—7/2, 7/2].

1
Thus, 6 = /6 and hence, sin”! (5) = g &

Example 2.26: Arccosine and the Cancellation Rule

Compute cos ! (cos(0)), cos~! (cos(x)), cos ! (cos(2x)), cos ! (cos(37)).

Solution. Since cos™!(x) outputs values in [0, 7], the answers must be in this interval. The first two we
can cancel using the cancellation rules:

cos 1 (cos(0)) =0 and cos ! (cos()) = .
The third one we cannot cancel since 27 ¢ [0, 7]:
cos !(cos(2m)) is NOT equal to 27.
But we know that cosine is a 27-periodic function, so cos(27) = cos(0):
cos 1 (cos(2m)) = cos ! (cos(0)) =0
Similarly with the fourth one, we can NOT cancel yet since 37 ¢ [0, 7r|. Using cos(37) = cos(3n —27) =

cos(7):
g cos ! (cos(3m)) = cos !(cos(m)) = 7.
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Example 2.27: The Triangle Technique

Rewrite the expression cos(sin~! x) without trig functions. Note that the domain of this function is
allx € [—1,1].

Solution. Let & = sin"'x. We need to compute cos@. Taking the sine of both sides gives sin =

sin(sin~!(x)) = x by the cancellation rule. We then draw a right triangle using sin = x/1:

V1—x2

If z is the remaining side, then by the Pythagorean Theorem:
2+xr=1 — 2=1-x — =4V 1—x2

and hence z = +v/1 —x? since 0 € [—n/2, n/2]. Thus, cos® = /1 —x2 by SOH CAH TOA, so,

cos(sin ' x) = v/ 1 — 2. &

Example 2.28: The Triangle Technique 2

For x € (0, 1), rewrite the expression sin(2cos ! x). Compute sin(2cos ™' (1/2)).

Solution. Let @ = cos~! x so that cos 8 = x. The question now asks for us to compute sin(20). We then

draw a right triangle using cos 6 = x/1:

V1—a2

x

To find sin(20) we use the double angle formula sin(20) = 2sinf cos 6. But sin® = /1 —x2, for 6 €
[0, 7], and cos O = x. Therefore, sin(2cos ! x) = 2x\/1 —x2. When x = 1/2 we have sin(2cos ! (1/2)) =

/3
ER *

Exercises for 2.6

Exercise 2.6.1 Compute the following:
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(a) sin~'(v/3/2) (b) cos™!(—v/2/2)

Exercise 2.6.2 Compute the following:
(a) sin~! (sin(7/4)) (c) cos (cos™!(1/3))

(b) sin~! (sin(177/3)) (d) tan (cos™1(—4/5))

Exercise 2.6.3 Rewrite the expression tan (cos_1 x) without trigonometric functions. What is the domain
of this function?

2.7 Hyperbolic Functions

The hyperbolic functions appear with some frequency in applications, and are quite similar in many re-
spects to the trigonometric functions. This is a bit surprising given our initial definitions.

The hyperbolic cosine is the function

ef+e*
coshx = ,
2
and the hyperbolic sine is the function
— eix
b —
sinhx >

Notice that cosh is even (that is, cosh(—x) = cosh(x)) while sinh is odd (sinh(—x) = —sinh(x)), and
coshx + sinhx = ¢*. Also, for all x, coshx > 0, while sinhx = 0 if and only if ¢* —e™* = 0, which is true
precisely when x = 0.

Theorem 2.30: Range of Hyperbolic Cosine

The range of coshx is [1, ).

Proof. Let y = coshx. We solve for x:

eF+e ™
YT T
2y = e'+e
2yef = ¥ +1

0 = e¥—2ye+1
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o 2y 4 +\/4y2 —4
2
e = ytyr—1

From the last equation, we see y> > 1, and since y > 0, it follows that y > 1.

Now suppose y > 1, s0 y++/y?—1 > 0. Then x = In(y &+ /y? — 1) is a real number, and y = coshyx,
so y is in the range of cosh(x). )

Definition 2.31: Hyperbolic Functions

We can also define hyperbolic functions for the other trigonometric functions as you would expect:

tanhx = coshx esch = sinhx sechr = coshx cothx = tanhx
The graph of sinhx is shown below:
y
sinh x
T T X
The graph of coshx is shown below:
y

1 cosh x
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Example 2.32: Computing Hyperbolic Tangent

Compute tanh(In2).

Solution. This uses the definitions of the hyperbolic functions.

ean o e—an 2_ (1/2)

sinh(In2) 2 2 2—-(1/2) 3
tanh(In2) cosh(ln2)  eln2 =2 24(1/2)  24(1/2)
— T

&

Certainly the hyperbolic functions do not closely resemble the trigonometric functions graphically.
But they do have analogous properties, beginning with the following identity.

Theorem 2.33: Hyperbolic Identity

For all x in R, cosh?x — sinh?x = 1.

Proof. The proof is a straightforward computation:

&~ —x\2 & — —x\2 2x 2 —2x __ 2x 2 _ —2x 4
coshzx—sinhzx:( —|—4e ) —( 46 ) _ ¢ tite 4e + € :Z:L

This immediately gives two additional identities:

1 — tanh®x = sech®x and coth?x — 1 = csch’x.

The identity of the theorem also helps to provide a geometric motivation. Recall that the graph of
x* —y?> =1 is a hyperbola with asymptotes x = £y whose x-intercepts are +1. If (x,y) is a point on the

right half of the hyperbola, and if we let x = coshz, then y = /x> — 1 = +V/cosh?x— 1 = +sinhz. So
for some suitable 7, cosht and sinh? are the coordinates of a typical point on the hyperbola. In fact, it turns
out that 7 is twice the area shown in the first graph of figure 2.4. Even this is analogous to trigonometry;
cost and sint are the coordinates of a typical point on the unit circle, and ¢ is twice the area shown in the
second graph of Figure 2.4.
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y y
(cos t, sint)
(cosh t, sinh t)

Area =t/2 Area =t/2

Angle =t "Hyperbolic" angle
X X

2 2 2 2
z+y° =1 -y =1

Figure 2.4: Geometric definitions. Here, 7 is twice the shaded area in each figure.

Since coshx > 0, sinhx is increasing and hence one-to-one, so sinhx has an inverse, arcsinhx. Also,
sinhx > 0 when x > 0, so coshx is injective on [0,o0) and has a (partial) inverse, arccoshx. The other
hyperbolic functions have inverses as well, though arcsechx is only a partial inverse.

Exercises for 2.7

Exercise 2.7.1 Show that the range of sinhx is all real numbers. (Hint: show that if y = sinhx then

x=In(y+vy*+1).)

Exercise 2.7.2 Show that the range of tanhx is (—1,1). What are the ranges of coth, sech, and csch? (Use
the fact that they are reciprocal functions.)

Exercise 2.7.3 Prove that for every x,y € R, sinh(x+y) = sinhxcoshy + coshxsinhy. Obtain a similar
identity for sinh(x —y).

Exercise 2.7.4 Prove that for every x,y € R, cosh(x+y) = coshxcoshy+ sinhxsinhy. Obtain a similar
identity for cosh(x —y).

Exercise 2.7.5 Show that sinh(2x) = 2sinhxcoshx and cosh(2x) = cosh? x+sinh® x for every x. Conclude
also that (cosh(2x) — 1) /2 = sinh® x.

Exercise 2.7.6 What are the domains of the six inverse hyperbolic functions?

Exercise 2.7.7 Sketch the graphs of all six inverse hyperbolic functions.

2.8 Additional Exercises

1 1
Exercise 2.8.1 If f (x) = T then which of the following is equal to f <—) ?
xX— X
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(a) f(x)
(b) ~f()
(¢) xf(x)
(d) —xf(x)
) 1)

— 12
Exercise 2.8.2 If f(x) = )% then find and simplify %

3+h)— f(3
Exercise 2.8.3 If f(x) = x%, then find and simplify fB3+ Zl / >-

Exercise 2.8.4 Find the domain of

_Vx=2

(a) f('x)_ X2—9
Jx—2

(b) g(x>: x2_9

Exercise 2.8.5 Suppose that f(x) = x> and g(x) = x. What is the domain of f ?
8

Exercise 2.8.6 Suppose that f(x) = 3x—4. Find a function g such that (go f)(x) = Sx+2.

Exercise 2.8.7 Which of the following functions is one-to-one?
(a) f(x)=x"+4x+3
(b) g(x) = [x] +2
(¢) h(x)=Vx+1
(d) F(x)=cosx, —n<x<m

(e) G(x) =e"+e*

ex

Exercise 2.8.8 What is the inverse of f(x) = In ( 1) ? What is the domain of f~'?

eX —

Exercise 2.8.9 Solve the following equations.
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(a) & *=3

(b) ex2 — e4x—3

(c) In(1+/x)=2
(d) In(x*> —3) =In2+1Inx

Exercise 2.8.10 Find the exact value of sin~! <—\/§/2) —cos™! (—\/5/2>

Exercise 2.8.11 Find sin~! (sin(237/5)).
Exercise 2.8.12 It can be proved that f(x) = x> +x+ ¢! is one-to-one. What is the value of f~'(3)?

—X ifx<0

Exercise 2.8.13 Sketch the graph of f(x) = { an-'x ifx>0






3.1 The Limit

The value a function f approaches as its input x approaches some value is said to be the limit of f. Limits
are essential to the study of calculus and, as we will see, are used in defining continuity, derivatives, and
integrals.

Consider the function
B -1

flx) =

x—1"

Notice that x = 1 does not belong to the domain of f(x). Regardless, we would like to know how f(x)
behaves close to the point x = 1. We start with a table of values:

xS
0.5 15

09 1.9
099  1.99
101 201
1121

15 25

It appears that for values of x close to 1 we have that f(x) is close to 2. In fact, we can make the values
of f(x) as close to 2 as we like by taking x sufficiently close to 1. We express this by saying the limit of
the function f(x) as x approaches 1 is equal to 2 and use the notation:

lim f(x) = 2.

x—1

Definition 3.1: Limit (Useable Definition)

In general, we will write
lim f(x) =L,

Xx—a

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a (on
either side of a) but not equal to a.

We read the expression lim,_,, f(x) = L as “the limit of f(x) as x approaches a is equal to L". When
evaluating a limit, you are essentially answering the following question: What number does the function
approach while x gets closer and closer to a (but not equal to a)? The phrase but not equal to a in the
definition of a limit means that when finding the limit of f(x) as x approaches a we never actually consider
x = a. In fact, as we just saw in the example above, a may not even belong to the domain of f. All that
matters for limits is what happens to f close to a, not necessarily what happens to f at a.

75
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One-sided limits
Consider the following piecewise defined function:

y

T x ifx <1
il f(“")_{a;+1 if 2> 1

Observe from the graph that as x gets closer and closer to 1 from the left, then f(x) approaches +1.
Similarly, as x gets closer and closer 1 from the right, then f(x) approaches +2. We use the following

notation to indicate this:
lim f(x)=1 and lim f(x)=2.

x—1- x—1t

The symbol x — 1~ means that we only consider values of x sufficiently close to 1 which are less than 1.
Similarly, the symbol x — 17 means that we only consider values of x sufficiently close to 1 which are
greater than 1.

In general, we will write
lim f(x) =L,

xX—a~

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and
x less than a. This is called the left-hand limit of f(x) as x approaches a. Similarly, we write

lim f(x) =L,

x—at

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and
x greater than a. This is called the right-hand limit of f(x) as x approaches a.

We note the following fact:

lim f(x) =L if and only if lim f(x)=L and lim f(x)=L.

x—a x—a~ x—at

Or more concisely:
lim f(x) = lim f(x)=L.

x—a~ x—at
A consequence of this fact is that if the one-sided limits are different, then the two-sided limit lim f(x)
X—a
does not exist, often denoted as: (DNE).
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Exercises for Section 3.1

. . . sinx .. .
Exercise 3.1.1 Use a calculator to estimate hrr(l) ——, where x is in radians.
xX— X
. . . tan(3x) .. .
Exercise 3.1.2 Use a calculator to estimate lim , where x is in radians.
x—0 tan(5x)
) ) . =1 . =1
Exercise 3.1.3 Use a calculator to estimate lim 5 and lim 5
x—1t 1 —X x—=1-1—X

3.2 Precise Definition of a Limit

The definiton given for a limit previously is more of a working definition. In this section we pursue the
actual, official definition of a limit.

Suppose f is a function. We say that lign f(x) =L ifforevery € > 0 there is a 6 > 0 so that whenever
X—a
O0<|x—al<é,|f(x)—L|<e.

The € and § here play exactly the role they did in the preceding discussion. The definition says, in a
very precise way, that f(x) can be made as close as desired to L (that’s the | f(x) — L| < € part) by making
x close enough to a (the 0 < |x —a| < § part). Note that we specifically make no mention of what must
happen if x = a, that is, if |x —a| = 0. This is because in the cases we are most interested in, substituting
a for x doesn’t make sense.

Make sure you are not confused by the names of important quantities. The generic definition talks
about f(x), but the function and the variable might have other names. The x was the variable of the
original function; when we were trying to compute a slope or a velocity, x was essentially a fixed quantity,
telling us at what point we wanted the slope. In the velocity problem, it was literally a fixed quantity, as we
focused on the time t = 2. The quantity a of the definition in all the examples was zero: we were always
interested in what happened as Ax became very close to zero.

Armed with a precise definition, we can now prove that certain quantities behave in a particular way.
The bad news is that even proofs for simple quantities can be quite tedious and complicated. The good
news is that we rarely need to do such proofs, because most expressions act the way you would expect,
and this can be proved once and for all.

Example 3.4: Epsilon Delta

Let’s show carefully that limx+4 = 6.
x—2

Solution. This is not something we “need” to prove, since it is “obviously” true. But if we couldn’t prove
it using our official definition there would be something very wrong with the definition.
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As is often the case in mathematical proofs, it helps to work backwards. We want to end up showing
that under certain circumstances x + 4 is close to 6; precisely, we want to show that |x+4 — 6| < &, or
|x — 2| < €. Under what circumstances? We want this to be true whenever 0 < |x — 2| < §. So the question
becomes: can we choose a value for 0 that guarantees that 0 < |x— 2| < § implies |x — 2| < €? Of course:
no matter what € is, 0 = € works. &

So it turns out to be very easy to prove something “obvious,” which is nice. It doesn’t take long before
things get trickier, however.

Example 3.5: Epsilon Delta

It seems clear that lirri x> =4. Let’s try to prove it.
X—r

Solution. We will want to be able to show that [x> — 4| < & whenever 0 < |x — 2| < §, by choosing &
carefully. Is there any connection between |x — 2| and x> —4|? Yes, and it’s not hard to spot, but it is not
so simple as the previous example. We can write [x* —4| = |(x+2)(x —2)|. Now when |x— 2| is small, part
of |(x+2)(x—2)| is small, namely (x—2). What about (x+2)? If x is close to 2, (x+2) certainly can’t be
too big, but we need to somehow be precise about it. Let’s recall the “game” version of what is going on
here. You get to pick an € and I have to pick a d that makes things work out. Presumably it is the really tiny
values of € I need to worry about, but I have to be prepared for anything, even an apparently “bad” move
like € = 1000. T expect that € is going to be small, and that the corresponding 6 will be small, certainly less
than 1. If § <1 then |x+2| < 5 when |x —2| < J (because if x is within 1 or 2, then x is between 1 and 3
and x+2 is between 3 and 5). So then I’d be trying to show that | (x+2)(x—2)| < 5|x—2| < €. So now how
can I pick 9 so that [x —2| < & implies 5|x — 2| < €? This is easy: use § = €/5, so 5|x—2| < 5(¢/5) =¢.
But what if the € you choose is not small? If you choose € = 1000, should I pick 6 = 200? No, to keep
things “sane” I will never pick a & bigger than 1. Here’s the final “game strategy”: when you pick a
value for g, I will pick 8 = €/5 or & = 1, whichever is smaller. Now when |x — 2| < §, I know both that
|x+2| <5 and that |x —2| < €/5. Thus |(x+2)(x—2)| < 5(g/5) = €.

This has been a long discussion, but most of it was explanation and scratch work. If this were written
down as a proof, it would be quite short, like this:

Proof that lin% x> =4. Given any &, pick § = £/5 or § = 1, whichever is smaller. Then when |x—2| < §,
X—r

lx+2| < 5and |x—2| < £/5. Hence |x* —4| = |(x+2)(x—2)| < 5(¢/5) = &. &
It probably seems obvious that lir% x* =4, and it is worth examining more closely why it seems ob-
x—
vious. If we write x> = x-x, and ask what happens when x approaches 2, we might say something like,
“Well, the first x approaches 2, and the second x approaches 2, so the product must approach 2 -2.” In fact
this is pretty much right on the money, except for that word “must.” Is it really true that if x approaches a
and y approaches b then xy approaches ab? It is, but it is not really obvious, since x and y might be quite
complicated. The good news is that we can see that this is true once and for all, and then we don’t have to
worry about it ever again. When we say that x might be “complicated” we really mean that in practice it
might be a function. Here is then what we want to know:

Theorem 3.6: Product Law for Limits

Suppose lim f(x) = L and lim g(x) = M. Then lim f(x)g(x) = LM.
xX—a xX—a xX—a
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Proof. We must use the Precise Definition of a Limit to prove the Product Law for Limits. So given any &
we need to find a 0 so that 0 < |x—a| < & implies | f(x)g(x) — LM| < €. What do we have to work with?
We know that we can make f(x) close to L and g(x) close to M, and we have to somehow connect these
facts to make f(x)g(x) close to LM.

We use, as is often the case, a little algebraic trick:

[F(x)g(x) —LM| = [f(x)g(x) = f(x)M + f(x)M — LM|
= [/ (x)(8(x) = M) + (f(x) = L)M]|
< |f(0)(g(x) =M)|+[(f(x) —L)M|

= [f()llg(x) = M|+ |f(x) = L[ |M].

This is all straightforward except perhaps for the “<”. That is an example of the triangle inequality,
which says that if a and b are any real numbers then |a + b| < |a| + |b|. If you look at a few examples,
using positive and negative numbers in various combinations for a and b, you should quickly understand
why this is true. We will not prove it formally.

Suppose € > 0. Since lim f(x) = L, there is a value §; such that 0 < |x —a| < &; implies |f(x) —L| <
e X—a

2(1+|M[)

Now we focus our attention on the other term in the inequality, | f(x)||g(x) — M|. We can make |g(x) —
M| smaller than any fixed number by making x close enough to a; unfortunately, €/(2f(x)) is not a fixed
number, since x is a variable. Here we need another little trick, just like the one we used in analyzing
x?. We can find a &, so that |x —a| < & implies that |f(x) — L| < 1, meaning that L — 1 < f(x) < L+ 1.
This means that |f(x)| < N, where N is either |L— 1| or |L+ 1|, depending on whether L is negative or
positive. The important point is that N doesn’t depend on x. Finally, we know that there is a 03 so that
0 < |[x—a| < & implies |g(x) — M| < €/(2N). Let 0 be the smallest of &;, &, and 03. Then |x —a| < &
implies that |f(x) —L| < &€/(2(14+|M])), |f(x)| <N, and |g(x) —M| < €/(2N). Then

|/ (x)8(x) —LM| < If( )g(x) = M| +[f(x) — L||M]|

This means that 0 < |x —a| < &; implies |f(x) — L||M| < | f(x) —L|(1+ |M]) < g/2.

E
< N + 1+ M
2N 2(1 -|-|M|)( M)
e e,
=S +5=
This is just what we needed, so by the official definition, li_r)n flx)g(x)=LM. L
X—a

The concept of a one-sided limit can also be made precise.

Suppose that f(x) is a function. We say that hm | f(x) = L if for every € > 0 there is a 6 > 0 so
that whenever 0 < a—x < 9, |f(x) —L| < €. We say that hm f( ) = L if for every € > 0 there is a
0 > 0 so that whenever 0 < x—a < 98, |f(x) —L| < €.
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Exercises for Section 3.2

Exercise 3.2.1 Give an -8 proof of the fact that lirri (2x—5) =3.
x—

Exercise 3.2.2 Let € be a small positive real number. How close to 2 must we hold x in order to be sure
that 3x+ 1 lies within € units of 7?

3.3 Computing Limits: Graphically

In this section we look at an example to illustrate the concept of a limit graphically.

The graph of a function f(x) is shown below. We will analyze the behaviour of f(x) around x = —5,
x=-2,x=—1landx =0, and x = 4.

d f(z)

@
C

- - = = =0 - —® - - =

Observe that f(x) is indeed a function (it passes the vertical line test). We now analyze the function at
each point separately.

x = —5: Observe that at x = —5 there is no closed circle, thus f(—5) is undefined. From the graph we
see that as x gets closer and closer to —5 from the left, then f(x) approaches 2, so

lim f(x)=2.

x——5—

Similarly, as x gets closer and closer —5 from the right, then f(x) approaches —3, so

lim f(x)=—3.

x——5F
As the right-hand limit and left-hand limit are not equal at —5, we know that

lim f(x) does not exist.
x—=5
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x = —2: Observe that at x = —2 there is a closed circle at 0, thus f(—2) = 0. From the graph we see
that as x gets closer and closer to —2 from the left, then f(x) approaches 3.5, so

lim f(x)=3.5.

x——2-
Similarly, as x gets closer and closer —2 from the right, then f(x) again approaches 3.5, so

lim f(x)=3.5.

x——27F

As the right-hand limit and left-hand limit are both equal to 3.5, we know that

lim f(x) =3.5.

x——2

Do not be concerned that the limit does not equal 0. This is a discontinuity, which is completely valid,
and will be discussed in a later section.

We leave it to the reader to analyze the behaviour of f(x) for x close to —1 and 0.
Summarizing, we have:

f(=5) is undefined f(=2)=0 f(—=1)=-2 £(0)= -2

lim f(x)=2 | lim f(x)=35| lim f(x)=0 | lim f(x)=—2

x——5~ x——2" x——1- x—0~

lim f(x)=-3 | lim f(x)=3.5| lim f(x)=-2| lim f(x)=—2

x——5t x——2%F x——1t x—0t+

lim f(x)=DNE | lim f(x)=3.5 | lim f(x) =DNE | lim f(x) = —2

x—=5 x——2 x——1 x—0

Exercises for Section 3.3

Exercise 3.3.1 Evaluate the expressions by reference to this graph:
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10

° 8
— 6
4

|
A
‘_
N
1
=
©— O]
R4
x
W~
(@) B

() lim f(x) (e) lim f(x) (i) lim f(x+1)
(b) lim f(x) (N f(=2) () £(0)

(c) lim f(x) () lim f(x) (k) lim f(x—4)
(d) lim f(x) (h) xlignsz(x) (1) xlgg)gf(x—Z)

3.4 Computing Limits: Algebraically

Properties of limits

We begin by deriving a handful of theorems to give us the tools to compute many limits without explicitly
working with the precise definition of a limit.
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Theorem 3.8: Limit Properties
Suppose that lim f(x) = L and lim g(x) = M, and k is some constant. Then
X—a x—a
e limkf(x) = klim f(x) = kL
xX—a xX—a
e lim(f(x)+g(x)) =1limf(x)+1limg(x)=L+M
Xx—a X—a

x—a

+ lim(/(x) —8() = lim £ () ~ lim g(2) = L— 1

+ lim(f(x)g(x)) = lim £(x) lim g(x) = LM

limf(x) [
o lim I _aa” = ifMisnot0
waglx)  limg(x) M
X—a

Roughly speaking, these rules say that to compute the limit of an algebraic expression, it is enough
to compute the limits of the “innermost bits” and then combine these limits. This often means that it is

possible to simply plug in a value for the variable, since lgllx =a.
X—a

Example 3.9: Limit Properties

2
—3x+5
Compute lim )i
x—1 x—2

Solution. If we apply the theorem in all its gory detail, we get

)
) 23545 )lcl_rg(x —3x+5)
im-—— =
=1 x—2 lim(x —2)
x—1

(limx?) — (lim 3x) + (lim 5)
x—1 x—1 x—1
(limx) — (lim 2)

x—1 x—1

(limx)? — 3(limx) +5
x—1

x—1

(limx) — 2

x—1
12-3-145
1-2

1-3+5
T __3
-1

&

It is worth commenting on the trivial limit lin} 5. From one point of view this might seem meaningless,
X—

as the number 5 can’t “approach” any value, since it is simply a fixed number. However, 5 can, and
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should, be interpreted here as the function that has value 5 everywhere, f(x) = 5, with graph a horizontal
line. From this point of view it makes sense to ask what happens to the values of the function (height of
the graph) as x approaches 1.

We’re primarily interested in limits that aren’t so easy, namely, limits in which a denominator ap-
proaches zero. There are a handful of algebraic tricks that work on many of these limits.

Example 3.10: Zero Denominator

2+4+2x—3

Compute lim
x—1 x—1

Solution. We can’t simply plug in x = 1 because that makes the denominator zero. However:

2 _ —
lim +2x-3 lim (x—1)(x+3)
x—1 x—1 x—1 x—1
= lim(x+3)=4
x—1

&

The technique used to solve the previous example can be referred to as factor and cancel. Its validity
comes from the fact that we are allowed to cancel x — 1 from the numerator and denominator. Remember
in Calculus that we have to make sure we don’t cancel zeros, so we require x — 1 # 0 in order to cancel
it. But looking back at the definition of a limit using x — 1, the key point for this example is that we are
taking values of x close to 1 but not equal to 1. This is exactly what we wanted (x £ 1) in order to cancel
this common factor.

While Theorem 3.8 is very helpful, we need a bit more to work easily with limits. Since the theorem
applies when some limits are already known, we need to know the behavior of some functions that cannot
themselves be constructed from the simple arithmetic operations of the theorem, such as v/x. Also, there is
one other extraordinarily useful way to put functions together: composition. If f(x) and g(x) are functions,
we can form two functions by composition: f(g(x)) and g(f(x)). For example, if f(x) = /x and g(x) =

x> +5, then f(g(x)) = V/x2+5 and g(f(x)) = (v/x)*+5 = x+5. Here is a companion to Theorem 3.8
for composition:

Theorem 3.11: Limit of Composition

Suppose that lim g(x) = L and lim f(x) = f(L). Then
x—a x—L

lim f(g(x)) = f(L).

xX—a

Note the special form of the condition on f: it is not enough to know that lini f(x) =M, though it is a
X—

bit tricky to see why. We have included an example in the exercise section to illustrate this tricky point for
those who are interested. Many of the most familiar functions do have this property, and this theorem can
therefore be applied. For example:
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Theorem 3.12: Continuity of Roots

Suppose that n is a positive integer. Then

lim /x = V/a,

xX—a

provided that a is positive if n is even.

This theorem is not too difficult to prove from the definition of limit.

Another of the most common algebraic tricks is called rationalization. Rationalizing makes use of the
difference of squares formula (a — b)(a+b) = a®> — b*. Here is an example.

Example 3.13: Rationalizing

. Vx+5-2
Compute lim ——.
x——1 x+1

Solution.

. Vx+5-2 LAV X+HS5S—=2 /x+5+2
Iim ——— = lim .
x——1 x+1 x——1 x+1 vVx+54+2
) x+5-4
= lim

x——1 (x+ 1)(\/x—|-5+2)

. x+1

lim
=1 (x+1)(Vx+5+2)
fim —— 1
——1y/x+54+2 4
At the very last step we have used Theorems 3.11 and 3.12. &

Example 3.14: Left and Right Limit

Evaluate lim —.
x—0* |X|

Solution. The function f(x) = x/|x| is undefined at 0; when x > 0, |x| = x and so f(x) = 1; when x < 0,
|x| = —x and f(x) = —1. Thus
lim = = lim —1 =—1
x—0~ |X| x—0~
while X
lim — = lim 1 =1.
x—0T |x| x—07T
The limit of f(x) must be equal to both the left and right limits; since they are different, the limit lin(l) |x_|
x—0 X
does not exist.
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Exercises for 3.4

Exercise 3.4.1 Compute the limits. If a limit does not exist, explain why.

(a) hm)L_12 (h) 1i_1>141t3x3—5x
=3  x—3 x
2
24512 4x —5x
(b) lim = (i) lim ——
x—1 x—3
2
2 2
x“4+x—12 L
(c) fim ——=3— G) lim =
2 2
.ox+x—12 o i
(@ ii’%ﬁ )l =
\/)T 2 —x?
' )1
AT D S
/1 R R
(f) hm —+ \[ (m) ;13; —
(g) lim 3 (n) 1im(x2+4)3
x—2 e}

Exercise 3.4.2 Let f(x) = { (1) Zx 70 and g(x) = 0. What are the values of L = lim,_,og(x) and

M =1im,_,; f(x)? Is it true that lim,_,q f ( (x)) = M ? What are some noteworthy differences between this
example and Theorem 3.11?

3.5 Infinite Limits and Limits at Infinity

We occasionally want to know what happens to some quantity when a variable gets very large or “goes to
infinity”.

Example 3.15: Limit at Infinity

What happens to the function cos(1/x) as x goes to infinity? It seems clear that as x gets larger

and larger, 1/x gets closer and closer to zero, so cos(1/x) should be getting closer and closer to
cos(0) = 1.

As with ordinary limits, this concept of “limit at infinity” can be made precise. Roughly, we want

1i_r>n f(x) = L to mean that we can make f(x) as close as we want to L by making x large enough.
X—>o0
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Definition 3.16: Limit at Infinity (Formal Definition)

If f is a function, we say that lim f(x) = L if for every € > 0O there is an N > 0 so that whenever
X—ro0
x> N, |f(x)—L| < €. We may similarly define lim f(x)=L.
X—>—o0

We include this definition for completeness, but we will not explore it in detail. Suffice it to say that
such limits behave in much the same way that ordinary limits do; in particular there is a direct analog of
Theorem 3.8.

Example 3.17: Limit at Infinity

Compute lim M
P e 2 4T+ 1

Solution. As x goes to infinity both the numerator and denominator go to infinity. We divide the numerator
and denominator by x*:

3 7

22347 . 27T
L P
1+—+—2

X X

Now as x approaches infinity, all the quotients with some power of x in the denominator approach zero,
leaving 2 in the numerator and 1 in the denominator, so the limit again is 2. &

In the previous example, we divided by the highest power of x that occurs in the denominator in order
to evaluate the limit. We illustrate another technique similar to this.

Example 3.18: Limit at Infinity

Compute the following limit:
fim 213
x—e0 Sx2 4+ x°

Solution. As x becomes large, both the numerator and denominator become large, so it isn’t clear what
happens to their ratio. The highest power of x in the denominator is x?, therefore we will divide every term
in both the numerator and denominator by x? as follows:

i 2743 . 2+3/x
x00 5x2 4 x  xee S+ 1/x°
Most of the limit rules from last lecture also apply to infinite limits, so we can write this as:
lim2+3 i !
et T IE  243(0) 2

540 5

1
Iim 5+ lim —

X—o00 X—yo0 X

.1 .1
Note that we used the theorem above to get that lim — =0 and lim — =0.
X—o0 X X—o0 X
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A shortcut technique is to analyze only the leading terms of the numerator and denominator. A leading
term is a term that has the highest power of x. If there are multiple terms with the same exponent, you
must include all of them.

Top: The leading term is 2x?.
Bottom: The leading term is 5x.
Now only looking at leading terms and ignoring the other terms we get:

lim 23243 - 22 2
im ——— = lim — = —.
x—0 5x24x  x—swS5x2 5

We next look at limits whose value is infinity (or minus infinity).

Definition 3.19: Infinite Limit (Useable Definition)

In general, we will write
lim f(x) = o0

xX—a

if we can make the value of f(x) arbitrarily large by taking x to be sufficiently close to a (on either
side of a) but not equal to a. Similarly, we will write

lim f(x) = —oo

if we can make the value of f(x) arbitrarily large and negative by taking x to be sufficiently close to
a (on either side of a) but not equal to a.

This definition can be modified for one-sided limits as well as limits with x — a replaced by x — o or
X — —oo,

Example 3.20: Limit at Infinity

3

Compute the following limit: li_r>n (x” —x).
X—>o0

Solution. One might be tempted to write:

lim x° — lim x = o0 — oo,
X—>o0 X—yo0
however, we do not know what o — oo is, as oo is not a real number and so cannot be treated like one. We
instead write:
lim (x> —x) = lim x(x> — 1).
Ji (=) = lim+(oZ = 1)
As x becomes arbitrarily large, then both x and x> — 1 become arbitrarily large, and hence their product
x(x* — 1) will also become arbitrarily large. Thus we see that

. 3 _
}1_}n3°(x X) = oo,
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Example 3.21: Limit at Infinity and Basic Functions

We can easily evaluate the following limits by observation:
l. lim —= =0 2. lim x—x* = —oo
X—ro0 x3 X—r—o0
3. lim x° +x = oo 4. lim cos(x) = DNE
X—> X—>
5. lim e* = oo 6. lim ¢ =0
X—ro0 X—r—o0
7. lim Inx = —oo 8. limcos(1/x) = DNE
x—0t x—0
) 1 1 . . .
Often, the shorthand notation or = +o0 and o= is used to represent the following two limits
respectively:
1
lim — = +oo and lim — = —oo.
x—0T X x—0" X

Using the above convention we can compute the following limits.

Example 3.22: Limit at Infinity and Basic Functions

Compute lim e'/*, lim e'/* and lim '/*.
x—0t x—0~ x—0

Solution. We have:
.1 L -
lim ex = e0f =™ = oo,
x—0t
. 1 L oo
Iim ex =e0— =¢ — =0.
x—0~

Thus, as left-hand limit # right-hand limit,

lime¥ = DNE.
x—0

3.5.1 Vertical Asymptotes

The line x = a is called a vertical asymptote of f(x) if at least one of the following is true:

limf(x) =eo  lim f(x)=o0  lim f(x) = oo

x—a x—a~ x—at

limf(x) =—co  lim f(x)=—e0  lim f(x)=—oo

Xx—a x—a~ x—at
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Example 3.23: Vertical Asymptotes

Find the vertical asymptotes of f(x) =

Solution. In the definition of vertical asymptotes we need a certain limit to be f-co. Candidates would be
to consider values not in the domain of f(x), such as a = 4. As x approaches 4 but is larger than 4 then
x —4 is a small positive number and 2x is close to 8, so the quotient 2x/(x —4) is a large positive number.
Thus we see that

. 2x
lim
x—4T X —

= oo,

Thus, at least one of the conditions in the definition above is satisfied. Therefore x = 4 is a vertical
asymptote. &

3.5.2 Horizontal Asymptotes
The line y = L is a horizontal asymptote of f(x) if either

lim f(x) =L or lim f(x) =L.

X—¥oo X—y—o0

Example 3.24: Horizontal Asymptotes

Find the horizontal asymptotes of f(x) = M
X

Solution. We must compute two infinite limits. First,

lim M
X—o0 X

Notice that for x arbitrarily large that x > 0, so that |x| = x. In particular, for x in the interval (0,00) we
have

Second, we must compute

. X
lim U
X——o0 X
Notice that for x arbitrarily large negative that x < 0, so that |x| = —x. In particular, for x in the interval
(—o0,0) we have
. X . —X
lim U = lim — =—1.

X—— X X——o0 X

Therefore there are two horizontal asymptotes, namely, y =1 and y = —1. )
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3.5.3 Slant Asymptotes

Some functions may have slant (or oblique) asymptotes, which are neither vertical nor horizontal. If
lim [£(x) — (mx+5)] =0

then the straight line y = mx—+ b is a slant asymptote to f(x). Visually, the vertical distance between f(x)
and y = mx+ b is decreasing towards 0 and the curves do not intersect or cross at any point as x approaches
infinity. Similarly when x — —oo.

Example 3.25: Slant Asymptote in a Rational Function

—3x% + 4

Find the slant asymptotes of f(x) = 1
P

Solution. Note that this function has no horizontal asymptotes since f(x) — —oo as x — oo and f(x) — oo
as x — —oo.

In rational functions, slant asymptotes occur when the degree in the numerator is one greater than in
the denominator. We use long division to rearrange the function:

—3x> 44 1
34—
x—1 x—1

The part we’re interested in is the resulting polynomial —3x — 3. This is the line y = mx+ b we were
seeking, where m = —3 and b = —3. Notice that

—3x>+4 1
lim =X % (3x3) = lim —— =0
x—eo  x—1 x—oo x — |
and 5
-3 4 1
lim =X % (C3x_3)= lim 0.
x——o  x—1 x——o0 x — |
Thus, y = —3x — 3 is a slant asymptote of f(x). s

Although rational functions are the most common type of function we encounter with slant asymptotes,
there are other types of functions we can consider that present an interesting challenge.

Example 3.26: Slant Asymptote

Show that y = 2x + 4 is a slant asymptote of f(x) = 2x —3* 4+ 4.

Solution. This is because
lim [f(x)—(2x+4)] = lim (=3)=0.

X——o0 X—>—00

&

We note that limy_,e[f(x) — (2x+4)] = limy_,ee(—3") = —oo. So, the vertical distance between y = f(x)
and the line y = 2x + 4 decreases toward 0 only when x — —oo and not when x — . The graph of f
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approaches the slant asymptote y = 2x +4 only at the far left and not at the far right. One might ask if
y = f(x) approaches a slant asymptote when x — oco. The answer turns out to be no, but we will need to
know something about the relative growth rates of the exponential functions and linear functions in order
to prove this. Specifically, one can prove that when the base is greater than 1 the exponential functions
grows faster than any power function as x — co. This can be phrased like this: For any a > 1 and any n > 0,

X n

. a X
lim — = and lim — = 0.
X—yoo X' x—oo g¥

These facts are most easily proved with the aim of something called the L’Ho6pital’s Rule.
3.5.4 End Behaviour and Comparative Growth Rates

Let us now look at the last two subsections and go deeper. In the last two subsections we looked at
horizontal and slant asymptotes. Both are special cases of the end behaviour of functions, and both concern
situations where the graph of a function approaches a straight line as x — oo or —co. But not all functions
have this kind of end behviour. For example, f(x) = x? and f(x) = x> do not approach a straight line as
x — oo or —oo, The best we can say with the notion of limit developed at this stage are that

2 2

limx® = oo, lim x° = oo,
X—>00 X——o0

limx® = oo, lim al——
X—ro0 X—r—0o0

Similarly, we can describe the end behaviour of transcendental functions such as f(x) = ¢* using limits,
and in this case, the graph approaches a line as x — —oo but not as x — oo.
lim ¢* =0, lime* = oo.
X—»—o0 X—yoo
People have found it useful to make a finer distinction between these end behaviours all thus far

captured by the symbols « and —eo. Specifically, we will see that the above functions have different
growth rates at infinity. Some increase to infinity faster than others. Specifically,

Suppose that f and g are two functions such that lim f (x) = e and lim g (x) = co. We say that f (x)

X—ro0 X—ro0
grows faster than g (x) as x — oo if the following holds:

f )

li — oo,
e g ()

or equivalently,

Here are a few obvious examples:

Example 3.28

Show that if m > n are two positive integers, then f(x) = x™ grows faster than g(x) = x"* as x — co.
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Solution. Since m > n, m — n is a positive integer. Therefore,

lim @ = lim x;n = lim X" = oo.
X—00 g(x) x—oo x" X—yo0

Example 3.29

Recall that a polynomial is monic if its leading coefficient is 1. Show that if m > n are two positive
integers, then any monic polynomial P, (x) of degree m grows faster than any monic polynomial
P, (x) of degree n as x — oo.

Solution. By assumption, B, (x) = x4 terms of degrees less than m = X" +a,, 1 x" ' 4 ..., and P,(x) =
¥+ terms of degrees less than n = x" +b,_1x*~' +.... Dividing the numerator and denominator by x”",
we get
XM Gy X 1ot
lgn@: 11_>m +amb 171 * = ll_{nxmin(#):oo,
xe0 g(x)  x 1+T+... x 1+T+...

since the limit of the bracketed fraction is 1 and the limit of X" is oo, as we showed in Example 3.28.

)
Example 3.30

Show that a polynomial grows exactly as fast as its highest degree term as x — oo or —oo. That is, if
P(x) is any polynomial and Q(x) is its highest degree term, then both limits
P(x)

P
lim () and lim —=

=0 " T 0)

are finite and nonzero.

Solution. Suppose that P(x) = a,x" 4+ a,_1xX*~' +... 4+ ajx + ag, where a, # 0. Then the highest degree
term is Q (x) = a,x". So,

. P(X) T an—1 ai aopy
lim 575 = m (a2t S+ ) =20,

o

Let’s state a theorem we mentioned when we discussed the last example in the last subsection:

Theorem 3.31
Let n be any positive integer and let a > 1. Then f(x) = a* grows faster than g(x) = x" as x — oco:

- x"
lim & = oo, lim = = 0.
x—oo X7 x—oo X
In particular,
. X"
lim — = oo, lim — = 0.

x—roo xT x—oo @X
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The easiest way to prove this is to use the L’Hopital’s Rule, which we will introduce in a later chapter.
For now, one can plot and compare the graphs of an exponential function and a power function. Here is a
comparison between f(x) = x* and g(x) = 2*:
50 f
40
30 f
20

10 |

e 4

Notice also that as x — —oo, X" grows in size but ¢* does not. More specifically, x* — oo or —co
according as n is even or odd, while ¢* — 0. So, it is meaningless to compare their “growth” rates,
although we can still calculate the limit

. e

lim — =0.
x——oo x"

Let’s see an application of our theorem.

_x3+2ex
e —4x2

Find the horizontal asymptote(s) of f(x)

Solution. To find horizontal asymptotes, we calculate the limits of f(x) as x — oo and x — —eo. For x — oo,
we divide the numerator and the denominator by ¢*, and then we take limit to get

P42 242 042
lim = =

x—o0 @X — 4x2 _xg{}ol_4§ ~ 1-4(0) =2

For x — —oo, we divide the numerator and the denominator by x? to get

I x3 +2e° B X+ 2)%
x—1>—<><> e —4x? N X—1>IP°° e
The denominator now approaches 0 —4 = —4. The numerator has limit —eo. So, the quotient has limit co:
x+2%
lim =
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So, y =2 is a horizontal asymptote. The function y = f(x) approaches the line y =2 as x — . And
this is the only horizontal asymptote, since the function y = f(x) does not approach any horizontal line as
X — —oo, &

Since the growth rate of a polynomial is the same as that of its leading term, the following is obvious:

If P(x) is any polynomial, then

Also, if r is any real number, then we can place it between two consecutive integers n and n + 1. For
example, V/3 is between 1 and 2, e is between 2 and 3, and 7 is between 3 and 4. Then the following is
totally within our expectation:

Example 3.34

Prove that ifa > 1 is any base and r > 0 is any exponent, then f(x) = a* grows faster than g(x) = x"

as x —» oo,

Solution. Let r be between consecutive integers n and n+ 1. Then for all x > 1, X" <x" < XL Dividing
by a*, we get

— < —<
a* — af a*
Since
lim — =0
x—oo q¥

&

What about exponential functions with different bases? We recall from the graphs of the exponential
functions that for any base a > 1,
lim a* = oo.
X—ro0
So, the exponential functions with bases greater than 1 all grow to infinity as x — . How do their
growth rates compare?

If 1 < a < b, then f(x) = b* grows faster than g(x) = a* as x — oo.

Proof. Since a < b, we have % > 1. So,

. b (b
Iim —=1lim (- | =oo.
x—oo gX  x—oo \ @
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Another function that grows to infinity as x — oo is g(x) = Inx. Recall that the natural logarithmic
function is the inverse of the exponential function y = ¢*. Since ¢* grows very fast as x increases, we
should expect Inx to grow very slowly as x increases. The same applies to logarithmic functions with any
basis a > 1. This is the content of the next theorem.

Theorem 3.36

Let r be any positive real number and a > 1. Then

1. f(x) =x" grows faster than g(x) = Inx as x — oo.

2. f(x) =x" grows faster than g(x) = log, x as x — oo.

Proof.

1. We use a change of variable. Letting t = Inx, then x = ¢’. So, x — o if and only if # — oo, and

Now, since r > 0, a = ¢" > 1. So, a’ grows as t increases, and it grows faster than ¢ as t — oo,
Therefore,

1
2. The change of base identity log, x = ln_x implies that log, x is simply a constant multiple of Inx.
na

The result now follows from 1.

)

Exercises for 3.5

Exercise 3.5.1 Compute the following limits.

; 2 _ 2 _ —1/2 -1 -1
(a) }glolo\/x +x \/x X ) lim 3+x +x () lim x+x
X0t 24-4x~1/2 x——0 ] 4++/1—x
—X
(b) 1Lm€i+e_x o PN VB v
X—oo gt — e m —-
(1/1)—1 8 T 2B /A (k) Tim ﬁl
. 1/t)— x—1t X —
(c) hm 1=/
; (h) tli_>m x g x1/2
—2/i—1 ©n_ [a+l -
@ Jim S TV R
1— L
SANITL AT (i) lim — =1L 2
(e) lim Y2 1T VY e [ (m) lim 21X

y—roo y t—1 X—>o0 2x+_x_2
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5+x! : 1 1 X —6x—2
1 S)|—+——= im ———
(n) ,}1_>n301+2 —1 ) xglolo(x-'_ )<2x+x—|—2 (r) ign% x3—4x
4x 1
lim ———— li 5| =—
(0) lim oo (@) lim (x+5) <2x+x+2>
X
Exercise 3.5.2 The function f(x) = ————= has two horizontal asymptotes. Find them and give a rough
f f0) == ymp g g
sketch of f with its horizontal asymptotes.
. . . Inx
Exercise 3.5.3 Find the vertical asymptotes of f(x) = 5
x JE—

Exercise 3.5.4 Suppose that a falling object reaches velocity v(t) = 50(1 —e~'/3) at time t, where distance
is measured in m and time s. What is the object’s terminal velocity, i.e. the value of v(t) as t goes to

infinity?

2
6
Exercise 3.5.5 Find the slant asymptote of f(x) = %

x —

Exercise 3.5.6 Compute the following limits.

3

(a) lim (2¢° —x)

(b) lim tan~!(¢")
X—ro0

(¢) lim tan~!(e")
X—>—o00

. &+ x*
d) lim ——
(d) xggox3—i—51nx
. 2X45(3Y
lim =— "\~ /
(e) xggﬂ(zx) T
. 2% 45(39)
(f) XLHPM, 3(2x) _ 3x

(g) lim /xInx [Hint: Lett = 1/x]
x—0F

3.6 A Trigonometric Limit

In this section we aim to compute the limit:

sinx
Iim —.
x—0 X
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We start by analyzing the graph of y = ﬂ:
X

sinx

lim
z—0 I

Notice that x = 0 is not in the domain of this function. Nevertheless, we can look at the limit as x
approaches 0. From the graph we find that the limit is 1 (there is an open circle at x = 0 indicating 0
is not in the domain). We just convinced you this limit formula holds true based on the graph, but how
does one attempt to prove this limit more formally? To do this we need to be quite clever, and to employ
some indirect reasoning. The indirect reasoning is embodied in a theorem, frequently called the squeeze
theorem.

Theorem 3.37: Squeeze Theorem

Suppose that g(x) < f(x) < h(x) for all x close to a but not equal to a. If lim g(x) = L = lim h(x),

xX—a xX—a
then lim f(x) = L.
Xx—a

This theorem can be proved using the official definition of limit. We won’t prove it here, but point out
that it is easy to understand and believe graphically. The condition says that f(x) is trapped between g(x)
below and h(x) above, and that at x = a, both g and & approach the same value. This means the situation

looks something like Figure 3.1.

For example, imagine the blue curve is f(x) = x?sin(7 /x), the upper (red) and lower (green) curves are

h(x) = x* and g(x) = —x>. Since the sine function is always between —1 and 1, —x? < x*sin(7/x) < x2,
and it is easy to see that lim,_,q —x2 =0 = limy_,0x2. It is not so easy to see directly (i.e. algebraically)
that lim,_,ox?sin(7/x) = 0, because the 7 /x prevents us from simply plugging in x = 0. The squeeze
theorem makes this “hard limit” as easy as the trivial limits involving x.
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h(x)
f(x)

Figure 3.1: The squeeze theorem.

To compute lirr(l) (sinx)/x, we will find two simpler functions g and & so that g(x) < (sinx)/x < h(x),
X—

and so that lim,_,0g(x) = lim,_,o/(x). Not too surprisingly, this will require some trigonometry and
geometry. Referring to figure 3.2, x is the measure of the angle in radians. Since the circle has radius 1,
the coordinates of point A are (cosx,sinx), and the area of the small triangle is (cosxsinx)/2. This triangle
is completely contained within the circular wedge-shaped region bordered by two lines and the circle from
(1,0) to point A. Comparing the areas of the triangle and the wedge we see (cosxsinx)/2 < x/2, since
the area of a circular region with angle 6 and radius r is 872/2. With a little algebra this turns into
(sinx)/x < 1/cosx, giving us the & we seek.

1_

0 |
1

Figure 3.2: Visualizing sinx/x.

To find g, we note that the circular wedge is completely contained inside the larger triangle. The height
of the triangle, from (1,0) to point B, is tanx, so comparing areas we get x/2 < (tanx)/2 = sinx/(2cosx).
With a little algebra this becomes cosx < (sinx)/x. So now we have

Finally, the two limits lim,_,gcosx and lim,_,o 1/ cosx are easy, because cos(0) = 1. By the squeeze
theorem, lim,_,o(sinx)/x = 1 as well.

Using the above, we can compute a similar limit:

. cosx—1
Iim ——.

x—0 X
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This limit is just as hard as sinx/x, but closely related to it, so that we don’t have to do a similar calculation;
instead we can do a bit of tricky algebra.

2

2x—1 —sin“ x sinx sinx

cosx—1 cosx—1cosx+1 cos

X X cosx+1:x(cosx+1) x(cosx+1)  x cosx+1’

To compute the desired limit it is sufficient to compute the limits of the two final fractions, as x goes to 0.
The first of these is the hard limit we’ve just done, namely 1. The second turns out to be simple, because
the denominator presents no problem:

sinx sin0 0

xl—%cosx—i—l - cosO+1 - 2

Thus,

Example 3.38: Limit of Other Trigonometric Functions

in5.
Compute the following limit lim SoTeost
x—0 X
Solution. We have
. sinSxcosx . 5sin5xcosx
im———— = lim——M
x—0 X x—0 5x
in5
= lim5cosx (sm x)
x—0 5x
= 5-(1)-(1) =5
in5
since cos(0) = 1 and lim Y _ g, )

x—0 X

Let’s do a harder one now.

Example 3.39: Limit of Other Trig Functions

tan3 2x

Compute the following limit: lim ————.
x—0 X~ sin7x
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Solution. Recall that the tan’(2x) means that tan(2x) is being raised to the third power.

tan’(2 in(2x))3
M = lim ‘(sm( al) Rewrite in terms of sin and cos
x—0 x2 sin(7x) x—0 x2 sin(7x) cos3(2x)
3 ( sin(2x) 3
(20)° (22 Sin6
= lim — Make sine terms look like:
=0 x2(7x) <%) cos3(2x) o
. 83(1)° . sinnx
= il_l% TB0)(17) Replaceil_% - with 1. Also,cos(0) = 1.
= lim- Cancel x7’s.
x—0
_ 8
7

Example 3.40: Applying the Squeeze Theorem

1
Compute the following limit: lim x> cos | — ).
p g x—0t o ( \/)_C>

Solution. We use the Squeeze Theorem to evaluate this limit. We know that cos & satisfies —1 < cosa <1
for any choice of «. Therefore we can write:

1
—1 <cos (%) <1

Since x — 07 implies x > 0, multiplying by x> gives:

1
—x < x> cos (7) §x3.
X

. . 1 .
lim (—x*) < lim (x*cos [ — ) | < lim x°.
X0t X0t VX x—0F
But using our rules we know that
lim (—x*) =0, lim x> =0
x—0t x—0F

and the Squeeze Theorem says that the only way this can happen is if

1
lim x>cos [ — | = 0.
x—1>0+x > (\/)_C>
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When solving problems using the Squeeze Theorem it is also helpful to have the following theorem.

Theorem 3.41: Monotone Limits

If f(x) < g(x) when x is near a (except possibly at a) and the limits of f and g both exist as x
approaches a, then li_r>n flx) < li_r)n g(x).
X—a X—a

Exercises for 3.6

Exercise 3.6.1 Compute the following limits.

in(5
(a) Tim $nOY)
x—0

x
. sin(7x)
|

(b) 50 sin(2x)

. cot(4x)
() ;%I—I}(l) csc(3x)

(d) lim 22X

x—0 X

. sinx — cosx
(¢) lim ——

x—=7/4 COS(Zx)

Exercise 3.6.2 Forall x>0, 4x—9 < f(x) <x*> —4x+7. Find linéltf(x).
X—r
Exercise 3.6.3 For all x, 2x < g(x) < x* —x*> 4 2. Find lin} g(x).
X—

Exercise 3.6.4 Use the Squeeze Theorem to show that lirr(l) x*cos(2/x) =0.
X—

3x+sin
Exercise 3.6.5 Find the value of lim,_. %. Justify your steps carefully.
X X

3.7 Continuity

The graph shown in Figure 3.3(a) below represents a continuous function. Geometrically, this is because
there are no jumps in the graphs. That is, if you pick a point on the graph and approach it from the left and
right, the values of the function approach the value of the function at that point. For example, we can see
that this is not true for function values near x = 1 on the graph in Figure 3.3(b) which is not continuous at
that location.
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y

4__

3__

2__

1__
| | ] IX | | [ IX
I I I I I I I I
-2 -1 12 2 -1 12

Figure 3.3: (a) A continuous function. (b) A function with a discontinuity at x = 1.

Definition 3.42: Continuous at a Point

A function f is continuous at a point a if

lim f(x) = f(a).

xX—a

Some readers may prefer to think of continuity at a point as a three part definition. That is, a function
f(x) is continuous at x = a if the following three conditions hold:

i. f(a) is defined (that is, a belongs to the domain of f),

ii. lim f(x) exists (that is, left-hand limit = right-hand limit),

xX—a

iii. li_I)n f(x) = f(a) (that is, the numbers from (i) and (ii) are equal).
X—a

The figures below show graphical examples of functions where either (i), (ii) or (iii) can fail to hold.



104 = Limits

1
1
1
1
1
1
1
1
1
| | | | | | | |
!
d

continuous at x=a

[imic9 = 1)

On the other hand, if f is defined on an open interval containing a, except perhaps at a, we can say
that f is discontinuous at a if f is not continuous at a.

Graphically, you can think of continuity as being able to draw your function without having to lift your
pencil off the paper. If your pencil has to jump off the page to continue drawing the function, then the
function is not continuous at that point. This is illustrated in Figure 3.3(b) where if we tried to draw the
function (from left to right) we need to lift our pencil off the page once we reach the point x = 1 in order

lim f(x) does not exist
X—a

(ii) fails to hold

to be able to continue drawing the function.

1
1
1
1
1
1
1
1
1
| | | | | | | |
!
a

f(a) not defined

(i) fails to hold

1
1
1
1
1
1

[
1
1
1
|
!

d

limf(x) # f(a)

X—a

(iii) fails to hold
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A function f is if it is continuous at every point in the
interval.
Furthermore, a function is if it is continuous on the entire real number line

(=, ).

Recall the function graphed in a previous section as shown in Figure 3.4.

7] f(z)

|
1
|
f f f f f @ QO f f f ? f f f ; X
T 1
1
° )
|
£ 1
|
T 1
|
Figure 3.4: A function with discontinuities at x = —5,x = —2,x = —1 and x = 4.
We can draw this function without lifting our pencil except at the points x = —5, x = -2, x = —1, and
x = 4. Thus, f(x) is continuous at every real number except at these four numbers. At x = —5, x = —2,
x = —1, and x = 4, the function f(x) is discontinuous.
At x = —2 we have a removable discontinuity because we could remove this discontinuity simply by
redefining f(—2) to be 3.5. At x = —5 and x = —1 we have jump discontinuities because the function

jumps from one value to another. From the right of x = 4, we have an infinite discontinuity because the
function goes off to infinity.

Formally, we say f(x) has a removable discontinuity at x = a if lim,_,, f(x) exists but is not equal to
f(a). Note that we do not require f(a) to be defined in this case, that is, a need not belong to the domain

of f(x).
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y y
— 1 — 1
1 ; f(x) 1 ; f(x)
- 1 — 1
1 1
\ + \/\:
T 1 T 1
| | | | | | | | | l l l l l | | | |
T T T T T T T T T T T T T T T T T T
a X a X a X
limf(x) # f(a) lim f(x) # lim f(x) Either lim f(x)=+ow or lim f(x)=xow
X—a X—at X—a- X—at X—a~
REMOVABLE DISCONTINUITY JUMP DISCONTINUITY INFINITE DISCONTINUITY

Example 3.44: Continuous at a Point

What value of ¢ will make the following function f(x) continuous at 2?

Z—x—2

fay=¢ *72
c ifx=2

ifx#2

Solution. In order to be continuous at 2 we require

lim f(x) = f(2)

x—2

to hold. We use the three part definition listed previously to check this.
1. First, f(2) = ¢, and c is some real number. Thus, f(2) is defined.
2. Now, we must evaluate the limit. Rather than computing both one-sided limits, we just compute the

limit directly. For x close to 2 (but not equal to 2) we can replace f(x) with 22 2 2 to get:

2
_ L X —x=2 o (x=2)(x 1) _
lim flx) = lim — =5 — = lim———5— = limx+ 1) =3.

Therefore the limit exists and equals 3.

3. Finally, for f to be continuous at 2, we need that the numbers in the first two items to be equal.
Therefore, we require ¢ = 3. Thus, when ¢ = 3, f(x) is continuous at 2, for any other value of ¢, f(x) is
discontinuous at 2. &

For continuity on a closed interval, we consider the one-sided limits of a function. Recall that x — a~
means x approaches a from values less than a.
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Definition 3.45: Continuous from the Right and from the Left

A function f is left continuous at a point a if

lim f(x) = f(a)

X—a -

and right continuous at a point a if

lim f(x) = f(a).

x—at

If a function f is continuous at a, then it is both left and right continuous at a.

The above definition regarding left (or right) continuous functions is illustrated with the following
figure:

f(x)

1 1
| |
T T
a X a X

lim f(x) = f(a) lim f(x) = f(a)
X—a" X —at
left continuous at x =a right continuous at x=a

One-sided limits allows us to extend the definition of continuity to closed intervals. The following
definition means a function is continuous on a closed interval if it is continuous in the interior of the
interval and possesses the appropriate one-sided continuity at the endpoints of the interval.

Definition 3.46: Continuity on a Closed Interval

A function f is continuous on the closed interval [a,b] if:
i. it is continuous on the open interval (a,b);

ii. it is left continuous at point a:

lim f(x) = f(a);

xX—a-

and

iii. it is right continuous at point b:

lim f(x) = f(b).

x—bt
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This definition can be extended to continuity on half-open intervals such as (a,b] and [a,b), and un-
bounded intervals.

Example 3.47: Continuity on Other Intervals

The function f(x) = +/x is continuous on the (closed) interval [0, o).

The function f(x) = \/4 — x is continuous on the (closed) interval (—oo,4].

The continuity of functions is preserved under the operations of addition, subtraction, multiplication
and division (in the case that the function in the denominator is nonzero).

Theorem 3.48: Operations of Continuous Functions

If f and g are continous at a, and c is a constant, then the following functions are also continuous at
a:

i ftg iii. fg

ii. cf iv. f/g (provided g(a) # 0)

Below we list some common functions that are known to be continuous on every interval inside their
domains.

Example 3.49: Common Types of Continuous Functions

» Polynomials (for all x), e.g., y = mx+b, y = ax> + bx+c.

 Rational functions (except at points x which gives division by zero).

Root functions /x (for all x if n is odd, and for x > 0 if n is even).
e Trigonometric functions

e Inverse trigonometric functions

e Exponential funtions

e Logarithmic functions

For rational functions with removable discontinuities as a result of a zero, we can define a new function
filling in these gaps to create a piecewise function that is continuous everywhere.

Continuous functions are where the direct substitution property hold. This fact can often be used to
compute the limit of a continuous function.

Example 3.50: Evaluate a Limit

Evaluate the following limit: lim M
x—m 1 +x4cosx
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Solution. We will use a continuity argument to justify that direct substitution can be applied. By the list
above, 1/x, sinx, 1, x and cosx are all continuous functions at 7. Then /x + sinx and 1+ x+ cosx are both
continuous at 7. Finally,

/X + sinx
1+x+4+cosx

is a continuous function at 7 since 1 + 7+ cos 7w # 0. Hence, we can directly substitute to get the limit:

lim Vx+siny  Vm4sing Vw1

xorl4x+cosx 14+m4cosm T NZA

Continuity is also preserved under the composition of functions.

Theorem 3.51: Continuity of Function Composition

If g is continuous at a and f is continuous at g(a), then the composition function f o g is continuous
ata.

Example 3.52: Continuity with Composition of Functions

Determine where the following functions are continuous:
1. h(x) = cos(x?)
2. H(x) =In(1+sin(x))

Solution.

1. The functions that make up the composition 4(x) = f(g(x)) are g(x) = x*> and f(x) = cos(x). The
function g is continuous on R since it is a polynomial, and f is also continuous everywhere. There-
fore, h(x) = (f o g)(x) is continuous on R by Theorem 3.51.

2. We know from Example 3.49 that f(x) = Inx is continuous and g(x) = 1 + sinx are continuous.
Thus by Theorem 3.51, H(x) = f(g(x)) is continuous wherever it is defined. Now In(1 + sinx) is
defined when 1 +sinx > 0. Recall that —1 <sinx < 1, so 1 + sinx > 0 except when sinx = —1,
which happens when x = £37/2,4+771/2,.... Therefore, H has discontinuities when x = 37n/2,
n=1,2,3,... and is continuous on the intervals between these values.

&

Intermediate Value Theorem

Whether or not an equation has a solution is an important question in mathematics. Consider the following
two questions:
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Example 3.53: Motivation for the Intermediate Value Theorem

1. Does ¢* + x*> = 0 have a solution?

2. Does ¢ +x = 0 have a solution?

Solution.

1. The first question is easy to answer since for any exponential function we know that a* > 0, and
we also know that whenever you square a number you get a nonnegative answer: x> > 0. Hence,
¢*+x? > 0, and thus, is never equal to zero. Therefore, the first equation has no solution.

2. For the second question, it is difficult to see if e¢* +x = 0 has a solution. If we tried to solve for x,
we would run into problems. Let’s make a table of values to see what kind of values we get (recall

that e ~ 2.7183):
X & +x

—2]le?-2~-19
—1|el=1~-06
0 A+0=1
1 e+1~3.7

Sketching this gives:

y ® (1,37

Let f(x) = ¢* +x. Notice that if we choose a = —1 and b = 0 then we have f(a) < 0and f(b) > 0.
A point where the function f(x) crosses the x-axis gives a solution to ¢* +x = 0. Since f(x) = ¢*+x
is continuous (both ¢* and x are continuous), then the function must cross the x-axis somewhere

between —1 and O:
y

continuous, so can't - (0,1)

jump over x-axis ]
|

.'/\9 X

(-1,-06) L
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Therefore, our equation has a solution.

Note that by looking at smaller and smaller intervals (a,b) with f(a) < 0 and f(b) > 0, we can
get a better and better approximation for a solution to ¢* +x = 0. For example, taking the interval
(—0.4,—-0.6) gives f(—0.4) < 0and f(—0.6) > 0, thus, there is a solution to f(x) =0 between —0.4
and —0.6. It turns out that the solution to ¢* +x =0 is x = —0.56714.

&

We now generalize the argument used in the previous example. In that example we had a continuous
function that went from negative to positive and hence, had to cross the x-axis at some point. In fact, we
don’t need to use the x-axis, any line y = N will work so long as the function is continuous and below the
line y = N at some point and above the line y = N at another point. This is known as the Intermediate
Values Theorem and it is formally stated as follows:

Theorem 3.54: Intermediate Value Theorem

If f is continuous on the interval [a,b] and N is between f(a) and f(b), where f(a) # f(b), then
there is a number c in (a,b) such that f(c) = N.

The Intermediate Value Theorem guarantees that if f(x) is continuous and f(a) < N < f(b), the line
y = N intersects the function at some point x = ¢. Such a number c is between a and b and has the property
that f(c) = N (see Figure 3.5(a)). We can also think of the theorem as saying if we draw the line y = N
between the lines y = f(a) and y = f(b), then the function cannot jump over the line y = N. On the other
hand, if f(x) is not continuous, then the theorem may not hold. See Figure 3.5(b) where there is no number
¢ in (a,b) such that f(c) = N. Finally, we remark that there may be multiple choices for ¢ (i.e., lots of
numbers between a and b with y-coordinate N). See Figure 3.5(c) for such an example.

y f(z) Y,
f(b) 4 T — f(b) 4
Nf---mmmm - NI~
f(a) + ~/ f(a) +
T ia T T T T ll) T I}( T ;l Iél T (|:2I I(|:3]:I) T I)(

Figure 3.5: (a) A continuous function where IVT holds for a single value c. (b) A discontinuous
function where IVT fails to hold. (c) A continuous function where IVT holds for multiple
values in (a,b).

The Intermediate Value Theorem is most frequently used for N = 0.

Example 3.55: Intermediate Value Theorem

Show that there is a solution of </x+x = 1 in the interval (0,8).

Solution. Let f(x) = /x+x—1,N=0,a=0, and b = 8. Since /x, x and —1 are continuous on R, and the
sum of continuous functions is again continuous, we have that f(x) is continuous on R, thus in particular,
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f(x) is continuous on [0,8]. We have f(a) = f(0) =v0+0—1=—1and f(b) = f(8) = V8 +8—1=09.
Thus N =0 lies between f(a) = —1 and f(b) =9, so the conditions of the Intermediate Value Theorem are
satisfied. So, there exists a number ¢ in (0, 8) such that f(c¢) = 0. This means that ¢ satisfies /c+c—1=0,
in otherwords, is a solution for the equation given.

Alternatively we can let f(x) = /x+x, N =1, a =0 and b = 8. Then as before f(x) is the sum of two
continuous functions, so is also continuous everywhere, in particular, continuous on the interval [0, 8]. We
have f(a) = f(0) = v0+0=0and f(b) = f(8) = v/8 +8 = 10. Thus N = 1 lies between f(a) = 0 and
f(b) =10, so the conditions of the Intermediate Value Theorem are satisfied. So, there exists a number
c in (0,8) such that f(c) = 1. This means that ¢ satisfies \/c 4+ ¢ = 1, in otherwords, is a solution for the
equation given. s

Example 3.56: Roots of Function

Explain why the function f = x> +3x* +x — 2 has a root between 0 and 1.

Solution. By Theorem 3.8, f is continuous. Since f(0) = —2 and f(1) = 3, and 0 is between —2 and 3,
there is a ¢ € (0, 1) such that f(c) = 0. )

This example also points the way to a simple method for approximating roots.

Example 3.57: Approximating Roots

Approximate the root of the previous example to one decimal place.
Solution. If we compute f(0.1), f(0.2), and so on, we find that f(0.6) < 0 and f(0.7) > 0, so by the
Intermediate Value Theorem, f has a root between 0.6 and 0.7. Repeating the process with f(0.61),

£(0.62), and so on, we find that f(0.61) < 0 and f(0.62) > 0, so f has a root between 0.61 and 0.62, and
the root is 0.6 rounded to one decimal place. &

Exercises for 3.7

Exercise 3.7.1 Consider the function

[ 23, ifx<1
h(x)_{ 0, ifx>1

Show that it is continuous at the point x = 0. Is h a continuous function?

Exercise 3.7.2 Find the values of a that make the function f(x) continuous for all real numbers.

Z+a, ifx<—2

Flx) = { 4x+5, ifx> -2
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Exercise 3.7.3 Find the values of the constant c so that the function g(x) is continuous on (—eo, ), where

(x) = 2-2c%x, ifx<—1
EWZY 6-7ex?, ifx>—1

Exercise 3.7.4 Approximate a root of f = x> — 4x* + 2x+2 to one decimal place.
Exercise 3.7.5 Approximate a root of f = x*+x3 = 5x+1 10 one decimal place.

Exercise 3.7.6 Show that the equation \/x+x = 1 has a solution in the interval (0,8).






Derivatives

4.1 The Rate of Change of a Function

Suppose that y is a function of x, say y = f(x). It is often useful to know how sensitive the value of y is to
small changes in x.

Example 4.1: Small Changes in x

Consider y = f(x) = \/ 625 — x2, the upper semicircle of radius 25 centered at the origin. Compute
the changes of y resulting from small changes of x around x = 7.

Solution. When x = 7, we find that y = v/625 — 49 = 24. Suppose we want to know how much y changes
when x increases a little, say to 7.1 or 7.01.

In the case of a straight line y = mx+ b, the slope m = Ay/Ax measures the change in y per unit change
in x. This can be interpreted as a measure of “sensitivity”’; for example, if y = 100x+ 5, a small change in
x corresponds to a change one hundred times as large in y, so y is quite sensitive to changes in x.

Let us look at the same ratio Ay/Ax for our function y = f(x) = v/ 625 — x> when x changes from 7 to
7.1. Here Ax =7.1 —7 = 0.1 is the change in x, and
Ay = fx+Ax) — f(x) = f(7.1) = £(7)
= /625712 /625 — 72
~ 23.9706 — 24 = —0.0294.

Thus, Ay/Ax ~ —0.0294 /0.1 = —0.294. This means that y changes by less than one third the change in x,
so apparently y is not very sensitive to changes in x at x = 7. We say “apparently” here because we don’t
really know what happens between 7 and 7.1. Perhaps y changes dramatically as x runs through the values
from 7 to 7.1, but at 7.1 y just happens to be close to its value at 7. This is not in fact the case for this
particular function, but we don’t yet know why. )

The quantity Ay/Ax =~ —0.294 may be interpreted as the slope of the line through (7,24) and (7.1,23.9706),
called a chord of the circle. In general, if we draw the chord from the point (7,24) to a nearby point on
the semicircle (7 + Ax, f(7 + Ax)), the slope of this chord is the so-called difference quotient

fA4+M0)—f(7)  /625—(T+Ax)2—24
Ax B Ax '

For example, if x changes only from 7 to 7.01, then the difference quotient (slope of the chord) is ap-
proximately equal to (23.997081 —24)/0.01 = —0.2919. This is slightly different than for the chord from
(7,24) to (7.1,23.9706).

As Ax is made smaller (closer to 0), 7+ Ax gets closer to 7 and the chord joining (7, f(7)) to (7 +
Ax, f(7 + Ax)) shifts slightly, as shown in Figure 4.1. The chord gets closer and closer to the tangent line
to the circle at the point (7,24). (The tangent line is the line that just grazes the circle at that point, i.e., it

115
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doesn’t meet the circle at any second point.) Thus, as Ax gets smaller and smaller, the slope Ay/Ax of the
chord gets closer and closer to the slope of the tangent line. This is actually quite difficult to see when Ax
is small, because of the scale of the graph. The values of Ax used for the figure are 1, 5, 10 and 15, not
really very small values. The tangent line is the one that is uppermost at the right hand endpoint.

25
20
15~
10

5_

| | | | |
5 10 15 20 25

Figure 4.1: Chords approximating the tangent line.

So far we have found the slopes of two chords that should be close to the slope of the tangent line, but
what is the slope of the tangent line exactly? Since the tangent line touches the circle at just one point, we
will never be able to calculate its slope directly, using two “known” points on the line. What we need is a
way to capture what happens to the slopes of the chords as they get “closer and closer” to the tangent line.

Instead of looking at more particular values of Ax, let’s see what happens if we do some algebra with the
difference quotient using just Ax. The slope of a chord from (7,24) to a nearby point (7 4 Ax, f(7 + Ax))
is given by

F(T+Ax)— f(7) \/625 (7+Ax)2 24

Ax Ax
[ /625 — (74 Ax)? /625 — 2424
Ax /625 — 2424

625 — (7+ Ax)? — 242
Ax(1/625 — (7+Ax)2+24)
49 — 49 — 14Ax — Ax?
Ax(1/625 — (7 + Ax)2 +24)

Ax(—14— Ax)
Ax(1/625 — (7 + Ax)2 +24)
— 14— Ax

\/625 (74 Ax)? +24

Now, can we tell by looking at this last formula what happens when Ax gets very close to zero? The
numerator clearly gets very close to —14 while the denominator gets very close to /625 — 72 424 = 48.
The fraction is therefore very close to —14/48 = —7/24 = —(0.29167. In fact, the slope of the tangent line
is exactly —7/24.
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What about the slope of the tangent line at x = 12? To answer this, we redo the calculation with 12
instead of 7. This won’t be hard, but it will be a bit tedious. What if we try to do all the algebra without
using a specific value for x? Let’s copy from above, replacing 7 by x.

fx+Ax) = f(x) _ /625 — (x+Ax)2 — V625 —x?

Ax Ax
_ /625 — (x+Ax)? — V625 — 2% /625 — )2 +/625 — x2
Ax /625 — 24625 -2

625 — (x+ Ax)? — 625+
\/625 (x+Ax)? + 1625 —x2)
625 — x> — 2xAx — Ax? — 625 + x?
Ax(1/625 — (x+ Ax)2 + 625 — x2)
Ax(—2x — Ax)
Ax(1/625 — (x+ Ax)2 + /625 — x2)
—2x—Ax
T /625 (x t A2+ 625 22

Now what happens when Ax is very close to zero? Again it seems apparent that the quotient will be

very close to
—2x B —2x B —X
V625 —x2 4625 —x2 2162522 V625 —x%

Replacing x by 7 gives —7/24, as before, and now we can easily do the computation for 12 or any other
value of x between —25 and 25.

So now we have a single expression, —x/v/625 — x2, that tells us the slope of the tangent line for any
value of x. This slope, in turn, tells us how sensitive the value of y is to small changes in the value of x.

The expression —x/+/ 625 — x2 defines a new function called the derivative of the original function
(since it is derived from the original function). If the original is referred to as f or y then the derivative
is often written f or y/ (pronounced “f prime” or “y prime”). So in this case we might write f'(x) =
—x/V/ 625 —x? ory) = —x/\/ 625 — x%. At a particular point, say x = 7, we write f'(7) = —7/24 and we
say that “f prime of 7 is —7/24” or “the derivative of f at 7 is —7/24.

To summarize, we compute the derivative of f(x) by forming the difference quotient

SO+ Ax) — f(x)
Ay :

which is the slope of a line, then we figure out what happens when Ax gets very close to 0.

At this point, we should note that the idea of letting Ax get closer and closer to O is precisely the idea
of a limit that we discussed in the last chapter. The limit here is a limit as Ax approaches 0. Using limit

notation, we can write
) +Ax) — f(x)
f = Jim =

In the particular case of a circle, there’s a simple way to find the derivative. Since the tangent to a circle
at a point is perpendicular to the radius drawn to the point of contact, its slope is the negative reciprocal
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of the slope of the radius. The radius joining (0,0) to (7,24) has slope 24/7. Hence, the tangent line has

slope —7/24. In general, a radius to the point (x, /625 — x2) has slope \/ 625 — x2/x, so the slope of the
tangent line is —x/+/ 625 —x2, as before. It is NOT always true that a tangent line is perpendicular to a
line from the origin—don’t use this shortcut in any other circumstance.

As above, and as you might expect, for different values of x we generally get different values of the
derivative f’(x). Could it be that the derivative always has the same value? This would mean that the slope
of f, or the slope of its tangent line, is the same everywhere. One curve that always has the same slope is
a line; it seems odd to talk about the tangent line to a line, but if it makes sense at all the tangent line must
be the line itself. It is not hard to see that the derivative of f(x) = mx+b is f'(x) = m.

Velocity

We started this section by saying, “It is often useful to know how sensitive the value of y is to small changes
in x> We have seen one purely mathematical example of this, involving the function f(x) = v/625 —x2.
Here is a more applied example.

With careful measurement it might be possible to discover that the height of a dropped ball ¢ seconds
after it is released is h(t) = hy — kt>. (Here hy is the initial height of the ball, when r = 0, and k is some
number determined by the experiment.) A natural question is then, “How fast is the ball going at time
t?” We can certainly get a pretty good idea with a little simple arithmetic. To make the calculation more
concrete, let’s use units of meters and seconds and say that 4o = 100 meters and k = 4.9. Suppose we’re
interested in the speed at ¢+ = 2. We know that when ¢ = 2 the height is 100 —4 -4.9 = 80.4 meters. A
second later, at = 3, the height is 100 —9-4.9 = 55.9 meters. The change in height during that second is
55.9 — 80.4 = —24.5 meters. The negative sign means the height has decreased, as we expect for a falling
ball, and the number 24.5 is the average speed of the ball during the time interval, in meters per second.

We might guess that 24.5 meters per second is not a terrible estimate of the speed at t = 2, but certainly
we can do better. At 7 = 2.5 the height is 100 —4.9(2.5)? = 69.375 meters. During the half second from
t =2 tot = 2.5, the change in height is 69.375 — 80.4 = —11.025 meters giving an average speed of
11.025/(1/2) = 22.05 meters per second. This should be a better estimate of the speed at r = 2. So it’s
clear now how to get better and better approximations: compute average speeds over shorter and shorter
time intervals. Between ¢ = 2 and ¢ = 2.01, for example, the ball drops 0.19649 meters in one hundredth
of a second, at an average speed of 19.649 meters per second.

We still might reasonably ask for the precise speed at t = 2 (the instantaneous speed) rather than just
an approximation to it. For this, once again, we need a limit. Let’s calculate the average speed during the
time interval from ¢t = 2 to t = 2 + At without specifying a particular value for A¢. The change in height
during the time interval fromt =2tot =2+ At is

h(24 At) —h(2) = (100 — 4.9(2 + Ar)?) — 80.4
= 100 —4.9(4 +4At +Ar*) — 80.4
=100—19.6 — 19.6Ar — 4.9Ar> — 80.4

= —19.6At — 4.9A12
= —Ar(19.6+4.9Ar)

The average speed during this time interval is then

At(19.64+4.9Ar)

=19.6 +4.9A:¢.
At +
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When At is very small, this is very close to 19.6. Indeed, lima,—0(19.6 +4.9A¢) = 19.6. So the exact
speed at f = 2 is 19.6 meters per second.

At this stage we need to make a distinction between speed and velocity. Velocity is signed speed, that
is, speed with a direction indicated by a sign (positive or negative). Our algebra above actually told us that
the instantaneous velocity of the ball at r = 2 is —19.6 meters per second. The number 19.6 is the speed
and the negative sign indicates that the motion is directed downwards (the direction of decreasing height).

In the language of the previous section, we might have started with f(x) = 100 — 4.9x% and asked for
the slope of the tangent line at x = 2. We would have answered that question by computing

2 —f(2 —19.6Ax — 4.9Ax?
lim LGFA=SQ) _ ZIOOAN—AOAY g 4 oav— 196
Ax—0 Ax Ax—0 Ax

The algebra is the same. Thus, the velocity of the ball is the value of the derivative of a certain function,
namely, of the function that gives the position of the ball.

The upshot is that this problem, finding the velocity of the ball, is exactly the same problem mathemat-
ically as finding the slope of a curve. This may already be enough evidence to convince you that whenever
some quantity is changing (the height of a curve or the height of a ball or the size of the economy or
the distance of a space probe from earth or the population of the world) the rate at which the quantity is
changing can, in principle, be computed in exactly the same way, by finding a derivative.

Exercises for Section 4.1

Exercise 4.1.1 Draw the graph of the function y = f(x) = \/ 169 — x? between x = 0 and x = 13. Find
the slope Ay/Ax of the chord between the points of the circle lying over (a) x =12 and x = 13, (b) x = 12
andx=12.1, (c) x =12 and x = 12.01, (d) x = 12 and x = 12.001. Now use the geometry of tangent lines
on a circle to find (e) the exact value of the derivative f'(12). Your answers to (a)—(d) should be getting
closer and closer to your answer to (e).

Exercise 4.1.2 Use geometry to find the derivative f'(x) of the function f(x) = \/ 625 — x? in the text for
each of the following x: (a) 20, (b) 24, (c) —7, (d) —15. Draw a graph of the upper semicircle, and draw
the tangent line at each of these four points.

Exercise 4.1.3 Draw the graph of the function y = f(x) = 1/x between x = 1/2 and x = 4. Find the
slope of the chord between (a) x =3 and x = 3.1, (b) x =3 and x = 3.01, (c) x = 3 and x = 3.001. Now
use algebra to find a simple formula for the slope of the chord between (3, f(3)) and (3 + Ax, f(3 + Ax)).
Determine what happens when Ax approaches 0. In your graph of y = 1/x, draw the straight line through
the point (3,1/3) whose slope is this limiting value of the difference quotient as Ax approaches 0.

Exercise 4.1.4 Find an algebraic expression for the difference quotient ( f(l+Ax)—f (1)) /Ax when

f(x) = x> — (1/x). Simplify the expression as much as possible. Then determine what happens as Ax
approaches 0. That value is f'(1).

Exercise 4.1.5 Draw the graph of y = f(x) = x> between x = 0 and x = 1.5. Find the slope of the
chord between (a) x =1 and x=1.1, (b) x =1 and x = 1.001, (¢) x = 1 and x = 1.00001. Then use
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algebra to find a simple formula for the slope of the chord between 1 and 1+ Ax. (Use the expansion
(A -|—B)3 — A’ + 3AB+3AB? + B>.) Determine what happens as Ax approaches 0, and in your graph of
y= x> draw the straight line through the point (1,1) whose slope is equal to the value you just found.

Exercise 4.1.6 Find an algebraic expression for the difference quotient (f(x+Ax) — f(x))/Ax when f(x) =
mx + b. Simplify the expression as much as possible. Then determine what happens as Ax approaches O.
That value is f'(x).

Exercise 4.1.7 Sketch the unit circle. Discuss the behavior of the slope of the tangent line at various
angles around the circle. Which trigonometric function gives the slope of the tangent line at an angle 0?
Why? Hint: think in terms of ratios of sides of triangles.

Exercise 4.1.8 Sketch the parabola y = x*. For what values of x on the parabola is the slope of the tangent
line positive? Negative? What do you notice about the graph at the point(s) where the sign of the slope
changes from positive to negative and vice versa?

Exercise 4.1.9 An object is traveling in a straight line so that its position (that is, distance from some
fixed point) is given by this table:

time(seconds) (0| 1 | 2 | 3
distance (meters) | O | 10 | 25 | 60

Find the average speed of the object during the following time intervals: [0,1], [0,2], [0,3], [1,2], [1,3],
[2,3]. If you had to guess the speed att =2 just on the basis of these, what would you guess?

Exercise 4.1.10 Let y = f(t) = 1%, where t is the time in seconds and y is the distance in meters that an
object falls on a certain airless planet. Draw a graph of this function between t = 0 and t = 3. Make a
table of the average speed of the falling object between (a) 2 sec and 3 sec, (b) 2 sec and 2.1 sec, (c) 2
sec and 2.01 sec, (d) 2 sec and 2.001 sec. Then use algebra to find a simple formula for the average speed
between time 2 and time 2+ At. (If you substitute At =1, 0.1, 0.01, 0.001 in this formula you should again
get the answers to parts (a)—(d).) Next, in your formula for average speed (which should be in simplified
form) determine what happens as At approaches zero. This is the instantaneous speed. Finally, in your
graph of y = 1% draw the straight line through the point (2,4) whose slope is the instantaneous velocity
you just computed; it should of course be the tangent line.

Exercise 4.1.11 If an object is dropped from an 80-meter high window, its height y above the ground at
time t seconds is given by the formula y = f(t) = 80 — 4.9¢t%. (Here we are neglecting air resistance; the
graph of this function was shown in figure 1.1.) Find the average velocity of the falling object between (a)
1 secand 1.1 sec, (b) 1 sec and 1.01 sec, (c) I sec and 1.001 sec. Now use algebra to find a simple formula
for the average velocity of the falling object between 1 sec and 1 + At sec. Determine what happens to
this average velocity as At approaches 0. That is the instantaneous velocity at time t = 1 second (it will
be negative, because the object is falling).
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4.2 The Derivative Function

In Section 4.1, we have seen how to create, or derive, a new function f’(x) from a function f(x), and
that this new function carries important information. In one example we saw that f’(x) tells us how steep
the graph of f(x) is; in another we saw that f/(x) tells us the velocity of an object if f(x) tells us the
position of the object at time x. As we said earlier, this same mathematical idea is useful whenever f(x)
represents some changing quantity and we want to know something about how it changes, or roughly, the
“rate” at which it changes. Most functions encountered in practice are built up from a small collection of
“primitive” functions in a few simple ways, for example, by adding or multiplying functions together to
get new, more complicated functions. To make good use of the information provided by f’(x) we need to
be able to compute it for a variety of such functions.

We will begin to use different notations for the derivative of a function. While initially confusing, each
is often useful so it is worth maintaining multiple versions of the same thing.

Consider again the function f(x) = 1/ 625 — x2. We have computed the derivative f'(x) = —x/v/625 — x2,
and have already noted that if we use the alternate notation y = /625 —x? then we mlght write y/ =

—x// 625 —x2. Another notation is quite different, and in time it will become clear why it is often a
useful one. Recall that to compute the the derivative of f we computed

\/625 (7+Ax)2—24
Ax—>0 Ax '

The denominator here measures a distance in the x direction, sometimes called the “run”, and the numer-
ator measures a distance in the y direction, sometimes called the “rise,” and “rise over run” is the slope of
a line. Recall that sometimes such a numerator is abbreviated Ay, exchanging brevity for a more detailed
expression. So in general, we define a derivative by the following equation.

The derivative of y = f(x) with respect to x is

A
y = lim =
Ax—0 Ax

You may also see h in place of Ax in the definition of derivative:

1oy _ e JEER) = F (1)
f(x)=1lim 7 .

h—0

To recall the form of the limit, we sometimes say instead that
dy I Ay
— = lim —.
dx A—0Ax
In other words, dy/dx is another notation for the derivative, and it reminds us that it is related to an actual

slope between two points. This notation is called Leibniz notation, after Gottfried Leibniz, who developed
the fundamentals of calculus independently, at about the same time that Isaac Newton did. Again, since
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we often use f and f(x) to mean the original function, we sometimes use df/dx and df(x)/dx to refer to
the derivative. If the function f(x) is written out in full we often write the last of these something like this

fl(x)= i\/ 625 — x?

dx

with the function written to the side, instead of trying to fit it into the numerator.

Example 4.3: Derivative of y = 1

Find the derivative of y = f(t) = 1.

Solution. We compute

PP UA AR 2
= lim
At—0 At
_ 2tAr+ Af?
m -

= I
Ar—0 At

= lim 2+ Ar = 2t.
At—0
&

Remember that Ar is a single quantity, not a “A” times a “¢”, and so Ar? is (Ar)? not A(z?). Doing
the same example using the second formula for the derivative with £ in place of Ar gives the following.
Note that we compute f(z + &) by substituting 7 4 & in place of ¢ everywhere we see ¢ in the expression
f(t), while making no other changes (at least initially). For example, if f(¢) =+ /(1 +3)%—¢ then

fe+h)=(t+h)+/((t+h)+3)2—(t+h)=t+h++/(t+h+3)2—t—h

Example 4.4: Derivative of y = 1

Find the derivative of y = f(t) = *.
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Solution. We compute

fe+h)—f@)

") = i
1) lim Y
2 2
— 1imw
h—0

124+ 2th+ h? — 2

= 1
hl—% h
. 2th+h?
= lim
h—0 h
= lim2t+h=2t.
h—0

Example 4.5: Derivative

Find the derivative of y = f(x) = 1 /x.

Solution. The computation:

X x+Ax

m x(x+Ax)  x(x+Ax)

lim X~ Ax
1 -
Ax—0 x(x + Ax)Ax
) —Ax
lim ———
Ax—0 x(x + Ax)Ax
lim -1 -1
im —=—-
A—0x(x+Ax)  x?

&

Note: If you happen to know some “derivative formulas” from an earlier course, for the time being
you should pretend that you do not know them. In examples like the ones above and the exercises below,
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you are required to know how to find the derivative formula starting from basic principles. We will later
develop some formulas so that we do not always need to do such computations, but we will continue to
need to know how to do the more involved computations.

To recap, given any function f and any number x in the domain of f, we define f(x) =lim;,_, w

wherever this limit exists, and we call the number f’(x) the derivative of f at x. Geometrically, f’(x) is the
slope of the tangent line to the graph of f at the point (x, f(x)). The following symbols also represent the

derivative: 4 if  d
/ —/ = —y = — = —
Fw =y =2 =" =2 ).
The symbol d/dx is called a differential operator which means to take the derivative of the function f(x)
with respect to the variable x.

In the next example we emphasize the geometrical interpretation of the derivative.

Example 4.6: Geometrical Interpretation of Derivative

Consider the function f(x) given by the graph below. Verify that the graph of f’(x) is indeed the
derivative of f(x) by analyzing slopes of tangent lines to the graph at different points.

| f(x)

y

£')

Solution. We must think about the tangent lines to the graph of f, because the slopes of these lines are the
values of f'(x).

We start by checking the graph of f for horizontal tangent lines, since horizontal lines have a slope of 0.
We find that the tangent line is horizontal at the points where x has the values -1.9 and 1.8 (approximately).
At each of these values of x, we must have f’(x) = 0, which means that the graph of f” has an x-intercept
(a point where the graph intersects the x-axis).

Note that horizontal tangent lines have a slope of zero and these occur approximately at the points
(—1.9,—3.2) and (1.8,3.2) of the graph. Therefore f’(x) will cross the x-axis when x = —1.9 and x = 1.8.

Analyzing the slope of the tangent line of f(x) at x = 0 gives approximately 3.0, thus, f'(0) = 3.0.
Similarly, analyzing the slope of the tangent lines of f(x) at x =1 and x = —1 give approximately 2.0 for
both, thus, f/(1) = f/(—1) = 2.0. &

In the next example we verify that the slope of a straight line is m.
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Example 4.7: Derivative of a Linear Function

Let m,b be any two real numbers. Determine f(x) if f(x) = mx+b.

Solution. By the definition of derivative (using 4 in place of Ax) we have,

v SOt = fx) . (m(x+h)+b) — (mx+Db)
Fx) = lim h = Jim h

. mh
=lim — = limm = m.
h—0 h  h—0

This is not surprising. We know that f’(x) always represents the slope of a tangent line to the graph of
f- In this example, since the graph of f is a straight line y = mx + b already, every tangent line is the same
line y = mx + b. Since this line has a slope of m, we must have f'(x) = m. s

4.2.1 Differentiable

Now that we have introduced the derivative of a function at a point, we can begin to use the adjective
differentiable.

Definition 4.8: Differentiable at a Point

A function f is differentiable at point a if f'(a) exists.

Definition 4.9: Differentiable on an Interval

A function f is differentiable on an open interval if it is differentiable at every point in the interval.

Sometimes one encounters a point in the domain of a function y = f(x) where there is no derivative,
because there is no tangent line. In order for the notion of the tangent line at a point to make sense, the
curve must be “smooth” at that point. This means that if you imagine a particle traveling at some steady
speed along the curve, then the particle does not experience an abrupt change of direction. There are
two types of situations you should be aware of—corners and cusps—where there’s a sudden change of
direction and hence no derivative.

Example 4.10: Derivative of the Absolute Value

Discuss the derivative of the absolute value functiony = f(x) = |x|.

Solution. If x is positive, then this is the function y = x, whose derivative is the constant 1. (Recall that
when y = f(x) = mx + b, the derivative is the slope m.) If x is negative, then we’re dealing with the
function y = —x, whose derivative is the constant —1. If x = 0, then the function has a corner, i.e., there
is no tangent line. A tangent line would have to point in the direction of the curve—but there are two
directions of the curve that come together at the origin.



126 m Derivatives

fGo=1x|

We can summarize this as
1, ifx>0,
/

y = -1, ifx<O,
undefined, ifx=0.

In particular, the absolute value function f(x) = |x| is not differentiable at x = 0. &

We note that the following theorem can be proved using limits.

Theorem 4.11: Differentiable implies Continuity

If f is differentiable at a, then f is continuous at a.

Proof. Suppose that f is differentiable at a. That is,

flath)—f(a)
h

f'(a) = lim

h—0

exists. At this stage, we find it convenient to write this limit in an alternative form so that its connection
with continuity can become more easily seen. If we let x = a + h, then h = x — a. Furthermore, 7 — 0 is

equivalent to x — a. So,
/ - f(x)—f(a)
=lim————=,
fi(a) = lim =———
(This alternative formulation of the derivative is also standard. We will use it whenever we find it conve-
nient to do so. You should get familiar with it.) Continuity at a can now be proved as follows:

) =t (F oy o)
_ ;EW.;E(JC—CI)—F)%EJC(“)
= f'(a)-(a—a)+f(a)
= f(a).

&

However, if f is continuous at a it is not necessarily true that f is differentiable at a. For example, it
was shown that f(x) = |x| is not differentiable at x = 0 in the previous example, however, one can observe
that f(x) = |x| is continuous everywhere.
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2/3

Example 4.12: Derivative of y = x

Discuss the derivative of the functiony = x*/3, shown in Figure 4.2.

Solution. We will later see how to compute this derivative; for now we use the fact that y = (2/3)x~ /3.
Visually this looks much like the absolute value function, but it technically has a cusp, not a corner. The
absolute value function has no tangent line at 0 because there are (at least) two obvious contenders—the
tangent line of the left side of the curve and the tangent line of the right side. The function y = x>/ does
not have a tangent line at 0, but unlike the absolute value function it can be said to have a single direction:
as we approach 0 from either side the tangent line becomes closer and closer to a vertical line; the curve
is vertical at 0. But as before, if you imagine traveling along the curve, an abrupt change in direction is
required at O: a full 180 degree turn. L)

fa
I I Y I I

-2 —1 0 1 2

Figure 4.2: A cusp on 23,

In practice we won’t worry much about the distinction between these examples; in both cases the
function has a “sharp point” where there is no tangent line and no derivative.

4.2.2 Second and Other Derivatives

If f is a differentiable function then its derivative f’ is also a function and so we can take the derivative of
f’. The new function, denoted by f”, is called the second derivative of f, since it is the derivative of the
derivative of f.

The following symbols represent the second derivative:

d’>y d [dy
7 ¢y <« (%Y
fix)=y"= dx* dx (dx) '

We can continue this process to get the third derivative of f.

In general, the nth derivative of f is denoted by £ and is obtained from f by differentiating n times.
If y = f(x), then we write:
_dYy
dx
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4.2.3 Velocities

Suppose f(t) is a position function of an object, representing the displacement of the object from the
origin at time 7. In terms of derivatives, the velocity of an object is:

The change of velocity with respect to time is called the acceleration and can be found as follows:

a(t) =v'(t)=f"(1).

Acceleration is the derivative of the velocity function and the second derivative of the position function.

Example 4.13: Position, Velocity and Acceleration

Suppose the position function of an object is f(t) = t*> metres at t seconds. Find the velocity and
acceleration of the object at time t = 1s.

Solution. By the definition of velocity and acceleration we need to compute f’(z) and f”(¢). Using the
definition of derivative, we have,

. (t+h)? =t 2th+hW*
") =1 (7:1 =1 2t +h) = 2t.
fe) = lim =—— fim = — = lim (21 + h)

Therefore, v(z) = f'(t) = 2¢t. Thus, the velocity at time r = 1 is v(1) =2 m/s. We now have that the
acceleration at time ¢ is:

_ 2(t+h)—2t 2
t)=f"(t) = lim——— =lim— =2
alt) = 170) ) h ns0 h
Therefore, a(t) = 2. Substituting # = 1 into the function a(z) gives a(1) =2 m/s>. &

Exercises for Section 4.2

Exercise 4.2.1 Find the derivatives of the following functions.

(@) y=f(x) = V169 -2

(b) y= f(t) = 80—4.9¢>

(¢) y=fx) =x"—(1/x)

(d) y = f(x) = ax* + bx+c, where a, b, and c are constants.
(e) y=f(x)=x

() y=rflx)=2/V2x+1

(g) y=2g(t)=(2r—1)/(1+2)
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Exercise 4.2.2 Shown is the graph of a function f(x). Sketch the graph of f'(x) by estimating the deriva-
tive at a number of points in the interval: estimate the derivative at regular intervals from one end of the
interval to the other, and also at “special” points, as when the derivative is zero. Make sure you indicate
any places where the derivative does not exist.

1.6

1.4

1.2
1.0 /

0.8

0.6

0.4

0.2

-1.0-0.8-0.6-04-0.2 0.0 02 04 0.6 0.8 1.0

Exercise 4.2.3 Shown is the graph of a function f(x). Sketch the graph of f'(x) by estimating the deriva-
tive at a number of points in the interval: estimate the derivative at regular intervals from one end of the
interval to the other, and also at “special” points, as when the derivative is zero. Make sure you indicate
any places where the derivative does not exist.

4

Exercise 4.2.4 Find an equation for the tangent line to the graph of f(x) =5—x— 3x% at the point x =2
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Exercise 4.2.5 Find a value for a so that the graph of f(x) = x> +ax — 3 has a horizontal tangent line at
x=4.

4.3 Derivative Rules

Using the definition of the derivative of a function is quite tedious. In this section we introduce a number
of different shortcuts that can be used to compute the derivative. Recall that the definition of derivative is:

Given any number x for which the limit

: +h)— f(x)
f(x) = lim .
exists, we assign to x the number f”(x).

Next, we give some basic derivative rules for finding derivatives without having to use the limit defi-
nition directly.

Theorem 4.14: Derivative of a Constant Function

d
Let ¢ be a constant, then d—(c) =0.
x

Proof. Let f(x) = c be a constant function. By the definition of derivative:

vy SR —fx) . c—c B
00 = i P < < o <o

Example 4.15: Derivative of a Constant Function

The derivative of f(x) = 17 is f'(x) = 0 since the derivative of a constant is 0.

Theorem 4.16: The Power Rule

d
If n is a positive integer, then d—(x") =nx"" 1,
X

Proof. We use the formula:
XM—d"=(x—a) X" X" a4 Hxd" P +ad

which can be verified by multiplying out the right side. Let f(x) = x" be a power function for some
positive integer n. Then at any number a we have:
f(x)—f(a) x'—a"

f'(a) = lim = lim = lim(" " 2a4 - xd" 4 a ) =na" L
x—a XxX—a x—a X—d x—a
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&

It turns out that the Power Rule holds for any real number n (though it is a bit more difficult to prove).

Theorem 4.17: The Power Rule (General)

d
If n is any real number, then o (x") =nx" L.
x

Example 4.18: Derivative of a Power Function

By the power rule, the derivative of g(x) = x* is g’(x) = 4x°>.

Theorem 4.19: The Constant Multiple Rule

If c is a constant and f is a differentiable tunction, then

fefW] = f ()
Proof. For convenience let g(x) = cf(x). Then:
¢(r) = }llg(l) g(x+h2l—g(x) _ }lllg(l) cf(x—i—h})l —cf(x)
~ lime [f(x+h2 - f(x)] ~clim f(x+h2 —f) _ o),
where ¢ can be moved in front of the limit by the Limit Rules. &

Example 4.20: Derivative of a Multiple of a Function

By the constant multiple rule and the previous example, the derivative of F (x) =2 - (17 +x%) is

F'(x) =2(4x) = 8x°.

Theorem 4.21: The Sum/Difference Rule

If f and g are both differentiable functions, then

1) £ 400)] = - (0) £ g,
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Proof. For convenience let r(x) = f(x) £ g(x). Then:

Y) = lim r(x+h) —r(x)

h—0 h

o Gk gt )] — [F(x) £ ()
h—0 h

i [FEED () | gl h) ()
h—0 h

o Stk —f(x) . glxt+h) —g(x)

= hm n + lim h

= S0 +8x

Example 4.22: Derivative of a Sum/Difference of Functions

By the sum/difference rule, the derivative of h(x) = 17 4 x* is

B (x) = f'(x)+ g (x) = 04+4x> = 4x°.

Theorem 4.23: The Product Rule
If f and g are both differentiable functions, then

dx

Proof. For convenience let r(x) = f(x) - g(x). As in the previous proof, we want to separate the functions
f and g. The trick is to add and subtract f(x+ h)g(x) in the numerator. Then:

fath)gx+h) —fx+h)g(x) +f(x+h)gx) — f(x)g(x)

Gl h
= lim f(x+h)g(x+h})l_g(x)+g(x)f(x+h})l—f(x)
= lim f(x+h)-lim g<X+hIz—g<x) +lim (3 lim f(x+h})l ~ f)
= f0g(x)+gx)f(x)
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Example 4.24: Derivative of a Product of Functions

Find the derivative of h(x) = (3x—1)(2x+3).

Solution. One way to do this question is to expand the expression. Alternatively, we use the product rule
with f(x) = 3x— 1 and g(x) = 2x+ 3. Note that f'(x) = 3 and g’(x) = 2, so,

W(x)=3) (2x+3)+Bx—1)-(2)=6x+9+6x—2=12x+7.

Theorem 4.25: The Quotient Rule

If f and g are both differentiable functions, then

Proof. The proof is similar to the previous proof but the trick is to add and subtract the term f(x)g(x) in
the numerator. We omit the details. &

Example 4.26: Derivative of a Quotient of Functions

3x—1
Find the derivative of h(x) = 2x ey
x

Solution. By the quotient rule (using f(x) = 3x — 1 and g(x) = 2x+ 3) we have:

j—x(3x— 1)-(2x+3)— (3x— 1)-%(2x+3)
(2x+3)?

3(2x4+3) - (Bx—1)(2) 11

(2x+3)? (2x+3)%

W(x)=

Example 4.27: Second Derivative

Find the second derivative of f(x) = 5x> 4 3x?.

Solution. We must differentiate f(x) twice:
f'(x) = 15x* 4 6x,
f"(x) = 30x+6.
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Exercises for Section 4.3

Exercise 4.3.1 Find the derivatives of the following functions.

(a) x'% ) x°7 (k) (x4+1)(x>+2x—3)"!
(b) x~ 1% (g) Sx°+12:2—15 () 23(x* = 5x+10)

(c) % (h) —4x> +3x> —5/x° (m) (x> +5x—3)(x")

(d) x* (i) 5(=3x* +5x+1) (n) (xX*+5x—3)(x)
(e) x>/ () (x+1)(x*4+2x—3) (0) (58 +12x* —15)7!

Exercise 4.3.2 Find an equation for the tangent line to f(x) = x> /4 —1/x at x = —2.
Exercise 4.3.3 Find an equation for the tangent line to f(x) = 3x* — > at x = 4.

Exercise 4.3.4 Suppose the position of an object at time t is given by f(t) = —49¢> /10 +5¢ + 10. Find a
function giving the speed of the object at time t. The acceleration of an object is the rate at which its speed
is changing, which means it is given by the derivative of the speed function. Find the acceleration of the
object at time t.

Exercise 4.3.5 Let f(x) = x° and ¢ = 3. Sketch the graphs of f, cf, f', and (cf)' on the same diagram.

n
Exercise 4.3.6 The general polynomial P of degree n in the variable x has the form P(x) = Z Xk =
k=0

ag+aix+ ...+ a,x". What is the derivative (with respect to x) of P?

Exercise 4.3.7 Find a cubic polynomial whose graph has horizontal tangents at (—2,5) and (2,3).

d
Exercise 4.3.8 Prove that d—(c f(x)) = cf'(x) using the definition of the derivative.
x

Exercise 4.3.9 Suppose that f and g are differentiable at x. Show that f — g is differentiable at x using
the two linearity properties from this section.

Exercise 4.3.10 Use the product rule to compute the derivative of f(x) = (2x — 3)2. Sketch the function.
Find an equation of the tangent line to the curve at x = 2. Sketch the tangent line at x = 2.

Exercise 4.3.11 Suppose that f, g, and h are differentiable functions. Show that (fgh)'(x) = f'(x)g(x)h(x)+
f(x)g' (X)h(x) + f(x)g(x)h'(x).

X3

Exercise 4.3.12 Compute the derivative of ot 10
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2 4+5x—3
—6x3+3x2—Tx+1"

Exercise 4.3.13 Compute the derivative of —
X

Exercise 4.3.14 Compute the derivative of

X
Vx—625
Vx—35

Exercise 4.3.15 Compute the derivative of —5—
X

Exercise 4.3.16 Find an equation for the tangent line to f(x) = (x> —4) /(5 —x) at x = 3.

Exercise 4.3.17 Find an equation for the tangent line to f(x) = (x—2) /(x> +4x—1) arx = 1.

Exercise 4318 1/ f(4) =5, §/(4) = 12, (£2)(4) = f(4)2(4) =2 and g(4) = 6, compute f(4) and 5L

at 4.

4.4 Derivative Rules for Trigonometric Functions

We next look at the derivative of the sine function. In order to prove the derivative formula for sine, we

recall two limit computations from earlier:
sinx . cosx—1

Iim— =1 and im =0,
x—0 X x—0 X

and the double angle formula

sin (A + B) = sinA cos B+ sinBcosA.

Theorem 4.28: Derivative of Sine Function

(sinx) = cosx

Proof. Let f(x) = sinx. Using the definition of derivative we have:

fx+h) - f(x)

/ — 1
f(x) lim .
— lim sin(x+ h) — sinx
h—0 h

. sinxcosh+cosxsinh — sinx
= lim
h—0 h

. . cosh—1 . . sinh
= limsinx-lim —— + limcosx- lim ——
h—0 h—0 h h—0 =0 h

= sinx-0-+cosx-1

= COSXx
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since .
im 3™ — 1 and 1im S,
x—=0 X x—0 X
&
A formula for the derivative of the cosine function can be found in a similar fashion:
d )
E(cosx) = —sinx.

Using the quotient rule we get formulas for the remaining trigonometric ratios. To summarize, here
are the derivatives of the six trigonometric functions:

d . d d
I (sin(x)) = cos(x) T (tan(x)) = sec?(x) T (csc(x)) = —csc(x)cot(x)
% (cos(x)) = —sin(x) % (cot(x)) = —csc?(x) % (sec(x)) = sec(x)tan(x)

Example 4.29: Derivative of Product of Trigonometric Functions

Find the derivative of f(x) = sinxtanx.

Solution. Using the Product Rule we obtain

f'(x) = cosxtanx + sinxsec?x.

Exercises for Section 4.4

Exercise 4.4.1 Find the derivatives of the following functions.

(a) sinxcosx (b) cotx (c) cscx—xtanx

Exercise 4.4.2 Find the points on the curve y = x + 2 cosx that have a horizontal tangent line.

4.5 The Chain Rule

Let h(x) = V625 —x%. The rules stated previously do not allow us to find /'(x). However, h(x) is a
composition of two functions. Let f(x) = \/x and g(x) = 625 —x. Then we see that

h(x) = (fog)(x).
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From our rules we know that f(x) = %x‘l/ 2 and g'(x) = —2x, thus it would be convenient to have a rule

which allows us to differentiate f o g in terms of f’ and g’. This gives rise to the chain rule.

The Chain Rule

If g is differentiable at x and f is differentiable at g(x), then the composite function 2 = f o g [recall
fogis defined as f(g(x))] is differentiable at x and /'(x) is given by:

W (x) = f'(3(x) &' (x).

The chain rule has a particularly simple expression if we use the Leibniz notation for the derivative.
The quantity f’(g(x)) is the derivative of f with x replaced by g; this can be written df/dg. As usual,
g'(x) = dg/dx. Then the chain rule becomes

df dfdg

dx  dgdx’

This looks like trivial arithmetic, but it is not: dg/dx is not a fraction, that is, not literal division, but a
single symbol that means g’(x). Nevertheless, it turns out that what looks like trivial arithmetic, and is
therefore easy to remember, is really true.

It will take a bit of practice to make the use of the chain rule come naturally—it is more complicated
than the earlier differentiation rules we have seen.

Example 4.30: Chain Rule

Compute the derivative of \/ 625 — x2.

Solution. We already know that the answer is —x/v/ 625 — x2, computed directly from the limit. In the
context of the chain rule, we have f(x) = v/x, g(x) = 625 — x*>. We know that f'(x) = (1/2)x" /2, so
F(g(x)) = (1/2)(625 —x*)~'/2. Note that this is a two step computation: first compute f’(x), then replace
x by g(x). Since g’(x) = —2x we have

/ ! _; _2%) = —X

Example 4.31: Chain Rule

Compute the derivative of 1/+/625 — x2.

Solution. This is a quotient with a constant numerator, so we could use the quotient rule, but it is simpler
to use the chain rule. The function is (625 —x*) /2, the composition of £(x) =x~'/? and g(x) = 625 — x°.
We compute f(x) = (—1/2)x /2 using the power rule, and then

f'(8(x))8'(x) =

_—1(_2x) - r
2(625 — x2)3/2 (625 —x2)3/2°
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&

In practice, of course, you will need to use more than one of the rules we have developed to compute
the derivative of a complicated function.

Example 4.32: Derivative of Quotient

Compute the derivative of

Solution. The “last” operation here is division, so to get started we need to use the quotient rule first. This
gives
(= 1)xvVa2+1— (2= 1)(xv/x2+1)
X2 (x2+1)
202V +1— (% = 1) (xV/x2+ 1)
x2(x2+1) '

fllx) =

Now we need to compute the derivative of x\/x2 -+ 1. This is a product, so we use the product rule:

ix\/xz—i—l :x%\/xz—i—l—i—\/xz—i—l.

dx

Finally, we use the chain rule:

d d 1 X

- 2 1:_ 2 11/2:_ 2 1—1/22 S

e + dx(x +1) 2(x +1)" /4 (2x) =
And putting it all together:

£ 2x6°Vx2 4+ 1 — (2% — 1) (xv/x2 4+ 1)
x) = .
X2 (x2+1)
262V +1— (2 —1 (x ol + x2—|—1>
i (2= 1) (v g+
x2(x2+1) '

This can be simplified of course, but we have done all the calculus, so that only algebra is left. &

Example 4.33: Chain of Composition

Compute the derivative of \/ 1+ 1/1+/x.

Solution. Here we have a more complicated chain of compositions, so we use the chain rule twice. At

the outermost “layer” we have the function g(x) = 1+ 1/ 1+ /x plugged into f(x) = v/x, so applying the
chain rule once gives

D= (e a) T (i),
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Now we need the derivative of 1/ 1+ 1/x. Using the chain rule again:

d

_ 1+ﬁ:

121 _
- (1—1—\/}) / o 1/2

1
2

So the original derivative is

d | 1 “1/2 pl g
S\ IHVE = §<1+‘/1+ﬁ> 5 (V) e,

1
8vxX\/1+vx\/1++/1+/x

&

Using the chain rule, the power rule, and the product rule, it is possible to avoid using the quotient rule
entirely.

Example 4.34: Derivative of Quotient without Quotient Rule

Compute the derivative of f(x) =

Solution. Write f(x) = x>(x*41)!, then

d
flix) = xz'a(x2 + 1) 322+ 1)t

= =D+ 72(20) +33 (P +1) 7!
= 2P+ D) 2433+ 1)
—2x* n 3x?

(x2+1)2  x2+1

—2x* N 3x?(x2+1)
VR,
— 20t 43 + 32 B Xt 4342

@ @y

Note that we already had the derivative on the second line; all the rest is simplification. It is easier to get
to this answer by using the quotient rule, so there’s a trade off: more work for fewer memorized formulas.

&
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Exercises for Section 4.5

Find the derivatives of the functions. For extra practice, and to check your answers, do some of these in
more than one way if possible.

Exercise 4.5.1 x* —3x° + (1/2)x* +7x—n
Exercise 4.5.2 x> — 2x> +4./x

Exercise 4.5.3 (x> +1)3

Exercise 4.5.4 x\/1697—x2

Exercise 4.5.5 (x> —4x+5) V25— x2
Exercise 4.5.6 m r is a constant.

Exercise 4.5.7 /1 +x*

Exercise 4.5.8 #
5=
Exercise 4.5.9 (14 3x)?
2
Exercise 4.5.10 w
(1—x)
NG Y-
Exercise 4.5.11 &
X
169
Exercise 4.5.12 ——x
X

Exercise 4.5.13 |/x3 —x2 —(1/x)

Exercise 4.5.14 100/(100 —x?)3/?

Exercise 4.5.15 /x +x3

Exercise 4.5.16 \/(x2 +1)24+4/1+ (x2+1)2

Exercise 4.5.17 (x+8)°

Exercise 4.5.18 (4 —x)*



Exercise 4.5.19 (x> +5)°
Exercise 4.5.20 (6 —2x%)3
Exercise 4.5.21 (1 —4x%)72
Exercise 4.5.22 5(x+1—1/x)

Exercise 4.5.23 4(2x*> —x+3) 72

Exercise 4.5.24 !
14+1/x
Exercise 4.5.25 =3
T 42 x4 1

Exercise 4.5.26 (x> +1)(5—2x)/2

Exercise 4.5.27 (3x>+1)(2x—4)3

x+1
x—1

Exercise 4.5.28

x2—1
x2+1

Exercise 4.5.29

(x—Dx-2)

Exercise 4.5.30
x—3

2l —x2

Exercise 4.5.31 m

Exercise 4.5.32 3(x>+1)(2x> — 1)(2x+3)

Exercise 4.5.33

1
(2x+1)(x—3)
Exercise 4.5.34 ((2x+1)"'4+3)7!

Exercise 4.5.35 (2x+1)°(x*+1)2

Exercise 4.5.36 Find an equation for the tangent line to f(x) = (x—2)"3 /(3 +4x—1)2 arx = 1.

Exercise 4.5.37 Find an equation for the tangent line to y = 9x 2 at (3,1).

4.5. The Chain Rule

Exercise 4.5.38 Find an equation for the tangent line to (x> —4x+5)\/25 —x2 at (3,8).

141
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(x> +x+1)
(1-x)

Exercise 4.5.39 Find an equation for the tangent line to at (2,-7).

Exercise 4.5.40 Find an equation for the tangent line to \/(x2 +1)244/1+ (2 +1)2at (1,\/4+V5).

Exercise 4.5.41 Let y = f(x) and x = g(t). If g(1) =2, f(2) =3, ¢'(1) =4 and f'(2) =5, find the
derivative of fo g at 1.

Exercise 4.5.42 Express the derivative of g(x) = x> f(x*) in terms of f and the derivative of f.

4.6 Derivatives of Exponential & Logarithmic Functions

As with the sine function, we don’t know anything about derivatives that allows us to compute the deriva-
tives of the exponential and logarithmic functions without going back to basics. Let’s do a little work with
the definition again:

dxa Ax—0 Ax

A—0  Ax

There are two interesting things to note here: As in the case of the sine function we are left with a limit
that involves Ax but not x, which means that if Alimo(am — 1) /Ax exists, then it is a constant number. This
_)

means that ¢* has a remarkable property: its derivative is a constant times itself.

We earlier remarked that the hardest limit we would compute is liII(l) sinx/x = 1; we now have a limit
X—

that is just a bit too hard to include here. In fact the hard part is to see that Alimo(an —1)/Ax even exists—
%

does this fraction really get closer and closer to some fixed value? Yes it does, but we will not prove this
fact.

We can look at some examples. Consider (2° — 1)/x for some small values of x: 1, 0.828427124,
0.756828460, 0.724061864, 0.70838051, 0.70070877 when xis 1, 1/2,1/4,1/8, 1/16, 1 /32, respectively.
It looks like this is settling in around 0.7, which turns out to be true (but the limit is not exactly 0.7).
Consider next (3* —1)/x: 2, 1.464101616, 1.264296052, 1.177621520, 1.13720773, 1.11768854, at the
same values of x. It turns out to be true that in the limit this is about 1.1. Two examples don’t establish a
pattern, but if you do more examples you will find that the limit varies directly with the value of a: bigger
a, bigger limit; smaller a, smaller limit. As we can already see, some of these limits will be less than 1 and
some larger than 1. Somewhere between a = 2 and a = 3 the limit will be exactly 1; the value at which
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this happens is called e, so that
A1

=1.

T
A0 Ax
As you might guess from our two examples, e is closer to 3 than to 2, and in fact e ~ 2.718.

Now we see that the function ¢* has a truly remarkable property:

ex+Ax X

d . e
—¢" = lim ———
dx Ax—0 Ax
et — ¢
= lim
Ax—0 Ax
. eM 1
= lim e
Ax—0 Ax
. M
= ¢ lim
Ax—0  Ax
= e}C

That is, €* is its own derivative, or in other words the slope of ¢* is the same as its height, or the same as its
second coordinate: The function f(x) = ¢* goes through the point (z,e*) and has slope ¢° there, no matter
what z is. It is sometimes convenient to express the function ¢ without an exponent, since complicated

. 2
exponents can be hard to read. In such cases we use exp(x), e.g., exp(1 4 x?) instead of ! ™.

What about the logarithm function? This too is hard, but as the cosine function was easier to do once
the sine was done, so is the logarithm easier to do now that we know the derivative of the exponential
function. Let’s start with log,x, which as you probably know is often abbreviated Inx and called the
“natural logarithm” function.

Consider the relationship between the two functions, namely, that they are inverses, that one “undoes”
the other. Graphically this means that they have the same graph except that one is “flipped” or “reflected”
through the line y = x:

-

Figure 4.3: The exponential and logarithmic functions.

This means that the slopes of these two functions are closely related as well: For example, the slope of ¢*
is e at x = 1; at the corresponding point on the In(x) curve, the slope must be 1/e, because the “rise” and
the “run” have been interchanged. Since the slope of ¢" is e at the point (1,¢), the slope of In(x) is 1/e at
the point (e, 1).
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7

Figure 4.4: The exponential and logarithmic functions.

More generally, we know that the slope of ¢* is e° at the point (z,€*), so the slope of In(x) is 1/¢* at
(€%,z). In other words, the slope of Inx is the reciprocal of the first coordinate at any point; this means that
the slope of Inx at (x,Inx) is 1 /x. The upshot is:

d I — 1

pp nx = o
We have discussed this from the point of view of the graphs, which is easy to understand but is not normally
considered a rigorous proof—it is too easy to be led astray by pictures that seem reasonable but that miss
some hard point. It is possible to do this derivation without resorting to pictures, and indeed we will see
an alternate approach soon.

Note that Inx is defined only for x > 0. It is sometimes useful to consider the function In |x|, a function
defined for x # 0. When x < 0, In |x| = In(—x) and

Thus whether x is positive or negative, the derivative is the same.

What about the functions ¢* and log,x? We know that the derivative of a* is some constant times a*
itself, but what constant? Remember that “the logarithm is the exponent” and you will see that a = e,
Then

a = (elna)x — exlna

b

and we can compute the derivative using the chain rule:

d d d
aa)c _ a(elna>)c _ aexlna _ (lna>exlna _ (lna)ax.
The constant is simply Ina. Likewise we can compute the derivative of the logarithm function log,, x.
Since
x=e

we can take the logarithm base a of both sides to get

lnx>

log,(x) =log,(e™") = Inxlog,e.

Then

e log,x = N log,e.
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This is a perfectly good answer, but we can improve it slightly. Since

a = elna
log,(a) = log, (%) =1Inalog,e
1 = Inalog,e
1
m = loga e,
we can replace log, e to get
1

—1 = .
dx %" T Ylna

You may if you wish memorize the formulas.

Derivative Formulas for ' and log, x

d
—a* = (Ina)a* and alogax =

dx xlna’

In

Because the “trick” a = ¢ is often useful, and sometimes essential, it may be better to remember the

trick, not the formula.

Example 4.35: Derivative of Exponential Function

Compute the derivative of f(x) = 2*.

Solution.
Dy 2 d gy
_ ;_x orin2
= <%xln2)e’dn2

= (In2)e*'"? =2"In2

Solution.

d d 22
¢ = S
dx dx
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= (j—xxz In 2) e In2

= (2In2)xe" M2

= (2In2)x2"

Example 4.37: Power Rule

Recall that we have not justified the power rule except when the exponent is a positive or negative
integer.

Solution. We can use the exponential function to take care of other exponents.

d d

s — 2 rinx
dxx dxe
d
= (d—rlnx) e/nx
x
_ SN
= (rx )X
= !
&
Exercises for Section 4.6
Find the derivatives of the functions.
Exercise 4.6.1 3"2 Exercise 4.6.7 x°¢*
Exercise 4.6.2 % Exercise 4.6.8 x+2*
Exercise 4.6.9 (1/ 3)"2
. x\2
Exercise 4.6.3 (¢") Exercise 4.6.10 ¢ /x
Exercise 4.6.4 sin(e") Exercise 4.6.11 In(x’ + 3x)
Exercise 4.6.5 ¢S Exercise 4.6.12 In(cos(x))

Exercise 4.6.6 x*"* Exercise 4.6.13 /In(x2)/x
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Exercise 4.6.14 In(sec(x) + tan(x)) Exercise 4.6.17 In(In(3x))
Exercise 4.6.15 x°*)

) 1 +1n(3x?)
Exercise 4.6.16 xInx Exercise 4.6.18 1+ In(4x)

Exercise 4.6.19 Find the value of a so that the tangent line to 'y = In(x) at x = a is a line through the
origin. Sketch the resulting situation.

Exercise 4.6.20 If f(x) = In(x> +2) compute f'(e'/?).

4.7 Implicit Differentiation

As we have seen, there is a close relationship between the derivatives of ¢* and Inx because these functions
are inverses. Rather than relying on pictures for our understanding, we would like to be able to exploit this
relationship computationally. In fact this technique can help us find derivatives in many situations, not just
when we seek the derivative of an inverse function.

We will begin by illustrating the technique to find what we already know, the derivative of Inx. Let’s
write y = Inx and then x = ¢™¥ = ¢, that is, x = ¢”. We say that this equation defines the function y = Inx
implicitly because while it is not an explicit expression y = ..., it is true that if x = ¢” then y is in fact the
natural logarithm function. Now, for the time being, pretend that all we know of y is that x = ¢”; what can
we say about derivatives? We can take the derivative of both sides of the equation:

d d

—x=—e.

Then using the chain rule on the right hand side:

Then we can solve for y':

There is one little difficulty here. To use the chain rule to compute d/dx(e”) = y'e” we need to know
that the function y has a derivative. All we have shown is that if it has a derivative then that derivative
must be 1/x. When using this method we will always have to assume that the desired derivative exists, but
fortunately this is a safe assumption for most such problems.

The example y = Inx involved an inverse function defined implicitly, but other functions can be defined
implicitly, and sometimes a single equation can be used to implicitly define more than one function.

Here’s a familiar example.
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Example 4.38: Derivative of Circle Equation

The equation r* = x> +y?* describes a circle of radius r. The circle is not a function y = f (x) because

for some values of x there are two corresponding values of y. If we want to work with a function, we
can break the circle into two pieces, the upper and lower semicircles, each of which is a function.
Let’s call these y = U (x) and y = L(x); in fact this is a fairly simple example, and it’s possible to give
explicit expressions for these: U (x) = \/r> —x? and L(x) = —\/r?> —x? . But it’s somewhat easier,
and quite useful, to view both functions as given implicitly by r* = x> +y?: both r* = x* + U (x)?
and r* = x*> + L(x)?* are true, and we can think of r* = x> +y* as defining both U (x) and L(x).
Now we can take the derivative of both sides as before, remembering thaty is not simply a variable
but a function—in this case, y is either U (x) or L(x) but we’re not yet specitying which one. When
we take the derivative we just have to remember to apply the chain rule where y appears.

d 2 2 2
dxr N dx(x +5)
0 = 2x+2y
; —2x X
y = _— = ——

2y y

Now we have an expression for y', but it contains y as well as x. This means that if we want to
compute y' for some particular value of x we’ll have to know or compute y at that value of x as well.
It is at this point that we will need to know whether y is U (x) or L(x). Occasionally it will turn out
that we can avoid explicit use of U (x) or L(x) by the nature of the problem.

Example 4.39: Slope of the Circle

Find the slope of the circle 4 = x> 4+ y* at the point (1,—/3).

Solution. Since we know both the x- and y-coordinates of the point of interest, we do not need to explicitly
recognize that this point is on L(x), and we do not need to use L(x) to compute y — but we could. Using

the calculation of y’ from above,
X 1 1

R V)

It is instructive to compare this approach to others.

We might have recognized at the start that (1,—v/3) is on the function y = L(x) = —/4 —x2. We
could then take the derivative of L(x), using the power rule and the chain rule, to get

X

L(x) = —%(4—x2)1/2(—2x) _

N
|

=
[ o]

Then we could compute L'(1) = 1/+/3 by substituting x = 1.

Alternately, we could realize that the point is on L(x), but use the fact that y' = —x/y. Since the point
is on L(x) we can replace y by L(x) to get
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without computing the derivative of L(x) explicitly. Then we substitute x = 1 and get the same answer as
before. s

In the case of the circle it is possible to find the functions U (x) and L(x) explicitly, but there are poten-
tial advantages to using implicit differentiation anyway. In some cases it is more difficult or impossible to
find an explicit formula for y and implicit differentiation is the only way to find the derivative.

Example 4.40: Derivative of Function defined Implicitly

Find the derivative of any function defined implicitly by yx2 + y2 =X

Solution. We treat y as an unspecified function and use the chain rule:

Sty =
- 2c+y ) +2y = 1
VX +2yy = —y-2x
r —2xy
Yo x2+2y

Example 4.41: Derivative of Function defined Implicitly

Find the derivative of any function defined implicitly by yx2 +e& =x

Solution. We treat y as an unspecified function and use the chain rule:

j—x(yx2+ey) = %x
(y-2x+y -¥*)+ye = 1
Vil +ye = 1-2xy
V(¥ +e) = 1-2xy
r 1 —2xy
]

&

You might think that the step in which we solve for y’ could sometimes be difficult—after all, we’re
using implicit differentiation here because we can’t solve the equation yx? + ¢ = x for y, so maybe after
taking the derivative we get something that is hard to solve for y’. In fact, this never happens. All oc-
currences y' come from applying the chain rule, and whenever the chain rule is used it deposits a single
y' multiplied by some other expression. So it will always be possible to group the terms containing y’
together and factor out the y/, just as in the previous example. If you ever get anything more difficult you
have made a mistake and should fix it before trying to continue.

It is sometimes the case that a situation leads naturally to an equation that defines a function implicitly.
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Example 4.42: Equation and Derivative of Ellipse

Discuss the equation and derivative of the ellipse.

Solution. Consider all the points (x,y) that have the property that the distance from (x,y) to (x1,y1) plus
the distance from (x,y) to (x2,y2) is 2a (a is some constant). These points form an ellipse, which like a
circle is not a function but can be viewed as two functions pasted together. Since we know how to write
down the distance between two points, we can write down an implicit equation for the ellipse:

\/(x—x1)2+ (y—y1)*+ \/(X—X2)2+ (y=y2)* =2a.

Then we can use implicit differentiation to find the slope of the ellipse at any point, though the computation
is rather messy. L )

Example 4.43: Derivative of Function defined Implicitly

Find ? by implicit differentiation if
X

2x3—|—x2y—y9 =3x+4.

Solution. Differentiating both sides with respect to x gives:

d d
6x° + (ny —|—x2—y> —9y8—y =3,

dx dx
dy dy
2 8 2
o 3 622
X e 9y T 3—6x Xy
(x2—9y8) dy =3 —6x% —2xy
dx

dy 3 —6x% —2xy
dx  x2—-9%
)

In the previous examples we had functions involving x and y, and we thought of y as a function of
x. In these problems we differentiated with respect to x. So when faced with x’s in the function we
differentiated as usual, but when faced with y’s we differentiated as usual except we multiplied by a % for
that term because we were using Chain Rule.

In the following example we will assume that both x and y are functions of # and want to differentiate
the equation with respect to t. This means that every time we differentiate an x we will be using the Chain
Rule, so we must multiply by %’ and whenever we differentiate a y we multiply by %.
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Example 4.44: Derivative of Function of an Additional Variable

Thinking of x and y as functions of t, differentiate the following equation with respect to t:

x> 4y = 100.

Solution. Using the Chain Rule we have:

Example 4.45: Derivative of Function of an Additional Variable

@ =7, ﬁnd@ when x = 1.
dt

Ify=x’+5xand — =
y x+xandt

Solution. Differentiating each side of the equation y = x> + Sx with respect to  gives:

dy ,dx  _dx
3x°—+5—.
ar > a

When x =1 and Z—f =7 we have:

dy _
dr

3(1%)(7) +5(7) = 21435 = 56.
Logarithmic Differentiation

Previously we’ve seen how to do the derivative of a number to a function (a/™))’, and also a function to a
number [(f(x))"]’. But what about the derivative of a function to a function [(f(x))$®)]’?

In this case, we use a procedure known as logarithmic differentiation.

Steps for Logarithmic Differentiation

* Take In of both sides of y = f(x) to get Iny = In f(x) and simplify using logarithm properties,

. T . d
* Differentiate implicitly with respect to x and solve for —y,
X

* Replace y with its function of x (i.e., f(x)).

Example 4.46: Logarithmic Differentiation

Differentiate y = x*.
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Solution. We take In of both sides:

Iny = Inx".
Using log properties we have:
Iny = xInx.
Differentiating implicitly gives:
/
1
Y- (1)Inx+x—.
y X
yl
—=Inx+1.
y
Solving for y' gives:
y =y(1+1nx).
Replace y = x* gives:
y =x*(1+Inx).

Another method to find this derivative is as follows:

d d
2y = = xInx
dx dx
= <%xlnx) e nx
1
= (x; + Inx)x*
= (1 +Inx)x"

&

In fact, logarithmic differentiation can be used on more complicated products and quotients (not just
when dealing with functions to the power of functions).

Example 4.47: Logarithmic Differentiation

Differentiate (assuming x > 0):
(423 (2x+1)°
B(3x+1)*

Solution. Using product and quotient rules for this problem is a complete nightmare! Let’s apply logarith-
mic differentiation instead. Take In of both sides:

x+2)32x+1)°
ny :1“<( J;S(;x(ﬂ;) )

Applying log properties:
Iny=In((x+2)*(2x+1)°) —=In (x**3x+1)*).

Iny=In((x+2)%) +In((2x+1)°) = [In (x®) +In ((3x+ 1)*)] .
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Iny = 3In(x+2) +9In(2x+ 1) — 81nx — 4In(3x + 1).

Now, differentiating implicitly with respect to x gives:

y 3 18 8 12

y :x—|—2+2x+1 x 3x+1

Solving for y’ gives:

, 3 18 8 12
Y e 2 Tty a1 )
(x+2)3 (2x+1)°

Replace y = FEIETNIL

gives:

;2P 1)° (3 N 18 8 12
N x+2 2x+1 x 3x+1)/)°

x¥(3x+1)4 x

Exercises for Section 4.7

Exercise 4.7.1 Find a formula for the derivative y' at the point (x,y):
(a) y = 1+x° (€) Vx+.y=9
(b) _x2—|—_xy—|—y2:7 (f) tan(x/y)zx—f—y

(g) sin(x+y) =xy

11
(h) —+-=1
Xy

(¢) X +xy> =y +
(d) 4cosxsiny =1

Exercise 4.7.2 A hyperbola passing through (8,6) consists of all points whose distance from the origin is

a constant more than its distance from the point (5,2). Find the slope of the tangent line to the hyperbola
at (8,6).

Exercise 4.7.3 The graph of the equation X2 — xy+ y2 =9 s an ellipse. Find the lines tangent to this curve
at the two points where it intersects the x-axis. Show that these lines are parallel.

Exercise 4.7.4 Repeat the previous problem for the points at which the ellipse intersects the y-axis.

Exercise 4.7.5 Find the points on the ellipse from the previous two problems where the slope is horizontal
and where it is vertical.

Exercise 4.7.6 Ify = log,x then &’ = x. Use implicit differentiation to find y'.

Exercise 4.7.7 Find an equation for the tangent line to Xt = y2 +x° at (2,V12). (This curve is the
kampyle of Eudoxus.)
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Exercise 4.7.8 Find an equation for the tangent line to 23+ yz/ 3=d*Pata point (x1,y1) on the curve,
with x1 # 0 and y| # 0. (This curve is an astroid.)

2

Exercise 4.7.9 Find an equation for the tangent line to (x* +y*)? = x* —y* at a point (x1,y1) on the curve,

with x; # 0,—1, 1. (This curve is a lemniscate.)

Exercise 4.7.10 Two curves are orthogonal if at each point of intersection, the angle between their
tangent lines is 7 /2. Two families of curves, </ and %, are orthogonal trajectories of each other if given
any curve C in &/ and any curve D in B the curves C and D are orthogonal. For example, the family of
horizontal lines in the plane is orthogonal to the family of vertical lines in the plane.

(a) Show that x> —y* =5 is orthogonal to 4x* +9y* = 72. (Hint: You need to find the intersection points
of the two curves and then show that the product of the derivatives at each intersection point is —1.)

(b) Show that x*> + y2 =rtis orthogonal to y = mx. Conclude that the family of circles centered at the
origin is an orthogonal trajectory of the family of lines that pass through the origin.

Note that there is a technical issue when m = 0. The circles fail to be differentiable when they cross
the x-axis. However, the circles are orthogonal to the x-axis. Explain why. Likewise, the vertical
line through the origin requires a separate argument.

(¢c) For k# 0 and ¢ # 0 show that y* — x> = k is orthogonal to yx = c. In the case where k and ¢ are
both zero, the curves intersect at the origin. Are the curves y2 —x*>=0and yx = 0 orthogonal to
each other?

(d) Suppose that m # 0. Show that the family of curves {y = mx+b | b € R} is orthogonal to the family
of curves {y = —(x/m)+c | c € R}.

(x—1)8(x—23)1/2
27x5(4x—6)8

Exercise 4.7.11 Differentiate the function y =

Exercise 4.7.12 Differentiate the function f(x) = (x+1)5"%,

e*(cosx+2)3
Vai+4

Exercise 4.7.13 Differentiate the function g(x) =

4.8 Derivatives of Inverse Functions

Suppose we wanted to find the derivative of the inverse, but do not have an actual formula for the inverse
function? Then we can use the following derivative formula for the inverse evaluated at a.

Derivative of /! (a)

Given an invertible function f(x), the derivative of its inverse function f~!(x) evaluated at x = a is:

1
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To see why this is true, start with the function y = f~!(x). Write this as x = f(y) and differentiate both
sides implicitly with respect to x using the chain rule:

o d
=707
Thus,
dy 1
dx — f'(y)’
buty:f_l(x), thus,
R, B 1
SO FE

At the point x = a this becomes:

Example 4.48: Derivatives of Inverse Functions

Suppose f(x) = x° +2x> +7x+ 1. Find [f_l]/(1)~

Solution. First we should show that f~! exists (i.e. that f is one-to-one). In this case the derivative

f'(x) = 5x* 4 6x% + 7 is strictly greater than 0 for all x, so f is strictly increasing and thus one-to-one.

It’s difficult to find the inverse of f(x) (and then take the derivative). Thus, we use the above formula
evaluated at 1:

' 1
()= s
0= G
Note that to use this formula we need to know what f~!(1) is, and the derivative f'(x). To find f~1(1)
we make a table of values (plugging in x = —3,—2,—1,0,1,2,3 into f(x)) and see what value of x gives
1. We omit the table and simply observe that f(0) = 1. Thus,
=0
Now we have: 1
/
) = 5
=5
And so, f/(0) = 7. Therefore,
-1 / 1
1) =-.
) =5
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4.8.1 Derivatives of Inverse Trigonometric Functions

We can apply the technique used to find the derivative of f~! above to find the derivatives of the inverse
trigonometric functions.

In the following examples we will derive the formulae for the derivative of the inverse sine, inverse
cosine and inverse tangent. The other three inverse trigonometric functions have been left as exercises at
the end of this section.

Example 4.49: Derivative of Inverse Sine

Find the derivative of sin~ ! (x).

Solution. As above, we write y = sin~! (x), so x = sin(y) and —7/2 <y < /2, and differentiate both
sides with respect to x using the chain rule.

L isin( )
dxt a0
dy
1= c
cos(y)
1 = cos (sin" ' (x)) dy
dx
dy 1

dx ~ cos (sin”!(x))

Although correct, this formula is cumbersome to use, and can be simplified significantly with a bit of
trigonometry. Let & = sin~!(x), so sin(0) = x, and construct a right angle triangle with angle 6, opposite
side length x and hypotenuse 1. The Pythagorean Theorem gives an adjacent side length of /1 — x2,
SO COS (sin_1 (x)) = cos(6) = v1—x2. Note that we choose the non-negative square root v'1 —x? since
cos(6) >0when —/2 <6 <m/2.

Finally, the derivative of inverse sine is

Example 4.50: Derivative of Inverse Cosine

Find the derivative of cos ™! (x).

Solution. Let y = cos ™! (x), so cos(y) = x and 0 < y < 7. Next we differentiate implicitly:
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dy 1

dx siny
This time, just for variety, we will leave the derivative in terms of y and apply some trigonometry.
Since cosy = x, we construct a triangle with angle y, adjacent side length x and hypotenuse 1. Solving for

the opposite side length using Pythagorean Theorem we obtain v/1 —x2. Using this triangle we can see
that siny = v/1 —x2 (0 <y < 7). Substituting this into the equation for dy/dx, we find that

) =5 (eos () = o=

In the following example we explore an alternate method of finding the derivative.

Example 4.51: Derivative of Inverse Tangent

Find the derivative of tan~! (x).

Solution. We begin with tan (tan’1 (x)) = x. Taking the derivative using the Chain Rule we obtain

sec” (tan~ ' (x)) - % (tan~'(x)) =1,

which we rearrange to obtain
1

" sec(tan 1(x))’

% (tan~'(x))

Let tan~!(x) = 6, then tan(0) = x. We construct a triangle with angle 6, adjacent side 1 and oppo-
site side x. The hypotenuse is v/'1 +x2 using Pythagorean theorem. Then sec? (tan_l(x)) = sec’(9) =

2
(sec(0))* = (\/ 1 +x2> = 1 +x%. Recall that sec(x) = 1/cos(x). Finally, the derivative is

d, . 1
E(tan (X))—W

Exercises for 4.8

Exercise 4.8.1 Given f(x) = 1+In(x—2), first show that f~" exists, then compute [ f _1}/(1).

Exercise 4.8.2 The inverse cotangent function, denoted by cot™'(x), is defined to be the inverse of the
restricted cotangent function: cot(x), 0 < x < 7. Find the derivative of cot™! ().

Exercise 4.8.3 The inverse secant function, denoted by sec™!(x), is defined to be the inverse of the
restricted secant function: sec(x), x € [0,7/2) U [r,37/2). Find the derivative of sec™ ! (x).
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Exercise 4.8.4 The inverse cosecant function, denoted by csc™!(x), is defined to be the inverse of the
restricted cosecant function: csc(x), x € (0,7/2] U (,37/2). Find the derivative of csc™ ! (x).

Exercise 4.8.5 Suppose f(x) = x> +4x+2. Find the slope of the tangent line to the graph of g(x) =
xf~1(x) at the point where x =17.

Exercise 4.8.6 Find the derivatives of sin! (x) 4 cos ™! (x) and (x*> + 1) tan~! (x).

Exercise 4.8.7 Differentiate y = sin~ ' (x?) and y = tan~! (3x).

4.9 Additional Exercises

Exercise 4.9.1 Find the derivatives of the following functions from definition.

(a) flx)=(2x+3)?
(b) g(x) =x/?

X’ ifx<l1

Sx—x2 ifx>1" Use the definition of the derivative to find f'(1).

Exercise 4.9.2 Let f(x) = {

Exercise 4.9.3 Differentiate the following functions.

1
I R g
(a) y="TIx"—"Im +7r\3/)_c
R RvE:

(¢) f(x) =[x —=1]+[x+2|
(d) f(x) =x*sinxcosx

xsinx

(e) y= 1 +sinx

(f) g(X)=\/2+\/%

1
_ Y 2
(h) y = sin’x —sin(x®)

(i) F(x)=sec*x+tan*x

o [ 1—x
v oot (12)
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(k) y = tan(sin(x> +secx))

1

) y=——
D)y 2+Sin%

Exercise 4.9.4 Differentiate the following functions.
(a) y=e>+e ¥ +e?
(b) y=e*cos3x

(c¢) f(x)=tan(x+e")

(d) g(x) = 2
(e) y=In(2+sinx) —sin(2 +Inx)

) f(x)=e" +x* +n°

(g) y=log,(b*) + b'°%*, where a and b are positive real numbers and a # 1.
() y= (@41

(i) y= (2 4 e)1/1nx

xVx24+x+1
2 +sinx)*(3x+5)7

(j) y=<

d
Exercise 4.9.5 Find d_y if y is a differentiable function that satisfy the given equation.
X

(a) X +xy+y* =T
(b) x> +y? = (2x* +2y* —x)?
(c) x*siny+y> = cosx

(d) x*+xe¥ =2y+ e

Exercise 4.9.6 Differentiate the following functions.

(a) y= xsin~lx

]
(b) flx) = =2

cos~lx

(c) g(x) =tan"! (2) where a > 0

1
(d) y=xtan~'x— Eln(x2 +1)






Applications of Derivatives

In this chapter we explore how to use the derivative and differentiation to solve a variety of problems, some
mathematical and some practical. We explore some applications which motivated and were formalized in
the definition of the derivative, and look at a few clever uses of the tangent line (which has immediate
geometric ties to the definition of the derivative).

5.1 Related Rates

When defining the derivative f (x), we define it to be exactly the rate of change of f (x) with respect to
x. Consequently, any question about rates of change can be rephrased as a question about derivatives.
When we calculate derivatives, we are calculating rates of change. Results and answers we obtain for
derivatives translate directly into results and answers about rates of change. Let us look at some examples
where more than one variable is involved, and where our job is to analyze and exploit relations between
the rates of change of these variables. The mathematical step of relating the rates of change turns out to
be largely an exercise in differentiation using the chain rule or implicit differentiation.

Suppose we have two variables x and y which are both changing with time. In most problems the
letters will be different, but for now let’s use x and y. A “related rates” problem is a problem in which
we know one of the rates of change at a given instant—say, x = dx/df—and we want to find the other
rate y = dy/dt at that instant. (The use of x to mean dx/dt goes back to Newton and is still used for this
purpose, especially by physicists.)

If y is written in terms of x, i.e., y = f(x), then this is easy to do using the chain rule:

. _dy dy dx _dy,

y_dt Cdx dt _dxx'

That is, find the derivative of f(x), plug in the value of x at the instant in question, and multiply by the
given value of X = dx/dt to get y = dy/dt.

Example 5.1: Speed at which a Coordinate is Changing

Suppose an object is moving along a path described by y = x%, that is, it is moving on a parabolic
path. At a particular time, say t = 5, the x-coordinate is 6 and we measure the speed at which the
x-coordinate of the object is changing and find that dx/dt = 3.

At the same time, how fast is the y-coordinate changing?

Solution. Using the chain rule, dy/dt = 2x-dx/dt. Att =5 we know that x = 6 and dx/dt = 3, so
dy/dt =2-6-3 =36. &

In many cases, particularly interesting ones, x and y will be related in some other way, for example
x = f(y), or F(x,y) =k, or perhaps F(x,y) = G(x,y), where F(x,y) and G(x,y) are expressions involving
both variables. In all cases, you can solve the related rates problem by taking the derivative of both sides,
plugging in all the known values (namely, x, y, and X), and then solving for y.

161
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To summarize, here are the steps in doing a related rates problem.

Steps for Solving Related Rates Problems

1. Decide what the two variables are.
2. Find an equation relating them.
3. Take d/dt of both sides.

4. Plug in all known values at the instant in question.

5. Solve for the unknown rate.

Example 5.2: Receding Airplanes

A plane is flying directly away from you at 500 mph at an altitude of 3 miles. How fast is the plane’s
distance from you increasing at the moment when the plane is flying over a point on the ground 4
miles from you?

Solution. To see what’s going on, we first draw a schematic representation of the situation, as in Figure 5.1.

Because the plane is in level flight directly away from you, the rate at which x changes is the speed of
the plane, dx/dt = 500. The distance between you and the plane is y; it is dy/dt that we wish to know. By
the Pythagorean Theorem we know that x> +9 = y?. Taking the derivative:

2xx = 2yy.

We are interested in the time at which x = 4; at this time we know that 4> +9 = y?, so y = 5. Putting
together all the information we get
2(4)(500) = 2(5)y.

Thus, y = 400 mph. &
//‘—>
[ ’
- |
P |
- _ |

Figure 5.1: Receding airplane.

Example 5.3: Spherical Balloon

You are inflating a spherical balloon at the rate of 7 cm>/sec. How fast is its radius increasing when
the radius is 4 cm?
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Solution. Here the variables are the radius r and the volume V. We know dV /dt, and we want dr/dt. The
two variables are related by the equation V = 4mr /3. Taking the derivative of both sides gives dV /dt =
47mr?i. We now substitute the values we know at the instant in question: 7 = 47w4?F, so i =7 /(64r)
cm/sec. &

Example 5.4: Conical Container

Water is poured into a conical container at the rate of 10 cm’/sec. The cone points directly down,
and it has a height of 30 cm and a base radius of 10 cm; see Figure 5.2. How fast is the water level
rising when the water is 4 cm deep (at its deepest point)?

Solution. The water forms a conical shape within the big cone; its height and base radius and volume are
all increasing as water is poured into the container. This means that we actually have three things varying
with time: the water level & (the height of the cone of water), the radius r of the circular top surface of
water (the base radius of the cone of water), and the volume of water V. The volume of a cone is given by
V = nr’h/3. We know dV /dt, and we want dh/dt. At first something seems to be wrong: we have a third
variable, r, whose rate we don’t know.

However, the dimensions of the cone of water must have the same proportions as those of the container.
That is, because of similar triangles, r/h = 10/30 so r = h/3. Now we can eliminate r from the problem
entirely: V = m(h/3)?h/3 = nh’ /27. We take the derivative of both sides and plug in & = 4 and dV /dt =
10, obtaining 10 = (37 -42/27)(dh/dt). Thus, dh/dt = 90/(167) cm/sec. )

— 10 —

T 30

h

l

Figure 5.2: Conical water tank.

Example 5.5: Swing Set

A swing consists of a board at the end of a 10 ft long rope. Think of the board as a point P at the end
of the rope, and let Q be the point of attachment at the other end. Suppose that the swing is directly
below Q at time t = 0, and is being pushed by someone who walks at 6 ft/sec from left to right.
Find (a) how fast the swing is rising after 1 sec; (b) the angular speed of the rope in deg/sec after 1
sec.
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Solution. We start out by asking: What is the geometric quantity whose rate of change we know, and what
is the geometric quantity whose rate of change we’re being asked about? Note that the person pushing
the swing is moving horizontally at a rate we know. In other words, the horizontal coordinate of P is
increasing at 6 ft/sec. In the xy-plane let us make the convenient choice of putting the origin at the location
of P at time r = 0, i.e., a distance 10 directly below the point of attachment. Then the rate we know is
dx/dt, and in part (a) the rate we want is dy/dt (the rate at which P is rising). In part (b) the rate we
want is @ = d0 /dt, where 6 stands for the angle in radians through which the swing has swung from the
vertical. (Actually, since we want our answer in deg/sec, at the end we must convert d0 /dt from rad/sec
by multiplying by 180/7.)

(a) From the diagram we see that we have a right triangle whose legs are x and 10 —y, and whose hy-
potenuse is 10. Hence x> 4 (10 — y)? = 100. Taking the derivative of both sides we obtain: 2xi +2(10 —
y)(0 —y) = 0. We now look at what we know after 1 second, namely x = 6 (because x started at 0 and
has been increasing at the rate of 6 ft/sec for 1 sec), thus y = 2 (because we get 10 —y = 8 from the
Pythagorean theorem applied to the triangle with hypotenuse 10 and leg 6), and x = 6. Putting in these
values gives us 2-6-6 —2 - 8y = 0, from which we can easily solve for y: y = 4.5 ft/sec.

(b) Here our two variables are x and 0, so we want to use the same right triangle as in part (a), but this
time relate 0 to x. Since the hypotenuse is constant (equal to 10), the best way to do this is to use the
sine: sin® = x/10. Taking derivatives we obtain (cos )@ = 0.1x. At the instant in question (t = 1 sec),
when we have a right triangle with sides 6-8-10, cos @ = 8/10 and x = 6. Thus (8/10)8 = 6/10, i.e.,
6 = 6/8 = 3 /4 rad/sec, or approximately 43 deg/sec. &

Figure 5.3: Swing.

We have seen that sometimes there are apparently more than two variables that change with time, but
in reality there are just two, as the others can be expressed in terms of just two. However sometimes there
really are several variables that change with time; as long as you know the rates of change of all but one of
them you can find the rate of change of the remaining one. As in the case when there are just two variables,
take the derivative of both sides of the equation relating all of the variables, and then substitute all of the
known values and solve for the unknown rate.
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Example 5.6: Distance Changing Rate

A road running north to south crosses a road going east to west at the point P. Car A is driving
north along the first road, and car B is driving east along the second road. At a particular time car A
is 10 kilometers to the north of P and traveling at 80 km/hr, while car B is 15 kilometers to the east
of P and traveling at 100 km/hr. How fast is the distance between the two cars changing?

Solution. Let a() be the distance of car A north of P at time ¢, and b(¢) the distance of car B east of
P at time ¢, and let ¢(¢) be the distance from car A to car B at time ¢. By the Pythagorean Theorem,
c(1)? = a(r)? + b(¢)*. Taking derivatives we get 2¢c(t)c’(t) = 2a(t)d'(t) +2b(t)b' (), so

. ad+bb ada+ bb
¢= =

c v a2 + b2 ’
Substituting known values we get:
10-80+15-100 460
¢ = = ~ 127.6km/hr
V102 +152 V13
at the time of interest. s
(0,a(z))
T~ cr)
P’ ~
(b(1),0)

Figure 5.4: Cars moving apart.

Notice how this problem differs from Example 5.2. In both cases we started with the Pythagorean
Theorem and took derivatives on both sides. However, in Example 5.2 one of the sides was a constant (the
altitude of the plane), and so the derivative of the square of that side of the triangle was simply zero. In this
Example, on the other hand, all three sides of the right triangle are variables, even though we are interested
in a specific value of each side of the triangle (namely, when the sides have lengths 10 and 15). Make sure
that you understand at the start of the problem what are the variables and what are the constants.

Exercises for Section 5.1

Exercise 5.1.1 Air is being pumped into a spherical balloon at a constant rate of 3 cm>/s. How fast is the
radius of the balloon increasing when the radius reaches 5cm?

Exercise 5.1.2 A cylindrical tank standing upright (with one circular base on the ground) has radius 20
cm. How fast does the water level in the tank drop when the water is being drained at 25 cm>/sec?
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Exercise 5.1.3 A cylindrical tank standing upright (with one circular base on the ground) has radius 1
meter. How fast does the water level in the tank drop when the water is being drained at 3 liters per
second?

Exercise 5.1.4 A ladder 13 meters long rests on horizontal ground and leans against a vertical wall. The
foot of the ladder is pulled away from the wall at the rate of 0.6 m/sec. How fast is the top sliding down
the wall when the foot of the ladder is 5 m from the wall?

Exercise 5.1.5 A ladder 13 meters long rests on horizontal ground and leans against a vertical wall. The
top of the ladder is being pulled up the wall at 0.1 meters per second. How fast is the foot of the ladder
approaching the wall when the foot of the ladder is 5 m from the wall?

Exercise 5.1.6 A rotating beacon is located 2 miles out in the water. Let A be the point on the shore that
is closest to the beacon. As the beacon rotates at 10 rev/min, the beam of light sweeps down the shore
once each time it revolves. Assume that the shore is straight. How fast is the point where the beam hits the
shore moving at an instant when the beam is lighting up a point 2 miles along the shore from the point A?

Exercise 5.1.7 A baseball diamond is a square 90 ft on a side. A player runs from first base to second
base at 15 ft/sec. At what rate is the player’s distance from third base decreasing when she is half way
from first to second base?

Exercise 5.1.8 Sand is poured onto a surface at 15 cm®/sec, forming a conical pile whose base diameter
is always equal to its altitude. How fast is the altitude of the pile increasing when the pile is 3 cm high?

Exercise 5.1.9 A boat is pulled in to a dock by a rope with one end attached to the front of the boat and
the other end passing through a ring attached to the dock at a point 5 ft higher than the front of the boat.
The rope is being pulled through the ring at the rate of 0.6 ft/sec. How fast is the boat approaching the
dock when 13 ft of rope are out?

Exercise 5.1.10 A balloon is at a height of 50 meters, and is rising at the constant rate of 5 m/sec. A
bicyclist passes beneath it, traveling in a straight line at the constant speed of 10 m/sec. How fast is the
distance between the bicyclist and the balloon increasing 2 seconds later?

Exercise 5.1.11 A pyramid-shaped vat has square cross-section and stands on its tip. The dimensions
at the top are 2 m x 2 m, and the depth is 5 m. If water is flowing into the vat at 3 m*/min, how fast
is the water level rising when the depth of water (at the deepest point) is 4 m? Note: the volume of any
“conical” shape (including pyramids) is (1/3)(height)(area of base).

Exercise 5.1.12 A woman 5 ft tall walks at the rate of 3.5 ft/sec away from a streetlight that is 12 ft above
the ground. At what rate is the tip of her shadow moving? At what rate is her shadow lengthening?

Exercise 5.1.13 A man 1.8 meters tall walks at the rate of 1 meter per second toward a streetlight that
is 4 meters above the ground. At what rate is the tip of his shadow moving? At what rate is his shadow
shortening?

Exercise 5.1.14 A police helicopter is flying at 150 mph at a constant altitude of 0.5 mile above a straight
road. The pilot uses radar to determine that an oncoming car is at a distance of exactly 1 mile from the
helicopter, and that this distance is decreasing at 190 mph. Find the speed of the car.
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Exercise 5.1.15 A police helicopter is flying at 200 kilometers per hour at a constant altitude of 1 km
above a straight road. The pilot uses radar to determine that an oncoming car is at a distance of exactly 2
kilometers from the helicopter, and that this distance is decreasing at 250 kph. Find the speed of the car.

Exercise 5.1.16 A light shines from the top of a pole 20 m high. An object is dropped from the same height
from a point 10 m away, so that its height at time t seconds is h(t) =20 — 9.8¢> /2. How fast is the object’s
shadow moving on the ground one second later?

5.2 Extrema of a Function

In calculus, there is much emphasis placed on analyzing the behaviour of a function f on an interval /.
Does f have a maximum value on /? Does it have a minimum value? How does the interval / impact our
discussion of extrema?

5.2.1 Local Extrema

A local maximum point on a function is a point (x,y) on the graph of the function whose y-coordinate
is larger than all other y-coordinates on the graph at points “close to” (x,y). More precisely, (x, f(x)) is a
local maximum if there is an interval (a,b) with a < x < b and f(x) > f(z) for every z in (a,b). Similarly,
(x,y) is a local minimum point if it has locally the smallest y-coordinate. Again being more precise:
(x,f(x)) is a local minimum if there is an interval (a,b) with a < x < b and f(x) < f(z) for every z in
(a,b). Alocal extremum is either a local minimum or a local maximum.

A real-valued function f has a at xo if f(xo) is the largest value of f near xy; in
other words, f(xg) > f(x) when x is near x.

A real-valued function f has a at xo if f(xo) is the smallest value of f near xg; in
other words, f(xo) < f(x) when x is near x.

Local maximum and minimum points are quite distinctive on the graph of a function, and are therefore
useful in understanding the shape of the graph. In many applied problems we want to find the largest or
smallest value that a function achieves (for example, we might want to find the minimum cost at which
some task can be performed) and so identifying maximum and minimum points will be useful for applied
problems as well. Some examples of local maximum and minimum points are shown in Figure 5.5.
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A/?\g

B

Figure 5.5: Some local maximum points (A) and minimum points (B).

If (x, f(x)) is a point where f(x) reaches a local maximum or minimum, and if the derivative of f
exists at x, then the graph has a tangent line and the tangent line must be horizontal. This is important
enough to state as a theorem.

The proof is simple enough and we include it here, but you may accept Fermat’s Theorem based on its
strong intuitive appeal and come back to its proof at a later time.

Theorem 5.8: Fermat’s Theorem

If f(x) has a local extremum at x = a and f is differentiable at a, then f’(a) = 0.

Proof. We shall give the proof for the case where f (x) has a local maximum at x = a. The proof for the
local minimum case is similar.

Since f (x) has a local maximum at x = a, there is an open interval (c,d) with ¢ < a < d and f(x) <
f(a) for every x in (c,d). So, f (x) — f (a) < 0 for all such x. Let us now look at the sign of the difference

quotient M. We consider two cases according as x > a or x < a.
xX—a
If x > a, then x —a > 0 and so, M < 0. Taking limit as x approach a from the right, we get
xX—a
x—at xX—a
On the other hand, if x < a, then x —a < 0 and SO,M > 0. Taking limit as x approach a from the
xX—a
left, we get
x—a~ X—da
Since f is differentiable at a, f'(a) = lim fx) = f(a) = lim fx) = (a). Therefore, we have both
x—at X—a x—a~ xX—a
f'(a) <0and f'(a) > 0. So, ' (a) =0. )

Thus, the only points at which a function can have a local maximum or minimum are points at which
the derivative is zero, as in the left hand graph in Figure 5.5, or the derivative is undefined, as in the right
hand graph. Any value of x in the domain of f for which f’(x) is zero or undefined is called a critical
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point for f. When looking for local maximum and minimum points, you are likely to make two sorts of
mistakes: You may forget that a maximum or minimum can occur where the derivative does not exist, and
so forget to check whether the derivative exists everywhere. You might also assume that any place that
the derivative is zero is a local maximum or minimum point, but this is not true. A portion of the graph of
f(x) = x* is shown in Figure 5.6. The derivative of f is f’(x) = 3x2, and f'(0) = 0, but there is neither a
maximum nor minimum at (0,0).

Figure 5.6: No maximum or minimum even though the derivative is zero.

Since the derivative is zero or undefined at both local maximum and local minimum points, we need
a way to determine which, if either, actually occurs. The most elementary approach, but one that is often
tedious or difficult, is to test directly whether the y-coordinates “near” the potential maximum or minimum
are above or below the y-coordinate at the point of interest. Of course, there are too many points “near”
the point to test, but a little thought shows we need only test two provided we know that f is continuous
(recall that this means that the graph of f has no jumps or gaps).

Suppose, for example, that we have identified three points at which f” is zero or nonexistent: (x1,y;),
(x2,¥2), (x3,y3), and x; < xp < x3 (see Figure 5.7). Suppose that we compute the value of f(a) for
x] < a < xp,and that f(a) < f(x2). What can we say about the graph between a and x,? Could there be a
point (b, f(b)), a < b < x, with f(b) > f(x2)? No: if there were, the graph would go up from (a, f(a)) to
(b, f(b)) then down to (x2, f(x2)) and somewhere in between would have a local maximum point. (This is
not obvious; it is a result of the Extreme Value Theorem.) But at that local maximum point the derivative
of f would be zero or nonexistent, yet we already know that the derivative is zero or nonexistent only at
x1, X2, and x3. The upshot is that one computation tells us that (x», f(x2)) has the largest y-coordinate of
any point on the graph near x, and to the left of x,. We can perform the same test on the right. If we find
that on both sides of x, the values are smaller, then there must be a local maximum at (xp, f(x2)); if we
find that on both sides of x; the values are larger, then there must be a local minimum at (x, f(x2)); if we
find one of each, then there is neither a local maximum or minimum at x,.

xpa b X2 X3

Figure 5.7: Testing for a maximum or minimum.
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It is not always easy to compute the value of a function at a particular point. The task is made easier
by the availability of calculators and computers, but they have their own drawbacks—they do not always
allow us to distinguish between values that are very close together. Nevertheless, because this method is
conceptually simple and sometimes easy to perform, you should always consider it.

Example 5.9: Simple Cubic

Find all local maximum and minimum points for the function f(x) = x> — x.

Solution. The derivative is f'(x) = 3x* — 1. This is defined everywhere and is zero at x = +1/3 /3. Looking
first at x = v/3/3, we see that £(v/3/3) = —2v/3/9. Now we test two points on either side of x = v/3/3,
choosing one point in the interval (—+/3/3,+v/3/3) and one point in the interval (1/3/3,0). Since f(0) =
0> —2v3/9and f(1) =0 > —2+/3/9, there must be a local minimum at x = v/3 /3. For x = —/3/3, we
see that f(—+/3/3) = 2v/3/9. This time we can use x = 0 and x = —1, and we find that f(—1) = f(0) =
0< 2\/§/9, so there must be a local maximum at x = —\/5/3. &

Of course this example is made very simple by our choice of points to test, namely x = —1, 0, 1.
We could have used other values, say —5/4, 1/3, and 3/4, but this would have made the calculations
considerably more tedious, and we should always choose very simple points to test if we can.

Example 5.10: Max and Min

Find all local maximum and minimum points for f(x) = sinx+ cosx.

Solution. The derivative is f’(x) = cosx — sinx. This is always defined and is zero whenever cosx = sinx.
Recalling that the cosx and sinx are the x- and y-coordinates of points on a unit circle, we see that cosx =
sinx when xis /4, t/4+ , m/4+ 2w, m/4+ 37, etc. Since both sine and cosine have a period of 27, we
need only determine the status of x = 7/4 and x = 57 /4. We can use 0 and 7/2 to test the critical value
x = /4. We find that f(m/4) = V2, f(0) = 1 < V2 and f(/2) = 1, so there is a local maximum when
x = 1/4 and also when x = /4 +2n, ©/4 +4m, etc. We can summarize this more neatly by saying that
there are local maxima at /4 + 2k for every integer k.

We use 7t and 27 to test the critical value x = 57 /4. The relevant values are f(51/4) = —V/2, f(7) =
—1> -2, fem)y=1> —+/2, so there is a local minimum at x = 5m/4,5n/4+2n, 5n/4+4nm, etc.
More succinctly, there are local minima at 57 /4 + 2k for every integer k. s

Example 5.11: Max and Min

Find all local maximum and minimum points for g (x) = x2/3.

Solution. The derivative is g’ (x) = %x‘l/ 3. This is undefined when x = 0 and is not equal to zero for any
x in the domain of g’. Now we test two points on either side of x = 0. We use x = —1 and x = 1. Since
g(0)=0,g(—=1)=1>0and g(1) =1 > 0, there must be a local minimum at x = 0. )
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Exercises for 5.2.1

Find all local maximum and minimum points (x,y) by the method of this section.

Exercise 5.2.1 y=x>—x

Exercise 5.2.2 y=2+3x— x>

Exercise 5.2.3 y = x> — 9x% 4 24x

Exercise 5.2.4 y = 2?43

Exercise 5.2.5 y = 3x* — 4x°

Exercise 5.2.6 y = (x> —1)/x

Exercise 5.2.7 y = 3x*> — (1/x%)

Exercise 5.2.8 y = cos(2x) —x

Exercise 5.2.9 f(x) =x>—98x+4

Exercise 5.2.10 For any real number x there is a unique integer n such that n < x < n-+ 1, and the greatest
integer function is defined as | x| = n. Where are the critical values of the greatest integer function? Which
are local maxima and which are local minima?

Exercise 5.2.11 Explain why the function f(x) = 1/x has no local maxima or minima.

Exercise 5.2.12 How many critical points can a quadratic polynomial function have?

Exercise 5.2.13 Show that a cubic polynomial can have at most two critical points. Give examples to
show that a cubic polynomial can have zero, one, or two critical points.

Exercise 5.2.14 Explore the family of functions f(x) = x> +cx+ 1 where ¢ is a constant. How many and
what types of local extremes are there? Your answer should depend on the value of c, that is, different
values of c will give different answers.

Exercise 5.2.15 We generalize the preceding two questions. Let n be a positive integer and let f be a
polynomial of degree n. How many critical points can f have? (Hint: Recall the Fundamental Theorem
of Algebra, which says that a polynomial of degree n has at most n roots.)
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5.2.2 Absolute Extrema

Absolute extrema are also commonly referred to as global extrema. Unlike local extrema, which are only
“extreme" relative to points “close to” them, an absolute (or global) extrema is “extreme" relative to all
other points in the interval under consideration.

A real-valued function f has an on an interval I at xq if f(xg) is the largest
value of f on I; in other words, f(xo) > f(x) for all x in the domain of f that are in I.

A real-valued function f has an on an interval I at xq if f(xo) is the smallest
value of f on I; in other words, f(xo) < f(x) for all x in the domain of f that are in I.

Example 5.13: Absolute Extrema

Consider the function f(x) = x> on the interval (—co,o0). This parabola has an absolute minimum
at x = 0. However, it does not have an absolute maximum.

Consider the function f(x) = |x| on the interval [—1,2|. This graph looks like a check mark. It has
an absolute minimum at x = 0 and an absolute maximum at x = 2.

Consider the function f(x) = cosx on the interval [0, 7). It has an absolute minimum at x = 7 and
an absolute maximum at x = 0.

Consider the function f(x) = €* on any interval [a,b], where a < b. Since this exponential function
is increasing, it has an absolute minimum at x = a and an absolute maximum at x = b.

Like Fermat’s Theorem, the following theorem has an intuitive appeal. However, unlike Fermat’s
Theorem, the proof relies on a more advanced concept called compactness, which will only be covered
in a course typically entitled Analysis. So, we will be content with understanding the statement of the
theorem.

Theorem 5.14: Extreme-Value Theorem

If a function f is continuous on a closed interval |a,b], then f has both an absolute maximum and
an absolute minimum on [a, b].

Although this theorem tells us that an absolute extremum exists, it does not tell us what it is or how to
find it.

Note that if an absolute extremum is inside the interval (i.e. not an endpoint), then it must also be a
local extremum. This immediately tells us that to find the absolute extrema of a function on an interval,
we need only examine the local extrema inside the interval, and the endpoints of the interval.

We can devise a method for finding absolute extrema for a function f on a closed interval [a,b]:

1. Verify the function is continuous on |a, D).

2. Find the derivative and determine all critical values of f that are in [a,b].
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3. Evaluate the function at the critical values found in Step 2 and the end points of the interval.

4. Identify the absolute extrema.

Why must a function be continuous on a closed interval in order to use this theorem? Consider the
following example.

Example 5.15: Absolute Extrema of a 1/x

Find any absolute extrema for f(x) = 1/x on the interval [—1,1].

Solution. The function f is not continuous at x = 0. Since 0 € [—1,1], f is not continous on the closed
interval:

lim = +oo
x—071 f(X)

lim f(x) = —oo,
x—0~

so we are unable to apply the Extreme-Value Theorem. Therefore, f(x) = 1/x does not have an absolute
maximum or an absolute minimum on [—1, 1]. &

However, if we consider the same function on an interval where it is continuous, the theorem will
apply. This is illustrated in the following example.

Example 5.16: Absolute Extrema of a 1/x

Find any absolute extrema for f(x) = 1/x on the interval [1,2].

Solution. The function f is continous on the interval, so we can apply the Extreme-Value Theorem. We
begin with taking the derivative to be f’(x) = —1/x*> which has a critical value at x = 0, but since this
critical value is not in [1,2] we ignore it. The only points where an extrema can occur are the endpoints
of the interval. To find the maximum or minimum we can simply evaluate the function: f(1) =1 and
f(2) =1/2, so the absolute maximum is at x = 1 and the absolute minimum is at x = 2. &

Why must an interval be closed in order to use the above theorem? Recall the difference between open
and closed intervals. Consider a function f on the open interval (0,1). If we choose successive values of
x moving closer and closer to 1, what happens? Since 1 is not included in the interval we will not attain
exactly the value of 1. Suppose we reach a value of 0.9999 — is it possible to get closer to 1? Yes: There
are infinitely many real numbers between 0.9999 and 1. In fact, any conceivable real number close to 1
will have infinitely many real numbers between itself and 1. Now, suppose f is decreasing on (0,1): As
we approach 1, f will continue to decrease, even if the difference between successive values of f is slight.
Similarly if f is increasing on (0, 1).

Consider a few more examples:

Example 5.17: Determining Absolute Extrema

Determine the absolute extrema of f(x) = x> —x*> + 1 on the interval [—1,2].
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Solution. First, notice f is continuous on the closed interval [—1,2], so we’re able to use Theorem 5.14 to
determine the absolute extrema. The derivative is f’(x) = 3x> — 2x, and the critical values are x = 0,2/3
which are both in the interval [—1,2]. In order to find the absolute extrema, we must consider all critical
values that lie within the interval (that is, in (—1,2)) and the endpoints of the interval.

fED) =) = (1)1 =1
£(0)=(0)° = (0)*+1=
f(2/3) = (2/3)° (2/3)2+ 1=23/27
f2) =02 -@2)P*+1=
The absolute maximum is at (2,5) and the absolute minimum is at (—1,—1). )

Example 5.18: Determining Absolute Extrema

Determine the absolute extrema of f(x) = —9/x—x+ 10 on the interval [2,6].

Solution. First, notice f is continuous on the closed interval [2,6], so we’re able to use Theorem 5.14 to
determine the absolute extrema. The function is not continuous at x = 0, but we can ignore this fact since
0is not in [2,6]. The derivative is f'(x) = 9/x*> — 1, and the critical values are x = +3, but only x = +3 is
in the interval. In order to find the absolute extrema, we must consider all critical values that lie within the
interval and the endpoints of the interval.

f2)=-9/(2)=(2)+10=7/2=35
f3)=-9/(3)~(3)+10=4
£(6)==9/(6)—(6)+10=5/2=25

The absolute maximum is at (3,4) and the absolute minimum is at (6,2.5). s

When we are trying to find the absolute extrema of a function on an open interval, we cannot use
the Extreme Value Theorem. However, if the function is continuous on the interval, many of the same
ideas apply. In particular, if an absolute extremum exists, it must also be a local extremum. In addition
to checking values at the local extrema, we must check the behaviour of the function as it approaches the
ends of the interval.

Some examples to illustrate this method.

Example 5.19: Extrema of Secant

Find the extrema of sec(x) on (—m/2,7/2).

Solution. Notice sec(x) is continuous on (—7/2,7/2) and has one local minimum at 0. Also

lim sec(x)= lim sec(x) = +oo,
x—(—m/2)* x—(1/2)"

so sec(x) has no absolute maximum, but the point (0, 1) is the absolute minimum. )
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A similar approach can be used for infinite intervals.

Example 5.20: Extrema of %

2
Find the extrema of

x2+1 on (—oo’oo)

Solution. Since x*> + 1 # 0 for all x in (—oo,0) the function is continuous on this interval. This function
has only one critical value at x = 0, which is the local minimum and also the absolute minimum. Now,

. 2 . . . .
limy 4o xzx—+1 =1, so the function does not have an absolute maximum: It continues to increase towards
1, but does not attain this exact value. &

Exercises for 5.2.2

Exercise 5.2.16 Find the absolute extrema for f(x) = —fc%i on [0,3].
Exercise 5.2.17 Find the absolute extrema for f(x) = csc(x) on [0, 7|.
Exercise 5.2.18 Find the absolute extrema for f(x) = In(x)/x* on [1,4].
Exercise 5.2.19 Find the absolute extrema for f(x) = xv/1 —x2 on [—1,1].
Exercise 5.2.20 Find the absolute extrema for f(x) = xe /32 o [0,2].
Exercise 5.2.21 Find the absolute extrema for f(x) = x —tan~!(2x) on [0,2].
Exercise 5.2.22 Find the absolute extrema for f(x) = 57

Exercise 5.2.23 For each of the following, sketch a potential graph of a continuous function on the closed
interval [0,4] with the given properties.

(a) Absolute minimum at 0, absolute maximum at 2, local minimum at 3.
(b) Absolute maximum at 1, absolute minimum at 2, local maximum at 3.

(c¢) Absolute minimum at 4, absolute maximum at 1, local minimum at 2, local maxima at 1 and 3.
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5.3 The Mean Value Theorem

There are numerous applications of the derivative through its definition as rate of change and as the slope
of the tangent line. In this section we shall look at some deeper reasons why the derivative turns out to
be so useful. The simple answer is that the derivative of a function tells us a lot about the function. More
important, “hard” questions about a function can sometimes be answered by solving a relatively simple
problem about the derivative of the function.

informs

Knowledge of f F—>| Knowledge of f |

- Rephrase
| Question A about f }—ﬂ Question B about f*
Or Relate

Analyze | Solve

Solution/Answer to | Rephrase Solution/Answer to
Question Aaboutf [ Or Relate Question B about f’

The Mean Value Theorem tells us that there is an intimate connection between the net change of the
value of any “sufficiently nice” function over an interval and the possible values of its derivative on that
interval. Because of this connection, we can draw conclusions about the possible values of the derivative
based on information about the values of the function, and conversely, we can draw conclusions about the
values of the function based on information about the values of its derivative.

Net change of Possible values of
f(x) on interval . f’(x) on interval
[a,b] Vean (a,b)
Value
Theorem

Let us illustrate the idea through the following two interesting questions involving derivatives:

1. Suppose two different functions have the same derivative; what can you say about the relationship
between the two functions?
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2. Suppose you drive a car from toll booth on a toll road to another toll booth at an average speed of
70 miles per hour. What can be concluded about your actual speed during the trip? In particular, did
you exceed the 65 mile per hour speed limit?

While these sound very different, it turns out that the two problems are very closely related. We know
that “speed” is really the derivative by a different name; let’s start by translating the second question into
something that may be easier to visualize. Suppose that the function f(¢) gives the position of your car on
the toll road at time 7. Your change in position between one toll booth and the next is given by f(¢1) — f (),
assuming that at time 79 you were at the first booth and at time #; you arrived at the second booth. Your
average speed for the trip is (f(¢1) — f(t))/(t1 —to). If we think about the graph of f(¢), the average speed
is the slope of the line that connects the two points (¢, f(#p)) and (¢, f(¢1)). Your speed at any particular
time ¢ between o and t; is f(t), the slope of the curve. Now question (2) becomes a question about slope.
In particular, if the slope between endpoints is 70, what can be said of the slopes at points between the
endpoints?

As a general rule, when faced with a new problem it is often a good idea to examine one or more
simplified versions of the problem, in the hope that this will lead to an understanding of the original
problem. In this case, the problem in its “slope” form is somewhat easier to simplify than the original, but
equivalent, problem.

Here is a special instance of the problem. Suppose that f(#9) = f(#1). Then the two endpoints have
the same height and the slope of the line connecting the endpoints is zero. What can we say about the
slope between the endpoints? It shouldn’t take much experimentation before you are convinced of the
truth of this statement: Somewhere between 7y and ¢; the slope is exactly zero, that is, somewhere between
fo and ¢ the slope is equal to the slope of the line between the endpoints. This suggests that perhaps the
same is true even if the endpoints are at different heights, and again a bit of experimentation will probably
convince you that this is so. But we can do better than “experimentation”—we can prove that this is so.

We start with the simplified version:

Theorem 5.21: Rolle’s Theorem

Suppose that f(x) has a derivative on the interval (a,b), is continuous on the interval [a,b], and
f(a) = f(b). Then at some value c € (a,b), f'(c) =0.

Proof. We know that f(x) has a maximum and minimum value on [a, b] (because it is continuous), and we
also know that the maximum and minimum must occur at an endpoint, at a point at which the derivative is
zero, or at a point where the derivative is undefined. Since the derivative is never undefined, that possibility
is removed.

If the maximum or minimum occurs at a point ¢, other than an endpoint, where f’ (c) =0, then we
have found the point we seek. Otherwise, the maximum and minimum both occur at an endpoint, and
since the endpoints have the same height, the maximum and minimum are the same. This means that
f(x) = f(a) = f(b) at every x € [a,b], so the function is a horizontal line, and it has derivative zero
everywhere in (a,b). Then we may choose any c at all to get f/(c) = 0. &

Rolle’s Theorem is illustrated below for a function f(x) where f’(x) = 0 holds for two values of x = ¢;
and x = ¢3:
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f'(c,)=0

S \ .. f(a)=f(b)

=
=

f'(c,)=0

Perhaps remarkably, this special case is all we need to prove the more general one as well.

Theorem 5.22: Mean Value Theorem

Suppose that f(x) has a derivative on the interval (a,b) and is continuous on the interval [a,b]. Then
f(b) — f(a)

at some value c € (a,b), f'(c) = —

f(b) — f(a)
b—

g(x) has a derivative evcérywhere, since g'(x) = f/(x) —m. We can compute g(a) = f(a) —m(a—a) —

f(a)=0and

Proof. Let m = , and consider a new function g(x) = f(x) —m(x —a) — f(a). We know that

So the height of g(x) is the same at both endpoints. This means, by Rolle’s Theorem, that at some c,
g'(c) = 0. But we know that g’(c) = f'(c) —m, so

0=7'e)-m=7(e) - L1,
which turns into £(5)— f(a)
pon —fla
fop = LO=1),
exactly what we want. L)

The Mean Value Theorem is illustrated below showing the existence of a point x = ¢ for a function
f(x) where the tangent line at x = ¢ (with slope f’(c)) is parallel to the secant line connecting A(a, f(a))

. b)—f(a
and B(b, f (b)) (with slope %):

a
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Returning to the original formulation of question (2), we see that if f(¢) gives the position of your car
at time ¢, then the Mean Value Theorem says that at some time ¢, f'(c) = 70, that is, at some time you
must have been traveling at exactly your average speed for the trip, and that indeed you exceeded the speed
limit.

Now let’s return to question (1). Suppose, for example, that two functions are known to have derivative
equal to 5 everywhere, f'(x) = g’(x) = 5. It is easy to find such functions: 5x, 5x+47, 5x — 132, etc. Are
there other, more complicated, examples? No—the only functions that work are the “obvious” ones,
namely, 5x plus some constant. How can we see that this is true?

Although “5” is a very simple derivative, let’s look at an even simpler one. Suppose that f'(x) =
g'(x) =0. Again we can find examples: f(x) =0, f(x) =47, f(x) = =511 all have f'(x) = 0. Are there
non-constant functions f with derivative 0? No, and here’s why: Suppose that f(x) is not a constant
function. This means that there are two points on the function with different heights, say f(a) # f(b).
The Mean Value Theorem tells us that at some point ¢, f'(c) = (f(b) — f(a))/(b—a) # 0. So any non-
constant function does not have a derivative that is zero everywhere; this is the same as saying that the

only functions with zero derivative are the constant functions.
!/

Let’s go back to the slightly less easy example: suppose that f/(x) = g’(x) = 5. Then (f(x) —g(x)) =
f'(x) —g'(x) =5—5=0. So using what we discovered in the previous paragraph, we know that f(x) —
g(x) =k, for some constant k. So any two functions with derivative 5 must differ by a constant; since 5x
is known to work, the only other examples must look like 5x + k.

Now we can extend this to more complicated functions, without any extra work. Suppose that f’(x) =
g'(x). Then as before (f(x) —g(x)) = f'(x) — g'(x) =0, so f(x) — g(x) = k. Again this means that if we
find just a single function g(x) with a certain derivative, then every other function with the same derivative
must be of the form g(x) + k.

Example 5.23: Given Derivative

Describe all functions that have derivative 5x — 3.

Solution. It’s easy to find one: g(x) = (5/2)x* — 3x has g’(x) = 5x — 3. The only other functions with the
same derivative are therefore of the form f(x) = (5/2)x*> — 3x+k.

Alternately, though not obviously, you might have first noticed that g(x) = (5/2)x* — 3x + 47 has
g'(x) = 5x — 3. Then every other function with the same derivative must have the form f(x) = (5/2)x* —
3x+4 47 + k. This looks different, but it really isn’t. The functions of the form f(x) = (5/2)x* —3x+k are
exactly the same as the ones of the form f(x) = (5/2)x> — 3x+47 + k. For example, (5/2)x* —3x+10is
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the same as (5/2)x* — 3x 447 + (—37), and the first is of the first form while the second has the second
form. s

This is worth calling a theorem:

Theorem 5.24: Functions with the Same Derivative

If f'(x) = g'(x) for every x € (a,b), then for some constant k, f(x) = g(x) + k on the interval (a,b).

Example 5.25: Same Derivative

Describe all functions with derivative sinx + ¢*. One such function is —cosx + ¢*, so all such
functions have the form —cosx + e¢* + k.

Theorem 5.24 and the above example illustrate what the Mean Value Theorem allows us to say about
f(x) when we have perfect information about f/(x). Specifically, f(x) is determined up to a constant. Our
next example illustrates almost the opposite extreme situation, one where we have much less information
about f’(x) beyond the fact that f’(x) exists. Specifically, assuming that we know an upper bound on the
values of f/(x), what can we say about the values of f(x)?

Example 5.26: Conclusion Regarding Function Value Based on Derivative Information

Suppose that f is a differentiable function such that f’ (x) < 2 for all x. What is the largest possible
value of f(7) if f(3) =5?

Solution. We are interested in the values of f (x) at x =3 and x = 7. It makes sense to focus our attention
on the interval between 3 and 7. It is given that f (x) is differentiable for all x. So, f (x) is also continuous
at all x. In particular, f (x) is continuous on the interval [3,7] and differentiable on the interval (3,7). By
the Mean Value Theorem, we know that there is some ¢ in (3,7) such that

oy S —=F3)

Simplifying and using the given information f (3) = 5, we get
F(7)=5

=102

or, after re-arranging the terms,
f(1)=4f"(c)+5.
We do not know the exact value of ¢, but we do know that f” (x) < 2 for all x. This implies that [’ (¢) < 2.
Therefore,
f(7)<4.24+5=13.

That is, the value of f(7) cannot exceed 13. To convince ourselves that 13 (as opposed to some smaller
number) is the largest possible value of f(7), we still need to show that it is possible for the value of f(7)
to reach 13. If we review our proof, we notice that the inequality will be an equality if f'(c) = 2. One
way to guarantee this without knowing anything about ¢ is to require f’ (x) = 2 for all x. This means that
f (x) = 2x+k for some constant k. From the condition f (3) = 5, we see that k = —1. We can easily verify
that indeed f (x) = 2x — 1 meets all our requirements and f (7) = 13. L
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Exercises for Section 5.3
Exercise 5.3.1 Let f(x) =x°. Find avalue c € (—1,2) so that f'(c) equals the slope between the endpoints
of f(x) on [—1,2].

Exercise 5.3.2 Verify that f(x) = x/(x+ 2) satisfies the hypotheses of the Mean Value Theorem on the
interval [1,4] and then find all of the values, c, that satisfy the conclusion of the theorem.

Exercise 5.3.3 Verify that f(x) = 3x/(x+7) satisfies the hypotheses of the Mean Value Theorem on the
interval [—2,6] and then find all of the values, c, that satisfy the conclusion of the theorem.

Exercise 5.3.4 Let f(x) = tanx. Show that () = f(21) = 0 but there is no number c € (7,27) such that
f'(c) =0. Why does this not contradict Rolle’s theorem?

Exercise 5.3.5 Let f(x) = (x—3) 2. Show that there is no value ¢ € (1,4) such that f'(c) = (f(4) —
f(1))/(4—1). Why is this not a contradiction of the Mean Value Theorem?

Exercise 5.3.6 Describe all functions with derivative x> +47x — 5.

Exercise 5.3.7 Describe all functions with derivative s
X

. . . : o 1
Exercise 5.3.8 Describe all functions with derivative X - -
X

Exercise 5.3.9 Describe all functions with derivative sin(2x).
Exercise 5.3.10 Find f (x) if f' (x) = e and f(0) = 2.

Exercise 5.3.11 Suppose that f is a differentiable function such that f'(x) > —3 for all x. What is the
smallest possible value of f (4) if f(—1) =27

Exercise 5.3.12 Show that the equation 6x* — 7x+1 = 0 does not have more than two distinct real roots.

Exercise 5.3.13 Let f be differentiable on R. Suppose that f'(x) # 0 for every x. Prove that f has at most
one real root.

Exercise 5.3.14 Prove that for all real x and y |cosx — cosy| < |x —y|. State and prove an analogous
result involving sine.

Exercise 5.3.15 Show that vV1+x <1+ (x/2)if -1 <x < 1.

Exercise 5.3.16 Suppose that f(a) = g(a) and that f'(x) < g'(x) for all x > a.

(a) Prove that f(x) < g(x) for all x > a.
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(b) Use part (a) to prove that * > 1+ x for all x > 0.

2
(c) Use parts (a) and (b) to prove that ¢* > 1 +x+ %for all x > 0.

(d) Can you generalize these results?

5.4 Linear and Higher Order Approximations

When we define the derivative f’(x) as the rate of change of f(x) with respect to x, we notice that in
relation to the graph of f, the derivative is the slope of the tangent line, which (loosely speaking) is
the line that just grazes the graph. But what precisely do we mean by this? In short, the tangent line
approximates the graph near the point of contact. The definition of the derivative f’ (a) guarantees this
when it exists: By taking x sufficiently close to a but not equal to a,

f(x) = fla)

X—a

~ f'(a),

and consequently,
fx) = f'(a) (x—a)+ f(a).
The left hand side gives us the y-value of the function y = f (x) and the right hand side gives us the y-value
y=f"(a) (x—a)+ f (a) for the tangent line to the graph of f at the point (a, f (a)).
In this section we will explore how to apply this idea to approximate some values of f, some changes
in the values of f, and also the roots of f.

5.4.1 Linear Approximations

We begin by the first derivative as an application of the tangent line to approximate f.

Recall that the tangent line to f(x) at a point x = a is given by

L(x) = f'(a)(x—a) + f(a).

The tangent line in this context is also called the linear approximation to f at a.

If f is differentiable at a then L is a good approximation of f so long as x is “not too far” from a.
Put another way, if f is differentiable at a then under a microscope f will look very much like a straight
line, and thus will look very much like L; since L(x) is often much easier to compute than f(x), then it
makes sense to use L as an approximation. Figure 5.8 shows a tangent line to y = x* at three different
magnifications.
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Figure 5.8: The linear approximation to y = x?.

Thus in practice if we want to approximate a difficult value of f(b), then we may be able to approxi-
mate this value using a linear approximation, provided that we can compute the tangent line at some point
a close to b. Here is an example.

Example 5.27: Linear Approximation

Let f(x) =+/x+4, what is f(6)?

Solution. We are asked to calculate f(6) = 1/6+4 = /10 which is not easy to do without a calculator.
However 9 is (relatively) close to 10 and of course f(5) = v/9 is easy to compute, and we use this to
approximate v/ 10.

To do so we have f'(x) = 1/(2v/x+4), and thus the linear approximation to f atx =5 is

L(x x—=5)+V5+d=—+
0= () 9+
Now to estimate /10, we substitute 6 into the linear approximation L(x) instead of f(x), to obtain
6-5 19 1 -
\/6+4~T—|—3 3 —36:3.16%3.17

It turns out the exact value of v/10 is actually 3.16227766. .. but our estimate of 3.17 was very easy to
obtain and is relatively accurate. This estimate is only accurate to one decimal place. &

With modern calculators and computing software it may not appear necessary to use linear approxima-
tions, but in fact they are quite useful. For example in cases requiring an explicit numerical approximation,
they allow us to get a quick estimate which can be used as a “reality check” on a more complex calculation.
Further in some complex calculations involving functions, the linear approximation makes an otherwise
intractable calculation possible without serious loss of accuracy.

Example 5.28: Linear Approximation of Sine

Find the linear approximation of sinx at x = 0, and use it to compute small values of sinx.
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Solution. If f(x) = sinx, then f’(x) = cosx, and thus the linear approximation of sinx at x = 0 is:
L(x) =cos(0)(x—0) +sin(0) = x.

Thus when x is small this is quite a good approximation and is used frequently by engineers and scientists
to simplify some calculations.

For example you can use your calculator (in radian mode since the derivative of sinx is cosx only in
radian) to see that
sin(0.1) = 0.099833416...

and thus L(0.1) = 0.1 is a very good and quick approximation without any calculator! &

Exercises for 5.4.1

Exercise 5.4.1 Find the linearization L(x) of f(x) = In(1+x) at a = 0. Use this linearization to approxi-
mate f(0.1).

Exercise 5.4.2 Use linear approximation to estimate (1.9).

Exercise 5.4.3 Show in detail that the linear approximation of sinx at x = 0 is L(x) = x and the linear
approximation of cosx at x =0 is L(x) = 1.

Exercise 5.4.4 Use f(x) = v/x+ 1 to approximate V9 by choosing an appropriate point x = a. Are we
over- or under-estimating the value of v/9? Explain.

5.4.2 Differentials

Very much related to linear approximations are the differentials dx and dy, used not to approximate values
of f, but instead the change (or rise) in the values of f.

Let y = f(x) be a differentiable function. We define a new independent variable dx, and a new
dependent variable dy = f’(x)dx. Notice that dy is a function both of x (since f’(x) is a function of
x) and of dx. We call both dx and dy

Now fix a point a and let Ax = x —a and Ay = f(x) — f(a). If x is near a then Ax is clearly small. If
we set dx = Ax then we obtain

Ay
dy = f'(a)dx ~ —2Ax = Ay.
y=f'(a)dx Ay y

Thus, dy can be used to approximate Ay, the actual change in the function f between a and x. This is
exactly the approximation given by the tangent line:

dy = f'(a)(x—a) = f'(a)(x—a) + f(a) - f(a) = L(x) — f(a).

While L(x) approximates f(x), dy approximates how f(x) has changed from f(a). Figure 5.9 illustrates
the relationships.
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Figure 5.9: Differentials.

Here is a concrete example.

Example 5.30: Rise of Natural Logarithm

Approximate the rise of f(x) = Inx from x = 1 to x = 1.1, using linear approximation.

Solution. Note that In(1.1) is not readily calculated (without a calculator) hence why we wish to use linear
approximation to approximate f(1.1) — f(1).

We fix a = 1 and as above we have Ax = x— 1 and Ay = f(x) — f(1) = Inx, and obtain
dy = f'(1)dx ~ %M:Ay.
But f'(x) = 1/x and thus f/(1) = 1/1 = 1, we obtain in this case
dy =dx ~ Ay.
Finally for x = 1.1, we can easily approximate the rise of f as
F(LD) = f(1)=Ay~dy=1.1-1=0.1.

The correct value of In(1.1) =1In1 is 0.0953.. . and thus we were relatively close. &

Exercises for 5.4.2

Exercise 5.4.5 Let f(x) =x* Ifa=1and dx = Ax = 1/2, what are Ay and dy?
Exercise 5.4.6 Let f(x) =+/x. Ifa= 1 and dx = Ax = 1/10, what are Ay and dy?
Exercise 5.4.7 Let f(x) = sin(2x). If a =  and dx = Ax = 7t /100, what are Ay and dy?

Exercise 5.4.8 Use differentials to estimate the amount of paint needed to apply a coat of paint 0.02 cm
thick to a sphere with diameter 40 meters. (Recall that the volume of a sphere of radius r is V = (4/3)nr3.
Notice that you are given that dr = 0.02.)
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5.4.3 Taylor Polynomials

We can go beyond first order derivatives to create polynomials approximating a function as closely as we
wish, these are called Taylor Polynomials.

While our linear approximation L(x) = f’(a)(x —a) + f(a) at a point a was a polynomial of degree 1
such that both L(a) = f(a) and L' (a) = f’(a), we can now form a polynomial

Tp(x) =ag+a)(x—a) +ay(x—a)? +az(x—a)* + -+ ay(x—a)"

which has the same first n derivatives at x = a as the function f.

By successively computing the derivatives of 7,,, we obtain:

ag = f(a) =18
4 = L@
ap = f k!( )

‘a, = /" (a)

where ¥ (x) is the k' derivative of f(x), and n! = n(n—1)(n—2)...(2)(1), referred to as factorial
notation.

Here is an example.

Example 5.31: Approximate e using Taylor Polynomials

Approximate e* using Taylor polynomials at a = 0, and use this to approximate e.

Solution. In this case we use the function f(x) = ¢ at a = 0, and therefore
T,(x) = ao +axtax® +a3e + .. +a

Since all derivatives ¥ (x) = ¢*, we get:

ap = f(0) =1
alzf;(!o)zl
(0
az:f%(!):%
70
a3:f3(!):%
(G
ak_fk!():%
() (0
a”:fn!():%

Thus

T(x) = 1+X+2—2,
3
T3(x) = 1+x+ 35+ %
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and in general

2 3
x° X X"
Tn(x): 1+x+§+§+"'+a-
Finally we can approximate e = f(1) by simply calculating 7,,(1). A few values are:
Ti(1)=1+1=2
(1) =141+ =25
5 _
L) =1+1+L+1-28
Ty(1) = 2.71825396825
Too(1) = 2.71828182845

We can continue this way for larger values of n, but Too(1) is already a pretty good approximation of
e, and we took only 20 terms! [ )

Exercises for 5.4.3

Exercise 5.4.9 Find the 5" degree Taylor polynomial for f(x) = sinx around a = 0.

(a) Use this Taylor polynomial to approximate sin(0.1).

(b) Use a calculator to find sin(0.1). How does this compare to our approximation in part (a)?

Exercise 5.4.10 Suppose that f" exists and is continuous on [1,2]. Suppose also that |f"(x)| < zlt for all
x in (1,2). Prove that if we use the linearization y = L(x) of y = f(x) at x = 1 as an approximation of
y = f(x) near x =1, then our estimated value of f(1.2) is guaranteed to have an accuracy of at least 0.01,
i.e., our estimate will lie within 0.01 units of the true value.

Exercise 5.4.11 Find the 3™ degree Taylor polynomial for f(x) = ﬁ — 1 around a = 0. Explain why this
approximation would not be useful for calculating f(5).

Exercise 5.4.12 Consider f(x) = Inx around a = 1.

(a) Find a general formula for f (x) forn > 1.

(b) Find a general formula for the Taylor Polynomial, T,(x).

5.4.4 Newton's Method

A well known numeric method is Newton’s Method (also sometimes referred to as Newton-Raphson’s
Method), named after Isaac Newton and Joseph Raphson. This method is used to find roots, or x-intercepts,
of a function. While we may be able to find the roots of a polynomial which we can easily factor, we saw
in the previous chapter on Limits, that for example the function ¢* +x = 0 has a solution (i.e. root, or
x-intercept) at x =~ —0.56714. By the Intermediate Value Theorem we know that the function ¢* +x =0
does have a solution. We cannot here simply solve for such a root algebraically, but we can use a numerical
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method such as Newton's. Such a process is typically classified as an iterative method, a name given to
a technique which involves repeating similar steps until the desired accuracy is obtained. Many computer
algorithms are coded with a for-loop, repeating an iterative step to converge to a solution.

The idea is to start with an initial value xo (approximating the root), and use linear approximation to
create values xq, xo, - -+ getting closer and closer to a root.

The first value x| corresponds to the intercept of the tangent line of f(xg) with the x-axis, which is:

N (x0)
f'(xo)
y
f(xo)T
/Al  S—
/]

Figure 5.10: First iteration of Newton’s Method.

We can see in Figure 5.10, that if we compare the point (x,0) to (x1,0), we would likely come to
the conclusion that (x,0) is closer to the actual root of f(x) than our original guess, (xp,0). As will be
discussed, the choice of xo must be done correctly, and it may occur that x; does not yield a better estimate
of the root.

Newton’s method is simply to repeat this process again and again in an effort to obtain a more accurate
solution. Thus at the next step we obtain:

RN (€}
f'(x1)
y
Y e x x
f(x)T
A

Figure 5.11: Second iteration of Newton’s Method.
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We can now clearly see how (xp,0) is a better estimate of the root of f(x), rather than any of the
previous points. Moving forward, we will get:

f(x2)
J'(x2)

X3 = Xp —

Rest assured, (x3,0) will be an even better estimate of the root! We express the general iterative step

as: ) F)
1 (%xn)

The idea is to iterate these steps to obtain the desired accuracy. Here is an example.

Xn+1 = Xn

Example 5.32: Newton method to approximate roots

Use Newton’s method to approximate the roots of f(x) = x> —x+ 1.

Solution. You can try to find solve the equation algebraically to see that this is a difficult task, and thus it
make sense to try a numerical method such as Newton’s.

To find an initial value xo, note that f(—1) = —5 and f(0) = 1, and by the Intermediate Value Theorem
this f has a root between these two values, and we decide to start with xo = —1 (you can try other values
to see what happens).

Note that f'(x) = 3x? — 1, and thus we get

f(xn) o—x,+1
R T T
Thus we can produce the following values (try it):
X0 = —1
x1 = —1.5000
xy = —1.347826..
x3 = —1.325200..
x4 = —1.324718..
x5 = —1.324717..
xe = —1.324717..
and we can now approximate the root as —1.324717. &

As with any numerical method, we need to be aware of the weaknesses of any technique we are using.



190 = Applications of Derivatives

Figure 5.12: Function with three distinct solutions.

If we know our root is somewhere near a, we would make our guess xo = a. Generally speaking, a
good practice is to make our guess as close to the actual root as possible. In some cases we may have no
idea where the root is, so it would be prudent to perform the algorithm several times on several different
initial guesses and analyze the results.

For example we can see in Figure 5.12 that f(x) in fact has three roots, and depending on our initial
guess, we may get the algorithm to converge to different roots. If we did not know where the roots were,
we would try the technique several times. In one instance, if our initial guess was x,, we’d likely converge
to (a,0). Then if we were to choose another guess, x;, then we’d likely converge to (b,0). Eventually,
using various initial guesses we’d get one of three roots: a, b, or c. Under these circumstances we can
clearly see the effectiveness of this numeric method.

y
f(xo)t

f(x1)
f(x,)|

Figure 5.13: Newton’s Method applied to sinx.

As another example if we attempt to use Newton's Method on f(x) = sinx using xo = /2, then
f'(x0) =0 so x; is undefined and we cannot proceed. Even in general x,,, 1 is typically nowhere near x;,,
and in general not converging to the root nearest to our initial guess of x¢o. In effect, the algorithm keeps
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"bouncing around". An example of which is depicted in Figure 5.13. Based on our initial guess for such
a function, the algorithm may or may not converge to a root, or it may or may not converge to the root
closest to the initial guess. This gives rise to the more common issue: Selection of the initial guess, xg.

Here is a summary.
Key Points in using Newton’s method to approximate a root of f(x)

1. Choosing xg as close as possible to the root we wish to find.
2. A guess for xp which makes the algorithm “bounce around” is considered unstable.

3. Even the smallest changes to xp can have drastic effects: We may converge to another root, we may
converge very slowly (requiring many more iterations), or we may encounter an unstable point.

4. We may encounter a stationary point if we choose x such that f/(x) = 0 (i.e. at a critical point!) in
which case the algorithm fails.

This is all to say that your initial guess for xo can be extremely important.
Exercises for 5.4.4

Exercise 5.4.13 Use Newton’s Method to find all roots of f(x) = 3x* —9x — 11. (Hint: use Intermediate
Value Theorem to choose an appropriate x)

Exercise 5.4.14 Consider f(x) = x> — x> +x— L.

(a) Using initial approximation xy = 2, find x4.

(b) What is the exact value of the root of f? How does this compare to our approximation x4 in part

(a)?

(c) What would happen if we chose xo = 0 as our initial approximation?

Exercise 5.4.15 Consider f(x) = sinx. What happens when we choose xo = ©/2? Explain.

5.5 LHopital's Rule

The following application of derivatives allows us to compute certain limits.
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A limit of a quotient li_r>n % is said to be an indeterminate form of the type % if
X—a

both f (x) — 0 and g (x) — 0 as x — a.
Likewise, it is said to be an indeterminate form of the type = if
both f (x) — 4o and g (x) — do0 asx — a.

Note that the two =+ signs are independent of each other.

Theorem 5.34: I’Hopital’s Rule

)

For a limit lim - of the indeterminate form 2 or =
x—a 8(*) 0 i
/
Al

if 1im £&)

x—a g (x)

exists or equals oo or —oo.

This theorem is somewhat difficult to prove, in part because it incorporates so many different possibil-
ities, so we will not prove it here.
We should also note that there may be instances where we would need to apply L’'Hdpital’s Rule

(x)

!
multiple times, but we must confirm that lim,_,, Jg% is still indeterminate before we attempt to apply

L’Hopital’s Rule again. Finally, we want to mention that L."Hdpital’s rule is also valid for one-sided limits
and limits at infinity.

Example 5.35: I’Hopital’s Rule

2 —m?

Compute lim —; .
x—=7  sinx

Solution. We use L’Hopital’s Rule: Since the numerator and denominator both approach zero,

. x2—n? . 2x
lim — = lim —,
x—=T  Sinx X—T COSX

provided the latter exists. But in fact this is an easy limit, since the denominator now approaches —1, so

XX -n* 2r
lim = =

- = — = -27T.
=T SInX —1
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Example 5.36: L’Hopital’s Rule

Compute lim 2~ 3x 47
u —_—
P e 2 ¥ 47x+ 1

Solution. As x goes to infinity, both the numerator and denominator go to infinity, so we may apply
L’Hopital’s Rule:
2 —3x+7 . 4x—3
xow X F AT+ 1 x24T
In the second quotient, it is still the case that the numerator and denominator both go to infinity, so we are
allowed to use L’Hopital’s Rule again:

m 4x—3 'm4
1 = 11 — =
x—=00 2x+47 x—ee 2

So the original limit is 2 as well. &

Example 5.37: L’Hopital’s Rule

secx—1

Compute lim —;
x—0  sinx

Solution. Both the numerator and denominator approach zero, so applying L’Hopital’s Rule:

. secx—1 . secxtanx 1-0

- 0.
x—0 sinx x—0 COSX 1

&

L’Hopital’s rule concerns limits of a quotient that are indeterminate forms. But not all functions are
given in the form of a quotient. But all the same, nothing prevents us from re-writing a given function
in the form of a quotient. Indeed, some functions whose given form involve either a product f (x) g (x)
or a power f (x)g(x) carry indeterminacies such as 0- +oo and 17, Something small times something
numerically large (positive or negative) could be anything. It depends on how small and how large each
piece turns out to be. A number close to 1 raised to a numerically large (positive or negative) power could
be anything. It depends on how close to 1 the base is, whether the base is larger than or smaller than 1,
and how large the exponent is (and its sign). We can use suitable algebraic manipulations to relate them to
indeterminate quotients. We will illustrate with two examples, first a product and then a power.

Example 5.38: L’Hopital’s Rule

Compute lim xInux.
x—0t

Solution. This doesn’t appear to be suitable for L’Hopital’s Rule, but it also is not “obvious”. As x
approaches zero, Inx goes to —oo, so the product looks like:

(something very small) - (something very large and negative).
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This could be anything: it depends on how small and how large each piece of the function turns out to be.
As defined earlier, this is a type of £“0 - c”, which is indeterminate. So we can in fact apply L’Hopital’s
Rule after re-writing it in the form =:

1 Inx Inx
xlnx=—=—.
1/x x7!

Now as x approaches zero, both the numerator and denominator approach infinity (one —eoo and one 4o,
but only the size is important). Using L"Hopital’s Rule:

_ Inx . 1/x .1
lim — = lim / 3 2
x—0t X x—0t —X—

One way to interpret this is that since 1im+x1nx = 0, the x approaches zero much faster than the Inx
x—0

approaches —oo, &

‘(100”

Finally, we illustrate how a limit of the type can be indeterminate.

Example 5.39: L’Hopital’s Rule

Evaluate lim x'/0—1,
x—1t

Solution. Plugging in x = 1 (from the right) gives a limit of the type “1”. To deal with this type of limit
we will use logarithms. Let

L= lim x"/6=1,
x—1t

Now, take the natural log of both sides:

InL = lim In (x1/<x—1)> .

x—1t

Using log properties we have:
Inx

InL = lim .
=1t x—1

The right side limit is now of the type 0/0, therefore, we can apply L’Hopital’s Rule:

1 1
InL = lim nx _ lim _/x =
x—=1tx—1 a1t 1

1

Thus, InL = 1 and hence, our original limit (denoted by L) is: L = e! = e. That is,

L= lim x/1 — ¢,
x—1t

‘(100”

In this case, even though our limit had a type of , it actually had a value of e. s

Exercises for 5.5

Compute the following limits.



. . cosx—1
Exercise 5.5.1 lim —
x—0 sinx

Exercise 5.5.2 lim 53
X—yoo X

Exercise 5.5.5 lim M
x—0 X

Exercise 5.5.6 lim 2_7)62_2
x—2 — X

N

Exercise 5.5.7 lim ————

x—1 1/\3/)_6—1

_\1/4
Exercise 5.5.8 Tim (% —1
x—0 X

Exercise 5.5.9 lim <t + %) ((4—1)32-38)

t—0

1 1
Exercise 5.5.10 lim (; + —) (Vi+1-1)

t—0t \/f
2
Exercise 5.5.11 lim ———
x—0+/2x+1-—1
(u—1)>°

Exercise 5.5.12 Ii
rerase w1 (1/u) —u?+3/u—3

Exercise 5.5.13 lim M
=03 —(2/x)

Exercise 5.5.14 lim m
x—0+t2+1 / \/)_C

CcOosX
Exercise 5.5.15 lim ——
xere o (1/2) —x

. et —1
Exercise 5.5.16 lim
x—0 X

2

Exercise 5.5.17 lim
x—0efr—x—1

Exercise 5.5.31 Discuss what happens if we try to use L’Hopital’s rule to find the limit lim

5.5. LHopital’s Rule

1
Exercise 5.5.3 lim X
X=X

Exercise 5.5.4 lim ln_x

x—ro0 \/}

Inx

Exercise 5.5.18 lim
x—1X—

2
Exercise 5.5.19 lim P& +1)

x—0 X

|
Exercise 5.5.20 lim );nx
x—1 x4 —

Exercise 5.5.21 lim M)
x—0 ln(x + 1)

/41
Exercise 5.5.22 lim
x—1 X

Exercise 5.5.23 lim vr—1

—1 x—1

2
Exercise 5.5.24 lim w
x—0 x—4

Exercise 5.5.25 lim ﬁ
x—=0y/x+4 -2

Exercise 5.5.26 lim Ll_l
x—=0 /x4 2-2

Exercise 5.5.27 lim L-H
=0t /x+1—1

T
Exercise 5.5.28 lim ¥* 1= 1
=0 /x+1—1

1 1
Exercise 5.5.29 lim (x+5) | — +——=
x—1 2x  x+2

3 _ 6y —
Exercise 5.5.30 lim w
x—2 )C3 -+ 4

Xx—+sinx
x—oo x4 1
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5.6 Curve Sketching

In this section, we discuss how we can tell what the graph of a function looks like by performing simple
tests on its derivatives.

5.6.1 Intervals of Increase/Decrease, and the First Derivative Test

The method of Section 5.2.1 for deciding whether there is a local maximum or minimum at a critical value
is not always convenient. We can instead use information about the derivative f’(x) to decide; since we
have already had to compute the derivative to find the critical values, there is often relatively little extra
work involved in this method.

How can the derivative tell us whether there is a maximum, minimum, or neither at a point? Suppose
that f is differentiable at and around x = a, and suppose further that a is a critical point of f. Then we
have several possibilities:

1. There is a local maximum at x = a. This happens if f'(x) > 0 as we approach x = a from the left
(i.e. when x is in the vicinity of a, and x < a) and f’(x) < 0 as we move to the right of x = a (i.e.
when x is in the vicinity of a, and x > a).

2. There is a local minimum at x = a. This happens if f'(x) < 0 as we approach x = a from the left
(i.e. when x is in the vicinity of a, and x < a) and f’(x) > 0 as we move to the right of x = a (i.e.
when x is in the vicinity of a, and x > a).

3. There is neither a local maximum or local minimum at x = a. If f’(x) does not change from negative
to positive, or from positive to negative, as we move from the left of x = a to the right of x = a (that
is, f'(x) is positive on both sides of x = a, or negative on both sides of x = a) then there is neither a
maximum nor minimum when x = a.

See the first graph in Figure 5.5 and the graph in Figure 5.6 for examples.

Example 5.40: Local Maximum and Minimum

Find all local maximum and minimum points for f(x) = sinx + cosx using the first derivative test.

Solution. The derivative is f’(x) = cosx — sinx and from Example 5.10 the critical values we need to
consider are 7 /4 and 57 /4.

We analyze the graphs of sinx and cosx. Just to the left of /4 the cosine is larger than the sine, so
f'(x) is positive; just to the right the cosine is smaller than the sine, so f’(x) is negative. This means there
is a local maximum at 7t /4. Just to the left of 57 /4 the cosine is smaller than the sine, and to the right the
cosine is larger than the sine. This means that the derivative f’(x) is negative to the left and positive to the
right, so f has a local minimum at 57 /4. &

The above observations have obvious intuitive appeal as you examine the graphs in Figures 5.5 and
5.6. We can extend these ideas further and then formulate and prove a theorem: If the graph of f is
increasing before (i.e., to the left of) x = a and decreasing after (i.e., to the right of) x = a, then there is
a local maximum at x = a. If the graph of f is decreasing before x = a and increasing after x = a, then
there is a local minimum at x = a. If the graph of f is consistently increasing on either side of x = a or
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consistently decreasing on either side of x = a, then there is neither a local maximum nor a local minimum
at x = a. We can prove the following theorem using the Mean Value Theorem.

Theorem 5.41: Intervals of Increase and Decrease

If ' (x) > O for every x in an interval, then f is increasing on that interval.
If f’ (x) < O for every x in an interval, then f is decreasing on that interval.

Proof. We will prove the increasing case. The proof of the decreasing case is similar. Suppose that
f'(x) > 0 on an interval I. Then f is differentiable, and hence also, continuous on 7. If x; and x, are any
two numbers in / and x; < x, then f is continuous on [x1,x,] and differentiable on (x,x;). By the Mean
Value Theorem, there is some c in (x;,x3) such that

f/ (C) _ f(-xZ) _f<-x1).
X2 —X1
But ¢ must be in I, and thus, since f’ (x) > 0 for every x in I, f'(c) > 0. Also, since x| < xp, we have
xo —x1 > 0. Therefore, both the left hand side and the denominator of the right hand side are positive.
It follows that the numerator of the right hand must be positive. That is, f(x2) — f (x;) > 0, or in other
words, f (x1) < f (x2). This shows that between x; and x; in I, the larger one, x,, necessarily has the larger
function value, f (x;), and the smaller one, x|, necessarily have the smaller function value, f (x;). This
means that f is increasing on /. s

Example 5.42: Local Minimum and Maximum

Consider the function f (x) = x* —2x. Find where f is increasing and where f is decreasing. Use
this information to find the local maximum and minimum points of f.

Solution. We compute f/ (x) and analyze its sign.

flx) =40 —dx=dx(* — 1) =dx(x— 1) (x+ 1).
The solution of the inequality f’ (x) > 0is (—1,0)U(1,00). So, f is increasing on the interval (—1,0) and
on the interval (1,0). The solution of the inequality f" (x) < 0is (—e,—1)U(0,1). So, f is decreasing on

the interval (—eo, —1) and on the interval (0, ). Therefore, at the critical points —1, 0 and 1, respectively,
f has a local minimum, a local maximum and a local minimum. &

Exercises for 5.6.1

Find all critical points and identify them as local maximum points, local minimum points, or neither.

Exercise 5.6.1 y = x> —x
Exercise 5.6.2 y=2+3x—x°

Exercise 5.6.3 y = x> —9x> + 24x
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Exercise 5.6.4 y=x*—2x>+3

Exercise 5.6.5 y = 3t — 443

Exercise 5.6.6 y = (x> — 1) /x

Exercise 5.6.7 y = 3x> — (1/x%)

Exercise 5.6.8 y = cos(2x) —x

Exercise 5.6.9 f(x)=(5—x)/(x+2)

Exercise 5.6.10 f(x) = |x*> — 121

Exercise 5.6.11 f(x) =x°/(x+1)

Exercise 5.6.12 f(x) = sin’x

Exercise 5.6.13 Find the maxima and minima of f(x) = secx.

Exercise 5.6.14 Let f(0) = cos®(0) —2sin(0). Find the intervals where f is increasing and the intervals
where f is decreasing in [0,27]. Use this information to classify the critical points of f as either local
maximums, local minimums, or neither.

Exercise 5.6.15 Let r > 0. Find the local maxima and minima of the function f(x) = \/r? —x2 on its
domain [—r,r].

Exercise 5.6.16 Ler f(x) = ax® + bx+ ¢ with a = 0. Show that f has exactly one critical point using the
first derivative test. Give conditions on a and b which guarantee that the critical point will be a maximum.
It is possible to see this without using calculus at all; explain.

5.6.2 The Second Derivative Test

The basis of the first derivative test is that if the derivative changes from positive to negative at a point at
which the derivative is zero then there is a local maximum at the point, and similarly for a local minimum.
If £/ changes from positive to negative it is decreasing; this means that the derivative of f’, f”, might be
negative, and if in fact f” is negative then f” is definitely decreasing. From this we determine that there is
a local maximum at the point in question. Note that ' might change from positive to negative while f”
is zero, in which case f” gives us no information about the critical value. Similarly, if f’ changes from
negative to positive there is a local minimum at the point, and f’ is increasing. If f”/ > 0 at the point, this
tells us that f” is increasing, and so there is a local minimum.

Example 5.43: Second Derivative

Consider again f(x) = sinx+ cosx, with f'(x) = cosx —sinx and f”(x) = —sinx — cosx. Use the
second derivative test to determine which critical points are local maxima or minima.
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Solution. Since f”(71/4) = —v/2/2—v/2/2 = —/2 < 0, we know there is a local maximum at 7 /4. Since
f(5m/4) = —(—V2/2) — (—V2/2) = V2 > 0, there is a local minimum at 57 /4. &

When it works, the second derivative test is often the easiest way to identify local maximum and min-
imum points. Sometimes the test fails, and sometimes the second derivative is quite difficult to evaluate;
in such cases we must fall back on one of the previous tests.

Example 5.44: Second Derivative

Let f(x) =x* and g(x) = —x*. Classify the critical points of f(x) and g(x) as either maximum or
minimum.

Solution. The derivatives for f(x) are f'(x) = 4x> and f”(x) = 12x%. Zero is the only critical value, but
7"(0) =0, so the second derivative test tells us nothing. However, f(x) is positive everywhere except at
zero, so clearly f(x) has a local minimum at zero.

On the other hand, for g(x) = —x*, g’(x) = —4x> and g” (x) = —12x%. So g(x) also has zero as its only
only critical value, and the second derivative is again zero, but —x* has a local maximum at zero. &

Exercises for 5.6.2

Find all local maximum and minimum points by the second derivative test.

Exercise 5.6.17 y = X’ —x
Exercise 5.6.18 y =2+ 3x—x°
Exercise 5.6.19 y = x> —9x” 4 24x
Exercise 5.6.20 y =x*—2x*+3
Exercise 5.6.21 y = 3x* —4x°
Exercise 5.6.22 y= (x> —1)/x
Exercise 5.6.23 y = 3x* — (1/x?)
Exercise 5.6.24 y = cos(2x) —x
Exercise 5.6.25 y =4x++/1 —x
Exercise 5.6.26 y= (x+1)/ V/5x2+35
Exercise 5.6.27 y = X —x

Exercise 5.6.28 y = 6x+ sin3x
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Exercise 5.6.29 y=x+1/x
Exercise 5.6.30 y=x’+1/x
Exercise 5.6.31 y = (x+5)'/4
Exercise 5.6.32 y = tan’x

Exercise 5.6.33 y = cos’x — sin’x

Exercise 5.6.34 y = sin’x

5.6.3 Concavity and Inflection Points

We know that the sign of the derivative tells us whether a function is increasing or decreasing; for example,
when f/(x) > 0, f(x) is increasing. The sign of the second derivative f”(x) tells us whether f” is increasing
or decreasing; we have seen that if f’ is zero and increasing at a point then there is a local minimum at the
point. If f’is zero and decreasing at a point then there is a local maximum at the point. Thus, we extracted
information about f’ from information about f”.

We can get information from the sign of f” even when f” is not zero. Suppose that f”(a) > 0. This
means that near x = a, f is increasing. If f’(a) > 0, this means that f slopes up and is getting steeper;
if f(a) < 0, this means that f slopes down and is getting less steep. The two situations are shown in
figure 5.14. A curve that is shaped like this is called concave up.

.

Figure 5.14: f”(a) > 0: f'(a) positive and increasing, /’(a) negative and increasing.

Now suppose that f”'(a) < 0. This means that near x = a, f’ is decreasing. If f'(a) > 0, this means
that f slopes up and is getting less steep; if f/(a) < 0, this means that f slopes down and is getting steeper.
The two situations are shown in figure 5.15. A curve that is shaped like this is called concave down.

g AN

Figure 5.15: f”(a) < 0: f'(a) positive and decreasing, f’(a) negative and decreasing.

If we are trying to understand the shape of the graph of a function, knowing where it is concave up
and concave down helps us to get a more accurate picture. Of particular interest are points at which



5.6. Curve Sketching = 201

the concavity changes from up to down or down to up; such points are called inflection points. If the
concavity changes from up to down at x = a, f” changes from positive to the left of a to negative to the
right of a, and usually f”(a) = 0. We can identify such points by first finding where f”(x) is zero and then
checking to see whether f”(x) does in fact go from positive to negative or negative to positive at these
points. Note that it is possible that f”(a) = 0 but the concavity is the same on both sides; f(x) = x* at

x = 01s an example.

Example 5.45: Concavity

Describe the concavity of f(x) = x> —x.

Solution. The derivatives are f'(x) = 3x*> — 1 and f”(x) = 6x. Since f”(0) = 0, there is potentially an
inflection point at zero. Since f”(x) > 0 when x > 0 and f”(x) < 0 when x < 0 the concavity does change
from concave down to concave up at zero, and the curve is concave down for all x < 0 and concave up for

all x > 0. &

Note that we need to compute and analyze the second derivative to understand concavity, so we may
as well try to use the second derivative test for maxima and minima. If for some reason this fails we can
then try one of the other tests.

Exercises for 5.6.3

Describe the concavity of the functions below.

Exercise 5.6.35 y = x> —x
Exercise 5.6.36 y =2+ 3x—x°
Exercise 5.6.37 y = x> —9x? 4 24x
Exercise 5.6.38 y =x*—2x*+3
Exercise 5.6.39 y = 3x* —4x°
Exercise 5.6.40 y= (x> —1)/x
Exercise 5.6.41 y = 3x* — (1/x?)
Exercise 5.6.42 y = sinx -+ cosx

Exercise 5.6.43 y=4x++v1—x

Exercise 5.6.44 y= (x+1)/v/5x%+35

Exercise 5.6.45 y=1x> —x



202 = Applications of Derivatives

Exercise 5.6.46 y = 6x+ sin3x
Exercise 5.6.47 y=x+1/x
Exercise 5.6.48 y = x>+ 1/x
Exercise 5.6.49 y = (x+5)/4

Exercise 5.6.50 y = tan’x

2 2

Exercise 5.6.51 y = cos”“x—sin“x

Exercise 5.6.52 y = sin’x

Exercise 5.6.53 Identify the intervals on which the graph of the function f(x) = =4 +100s of one of
these four shapes: concave up and increasing; concave up and decreasing; concave down and increasing;
concave down and decreasing.

Exercise 5.6.54 Describe the concavity of y = x° +bx®> + cx+d. You will need to consider different cases,
depending on the values of the coefficients.

Exercise 5.6.55 Let n be an integer greater than or equal to two, and suppose f is a polynomial of degree
n. How many inflection points can f have? Hint: Use the second derivative test and the fundamental
theorem of algebra.

5.6.4 Asymptotes and Other Things to Look For

A vertical asymptote is a place where the function becomes infinite, typically because the formula for
the function has a denominator that becomes zero. For example, the reciprocal function f(x) = 1/x has
a vertical asymptote at x = 0, and the function tanx has a vertical asymptote at x = /2 (and also at
x=—m/2, x=37m/2, etc.). Whenever the formula for a function contains a denominator it is worth
looking for a vertical asymptote by checking to see if the denominator can ever be zero, and then checking
the limit at such points. Note that there is not always a vertical asymptote where the denominator is zero:

f(x) = (sinx) /x has a zero denominator at x = 0, but since lin(l) (sinx)/x = 1 there is no asymptote there.
X—

A horizontal asymptote is a horizontal line to which f(x) gets closer and closer as x approaches oo
(or as x approaches —o=). For example, the reciprocal function has the x-axis for a horizontal asymptote.
Horizontal asymptotes can be identified by computing the limits lim f(x) and lim f(x). Since lim 1/x=

X—>0 X—r—00 X—ro0
lim 1/x =0, the line y = 0 (that is, the x-axis) is a horizontal asymptote in both directions.
X——oo

Some functions have asymptotes that are neither horizontal nor vertical, but some other line. Such

asymptotes are somewhat more difficult to identify and we will ignore them.

If the domain of the function does not extend out to infinity, we should also ask what happens as x

approaches the boundary of the domain. For example, the function y = f(x) = 1//r? — x? has domain
—r < x < r, and y becomes infinite as x approaches either r or —r. In this case we might also identify this
behavior because when x = 4-r the denominator of the function is zero.
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If there are any points where the derivative fails to exist (a cusp or corner), then we should take special
note of what the function does at such a point.

Finally, it is worthwhile to notice any symmetry. A function f(x) that has the same value for —x as
for x, i.e., f(—x) = f(x), is called an “even function.” Its graph is symmetric with respect to the y-axis.
Some examples of even functions are: x* when #n is an even number, cosx, and sinx. On the other hand,
a function that satisfies the property f(—x) = —f(x) is called an “odd function.” Its graph is symmetric
with respect to the origin. Some examples of odd functions are: x" when #n is an odd number, sinx, and
tanx. Of course, most functions are neither even nor odd, and do not have any particular symmetry.

5.6.5 Summary of Curve Sketching

The following is a guideline for sketching a curve y = f(x) by hand. Each item may not be relevant to
the function in question, but utilizing this guideline will provide all information needed to make a detailed
sketch of the function.

Guideline for Curve Sketching

1. Domain of the function

2. x- and y-Intercepts

3. Symmetry

4. Vertical and Horizontal Asymptotes

5. Intervals of Increase/Decrease, and Local Extrema
6. Concavity and Points of Inflection

7. Sketch the Graph

Solution.
1. The domainis {x: x> —1#0} = {x:x# £1} = (—o0,—1)U(—1,1)U(1,00)
2. There is an x-intercept at x = 0. The y intercept is y = 0.

3. f(—x) = f(x), so f is an even function (symmetric about y-axis)
4. xgrilw 21" XEIEW m =2, s0 y = 2 is a horizontal asymptote.
Now the denominator is 0 at x = £1, so we compute:
2x? 2x2 2x? 2x2

lim = +oo, lim = —oo, lim = =
1 x—1- x2—1 x——1F x2—1 x——1- x2—1
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So the lines x = 1 and x = —1 are vertical asymptotes.

For critical values we take the derivative:

ey 4x(x2—1)—2x2-2x_ —4x
f(x> = (x2—1)2 - (x2_1)2'

Note that f’(x) = 0 when x = 0 (the top is zero). Also, f'(x) = DNE when x = +1 (the bottom is
zero). As x = %1 is not in the domain of f(x), the only critical number is x = 0 (recall that to be a
critical number we need it to be in the domain of the original function).

Drawing a number line and including all of the split points of f’(x) we have:

£'(-2) >0 £'(-0.5) > 0 £'(0.5) < 0 £'(2) <0
+ + ~ ~
f f f
-1 0 1
inc inc dec dec

Thus f is increasing on (—eo, —1) U (—1,0) and decreasing on (0,1) U (1,00).

By the first derivative test, x = 0 is a local max.

. For possible inflection points we take the second derivative:

gy 1262 +4
f (@—W

The top is never zero. Also, the bottom is only zero when x = 4-1 (neither of which are in the domain
of f(x)). Thus, there are no possible inflection points to consider.

Drawing a number line and including all of the split points of f”(x) we have:

£"(-2)>0 £(0) <0 £"(2) >0
+ -+
-1 1
Cu CD CuU

Hence f is concave up on (—eo,—1) U (1,00), concave down on (—1,1).

7. We put this information together and sketch the graph.

We combine some of this information on a single number line to see what shape the graph has on
certain intervals:

local
CU ya cD o CD VA CU
1 1 1
1 1 1

-1 0 1

inc inc dec dec
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Note that there is a horizontal asymptote at y = 2 and that the curve has x-int of x = 0 and y-int of
y = 0. Therefore, a sketch of f(x) is as follows:

Exercises for 5.6

Sketch the curves. Identify clearly any interesting features, including local maximum and minimum points,
inflection points, asymptotes, and intercepts.

Exercise 5.6.56 y = x> — 5x* +5x°
Exercise 5.6.57 y=x>—3x* —9x+5
Exercise 5.6.58 y= (x— 1)*(x+3)*?3
Exercise 5.6.59 x’ +x2y2 = a2y2, a>0
Exercise 5.6.60 y = xe*

Exercise 5.6.61 y= (¢ +e¢7)/2
Exercise 5.6.62 y = ¢ *cosx

Exercise 5.6.63 y = ¢* —sinx

Exercise 5.6.64 y=¢"/x

Exercise 5.6.65 y=4x++v1—x

Exercise 5.6.66 y = (x+1)/v/5x%+35

Exercise 5.6.67 y=x> —x
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Exercise 5.6.68 y = 6x+sin3x
Exercise 5.6.69 y=x-+1/x
Exercise 5.6.70 y = x>+ 1/x
Exercise 5.6.71 y = (x+5)/4

Exercise 5.6.72 y = tan’x

2 2

Exercise 5.6.73 y = cos”“x—sin“x

Exercise 5.6.74 y = sin’x

Exercise 5.6.75 y = x(x*> + 1)

Exercise 5.6.76 y = x>+ 6x° +9x

Exercise 5.6.77 y = x/(x* —9)

Exercise 5.6.78 y = x>/ (x> +9)

Exercise 5.6.79 y = 2/x —x

Exercise 5.6.80 y = 3sin(x) —sin’(x), for x € [0,27]

Exercise 5.6.81 y= (x—1)/(x?)

5.7 Optimization Problems

Many important applied problems involve finding the best way to accomplish some task. Often this in-
volves finding the maximum or minimum value of some function: the minimum time to make a certain
journey, the minimum cost for doing a task, the maximum power that can be generated by a device, and so
on. Many of these problems can be solved by finding the appropriate function and then using techniques
of calculus to find the maximum or the minimum value required.

Generally such a problem will have the following mathematical form: Find the largest (or smallest)
value of f(x) when a < x < b. Sometimes a or b are infinite, but frequently the real world imposes some
constraint on the values that x may have.

Such a problem differs in two ways from the local maximum and minimum problems we encountered
when graphing functions: We are interested only in the function between a and b, and we want to know
the largest or smallest value that f(x) takes on, not merely values that are the largest or smallest in a
small interval. That is, we seek not a local maximum or minimum but a global (or absolute) maximum or
minimum.
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Guidelines to solving an optimization problem

1. Understand clearly what is to be maximized or minimized and what the contraints are.
2. Draw a diagram (if appropriate) and label it.

3. Decide what the variables are. For example, A for area, r for radius, C for cost.

4. Write a formula for the function for which you wish to find the maximum or minimum.

5. Express that formula in terms of only one variable, that is, in the form f(x). Usually this is
accomplished by using the given constraints.

6. Set f'(x) = 0 and solve. Check all critical values and endpoints to determine the extreme
value(s) of f(x).

Example 5.47: Largest Rectangle

Find the largest rectangle (that is, the rectangle with largest area) that fits inside the graph of the
parabola y = x* below the line y = a (a is an unspecified constant value), with the top side of the
rectangle on the horizontal line y = a; see Figure 5.16.)

Solution. We want to find the maximum value of some function A(x) representing area. Perhaps the
hardest part of this problem is deciding what x should represent. The lower right corner of the rectangle is
at (x,x%), and once this is chosen the rectangle is completely determined. So we can let the x in A(x) be
the x of the parabola f(x) = x>. Then the area is

A(x) = (2x)(a—x?) = —2x° + 2ax.

We want the maximum value of A(x) when x is in [0,/a]. (You might object to allowing x = 0 or x = /a,
since then the “rectangle” has either no width or no height, so is not “really” a rectangle. But the problem
is somewhat easier if we simply allow such rectangles, which have zero area.)

Setting 0 = A’(x) = 6x% 4 2a we get x = \/c% as the only critical value. Testing this and the two
endpoints, we have A(0) = A(v/a) = 0 and A(y/a/3) = (4/9)v/3a*>. The maximum area thus occurs
when the rectangle has dimensions 2+/a/3 x (2/3)a. &
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Figure 5.16: Rectangle in a parabola.

Example 5.48: Largest Cone

If you fit the largest possible cone inside a sphere, what fraction of the volume of the sphere is
occupied by the cone? (Here by “cone” we mean a right circular cone, i.e., a cone for which the
base is perpendicular to the axis of symmetry, and for which the cross-section cut perpendicular to
the axis of symmetry at any point is a circle.)

Solution. Let R be the radius of the sphere, and let r and & be the base radius and height of the cone inside
the sphere. What we want to maximize is the volume of the cone: mr2h /3. Here R is a fixed value, but r
and & can vary. Namely, we could choose r to be as large as possible—equal to R—by taking the height
equal to R; or we could make the cone’s height / larger at the expense of making r a little less than R. See
the cross-section depicted in Figure 5.17. We have situated the picture in a convenient way relative to the
x- and y-axes, namely, with the center of the sphere at the origin and the vertex of the cone at the far left
on the x-axis.

Notice that the function we want to maximize, 7rr2h/ 3, depends on two variables. This is frequently
the case, but often the two variables are related in some way so that “really” there is only one variable. So
our next step is to find the relationship and use it to solve for one of the variables in terms of the other, so
as to have a function of only one variable to maximize. In this problem, the condition is apparent in the
figure: the upper corner of the triangle, whose coordinates are (& — R, r), must be on the circle of radius R.
That is,

(h—R)*+r* =R%.

We can solve for 4 in terms of r or for r in terms of 4. Either involves taking a square root, but we notice that
the volume function contains r2, not r by itself, so it is easiest to solve for 2 directly: P =R*— (h— R)Z.
Then we substitute the result into 7r2h /3:

V(h) = m(R*—(h—R)»)h/3
T 2
= —ZR+Znh’R
3 + 3
We want to maximize V (k) when £ is between 0 and 2R. Now we solve 0 = V/(h) = —nh* + (4/3) whR,
getting 2 = 0 or h = 4R /3. We compute V (0) = V(2R) = 0 and V(4R /3) = (32/81)nR>. The maximum
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is the latter; since the volume of the sphere is (4/3) nR?, the fraction of the sphere occupied by the cone is

(32/81)7R° 8
(4/3)R3 27 30%.

(h—R,r)
-

=

Figure 5.17: Cone in a sphere.

Example 5.49: Containers of Given Volume

You are making cylindrical containers to contain a given volume. Suppose that the top and bottom
are made of a material that is N times as expensive (cost per unit area) as the material used for the
lateral side of the cylinder.

Find (in terms of N) the ratio of height to base radius of the cylinder that minimizes the cost of
making the containers.

Solution. Let us first choose letters to represent various things: /4 for the height, r for the base radius, V
for the volume of the cylinder, and ¢ for the cost per unit area of the lateral side of the cylinder; V and ¢
are constants, /2 and r are variables. Now we can write the cost of materials:

c(2mrh) +Ne(2rr?).

Again we have two variables; the relationship is provided by the fixed volume of the cylinder: V = nrlh.
We use this relationship to eliminate 4 (we could eliminate r, but it’s a little easier if we eliminate 4, which
appears in only one place in the above formula for cost). The result is

\% 2cV
f(r) =2cmr— + INemr? = =~ +2Nenr.
r r

We want to know the minimum value of this function when 7 is in (0,e0). We now set 0 = f'(r) =
—2¢V /r* +4Nerr, giving r = /V /(2N 7). Since f”(r) = 4¢V /1’ +4Ncr is positive when r is positive,
there is a local minimum at the critical value, and hence a global minimum since there is only one critical
value.

Finally, since h =V /(nr?),
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so the minimum cost occurs when the height / is 2N times the radius. If, for example, there is no difference
in the cost of materials, the height is twice the radius (or the height is equal to the diameter). s

Example 5.50: Rectangles of Given Area

Of all rectangles of area 100, which has the smallest perimeter?

Solution. First we must translate this into a purely mathematical problem in which we want to find the
minimum value of a function. If x denotes one of the sides of the rectangle, then the adjacent side must be
100/x (in order that the area be 100). So the function we want to minimize is

£x) = 2042190
X

since the perimeter is twice the length plus twice the width of the rectangle. Not all values of x make sense
in this problem: lengths of sides of rectangles must be positive, so x > 0. If x > 0 then so is 100/x, so we
need no second condition on x.

We next find f(x) and set it equal to zero: 0 = f'(x) = 2 —200/x>. Solving f(x) = 0 for x gives us
x = £10. We are interested only in x > 0, so only the value x = 10 is of interest. Since f’(x) is defined
everywhere on the interval (0,), there are no more critical values, and there are no endpoints. Is there a
local maximum, minimum, or neither at x = 10? The second derivative is f”(x) =400/x>, and f”(10) > 0,
so there is a local minimum. Since there is only one critical value, this is also the global minimum, so the
rectangle with smallest perimeter is the 10 x 10 square. )

Example 5.51: Maximize your Profit

You want to sell a certain number n of items in order to maximize your profit. Market research tells
you that if you set the price at $1.50, you will be able to sell 5000 items, and for every 10 cents you
lower the price below $1.50 you will be able to sell another 1000 items. Suppose that your fixed
costs (“start-up costs”) total $2000, and the per item cost of production (“marginal cost”) is $0.50.
Find the price to set per item and the number of items sold in order to maximize profit, and also
determine the maximum profit you can get.

Solution. The first step is to convert the problem into a function maximization problem. Since we want
to maximize profit by setting the price per item, we should look for a function P(x) representing the profit
when the price per item is x. Profit is revenue minus costs, and revenue is number of items sold times
the price per item, so we get P = nx — 2000 — 0.50n. The number of items sold is itself a function of x,
n = 5000+ 1000(1.5 — x)/0.10, because (1.5 —x)/0.10 is the number of multiples of 10 cents that the
price is below $1.50. Now we substitute for n in the profit function:

P(x) = (5000-+1000(1.5—x)/0.10)x — 2000 — 0.5(5000 + 1000(1.5 — x) /0.10)
= —10000x2 +25000x — 12000

We want to know the maximum value of this function when x is between O and 1.5. The derivative is
P'(x) = —20000x + 25000, which is zero when x = 1.25. Since P”(x) = —20000 < 0, there must be a
local maximum at x = 1.25, and since this is the only critical value it must be a global maximum as well.
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(Alternately, we could compute P(0) = —12000, P(1.25) = 3625, and P(1.5) = 3000 and note that P(1.25)
is the maximum of these.) Thus the maximum profit is $3625, attained when we set the price at $1.25 and
sell 7500 items. L)

Example 5.52: Minimize Travel Time

Suppose you want to reach a point A that is located across the sand from a nearby road (see Fig-
ure 5.18). Suppose that the road is straight, and b is the distance from A to the closest point C on
the road. Let v be your speed on the road, and let w, which is less than v, be your speed on the sand.
Right now you are at the point D, which is a distance a from C. At what point B should you turn off
the road and head across the sand in order to minimize your travel time to A?

Solution. Let x be the distance short of C where you turn off, i.e., the distance from B to C. We want to
minimize the total travel time. Recall that when traveling at constant velocity, time is distance divided by
velocity.

You travel the distance DB at speed v, and then the distance BA at speed w. Since DB = a — x and, by
the Pythagorean theorem, BA = \/x2 + b2, the total time for the trip is

a—x+ Vx2 4+ b?

Vv w

fx) =

We want to find the minimum value of f when x is between 0 and a. As usual we set f/(x) = 0 and solve
for x:

1 X
—_— / —_— R
wv x2 +b?% = vx
w2 (X2 +b%) = vix?
2b2: (v2_w2)x2
wb

X=—=
N
Notice that a does not appear in the last expression, but a is not irrelevant, since we are interested only in

critical values that are in [0,a], and wb/+/ v2 —w? is either in this interval or not. If it is, we can use the
second derivative to test it:

w

// b2
T = ey

Since this is always positive there is a local minimum at the critical point, and so it is a global minimum
as well.

If the critical value is not in [0,a] it is larger than a. In this case the minimum must occur at one of the
endpoints. We can compute

a b
f0) = -+

Vv
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vV a?+b?
w

fla) =

but it is difficult to determine which of these is smaller by direct comparison. If, as is likely in practice,
we know the values of v, w, a, and b, then it is easy to determine this. With a little cleverness, however, we
can determine the minimum in general. We have seen that f”(x) is always positive, so the derivative f’(x)

is always increasing. We know that at wb/+/v? — w? the derivative is zero, so for values of x less than that
critical value, the derivative is negative. This means that f(0) > f(a), so the minimum occurs when x = a.

So the upshot is this: If you start farther away from C than wb/+/v? — w? then you always want to cut
across the sand when you are a distance wb/+/v> —w? from point C. If you start closer than this to C, you

should cut directly across the sand. &

A
|
|
|

b
|
|
_a—x X l
D B C

Figure 5.18: Minimizing travel time.

Exercises for Section 5.7

Exercise 5.7.1 Find the dimensions of the rectangle of largest area having fixed perimeter 100.
Exercise 5.7.2 Find the dimensions of the rectangle of largest area having fixed perimeter P.

Exercise 5.7.3 A box with square base and no top is to hold a volume 100. Find the dimensions of the box
that requires the least material for the five sides. Also find the ratio of height to side of the base.

Exercise 5.7.4 A box with square base is to hold a volume 200. The bottom and top are formed by
folding in flaps from all four sides, so that the bottom and top consist of two layers of cardboard. Find the
dimensions of the box that requires the least material. Also find the ratio of height to side of the base.

Exercise 5.7.5 A box with square base and no top is to hold a volume V. Find (in terms of V) the
dimensions of the box that requires the least material for the five sides. Also find the ratio of height to side
of the base. (This ratio will not involve V .)

Exercise 5.7.6 You have 100 feet of fence to make a rectangular play area alongside the wall of your
house. The wall of the house bounds one side. What is the largest size possible (in square feet) for the play
area?

Exercise 5.7.7 You have [ feet of fence to make a rectangular play area alongside the wall of your house.
The wall of the house bounds one side. What is the largest size possible (in square feet) for the play area?
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Exercise 5.7.8 Marketing tells you that if you set the price of an item at $10 then you will be unable to
sell it, but that you can sell 500 items for each dollar below $10 that you set the price. Suppose your fixed
costs total $3000, and your marginal cost is $2 per item. What is the most profit you can make?

Exercise 5.7.9 Find the area of the largest rectangle that fits inside a semicircle of radius 10 (one side of
the rectangle is along the diameter of the semicircle).

Exercise 5.7.10 Find the area of the largest rectangle that fits inside a semicircle of radius r (one side of
the rectangle is along the diameter of the semicircle).

Exercise 5.7.11 For a cylinder with surface area 50, including the top and the bottom, find the ratio of
height to base radius that maximizes the volume.

Exercise 5.7.12 For a cylinder with given surface area S, including the top and the bottom, find the ratio
of height to base radius that maximizes the volume.

Exercise 5.7.13 You want to make cylindrical containers to hold 1 liter using the least amount of con-
struction material. The side is made from a rectangular piece of material, and this can be done with no
material wasted. However, the top and bottom are cut from squares of side 2r, so that 2(21’)2 — 872 of
material is needed (rather than 27wr?, which is the total area of the top and bottom). Find the dimensions
of the container using the least amount of material, and also find the ratio of height to radius for this
container.

Exercise 5.7.14 You want to make cylindrical containers of a given volume V using the least amount of
construction material. The side is made from a rectangular piece of material, and this can be done with
no material wasted. However, the top and bottom are cut from squares of side 2r, so that 2(2r)2 =8r° of
material is needed (rather than 21r?, which is the total area of the top and bottom). Find the optimal ratio
of height to radius.

Exercise 5.7.15 Given a right circular cone, you put an upside-down cone inside it so that its vertex is
at the center of the base of the larger cone and its base is parallel to the base of the larger cone. If you
choose the upside-down cone to have the largest possible volume, what fraction of the volume of the larger
cone does it occupy? (Let H and R be the height and base radius of the larger cone, and let h and r be the
height and base radius of the smaller cone. Hint: Use similar triangles to get an equation relating h and

r.)

Exercise 5.7.16 A container holding a fixed volume is being made in the shape of a cylinder with a
hemispherical top. (The hemispherical top has the same radius as the cylinder.) Find the ratio of height
to radius of the cylinder which minimizes the cost of the container if (a) the cost per unit area of the top is
twice as great as the cost per unit area of the side, and the container is made with no bottom, (b) the same
as in (a), except that the container is made with a circular bottom, for which the cost per unit area is 1.5
times the cost per unit area of the side.

Exercise 5.7.17 A piece of cardboard is 1 meter by 1/2 meter. A square is to be cut from each corner and
the sides folded up to make an open-top box. What are the dimensions of the box with maximum possible
volume?
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Exercise 5.7.18 (a) A square piece of cardboard of side a is used to make an open-top box by cutting out
a small square from each corner and bending up the sides. How large a square should be cut from each
corner in order that the box have maximum volume? (b) What if the piece of cardboard used to make the
box is a rectangle of sides a and b?

Exercise 5.7.19 A window consists of a rectangular piece of clear glass with a semicircular piece of
colored glass on top; the colored glass transmits only 1/2 as much light per unit area as the the clear
glass. If the distance from top to bottom (across both the rectangle and the semicircle) is 2 meters and
the window may be no more than 1.5 meters wide, find the dimensions of the rectangular portion of the
window that lets through the most light.

Exercise 5.7.20 A window consists of a rectangular piece of clear glass with a semicircular piece of
colored glass on top. Suppose that the colored glass transmits only k times as much light per unit area as
the clear glass (k is between O and 1). If the distance from top to bottom (across both the rectangle and
the semicircle) is a fixed distance H, find (in terms of k) the ratio of vertical side to horizontal side of the
rectangle for which the window lets through the most light.

Exercise 5.7.21 You are designing a poster to contain a fixed amount A of printing (measured in square
centimeters) and have margins of a centimeters at the top and bottom and b centimeters at the sides. Find
the ratio of vertical dimension to horizontal dimension of the printed area on the poster if you want to
minimize the amount of posterboard needed.

Exercise 5.7.22 What fraction of the volume of a sphere is taken up by the largest cylinder that can be fit
inside the sphere?

Exercise 5.7.23 The U.S. post office will accept a box for shipment only if the sum of the length and girth
(distance around) is at most 108 in. Find the dimensions of the largest acceptable box with square front
and back.

Exercise 5.7.24 Find the dimensions of the lightest cylindrical can containing 0.25 liter (=250 cm?) if the
top and bottom are made of a material that is twice as heavy (per unit area) as the material used for the
side.

Exercise 5.7.25 A conical paper cup is to hold 1 /4 of a liter. Find the height and radius of the cone which

minimizes the amount of paper needed to make the cup. Use the formula wr\/r*+ h? for the area of the
side of a cone.

Exercise 5.7.26 A conical paper cup is to hold a fixed volume of water. Find the ratio of height to
base radius of the cone which minimizes the amount of paper needed to make the cup. Use the formula

r\/ r2 + h? for the area of the side of a cone, called the lateral area of the cone.

Exercise 5.7.27 Find the fraction of the area of a triangle that is occupied by the largest rectangle that
can be drawn in the triangle (with one of its sides along a side of the triangle). Show that this fraction
does not depend on the dimensions of the given triangle.

Exercise 5.7.28 How are your answers to Problem 5.7.8 affected if the cost per item for the x items,
instead of being simply $2, decreases below $2 in proportion to x (because of economy of scale and
volume discounts) by 1 cent for each 25 items produced?



Integration

6.1 Displacement and Area

Example 6.1: Object Moving in a Straight Line

An object moves in a straight line so that its speed at time t is given by v(t) = 3t in, say, cm/sec. If
the object is at position 10 on the straight line when t = 0, where is the object at any time t ?

Solution. There are two reasonable ways to approach this problem. If s(¢) is the position of the object
at time ¢, we know that s'(z) = v(r). Based on our knowledge of derivatives, we therefore know that
s(t) = 3t? /2 +k, and because s(0) = 10 we easily discover that k = 10, so s(r) = 3¢>/2 + 10. For example,
att = 1 the object is at position 3/2+ 10 = 11.5. This is certainly the easiest way to deal with this problem.
Not all similar problems are so easy, as we will see; the second approach to the problem is more difficult
but also more general.

We start by considering how we might approximate a solution. We know that at r = O the object is at
position 10. How might we approximate its position at, say, t = 1? We know that the speed of the object at
time ¢ = 0 is 0; if its speed were constant then in the first second the object would not move and its position
would still be 10 when # = 1. In fact, the object will not be too far from 10 at # = 1, but certainly we can
do better. Let’s look at the times 0.1, 0.2, 0.3, ..., 1.0, and try approximating the location of the object at
each, by supposing that during each tenth of a second the object is going at a constant speed. Since the
object initially has speed 0, we again suppose it maintains this speed, but only for a tenth of second; during
that time the object would not move. During the tenth of a second from ¢t = 0.1 to t = 0.2, we suppose that
the object is traveling at 0.3 cm/sec, namely, its actual speed at r = 0.1. In this case the object would travel
(0.3)(0.1) = 0.03 centimeters: 0.3 cm/sec times 0.1 seconds. Similarly, between t = 0.2 and 7 = 0.3 the
object would travel (0.6)(0.1) = 0.06 centimeters. Continuing, we get as an approximation that the object
travels

(0.0)(0.1) + (0.3)(0.1) + (0.6) (0.1) + - - -+ (2.7)(0.1) = 1.35

centimeters, ending up at position 11.35. This is a better approximation than 10, certainly, but is still just
an approximation. (We know in fact that the object ends up at position 11.5, because we’ve already done
the problem using the first approach.) Presumably, we will get a better approximation if we divide the
time into one hundred intervals of a hundredth of a second each, and repeat the process:

(0.0)(0.01) + (0.03)(0.01) + (0.06)(0.01) + - - -+ (2.97)(0.01) = 1.485.

We thus approximate the position as 11.485. Since we know the exact answer, we can see that this is much
closer, but if we did not already know the answer, we wouldn’t really know how close.

We can keep this up, but we’ll never really know the exact answer if we simply compute more and
more examples. Let’s instead look at a “typical” approximation. Suppose we divide the time into n equal
intervals, and imagine that on each of these the object travels at a constant speed. Over the first time in-
terval we approximate the distance traveled as (0.0)(1/n) = 0, as before. During the second time interval,
from t = 1/n to t = 2/n, the object travels approximately 3(1/n)(1/n) = 3/n* centimeters. During time
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interval number i, the object travels approximately (3(i — 1)/n)(1/n) = 3(i — 1)/n* centimeters, that is,
its speed at time (i — 1) /n, 3(i — 1) /n, times the length of time interval number i, 1/n. Adding these up as
before, we approximate the distance traveled as

1 1 1 1 1

centimeters. What can we say about this? At first it looks rather less useful than the concrete calculations
we’ve already done, but in fact a bit of algebra reveals it to be much more useful. We can factor out a 3
and 1/n” to get

3
;(O+1+2+3+~-~—|—(n—1)),

that is, 3/ n? times the sum of the first n — 1 positive integers. Now we make use of a fact you may have
run across before, Gauss’s Equation:

k(k+1)

T+243 4 k===

In our case we’re interested in k =n—1, so

14+2434--+(n—1)= ("_21)(") :n22—n'

This simplifies the approximate distance traveled to

3n2—n_3n2—n_3 n n 3 1 1
n? 2 2 n?2  2\n? n2) 2 n)
Now this is quite easy to understand: as n gets larger and larger this approximation gets closer and closer

to (3/2)(1 —0) =3/2, so that 3/2 is the exact distance traveled during one second, and the final position
is 11.5.

So for t = 1, at least, this rather cumbersome approach gives the same answer as the first approach. But
really there’s nothing special about ¢ = 1; let’s just call it ¢ instead. In this case the approximate distance
traveled during time interval number i is 3(i — 1)(z/n)(t/n) = 3(i — 1)¢* /n?, that is, speed 3(i — 1)(¢/n)
times time 7 /n, and the total distance traveled is approximately

0L +3() 5 130) 5 +33) 2 o 43— 1)
J— —_— JE— P— e n— —.
n n2 n2 n2 n2

As before we can simplify this to

312 3t°n>—n 3, 1
Z 0+14+24+--. —1)) == =—t"(1—-].
n2(+ +24 4 (=) n? 2 2 < n)
In the limit, as n gets larger, this gets closer and closer to (3/ 2)t2 and the approximated position of the
object gets closer and closer to (3/2)r> + 10, so the actual position is (3/2)> + 10, exactly the answer
given by the first approach to the problem. )
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Example 6.2: Area under the Line

Find the area under the curve y = 3x between x = 0 and any positive value x.

Solution. There is here no obvious analogue to the first approach in the previous example, but the second
approach works fine. (Since the function y = 3x is so simple, there is another approach that works here, but
it is even more limited in potential application than is approach number one.) How might we approximate
the desired area? We know how to compute areas of rectangles, so we approximate the area by rectangles.
Jumping straight to the general case, suppose we divide the interval between 0 and x into n equal subinter-
vals, and use a rectangle above each subinterval to approximate the area under the curve. There are many
ways we might do this, but let’s use the height of the curve at the left endpoint of the subinterval as the
height of the rectangle, as in figure 6.1. The height of rectangle number i is then 3(i — 1)(x/n), the width
is x/n, and the area is 3(i — 1)(x?/n?). The total area of the rectangles is

X )C2 X2 )C2 X2
43D +3(2)% nERVI —1)=.
(0)-+3(1) "5 +3(2) 5 +3(3) 5+ +3(n— 1)

By factoring out 3x / n? this simplifies to

3x? 3x’n>—n 3 1
—(0+1424--+(n—1)) == ==x*(1—-).
;) O0+1424---4+(n—1)) 3 5 ( )

As n gets larger this gets closer and closer to 3x° /2, which must therefore be the true area under the curve.

&

Figure 6.1: Approximating the area under y = 3x with rectangles.

What you will have noticed, of course, is that while the problem in the second example appears to
be much different than the problem in the first example, and while the easy approach to problem one
does not appear to apply to problem two, the “approximation” approach works in both, and moreover the
calculations are identical. As we will see, there are many, many problems that appear much different on
the surface but turn out to be the same as these problems, in the sense that when we try to approximate
solutions we end up with mathematics that looks like the two examples, though of course the function
involved will not always be so simple.
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Even better, we now see that while the second problem did not appear to be amenable to approach one,
it can in fact be solved in the same way. The reasoning is this: we know that problem one can be solved
easily by finding a function whose derivative is 3t. We also know that mathematically the two problems
are the same, because both can be solved by taking a limit of a sum, and the sums are identical. Therefore,
we don’t really need to compute the limit of either sum because we know that we will get the same answer
by computing a function with the derivative 3¢ or, which is the same thing, 3x.

It’s true that the first problem had the added complication of the “10”, and we certainly need to be able
to deal with such minor variations, but that turns out to be quite simple. The lesson then is this: whenever
we can solve a problem by taking the limit of a sum of a certain form, instead of computing the (often
nasty) limit we can find a new function with a certain derivative.

6.1.1 Riemann Sums

A fundamental calculus technique is to first answer a given problem with an approximation, then refine
that approximation to make it better, then use limits in the refining process to find the exact answer. That
is exactly what we will do here to develop a technique to find the area of more complicated regions.

Consider the region given in Figure 6.2, which is the area under y = 4x — x> on [0,4]. What is the
signed area of this region? While we will not use this notation in this section, we will soon see that this is
equivalent to finding the integral given by fé (4x —x?) dx,

Figure 6.2: f(x) = 4x —x.

We start by approximating. We can surround the region with a rectangle with height and width of
4 and find the area is approximately 16 square units. This is obviously an over—approximation; we are
including area in the rectangle that is not under the parabola. How can we refine our approximation to
make it better? The key to this section is this answer: use more rectangles.

Let’s use four rectangles of equal width of 1. This partitions the interval [0,4] into four subintervals,
[0,1], [1,2], [2,3] and [3,4]. On each subinterval we will draw a rectangle.

There are three common ways to determine the height of these rectangles: the Left Hand Rule, the
Right Hand Rule, and the Midpoint Rule. The Left Hand Rule says to evaluate the function at the left—
hand endpoint of the subinterval and make the rectangle that height. In Figure 6.3 below, the rectangle

'This section was adapted by Lyryx from the section of the same name in APEX Calculus, Ver-
sion 3.0, written by G. Hartman. This material is released under Creative Commons license CC BY-NC
(https://creativecommons.org/licenses/by-nc/4.0/ ). See the Copyright and Revision History pages in the
front of this text for more information.


https://creativecommons.org/licenses/by-nc/4.0/

6.1. Displacement and Area = 219

drawn on the interval [2, 3] has height determined by the Left Hand Rule; it has a height of f(2) = 4. (The
rectangle is labeled “LHR.”)

RHR MPR LHR other

Figure 6.3: Approximating area using rectangles.

The Right Hand Rule says the opposite: on each subinterval, evaluate the function at the right end-
point and make the rectangle that height. In the figure, the rectangle drawn on [0, 1] is drawn using f(1) =3
as its height; this rectangle is labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the function at the midpoint and make the
rectangle that height. The rectangle drawn on [1,2] was made using the Midpoint Rule, with a height of
f(1.5) =3.75. That rectangle is labeled “MPR.”

These are the three most common rules for determining the heights of approximating rectangles, but
we are not forced to use one of these three methods. The rectangle on [3,4] has a height of approximately
f(3.53), very close to the Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3,4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the area under f(x) = 4x — x* using these rules.

Example 6.3: Using the Left Hand, Right Hand and Midpoint Rules

Approximate the area under f(x) = 4x — x> on the interval [0,4] using the Left Hand Rule, the Right
Hand Rule, and the Midpoint Rule, using four equally spaced subintervals.

Solution. We break the interval [0,4] into four subintervals as before. In Figure 6.4 we see four rectangles
drawn on f(x) = 4x — x? using the Left Hand Rule. (The areas of the rectangles are given in each figure.)

y

Figure 6.4: Approximating area using the Left Hand Rule.
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Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0. We add up the areas of each
rectangle (height x width) for our Left Hand Rule approximation:

fO)-14+f(1)- 14+ f(2)- 14+ f(3)-1=
0+3+4+3=10.

Figure 6.5 shows four rectangles drawn under f(x) using the Right Hand Rule; note how the [3,4] subin-
terval has a rectangle of height 0.

Figure 6.5: Approximating area using the Right Hand Rule.

In this figure, these rectangles seem to be the mirror image of those found in Figure 6.4. (This is because
of the symmetry of our shaded region.) Our approximation gives the same answer as before, though
calculated a different way:

F)A+f(2)- 1+ f3)- 1+ F(4)-1=
3+44340=10.

Figure 6.6 shows four rectangles drawn under f(x) using the Midpoint Rule.

4

I

1.75 | 8.75 | 3.75 | 1.75

Figure 6.6: Approximating area using the Midpoint Rule.

This gives an approximation of the area as:

F05)-14f(1.5)- 14 f(2.5)- 14 f(3.5)- 1=
1.75+43.75+3.75+1.75 = 11.

Our three methods provide two approximations of the area under f(x) = 4x — x%: 10 and 11. &
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It is hard to tell at this moment which is a better approximation: 10 or 11? We can continue to refine
our approximation by using more rectangles. The notation can become unwieldy, though, as we add up
longer and longer lists of numbers. We introduce summation notation (also called sigma notation) to
solve this problem.

Suppose we wish to add up a list of numbers ay, ay, as, ..., ag. Instead of writing

ay+az+az+as+as+ae+aj+ag+ao,

we use summation notation and write

e

ai
i=1

The upper case sigma (}) represents the term “sum” and a; is referred to as the summand. The index

of summation in this example is i; any symbol can be used. By convention, the index takes on only the
integer values between (and including) the lower and upper bounds, here equal to 1 and 9 respectively.

Let’s practice using this notation.

Example 6.4: Using Summation Notation

Let the numbers {a;} be defined as a; = 2i — 1 for integers i, where i > 1. Soa; =1,a, =3, a3 =5,
etc. (The output is the positive odd integers). Evaluate the following summations:
1. Z?:l a;
2. ¥ 1(3a;—4)
3. ):?:1 (a;)?
Solution.

1.

6
Zai:a1+a2+a3+a4+a5 +ae
i=1

=143+5+74+9+11

= 36.

2. Note the starting value is different than 1:

7
Y (Bai—4) = (3a3—4) + (3as —4) + (3as — 4) + (3a6 — 4) + (3a7 —4)
i=3

=11+17+23+29+35

= 115.

]

4
(@i)* = (a1)*+ (a2)* + (a3)* + (as)*
=1
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12432452472
=84

&

The following theorem gives some properties of summations that allow us to work with them without
writing individual terms. Examples will follow.

Theorem 6.5: Properties of Summations

M=

1. ¢ = c¢-n, where c is a constant. . =
i=1 i=1 2
n n n
2. Z(ai:tb,-):z:a,—:t bi
i=m i=m i=m 6 iiz _ n(n+1)(2n—l—1)
n n ’ = 6
3. Zc~a,—:c~2ai =
=m =m

J

n n 2
4. mai-l- Z Cli:ZCli 7. zn:l_3: (n(nz—l—l))

i= i=j+1 i=m i=1

Example 6.6: Evaluating Summations

Use Theorem 6.5 to evaluate

where i are integers and i > 1.

Solution.

6 6 6
Lf%—n:;m—Zu)

i = i=1

::<2§¥>—6

6(6+1)
=2 —
5 6
=42 6=136

We obtained the same answer without writing out all six terms. When dealing with small values of
n, it may be faster to write the terms out by hand. However, Theorem 6.5 is incredibly important when
dealing with large sums as we’ll soon see. s

Consider again f(x) = 4x —x?. We will approximate the area under this curve (again for [0,4] using
sixteen equally spaced subintervals and the Right Hand Rule. Before doing so, we will do some careful
preparation.
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S e e A B s e s
0 1 2 3 4

X1 X5 X9 X13 X17

Figure 6.7: Dividing [0,4] into 16 equally spaced subintervals.

Figure 6.7 shows a number line of [0,4] divided into sixteen equally spaced subintervals. We denote 0
as x1; we have marked the values of xs, x9, x13 and x;7. We could mark them all, but the figure would get
crowded. While it is easy to figure that x;o = 2.25, in general, we want a method of determining the value
of x; without consulting the figure. Consider:

xi = x1+({—1)Ax

where
x; @ starting value

(i—1) : number of subintervals between x| and x;
Ax : subinterval width

So x19 = x —|—9(4/16) =2.25.

If we had partitioned [0,4] into 100 equally spaced subintervals, each subinterval would have length
Ax =4/100 = 0.04. We could compute x3; as

X3 =0+31(4/100) = 1.24.

(That was far faster than creating a sketch first.)

Given any subdivision of [0,4], the first subinterval is [x;,x;]; the second is [x2,x3]; the i " subinterval
is [xi,xi11]-

When using the Left Hand Rule, the height of the i " rectangle will be f(x;).

When using the Right Hand Rule, the height of the i " rectangle will be f(x;;1).

When using the Midpoint Rule, the height of the i " rectangle will be f (%) )

Thus approximating the area under f(x) = 4x — x* on [0,4] with sixteen equally spaced subintervals
can be expressed as follows, where Ax =4/16 = 1/4:
16
Left Hand Rule: ) f(x;)Ax
i=1
16
Right Hand Rule: ) f(x;41)Ax
i=1

16
. . Xi +Xip1
Midpoint Rule: — | Ax

We use these formulas in the following example.

Example 6.7: Approximating Area Using Sums

Approximate the area under f(x) = 4x — x? on [0,4] using the Right Hand Rule and summation
formulas with sixteen and 1000 equally spaced intervals.
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Solution. Using sixteen equally spaced intervals and the Right Hand Rule, we can approximate the area
as

16
Y Flxin)Ax.
i=1
We have Ax =4/16 = 0.25. Since x; = 0+ (i — 1)Ax, we have

X1 =0+ ((i+1) = 1)Ax
= iAx

Using the summation formulas, consider:

16 16
Y flxip)Ax =Y f(iAx)Ax
i=1 i=1

= f (4iAx — (iAx)*) Ax
i=1

= 126:(4iAx2 — PAx)
i=1

16 16
=(4A) Y i—AP Y i (6.1)
=1 i=1
16-17 16(17)(33
_ (A A3 (17)(33)
2 6
=4.0.25%-136 —0.25%-1496
= 10.625

We were able to sum up the areas of sixteen rectangles with very little computation. In Figure 6.8 the
function and the sixteen rectangles are graphed. While some rectangles over—approximate the area, other
under—approximate the area (by about the same amount). Thus our approximate area of 10.625 is likely a
fairly good approximation.

T > X

!
1 2 3 4

Figure 6.8: Approximating area with the Right Hand Rule and 16 evenly spaced subintervals.

Notice Equation 6.1; by changing the 16’s to 1,000’s (and appropriately changing the value of Ax), we
can use that equation to sum up 1000 rectangles!
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We do so here, skipping from the original summand to the equivalent of Equation 6.1 to save space.

Note that Ax = 4/1000 = 0.004.

1000 1000 1000

) flup)Av=(4Ax%) } i—AF Y 2
i=1 i=1 i=1

1000 - 1001 1000(1001)(2001
= 4-0.004% - 500500 — 0.004° - 333,833,500
= 10.666656
Using many, many rectangles, we have a likely good approximation of the area under f(x) = 4x — x?
of ~ 10.666656. L)

Before the above example, we stated the summations for the Left Hand, Right Hand and Midpoint
Rules. Each had the same basic structure, which was:

1. each rectangle has the same width, which we referred to as Ax, and

2. each rectangle’s height is determined by evaluating f(x) at a particular point in each subinterval.
For instance, the Left Hand Rule states that each rectangle’s height is determined by evaluating f(x)
at the left hand endpoint of the subinterval the rectangle lives on.

One could partition an interval [a,b] with subintervals that did not have the same width. We refer to
the length of the first subinterval as Axy, the length of the second subinterval as Ax;, and so on, giving the
length of the i " subinterval as Ax;. Also, one could determine each rectangle’s height by evaluating f(x) at
any point in the i ™ subinterval. We refer to the point picked in the first subinterval as ¢y, the point picked
in the second subinterval as ¢, and so on, with ¢; representing the point picked in the i ™ subinterval. Thus
the height of the i " subinterval would be f(c;), and the area of the i " rectangle would be f(c;)Ax;.

Summations of rectangles with area f(c;)Ax; are named after mathematician Georg Friedrich Bernhard
Riemann, as given in the following definition.

Let f(x) be defined on the closed interval |a,b] and let Ax be a partition of [a,b], with
a=x1<x<...<Xxy <Xpy1 =>b.

Let Ax; denote the length of the i th subinterval [xi,xi+1] and let ¢; denote any value in the i th subin-
terval.
The sum .
f(ci)Ax;
=1

1

is a Riemann sum of f(x) on [a,D].
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| N

1 A

1 2 3 4

Figure 6.9: General Riemann sum to approximate the area under f(x) =4x— x2.

Figure 6.9 shows the approximating rectangles of a Riemann sum. While the rectangles in this example
do not approximate well the shaded area, they demonstrate that the subinterval widths may vary and the
heights of the rectangles can be determined without following a particular rule.

Riemann sums are typically calculated using one of the three rules we have introduced. The uniformity
of construction makes computations easier. Before working another example, let’s summarize some of
what we have learned in a convenient way.

Riemann Sums

Consider a function f(x) defined on an interval [a,b]. The area under this curve is approximated by
n

b—
1. When the n subintervals have equal length, Ax; = Ax = a

2. The i ™ term of the partition is x; = a + (i — 1)Ax. (This makes x,,+1 = b.)

3. The Left Hand Rule summation is: ) f(x;)Ax.

n
i=1

n
4. The Right Hand Rule summation is: Z f(xigt1)Ax.
i=1

n .
5. The Midpoint Rule summation is: Z f (%) Ax.
i=1

Let’s do another example.

Example 6.9: Approximating Area Using Sums

Approximate the area under f(x) = (5x+2) on the interval [—2,3] using the Midpoint Rule and ten
equally spaced intervals.

Solution. Following the above discussion, we have

3—(-2)
Av = T =12
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N o= (=2)+(1/2)(i—1)=i/2—5/2.

As we are using the Midpoint Rule, we will also need x; | and i +2xi+l

(i+1)/2—5/2=1i/2—2. This gives
Xi + X1 (/2 5/2)+(i/2-2) i-9/2
2 2 2

We now construct the Riemann sum and compute its value using summation formulas.

. Since x; = i/2—5/2, xiy1 =

—i/2-9/4.

10 x; +x; 10 '
gf(il—i—z “)Ax: Zf(z/2—9/4)Ax

—Z (i/2—9/4)+2)Ax

B[]

-s(3E0-2(T))

1 /5 10(11) 37
—§<§‘ 10 I)
45
=—=225
2

Note the graph of f(x) = 5x+2 in Figure 6.10. The regions whose areas are computed are triangles,
meaning we can find the exact answer without summation techniques. We find that the exact answer is
indeed 22.5. One of the strengths of the Midpoint Rule is that often each rectangle includes area that should
not be counted, but misses other area that should. When the partition width is small, these two amounts
are about equal and these errors almost “cancel each other out.” In this example, since our function is a
line, these errors are exactly equal and they do cancel each other out, giving us the exact answer.

<

17 -+

I I 7
-8

Figure 6.10: Approximating area using the Midpoint Rule and 10 evenly spaced subintervals.

Note too that when the function is negative, the rectangles have a “negative” height. When we compute
the area of the rectangle, we use f(c;)Ax; when f is negative, the area is counted as negative. &
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Notice in the previous example that while we used ten equally spaced intervals, the number “10” didn’t
play a big role in the calculations until the very end. Mathematicians love abstract ideas; let’s approximate
the area of another region using » subintervals, where we do not specify a value of n until the very end.

Example 6.10: Approximating Area Using Sums

Revisit f(x) = 4x— x> on the interval [0,4,] yet again. Approximate the area under this curve using
the Right Hand Rule with n equally spaced subintervals.

Solution. We know Ax = =9 = 4 /n. We also find x; = 0+ Ax(i — 1) = 4(i — 1) /n. The Right Hand Rule
uses x; 1, which is x; ;| = 4i/n. We construct the Right Hand Rule Riemann sum as follows.

I
1=
| —— |
N
3| &
|
VR
S| &
N———
L

I
1=
—_
o
e
~——

. -
D/~
x|
i
S~
o

I
e N

(recall Ax = 4/n)

(16 ) n(n+1)( 2n—l—1)

’_\i—‘
o)
e
»—\/\/ S
= I
T
,_/‘\H

(98]
[\
—~
S 3
_|_
N—r

3 n+1)2n+1
= ( ) ) (now simplify)

n 3n?

W[

The result is an amazing, easy to use formula. To approximate the area with ten equally spaced
subintervals and the Right Hand Rule, set » = 10 and compute

32 1
21— — | =10.56.
3 ( 102)

Recall how earlier we approximated the area with 4 subintervals; with n = 4, the formula gives 10, our
answer as before.
It is now easy to approximate the area with 1,000,000 subintervals! Hand-held calculators will round
off the answer a bit prematurely giving an answer of 10.66666667. (The actual answer is 10.666666666656.)
We now take an important leap. Up to this point, our mathematics has been limited to geometry and
algebra (finding areas and manipulating expressions). Now we apply calculus. For any finite n, we know
that the corresponding Right Hand Rule Riemann sum is:

321 1
3 n?)’
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Both common sense and high—level mathematics tell us that as n gets large, the approximation gets better.
In fact, if we take the limit as n — oo, we get the exact area. That is,

This is a fantastic result. By considering n equally—spaced subintervals, we obtained a formula for an
approximation of the area that involved our variable n. As n grows large — without bound — the error
shrinks to zero and we obtain the exact area. &

This section started with a fundamental calculus technique: make an approximation, refine the approx-
imation to make it better, then use limits in the refining process to get an exact answer. That is precisely
what we just did.

Let’s practice this again.

Example 6.11: Approximating Area With a Formula, Using Sums

Find a formula that approximates the area under f(x) = x> on the interval [—1,5] using the Right
Hand Rule and n equally spaced subintervals, then take the limit as n — oo to find the exact area.

Solution. We have Ax = 575;1) = 6/n. We have x; = (—1) + (i — 1)Ax; as the Right Hand Rule uses x;. 1,
we have x;11 = (—1) +iAx.
The Riemann sum corresponding to the Right Hand Rule is (followed by simplifications):

n

Zf xip1)Ax = Y f(—1+iAx)Ax

i=1

(—1+iAx) Ax

I

N
I
—_

((iAx)® — 3(iAx)* + 3iAx — 1) Ax

I

N
I
—_

(PAx* —3i2Ax + 3iAx* — Ax)

3Ax321 —|—3Ax221—ZAx

I

N
I
—_

||
/—\ T M:

A n+1 ) 3Ax3n(n+1)6(2n+1)+3Ax2n(n+l)—nAx
1296 n (n+1)2_3216 n(n+1)(2n+1)+3§n( 1)_6
o 4 n3 6 2
78 21
=156+ & 8+—26
n

Once again, we have found a compact formula for approximating the area with n equally spaced subin-
tervals and the Right Hand Rule. Using ten subintervals, we have an approximation of 195.96 (these
rectangles are shown in Figure 6.11). Using n = 100 gives an approximation of 159.802.
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Now find the exact answer using a limit:

378 | 216
lim (156+ —+ —2) = 156.
n n

n—yoo

100 + 7

50 +

— f ! t t X

-1 1 2 3 4 5

Figure 6.11: Approximating area using the Right Hand Rule and 10 evenly spaced subintervals.

We have used limits to evaluate exactly given definite limits. Will this always work? We will show,
given not—very-restrictive conditions, that yes, it will always work.

The previous two examples demonstrated how an expression such as

n

Y Flxivn)Ax
i=1
can be rewritten as an expression explicitly involving 7, such as 32/3(1 — 1/n?).

Viewed in this manner, we can think of the summation as a function of n. An n value is given (where n
is a positive integer), and the sum of areas of n equally spaced rectangles is returned, using the Left Hand,
Right Hand, or Midpoint Rules.

Given a function f(x) defined on the interval [a, D] let:

e Sp(n) = Z f(xi)Ax, the sum of equally spaced rectangles formed using the Left Hand Rule,
i=1

n

e Sg(n)= Z f(xi+1)Ax, the sum of equally spaced rectangles formed using the Right Hand Rule, and
i=1
o Xt Xiv . N
* Su(n) = Z f 5 Ax, the sum of equally spaced rectangles formed using the Midpoint
i=1
Rule.

Recall the definition of a limit as n — oo: lim Sz.(n) = K if, given any € > 0, there exists § > 0 such
n—soo
that |Sz.(n) — K| < € whenever n > §.

The following theorem states that we can use any of our three rules to find the exact value of the area
under f(x) on [a,b]. It also goes two steps further. The theorem states that the height of each rectangle
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doesn’t have to be determined following a specific rule, but could be f(c;), where c; is any point in the i ®
subinterval, as discussed earlier.

The theorem goes on to state that the rectangles do not need to be of the same width. Using the
notation of Definition 6.8, let Ax; denote the length of the i ™ subinterval in a partition of [a,b]. Now let
||Ax|| represent the length of the largest subinterval in the partition: that is, ||Ax|| is the largest of all the
Ax;’s. If ||Ax|| is small, then [a,b] must be partitioned into many subintervals, since all subintervals must
have small lengths. “Taking the limit as ||Ax|| goes to zero” implies that the number n of subintervals in
the partition is growing to infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

n
HA&&()Ef(CZMXZ
as “the limit of the sum of rectangles, where the width of each rectangle can be different but getting small,
and the height of each rectangle is not necessarily determined by a particular rule.” The following theorem

states that, for a sufficiently nice function, we can use any of our three rules to find the area under f(x)
over [a,b].

Theorem 6.12: Area and the Limit of Riemann Sums

Let f(x) be a continuous function on the closed interval [a,b] and let S;.(n), Sg(n) and Sy(n) be
the sums of equally spaced rectangles formed using the Left Hand Rule, Right Hand Rule, and
Midpoint Rule, respectively. Then:

n—oo

n
1. lim Sy (n) = lim Sg(n) = lim Sy (n) = lim Y fci)Ax
i=1

n
2. The area under f on the interval |a, D] is equal to le Z flei)Ax.
=

n

3. The area under f on the interval |a, D] is equal to \|Al;ﬁn OZf(c,-)Ax,-.
Yi=1

We summarize what we have learned over the past few sections here.

* Knowing the “area under the curve” can be useful. One common example is: the area under a
velocity curve is displacement.

* While we can approximate the area under a curve in many ways, we have focused on using rectangles
whose heights can be determined using: the Left Hand Rule, the Right Hand Rule and the Midpoint
Rule.

* Sums of rectangles of this type are called Riemann sums.

* The exact value of the area can be computed using the limit of a Riemann sum. We generally use
one of the above methods as it makes the algebra simpler.
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Exercises for Section 6.1

Exercise 6.1.1 Suppose an object moves in a straight line so that its speed at time t is given by v(t) =
2t +2, and that at t = 1 the object is at position 5. Find the position of the object at t = 2.

Exercise 6.1.2 Suppose an object moves in a straight line so that its speed at time t is given by v(t) = 242,
and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

Exercise 6.1.3 Find the area under y = 2x between x = 0 and any positive value for x.

Exercise 6.1.4 Find the area under y = 4x between x = 0 and any positive value for x.

Exercise 6.1.5 Find the area under y = 4x between x = 2 and any positive value for x bigger than 2.
Exercise 6.1.6 Find the area under y = 4x between any two positive values for x, say a < b.

Exercise 6.1.7 Let f(x) = x> +3x+2. Approximate the area under the curve between x = 0 and x = 2
using 4 rectangles and also using 8 rectangles.

Exercise 6.1.8 Ler f(x) = x> —2x+ 3. Approximate the area under the curve between x =1 and x =3
using 4 rectangles.

6.2 The Fundamental Theorem of Calculus

We begin by exploring an example. Suppose that an object moves in a straight line so that its speed is 3¢
at time 7. How far does the object travel between time ¢t = a and time ¢t = b? We don’t assume that we
know where the object is at time ¢+ = O or at any other time. It is certainly true that it is somewhere, so
let’s suppose that at + = O the position is k. Then we know that the position of the object at any time is
312 /24 k. This means that at time 7 = a the position is 3a> /2 +k and at time = b the position is 3b* /2 +k.
Therefore the change in position is 35? /2 4k — (3a* /2 + k) = 3b* /2 — 3a* /2. Notice that the k drops out;
this means that it doesn’t matter that we don’t know £, it doesn’t even matter if we use the wrong k, we get
the correct answer.

What about a second approach to this problem? We now want to approximate the change in position
between time a and time b. We take the interval of time between a and b, divide it into n subintervals,
and approximate the distance traveled during each. The starting time of subinterval number i is now
a+ (i—1)(b—a)/n, which we abbreviate as t;_1, so thattg = a, t; = a+ (b —a)/n, and so on. The speed
of the object is f(¢) = 3¢, and each subinterval is (b — a)/n = At seconds long. The distance traveled
during subinterval number i is approximately f(z;—)At, and the total change in distance is approximately

f(t0)Ar+f(t)Ar + -+ f (tn—1)Ar.

The exact change in position is the limit of this sum as n goes to infinity. We abbreviate this sum using

sigma notation:
n—1

Y F(t)Ar = f(to) At + f(11) A+ -+ + f(tn—1)At.

i=0
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The notation on the left side of the equal sign uses a large capital sigma, a Greek letter, and the left side is
an abbreviation for the right side. The answer we seek is

n—1
lim Y f(t)Ar.
i=0

n—soo
Since this must be the same as the answer we have already obtained, we know that

n—1 2 2
3b° 3a

li LAt = — — —.
Yim X fliA ===

The significance of 3t2 /2, into which we substitute 7 = b and ¢t = a, is of course that it is a function whose
derivative is f(¢). As we have discussed, by the time we know that we want to compute

n—1
r}g{;i;f(ti)m,

it no longer matters what f(¢) stands for—it could be a speed, or the height of a curve, or something else
entirely. We know that the limit can be computed by finding any function with derivative f(¢), substituting
a and b, and subtracting. We summarize this in a theorem below. First, we introduce some new notation
and terms.

We write .
b n—
[, = lim ¥ 50

if the limit exists. That is, the left hand side means, or is an abbreviation for, the right hand side. The
symbol [ is called an integral sign, and the whole expression is read as “the integral of f(z) from a to
b.” What we have learned is that this integral can be computed by finding a function, say F(t), with the
property that F’(t) = f(t), and then computing F (b) — F (a). The function F(¢) is called an antiderivative
of f(t). Now the theorem:

Theorem 6.13: Fundamental Theorem of Calculus

Suppose that f(x) is continuous on the interval |a,b]. If F (x) is any antiderivative of f(x), then

Let’s rewrite this slightly:
X
/ F(t)dt = F(x) — F(a).
a

We’ve replaced the variable x by ¢t and b by x. These are just different names for quantities, so the
substitution doesn’t change the meaning. It does make it easier to think of the two sides of the equation as
functions. The expression
X
/ f(t)dt
a
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is a function: plug in a value for x, get out some other value. The expression F (x) — F(a) is of course also
a function, and it has a nice property:

dx
since F(a) is a constant and has derivative zero. In other words, by shifting our point of view slightly, we
see that the odd looking function

G(x) = / ")

has a derivative, and that in fact G’(x) = f(x). This is really just a restatement of the Fundamental Theorem
of Calculus, and indeed is often called the Fundamental Theorem of Calculus. To avoid confusion, some
people call the two versions of the theorem “The Fundamental Theorem of Calculus, part I’ and “The
Fundamental Theorem of Calculus, part II”, although unfortunately there is no universal agreement as to
which is part I and which part II. Since it really is the same theorem, differently stated, some people simply
call them both “The Fundamental Theorem of Calculus.”

Theorem 6.14: Fundamental Theorem of Calculus

Suppose that f(x) is continuous on the interval [a,b] and let

G(x) = / " F(r)dt.

Then G'(x) = f(x).

We have not really proved the Fundamental Theorem. In a nutshell, we gave the following argument
to justify it: Suppose we want to know the value of

n—1
/ ") di = 1im Y Fli)Ar.
a i=0

n—yoo b=

We can interpret the right hand side as the distance traveled by an object whose speed is given by f (7). We
know another way to compute the answer to such a problem: find the position of the object by finding an
antiderivative of f(¢), then substitute = a and t = b and subtract to find the distance traveled. This must
be the answer to the original problem as well, even if f(¢) does not represent a speed.

What’s wrong with this? In some sense, nothing. As a practical matter it is a very convincing argument,
because our understanding of the relationship between speed and distance seems to be quite solid. From
the point of view of mathematics, however, it is unsatisfactory to justify a purely mathematical relationship
by appealing to our understanding of the physical universe, which could, however unlikely it is in this case,
be wrong.

A complete proof is a bit too involved to include here, but we will indicate how it goes. First, if we can
prove the second version of the Fundamental Theorem, Theorem 6.14, then we can prove the first version
from that:

Proof. Proof of Theorem 6.13.
We know from Theorem 6.14 that
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is an antiderivative of f(x), and therefore any antiderivative F(x) of f(x) is of the form F (x) = G(x) + k.
Then

F(b)—F(a)=G(b)+k—(G(a)+k) = G(b)—G(a)
b a
= /af(t)dt—/a f(t)dr.

a
It is not hard to see that / f(t)dt =0, so this means that
a

which is exactly what Theorem 6.13 says. s

So the real job is to prove Theorem 6.14. We will sketch the proof, using some facts that we do not
prove. First, the following identity is true of integrals:

/abf(t)a’t:/acf(t)dt+/cbf(t)dt.

This can be proved directly from the definition of the integral, that is, using the limits of sums. It is quite
easy to see that it must be true by thinking of either of the two applications of integrals that we have seen.
It turns out that the identity is true no matter what c is, but it is easiest to think about the meaning when
a<c<b.

First, if f(¢) represents a speed, then we know that the three integrals represent the distance traveled
between time a and time b; the distance traveled between time a and time c¢; and the distance traveled
between time ¢ and time b. Clearly the sum of the latter two is equal to the first of these.

Second, if f(z) represents the height of a curve, the three integrals represent the area under the curve
between a and b; the area under the curve between a and c¢; and the area under the curve between ¢ and b.
Again it is clear from the geometry that the first is equal to the sum of the second and third.

Proof. Proof of Theorem 6.14.

We want to compute G’(x), so we start with the definition of the derivative in terms of a limit:

¢ = Jim G(x-i—Az))C ~G()

= Aligoi (/ax+mf(t)dt—/:f(t)dt)

= A];goi (/axf(t)dt—l—/;JrAxf(t)dt—/:f(t)dt)

= lim i/HMf(t)dt.

Ax—0 Ax
x+Ax
/x f(t)dt

Now we need to know something about
when Ax is small; in fact, it is very close to Axf(x), but we will not prove this. Once again, it is easy to
believe this is true by thinking of our two applications: The integral

/xx—i-Axf(t) "
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can be interpreted as the distance traveled by an object over a very short interval of time. Over a sufficiently
short period of time, the speed of the object will not change very much, so the distance traveled will be
approximately the length of time multiplied by the speed at the beginning of the interval, namely, Axf(x).
Alternately, the integral may be interpreted as the area under the curve between x and x + Ax. When Ax is
very small, this will be very close to the area of the rectangle with base Ax and height f(x); again this is
Axf(x). If we accept this, we may proceed:

] 1 r+Ax o Ax f( x)
[ i o 00,
which is what we wanted to show. )

It is still true that we are depending on an interpretation of the integral to justify the argument, but
we have isolated this part of the argument into two facts that are not too hard to prove. Once the last
reference to interpretation has been removed from the proofs of these facts, we will have a real proof of
the Fundamental Theorem.

Now we know that to solve certain kinds of problems, those that lead to a sum of a certain form, we
“merely” find an antiderivative and substitute two values and subtract. Unfortunately, finding antideriva-
tives can be quite difficult. While there are a small number of rules that allow us to compute the derivative
of any common function, there are no such rules for antiderivatives. There are some techniques that fre-
quently prove useful, but we will never be able to reduce the problem to a completely mechanical process.

Due to the close relationship between an integral and an antiderivative, the integral sign is also used to
mean “antiderivative”. You can tell which is intended by whether the limits of integration are included:

2
/ X% dx
1

is an ordinary integral, also called a definite integral, because it has a definite value, namely

2 2 13 7
2
dx =" —_,
/lxx 373 3

/xzdx

to denote the antiderivative of xz, also called an indefinite integral. So this is evaluated as

3
/xzdx: %—i—C.

We use

It is customary to include the constant C to indicate that there are really an infinite number of antideriva-
tives. We do not need this C to compute definite integrals, but in other circumstances we will need to
remember that the C is there, so it is best to get into the habit of writing the C. When we compute a
definite integral, we first find an antiderivative and then substitute. It is convenient to first display the
antiderivative and then do the substitution; we need a notation indicating that the substitution is yet to be
done. A typical solution would look like this:
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The vertical line with subscript and superscript is used to indicate the operation ‘““substitute and subtract”
that is needed to finish the evaluation.

We seem to have found a pattern. When attempting to solve a previous question, we found the an-
tiderivative of x? to be x°> /3 + ¢ (as it was when solving the indefinite integral). Likewise, when we first
began, we were trying to determine a position based on velocity, and 3¢ gave rise to 3t?/2 +k.

As will be formalized later, we see that in these cases, the power is increased to n + 1, but we also
divide through by this factor, n + 1. So x becomes x?/2, x> becomes x* /3, and x*> will become x* /4.

Now we will also try with negative and fraction values in the following example.

Example 6.15: Fundamental Theorem of Calculus

4 1
Evaluate / X +/x+ — dx.
1 X

Solution.

4 1
/x3+\/}+—2dx = —+ —X
1 x
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Properties of Definite Integrals

Some properties are as follows:
b a
Order of limits matters: / fx)dx=— / f(x)dx
a b
a
If interval is empty, integral is zero: / fx)dx=0
a
b b
Constant Multiple Rule: / cf(x)dx=c / f(x)dx
a a
b b b
Sum/Difference Rule: / flx)+tg(x)dx = / fx)dx+ / g(x)dx
a a a
b c b
Can split up interval [a,b] = [a,c]U|[c,b]: / flx)dx= / flx)dx+ / f(x)dx
a a c

b b
The variable does not matter!: / fx)dx= / f(t)dt
a a

The reason for the last property is that a definite integral is a number, not a function, so the variable is
just a placeholder that won’t appear in the final answer.

Some additional properties are comparison types of properties.

Comparison Properties of Definite Integrals

If £(x) > 0for x € [a,B], then: / ? f)dx > 0.

If f(x) > g(x) for x € [a,b], then: /abf(x) dx > /abg(x) dx.

If m < f(x) <M for x € [a,b], then: m(b—a) < bf(x)deM(b—a).

a
Example 6.16: Properties of Definite Integrals

b b
Suppose/ fx)dx=1 and/ g(x) dx = 3. Find:
a a

L[ 270 3 ax 3 [ 70ty

2. /baZg(x)dx. 4. /acf(x) dx-l—/cbf(x) dx.
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Solution.

b b b
1. / 21 (x) = 3g(x) dx = 2/ Flx)dx— 3/ g(x)dx = 2(7) —3(3) = 5.

a b
2. / 2g(x)dx = —2/ g(x)dx=—-2(3) = —6.

b a

3. /af(x) -g(x)dx=0.

4. /acf(x)dx—i-/cbf(x)dx:/abf(x)dx:T

We next evaluate a definite integral using three different techniques.

Example 6.17: Three Different Techniques

2
Evaluate/ x+1dx by
0

1. Using FTC II (the shortcut)

2. Using the definition of a definite integral (the limit sum definition)

3. Interpreting the problem in terms of areas (graphically)

Solution. 1. The shortcut (FTC 1II) is the method of choice as it is the fastest. Integrating and using the
‘top minus bottom’ rule we have:

2 52 2
/x-l—ldx = ——+x
0 2 0
22 02
= |—+2|—-|=—+4+0| =4.
5+~ 5]

2. We now use the definition of a definite integral. We divide the interval [0, 2] into n subintervals of
equal width Ax, and from each interval choose a point x;. Using the formulas

b—
= 4 and X, = a-+iAx,

n
we have : )y
= - and x,-zO—i—iAx:—l.
n n

Then taking x;’s as right endpoints for convenience (so that x} = x;), we have:

2 n
/Ox—l-ldx = ’}glgoi_zif(xi)Ax
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3. Finally, let’s evaluate the net area under x + 1 from O to 2.

y=x+1

y=x+1

Thus, the area is the sum of the areas of a rectangle and a triangle. Hence,

2
/ x+1dx
0

Net Area

Area of rectangle 4 Area of triangle

@) +52)2)
4,

We next apply FTC to differentiate a function.
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Example 6.18: Using FTC

Differentiate the following function:

g(x)z/ cos(1+ 5¢)sint dt.

Solution. We simply apply the Fundamental Theorem of Calculus directly to get:

g’ (x) = cos(1 + 5x) sinx.

Using the Chain Rule we can derive a formula for some more complicated problems. We have:

v(x)
< = ) V)

Now what if the upper limit is constant and the lower limit is a function of x? Then we interchange the
limits and add a minus sign to get:

d re d u(x) /
E/u(x)f(t)dt = ‘E/a f(e)dt = —f(u(x)) - (x).

Combining these two we can get a formula where both limits are a function of x. We break up the
integral as follows:

/ " evdi= [ e / " ey
u(x) u(x) a '

We just need to make sure f(a) exists after we break up the integral. Then differentiating and using the
above two formulas gives:

FTC I + Chain Rule

Many textbooks do not show this formula and instead to solve these types of problems will use FTC I
along with the tricks we used to derive the formula above. Either method is perfectly fine.

Example 6.19: FTC I + Chain Rule

Differentiate the following integral:

2

X
/ £3sin(141)dt.
10x
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Solution. We will use the formula above. We have f(¢) = ¢>sin(14-¢), u(x) = 10x and v(x) = x>. Then
u'(x) = 10 and v/(x) = 2x. Thus,

d
5/10 t3sin(1—|—t)dt = (x2)3sin(1+(x2))(2x)—(10x)3sin(1+(10x))(10)

= 2x7sin(14x?) — 10000x> sin(1 + 10x)

Example 6.20: FTC I + Chain Rule

Differentiate the following integral with respect to x:

2x
1+ costdt

3

Solution. Using the formula we have:

d [
[ 1 eostdr = (1+cos(24))(2) — (1-+ cos(x)) (3+%).

Exercises for Section 6.2

4
Exercise 6.2.1 Evaluate / 2+ 3tdt
1

V3
Exercise 6.2.2 Evaluate / sint dt

0

10 1
Exercise 6.2.3 Evaluate / —dx

1 x

5
Exercise 6.2.4 Evaluate / e dx

0

3
Exercise 6.2.5 Evaluate / * dx

0

2
Exercise 6.2.6 Evaluate / * dx
1

X
Exercise 6.2.7 Find the derivative of G(x) = / 1> —3tdt
1
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2

X
Exercise 6.2.8 Find the derivative of G(x) = / > —3tdt
1

X
Exercise 6.2.9 Find the derivative of G(x) = / ¢ dt
1

X2
Exercise 6.2.10 Find the derivative of G(x) = / ¢ dt
1

X
Exercise 6.2.11 Find the derivative of G(x) = / tan(r?) dr
1

xZ
Exercise 6.2.12 Find the derivative of G(x) = / tan(¢?) dt
10x

Exercise 6.2.13 Suppose fff(x) dx =2 and f14g(x) dx =". Find f14(5f(x) +3g(x))dx and f14(6 —
2f(x))dx.

Exercise 6.2.14 Suppose [°, f(x)dx =3 and [} f(x)dx = —2. Find [, f(x)dx.

Exercise 6.2.15 If f is continuous on [a,b], we define the average of f(x) on [a,b] to be

1 b
avglun () = 5= [ 100 dx

(a) What is the average of \/x on the interval [0,1]?

(b) If the average of f(x) on [0,2] and on [2,5] are 6 and 4 respectively, then what is its average on
[0,5]?

6.3 Indefinite Integrals

In this section we focus on computing indefinite integrals. The process of finding the indefinite integral is
called integration (or integrating f(x)).

Example 6.21: Indefinite Integral

Evaluate the following indefinite integral:

/x5 +3x—2dx.

Solution. Since this is asking for the most general anti-derivative we have:

6 32
/x5—|—3x—2dx:%+%—2x+c
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where C is a constant. )

Common mistakes: One habit students make with integrals is to drop the dx at the end of the integral.
This is required! Think of the integral as a set of parenthesis. Both are required so it is clear where the
integrand ends and what variable you are integrating with respect to.

Another common mistake is to forget the +C for indefinite integrals.

Note that we don’t have properties to deal with products or quotients of functions, that is,
[r@-gxax# [ s [ gax.

d
[109 ey L0
8(x) J g(x)dx
With derivatives, we had the product and quotient rules to deal with these cases. For integrals, we have no
such rules, but we will learn a variety of different techniques to deal with these cases.

The following integral rules can be proved by taking the derivative of the functions on the right side.

Integral Rules

Constant Rule: / kdx=kx+C.

Constant Multiple Rule: / kf(x)dx=k / f(x)dx, kis constant.

Sum/Difference Rule: / fx)Eg(x)dx= / flx)dx+ / g(x)dx.

+1
1+Q n#+—1.

Power Rule: / X'dx =
n—+

1
Log Rule: /—dx:ln|x|+C, x#0.
x

akx

klna

Exponent Rule: / a* = +C, x#0.
Sine Rule: /sinxdx = —cosx+C.

Cosine Rule: /cosxdx =sinx+C.

Example 6.22: Indefinite Integral

If f'(x) = x* +2x — 8sinx then what is f(x)?
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Solution. The answer is:

f(x):/f'(x)dx = /(x4—|—2x—85inx) dx

_ /x4dx+2/xdx—8/sinxdx

5

= %+x2+8005x+C,

where C is a constant. )

Example 6.23: Indefinite Integral

Find the general indefinite integral of / 3x% dx.

Solution.

/3x2dx = 3/x2dx
3

Example 6.24: Indefinite Integral

2
Find the general indefinite integral of / de.
X

Solution.

Example 6.25: Indefinite Integral

1
Find the general indefinite integral of / (— +e™ +x" + 7) dx.
X
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Solution.
1 1
/(—+e7x+x”—|—7> dx = /—dx+/e7xdx—|—/x”dx—|—/7dx
X X

T+1

1
= Inx+-e"+ T 47x+C
7 w41

Differential Equations

An equation involving derivatives where we want to solve for the original function is called a differential
equation. For example, f’(x) = 2x is a differential equation with general solution f(x) = x> +C. Some
solutions (i.e., particular values of C) are shown below.

y=a>+2
y
4 y:x2
y::1:2—2
I I I I i | | L
1 y::z:2—4

As seen with integral curves, we may have an infinite family of solutions satisfying the differential
equation. However, if we were given a point (called an initial value) on the curve then we could determine
f(x) completely. Such a problem is known as an initial value problem.

Example 6.26: Initial Value Problem

If f'(x) = 2x and f(0) = 2 then determine f(x).

Solution. As previously stated, we have a solution of:
fx)=x*+C.

But f(0) = 2 implies:

Therefore, f(x) = x% +2 is the solution to the initial value problem. &
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Exercises for Section 6.3

Find the antiderivatives of the functions:

Exercise 6.3.1 8/x
Exercise 6.3.2 312 +1
Exercise 6.3.3 4//x
Exercise 6.3.4 2/7>
Exercise 6.3.5 75~
Exercise 6.3.6 (5x+1)?
Exercise 6.3.7 (x—6)>
Exercise 6.3.8 x/2
2
X

Exercise 6.3.9 ——

e

Exercise 6.3.10 |2 — 4|






Techniques of Integration

Over the next few sections we examine some techniques that are frequently successful when seeking
antiderivatives of functions.

7.1 Substitution Rule

Needless to say, most integration problems we will encounter will not be so simple. That is to say we will
require more than the basic integration rules we have seen. Here’s a slightly more complicated example:
Find

/ 2xcos(x?) dx.

This is not a “simple” derivative, but a little thought reveals that it must have come from an application
of the chain rule. Multiplied on the “outside” is 2x, which is the derivative of the “inside” function X2

Checking:

d d
. sin(x?) = cos(xz)ax2 = 2xcos(x?),

SO
/2xcos(x2) dx = sin(x*) +C.

To summarize: If we suspect that a given function is the derivative of another via the chain rule, we
let # denote a likely candidate for the inner function, then translate the given function so that it is written
entirely in terms of u, with no x remaining in the expression. If we can integrate this new function of u,
then the antiderivative of the original function is obtained by replacing u by the equivalent expression in x.

Theorem 7.1: Substitution Rule for Indefinite Integrals

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

[ #e)g @ dr= [ f)du

Even in simple cases you may prefer to use this mechanical procedure, since it often helps to avoid
silly mistakes. For example, consider again this simple problem:

/ 2xcos(x?) dx.

Letu = x2, then du/dx = 2x or du = 2xdx. Since we have exactly 2xdx in the original integral, we can
replace it by du:

/2xcos(x2)dx = /cosudu = sinu+C =sin(x*) +C.

249
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This is not the only way to do the algebra, and typically there are many paths to the correct answer.
Another possibility, for example, is: Since du/dx = 2x, dx = du/2x, and then the integral becomes

/Zxcos(xz)dx: /Zxcosu% = /cosudu.
x

The important thing to remember is that you must eliminate all instances of the original variable x.

Example 7.2: Substitution Rule

Evaluate / (ax+ b)" dx, assuming a,b are constants, a # 0, and n is a positive integer.

Solution. We let u = ax+b so du = adx or dx = du/a. Then

1 1 1
b)'d :/—”d =—— "4 C=
/(ax—|— ) dx a’ a(n—f—l)u + a(n+1)

Example 7.3: Substitution Rule

Evaluate / sin(ax + b) dx, assuming that a and b are constants and a # 0.

Solution. Again we let u = ax+ b so du = adx or dx = du/a. Then

1 1 1
/sin(ax—i—b)dxz /—sinudu: —(—cosu)+C = ——cos(ax+b)+C.
a a a

&

Strategy for Substitution Rule

A general strategy to follow is:
1. Choose a possible u = u(x). Tip: Choose a substitution u so that its derivate also appears in
the integral (up to a constant).
2. Calculate du = u'(x) dx.

d
3. Either replace /(x) dx by du, or replace dx by Tu), and cancel.
u'(x

4. Write the rest of the integrand in terms of u. If this is not possible, the substitution will not
work: You must go back to step 1.

5. Find the indefinite integral. (Again, if this is not possible, try a different substitution, or a
different method).

6. Rewrite the result in terms of x.
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Example 7.4: Substitution

2x
Evaluate the following integral: / —dx.
g1mes V1 —4x?
Solution. We try the substitution:
u=1—4x%
Then,
du = —8x dx

In the numerator we have 2x dx, so rewriting the differential gives:
! du=2xd
——du = 2x dx.
4

Then the integral is:

/712—)674;#% _ /(1—4x2)_1/2(2xdx)

Example 7.5: Substitution

Evaluate the following integral: / cosx(sinx)’ dx.

Solution. In this question we will let # = sinx. Then,
du = cosx dx.

Thus, the integral becomes:

/cosx(sinx)sdx = /usdu

6
u
= +C

(sinx)®
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Example 7.6: Substitution

Evaluate the following integral: / %\/\_/E) dx.
x

Solution. We use the substitution:

u=x"/2.
Then,
1
du = Ex_l/zdx.
Rewriting the differential we get:
1

The integral becomes:

/COS\(}X/E) dx = 2/cosudu

= 2sinu+C

= 2sin(y/x)+C

Example 7.7: Substitution

Evaluate the following integral: / 2x3\/x2 + 1 dx.

Solution. This problem is a little bit different than the previous ones. It makes sense to let:
u=x*+ 1,

then
du = 2x dx.

Making this substitution gives:

/2x3\/x2+1dx = /xzx/x2+1(2x)dx

= /x2u1/2 du
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This is a problem because our integrals can’t have a mixture of two variables in them. Usually this means
we chose our u incorrectly. However, in this case we can eliminate the remaining x’s from our integral by

using:

u=x>+1 — xX*=u—1.

We get:
/xzul/zdu = /(u— Du'/?du
= /uS/Z—ul/zdu

2 2
SS2_Zp32 ¢

5 3
= %( 2+1)5/2—§(x2+1)3/2+c

The next example shows how to use the Substitution Rule when dealing with definite integrals.

Example 7.8: Substitution Rule

4
Evaluate / xsin(x?) dx.
2

2

Solution. First we compute the antiderivative, then evaluate the integral. Let u = x°, so du = 2xdx or

xdx =du/2. Then

1 1 1
/xsin(xz)dx: /zsinudu = E(—cosu) +C= —3 cos(x?) +C.
Now

1 4

4 1 1
/ xsin(x?)dx = — = cos(x?)| = —= cos(16) + = cos(4).
2 2 ’ 2 2
A somewhat neater alternative to this method is to change the original limits to match the variable u. Since
U= xz, when x =2, u =4, and when x = 4, u = 16. So we can do this:

16

4 167 1 1 1
/ xsin(x )dx:/ —sinudu = ——(cosu)| = —=cos(16)+ = cos(4).
2 4 2 2 2 2

4
An incorrect, and dangerous, alternative is something like this:

4 1 4
= ——cos(x?)

1 1
= ——cos(16) + = cos(4).
2 2

4 41 1
/szin(xz)dx:/2 Esinudu: —Ecos(u) i : :

41
This is incorrect because / 2 sinudu means that u takes on values between 2 and 4, which is wrong. It
2
4
and forget to substitute x> back in for

. . . 1
is dangerous, because it is very easy to get to the point ) cos(u)
2
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1 1
u, thus getting the incorrect answer —3 cos(4) + 3 cos(2). An acceptable alternative is something like:

x=4 1

= —=cos(x?)

4 cos(16)  cos(4)
=- + :
x=2 2

) 2 2

4 x=4 1 1
/ xsin(x?) dx = / —sinudu = —=cos(u)
2 x:2 2 2

To summarize, we have the following.

Theorem 7.9: Substitution Rule for Definite Integrals

If ¢ is continuous on [a,b] and f is continuous on the range of u = g(x), then

[/ sang@ae= [ )
p I  Jsla) '

Example 7.10: Substitution Rule

1/2 ¢
Evaluate / C,OSZ(n )
1/4 sin”(mt)

Solution. Let u = sin(nt) so du = mwcos(nt)dt or du/m = cos(mt)dt. We change the limits to sin(7/4) =
V2/2 and sin(/2) = 1. Then

/1/2 cos(7t) s /1 1 L =y lu! 1 N V2
= ——du= —Uu U= ———- = ——+—
1/4 sin®(mt) V22 T u? V22 T

Exercises for Section 7.1

Find the following indefinite and definite integrals.

Exercise 7.1.1 /(1 —1)7dr
Exercise 7.1.2 / (x* 4+ 1)%dx
Exercise 7.1.3 /x(x2 +1)100 gy

1
Exercise 7.1.4 / —dt
v1=5¢t



Exercise 7.1.5 / sin® xcos xdx

Exercise 7.1.6 / /100 — 2 dx

Exercise 7.1.7 /
1/1 _

Exercise 7.1.8 /cos(itt)cos(sin(m)) dt

sinx

Exercise 7.1.9 / dx

cos3 x

Exercise 7.1.10 / tanxdx
T

Exercise 7.1.11 / sin® (3x) cos(3x) dx
0

Exercise 7.1.12 / sec xtanxdx

VT2
Exercise 7.1.13 / xsec?(x?) tan(x?) dx
0

sin(tanx)

Exercise 7.1.14 / dx

cosZx

Exercise 7.1.15 / 7a’x
(3x—7)2

7r/6
Exercise 7.1.16 / (cos®x — sin®x) dx

Exercise 7.1.17 / Wd

1
Exercise 7.1.18 / (26 — 1) (¥ — 20)0dx
-1
1
Exercise 7.1.19 / sin’ xdx
~1

Exercise 7.1.20 / fx)f (x)dx

7.1. Substitution Rule
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7.2 Powers of Trigonometric Functions

Functions consisting of powers of the sine and cosine can be integrated by using substitution and trigono-
metric identities. These can sometimes be tedious, but the technique is straightforward. A similar tech-
nique is applicable to powers of secant and tangent (and also cosecant and cotangent, not discussed here).

The trigonometric substitutions we will focus on in this section are summarized in the table below:

Substitution u = sinx U = COSX u=tanx U= Secx

Derivative | du = cosxdx | du = —sinxdx | du = sec®*xdx | du = secxtanxdx

An example will suffice to explain the approach.

Example 7.11: Odd Power of Sine

Evaluate / sin’ xdx.

Solution. Rewrite the function:
.5 . . .4
/ sin xdx = sinxsin” xdx

sinx(sin’x)? dx

sinx(1 —cos?x)?dx.

I
—— —

Now use u = cosx, du = —sinxdx:

/sinx(l —cos’x)?dx = [ —(1—u*)*du

——

—(1—2u*+u*) du
= /1+2u2—u4du

2 1
= —u+ §u3—§u5+C

2 3
= —cosx+§cos

1
X — gcossx—i-C.

&

Observe that by taking the substitution # = cosx in the last example, we ended up with an even power
of sine from which we can use the formula sin?x + cos?x = 1 to replace any remaining sines. We then
ended up with a polynomial in # in which we could expand and integrate quite easily.

This technique works for products of powers of sine and cosine. We summarize it below.
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Products of Sine and Cosine

When evaluating / sin” xcos” xdx:

1. The power of sine is odd (. odd):
(a) Use u = cosx and du = —sinxdx.
(b) Replace dx using (a), thus cancelling one power of sinx by the substitution of du, and be
left with an even number of sine powers.
(c) Use sinx = 1 — cos?x (= 1 — u?) to replace the leftover sines.

2. The power of cosine is odd (n odd):
(a) Use u = sinx and du = cosxdx.
(b) Replace dx using (a), thus cancelling one power of cosx by the substitution of du, and be
left with an even number of cosine powers.
(c) Use cos>x = 1 —sin’x (= 1 — u?) to replace the leftover cosines.

3. Both m and » are odd:
Use either 1 or 2 (both will work).

4. Both m and n are even:
Use cos®x = 3 (1 +cos(2x)) and/or sin®x = !
integrated.

(1 —cos(2x)) to reduce to a form that can be

\S]]

NOTE: As m and n get large, multiple steps will be needed.

Example 7.12: Odd Power of Cosine and Even Power of Sine

Evaluate / sin® xcos’ xdx.

Solution. We will show this solution in two ways. First, we show the solution by rewriting the function to
make the substitution more clear. Then, we show the solution using the above method.

Solution 1: Rewrite the function as follows.
/sin6xcossxdx = /sin6xcos4xcosxdx
= /sinﬁx(coszx)zcosxdx

= /sin6x(1 —sin®x)? cosxdx

du
cosx |

Then use the substitution u = sinx and du = cosxdx, that is, =

/sin6x(1 —sin®x)?cosxdx = /u6(l —u?)?du

= /u6—2u8—|—u10du
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w2’ ult

=7 ot te

B sinx 2sin’x  sin'lx
A TR

Solution 2: Since the power of cosine is odd, we use the substitution # = sinx and du = cosxdx, that

is, [ = | 4|

COSX

Then / sin®xcos’ xdx is equal to:

d
= / 5 cosd x| - Using the substitution
COSX

= / ub (cos2 x)2 du Canceling a cosx and rewriting cos* x
_ 6 s 02 .N\2 . fo s : 2. _ i 02
= / u’(1—sin“x)“du Using trig identity cos“x = 1 —sin“x
= /u6(1 —u?)?du Writing integral in terms of u’s
= / u® —2u® +u' du Expand and collect like terms

u’ 2u9+u11+c Inteorati
== ——+— ntegratin

779 "1 SHHng

.7 . 9 - 11

2

= SH; * SI;I al + SH; I a +C  Replacing u back in terms of x

Example 7.13: Odd Power of Cosine

Evaluate / cos> xdx.

Solution. Since the power of cosine is odd, we use the substitution # = sinx and du = cosxdx. This may
seem strange at first since we don’t have sinx in the question, but it does work!

du . oo
/ cos3x = / cos® x Using the substitution
CoSx

= / cos®xdu Canceling a cosx

= / (1—sin’x)du  Using trig identity cos®x = 1 — sin®x
= / (1—u?)du Writing integral in terms of u’s
3
= u— 3 +C Integrating
-3
i

= sinx— 3 +C Replacing u back in terms of x
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Example 7.14: Product of Even Powers of Sine and Cosine

Evaluate / sin?xcosZxdx.

Solution. Use the formulas sin?x = (1 — cos(2x))/2 and cos?x = (1 +cos(2x)) /2 to get:

1— 2 1 2
/sinzxcoszxdx:/ C;)S( x). +C;S( *) dx.

We then have

1— 2 1 2
/sinzxcoszxdx = / C(Z)S( x). +C;S( *) dx

1
= Z/I—COSZZxdx

1
= 2 (x—/0032 Zxdx)
1
xX— 5/1+cos4xdx)

(++75)

1
2
x  sindx
- == C
)+

X

A= A= K-
N7 N -7 N

=

8

Example 7.15: Even Power of Sine

Evaluate / sin® xdx.

2

Solution. Use sin“x = (1 —cos(2x))/2 to rewrite the function:

/sin6xdx = /(sinzx)3dx

1 — cos2x)?
_ /( cgsx) .

1
= g/l—3c052x—|—300322x—cos32xdx.

Now we have four integrals to evaluate. Ignoring the constant for now:

/ldx:x
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and 3
/—30052xdx = ) sin2x

are easy. The cos® 2x integral is like the previous example:

/ —cos>2xdx = / — cos2xcos? 2xdx

= /—cos 2x(1 — sin® 2x) dx

= /—%(1 —u?)du

1/ . 5 sin3 2x
= ——= | SInZx — .
2 3

And finally we use another trigonometric identity, cos>x = (1 +cos(2x))/2:

14 cos4x 3 sin4x

2

2 — - - — .
/3COS xdx 3/ ) dx ) (X+ )

So at long last we get

3 1 3 32 3 . 4
/sin6xdx: % — —sin2x— — (sian— - x) +— (x—l— o x) +C.

16 16 3 16 4

Next, we turn our attention to products of secant and tangent. Some we already know how to do.
/seczxdx =tanx+C /secxtanxdx =secx+C

We can also integrate tanx quite easily.

Example 7.16: Integrating Tangent

Evaluate / tanxdx.
. sinx .
Solution. Note that tanx = cosx and let u = cosx, so that du = —sinxdx.
X
/ tanxdx = / —zi)r;x -m Rewriting tanx
X
i d
= Sy u Using the substitution
u | —sinx
1
= — / —du Cancelling and pulling the —1 out
u
1
= —Infu|+C Usingformula/—dlen|u|+C
u

= —In|cosx|+C Replacing u back in terms of x
= In|secx|+C Using log properties and secx = 1/cosx
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&

Let’s take a moment to realize this result! A common mistake is to believe that [ tanxdx is sec?(x) +C
— this is not true.

Example 7.17: Integrating Tangent Squared

Evaluate / tan® xdx.

2

Solution. Note that tan®x = sec®x — 1.

/ tan’xdx = / sec’x — 1dx Rewriting tanx

= tanx—x+C Since/seczxdx:tanx—i—c

In problems with tangent and secant, two integrals come up frequently:
/ sec’ xdx and / secxdx.

Both have relatively nice expressions but they are a bit tricky to discover.

First we do / secxdx, which we will need to compute / sec> xdx.

Example 7.18: Integral of Secant

Evaluate /secxdx.

Solution.

secx +tanx
secxdx = secx———dx
secx +tanx

/ sec?x + secxtanx
secx+tanx

Now let u = secx+tanx, du = secxtanx -+ seczxdx, exactly the numerator of the function we are integrat-
ing. Thus

sec?x + secxtanx
secxdx = dx
secx +tanx

1
= /—du:ln|u|—|—C
u

= In|secx+tanx|+C.
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Now we compute the integral / sec’ xdx.

Example 7.19: Integral of Secant Cubed

Evaluate / sec> xdx.

Solution.

o3 sec’ x n sec’x  sec’x n (tan® x4 1) secx
sec’x = =
2 2 2 2

sec3x secxtanzx Secx

2+2+2

secd x + secxtan?x n secx
2 2

We already know how to integrate secx, so we just need the first quotient. This is “simply” a matter of
recognizing the product rule in action:

/SCC3X+ secxtanzxdx = secxtanx.

So putting these together we get

+C,

3 secxtanx  In|secx+ tanx|
sec’ xdx = > >

For products of secant and tangent it is best to use the following guidelines.
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Products of Secant and Tangent

When evaluating / sec” xtan" xdx:

1. The power of secant is even (m even):
(a) Use u = tanx and du = sec® xdx.
(b) Cancel sec?x by the substitution of dx, and be left with an even number of secants.
(c) Use sec’x = 1 +tan?x (= 1 +u?) to replace the leftover secants.

2. The power of tangent is odd (n odd):
(a) Use u = secx and du = secxtanxdx.
(b) Cancel one secx and one tanx by the substitution of dx.
The number of remaining tangents is even.
(c) Use tan?x = sec’x — 1 (= u?® — 1) to replace the leftover tangents.

3. mis even or n is odd:
Use either 1 or 2 (both will work).

4. The power of secant is odd and the power of tangent is even:

No guidelines. Remember that / secxdx and / sec’ xdx can usually be looked up.

Example 7.20: Even Power of Secant

Evaluate / sec® xtan® xdx.

Solution. Since the power of secant is even, we ue u = tanx, so that du = sec? xdx.

du . o
/ sec®xtan®xdx = [sec®x(ud) 5 Using the substitution
sec’x
— 4 6 : 2
= /sec x(u”)du Cancelling a sec”x

= / (sec?x)?(u®) du Rewriting sec*x
= /(1 +tan’x)?(u®) du Using sec?x = 1+ tanx

= / (1+u?)?(u®) du Using the substitution
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To integrate this product the easiest method is expand it into a polynomial and integrate term-by-term.

/ sec®xtanSxdx = / (u® +2u8 +u'®) du Expanding
= u_7 + E + M—H +C Integratin
BT grating
tan’x 2tan’x tan'lx e
= 7 + 5 + T +C Rewriting in terms of x

Example 7.21: Odd Power of Tangent

Evaluate / sec” xtanxdx.

Solution. Since the power of tangent is odd, we use u = secx, so that du = secxtanxdx. Then we have:

du o
/ sec xtanxdx = / sec’ xtanx| ———— | Substituting dx first
secxtanx
= / sectxdu Cancelling
= / u* du Using the substitution
W
= 3 +C Integrating
5
sec’ x e
= — +C Rewriting in terms of x

Example 7.22: Odd Power of Secant and Even Power of Tangent

Evaluate / secxtan? xdx.

2

Solution. The guidelines don’t help us in this scenario. However, since tan”x = sec’x — 1, we have

/secxtanzxdx = /secx(seczx— 1)dx
= /(sec3x—secx) dx
1
= 3 (secxtanx+In|secx+tanx|) —In|secx+tanx| +C
1 1
= —secxtanx+ §1n|secx—|—tanx| —In|secx+tanx|+C

2

1 1
= 5 secxtanx — 5 In|secx+tanx|+C



Exercises for 7.2
Find the antiderivatives.

Exercise 7.2.1 / sin” xdx
Exercise 7.2.2 / sin® xdx
Exercise 7.2.3 / sin* xdx
Exercise 7.2.4 / cos? xsin® xdx
Exercise 7.2.5 / cos® xdx

Exercise 7.2.6 / cos> xsin® xdx

Evaluate the given indefinite integrals.

Exercise 7.2.13 / sinxcos* x dx

Exercise 7.2.14 / sin® xcosx dx

Exercise 7.2.15 / sin® xcos® x dx
Exercise 7.2.16 / sin® xcos® x dx
Exercise 7.2.17 / sin® xcos” x dx
Exercise 7.2.18 / sin® xcos’ x dx
Exercise 7.2.19 / sin® xcos® x dx

Exercise 7.2.20 / sin(5x) cos(3x) dx

7.2. Powers of Trigonometric Functions

Exercise 7.2.7 / sinx(cosx)>/? dx
Exercise 7.2.8 / secZxcsc?xdx

Exercise 7.2.9 / tan> xsec xdx

1 1
Exercise 7.2.10 / (— + —) dx
cscx  secx

2
Exercise 7.2.11 /COS *¥+cosx+1 dx

cos3x

Exercise 7.2.12 / xsec?(x?) tan*(x?) dx

Exercise 7.2.21 / sin(x) cos(2x) dx
Exercise 7.2.22 / sin(3x) sin(7x) dx
Exercise 7.2.23 / sin(7x) sin(27x) dx
Exercise 7.2.24 / cos(x) cos(2x) dx

. T
Exercise 7.2.25 / cos <5x) cos(7x) dx
Exercise 7.2.26 / tan® xsec®x dx
Exercise 7.2.27 / tan® xsec*x dx

Exercise 7.2.28 / tan> xsec* x dx

265
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Exercise 7.2.29 / tan® xsec?x dx Exercise 7.2.33 / secdx dx

Exercise 7.2.30 / tan> xsec’ x dx
Exercise 7.2.34 / tan® xsec x dx
Exercise 7.2.31 / tan> xsec’ x dx

Exercise 7.2.32 / tan* x dx Exercise 7.2.35 / tan® xsec> x dx

Exercises 7.2.13 to 7.2.35 were adapted by Lyryx from APEX Calculus, Version 3.0, written by G. Hartman. This material
is released under Creative Commons license CC BY-NC (https://creativecommons.org/licenses/by-nc/4.0/). See
the Copyright and Revision History pages in the front of this text for more information.

7.3 Trigonometric Substitutions

So far we have seen that it sometimes helps to replace a subexpression of a function by a single variable.
Occasionally it can help to replace the original variable by something more complicated. This seems like
a “reverse” substitution, but it is really no different in principle than ordinary substitution.

Example 7.23: Sine Subsitution

Evaluate / V1 —x2dx.

Solution. Let x = sinu so dx = cosudu. Then
/\/ 1—x2dx= /\/ 1 —sinfucosudu = /vCoszucosudu.

We would like to replace V'cos?u by cosu, but this is valid only if cosu is positive, since Vcos2u is
positive. Consider again the substitution x = sinu. We could just as well think of this as u = arcsinx. If
we do, then by the definition of the arcsine, —7/2 < u < 1 /2, so cosu > 0. Then we continue:

/VCoszucosudu = /coszudu
_ /l—i—cosZudu_ u sin2u+c

2 2774
arcsinx  sin(2arcsinx)

_ C.
>+ 1 -

This is a perfectly good answer, though the term sin(2 arcsinx) is a bit unpleasant. It is possible to simplify

this. Using the identity sin2x = 2 sinxcos x, we can write sin2u = 2 sinucos u = 2sin(arcsinx)\/ 1 — sinu =
2x\/ 1 —sin?(arcsinx) = 2x\/1 — x2. Then the full antiderivative is

arcsinx 2xv1—x? arcsinx xvV1—x?
2 T 4 2 T2

+C.
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&

This type of substitution is usually indicated when the function you wish to integrate contains a poly-
nomial expression that might allow you to use the fundamental identity sin”x + cos®>x = 1 in one of three
forms:

2 2 2

cos“x=1-—sin“x sec?x = 1 +tan®x tan® x = sec?

x—1.

If your function contains 1 — x?, as in the example above, try x = sinu; if it contains 1 +x? try x = tanu;
and if it contains x> — 1, try x = secu. Sometimes you will need to try something a bit different to handle
constants other than one which we will describe below. First we discuss inverse substitutions.

In a traditional substitution we let u = u(x), i.e., our new variable is defined in terms of x. In an
inverse substitution we let x = g(u), i.e., we assume x can be written in terms of u. We cannot do this
arbitrarily since we do NOT get to “choose” x. For example, an inverse substitution of x = 1 will give an
obviously wrong answer. However, when x = g(u) is an invertible function, then we are really doing a
u-substitution with # = g~!(x). Now the substitution rule applies.

Sometimes with inverse substitutions involving trig functions we use 6 instead of u. Thus, we would
take x = sin O instead of x = sinu. However, as we discussed above, we would like our inverse substitution
x = g(u) to be a one-to-one function, and x = sinu is not one-to-one. We can overcome this issue by using
the restricted trigonometric functions. The three common trigonometric substitutions are the restricted
sine, restricted tangent and restricted secant. Thus, for sine we use the domain [—7x/2, 7/2] and for
tangent we use (—x/2, w/2). Depending on the convention chosen, the restricted secant function is

usually defined in one of two ways.
y y y
sec(x) &j U sec(x) &J v sec(x) &J U
[ X L X L on 3 oo X
2 2

One convention is to restrict secant to the region [0, 7/2)U (/2,7 as shown in the middle graph.
The other convention is to use [0, 7/2)U [, 37/2) as shown in the right graph. Both choices give a
one-to-one restricted secant function and no universal convention has been adopted. To make the analysis

in this section less cumbersome, we will use the domain [0, 7/2) U [r, 37/2) for the restricted secant
function. Then sec ! x is defined to be the inverse of this restricted secant function.

Typically trigonometric substitutions are used for problems that involve radical expressions. The table
below outlines when each substitution is typically used along with their intervals of validity.
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Expression Substitution Validity
a? —x? x=asin6 0c[-n/2, n/2]
Va2 +x2 or a>+x* | x=atan® 0c(—m/2, 7/2)
x? —a? x=asech | 0¢€|0, w/2)U[r, 37/2)

All three substitutions are one-to-one on the listed intervals. When dealing with radicals we often end
up with absolute values since
V22 = |z|.

For each of the three trigonometric substitions above we will verify that we can ignore the absolute value
in each case when encountering a radical.

For x = asin 0, the expression v a? — x2 becomes

Va2 —x2=Va?—a?sin? @ = \/a2(1 —sin®0) = aV/cos? 0 = a|cos 8] = acos

This is because cos 0 > 0 when 6 € [—x/2, m/2]. For x = atan 6, the expression v a? + x* becomes

V@ +x2=+/a® +a*tan? 0 = \/a?(1 +tan? 0) = aV'sec? 6 = a| sec 6] = asec 0

This is because sec 8 > 0 when 6 € (—x/2, w/2).
Finally, for x = asec 0, the expression v/x — a? becomes

Va2 —a? = Va?sec?0 —a? = \/a?(sec?6 — 1) = aVtan? 6 = a|tan 6| = atan 6

This is because tan6 > 0 when 6 € [0, ©/2)U([x, 37/2).

Thus, when using an appropriate trigonometric substitution we can usually ignore the absolute value.
After integrating, we typically get an answer in terms of 6 (or «) and need to convert back to x’s. To do
so, we use the two guidelines below:

* For trig functions containing 6, use a triangle to convert to x’s.

* For 0 by itself, use the inverse trig function.
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All pieces needed for such a trigonometric substitution can be summarized as follows:

Inverse of
Expression | Substitution Differential Identity Substitution

a’—x> | x=asinb dx =acos0d0 Va? —x*=acos 9=Sin_1(;‘c)

Va2 +x2
or x=atan0 dx = asec’>0dO vVa?+x2=asec0 Gztan_l(ﬁ)
2 2

a“+x

xX2—a? | x=asecH |dx=asecOtan0d6 | Vx> —a>=atan® | 6 =sec”! (%)

To emphasize the technique, we redo the computation for / V1 —x2dx.

Example 7.24: Sine Subsitution

Evaluate / V1 —x2dx.

Solution. Since v/1 — x2 appears in the integrand we try the trigonometric substitution x = sin . (Here we
are using the restricted sine function with 6 € [—m/2, /2] but typically omit this detail when writing out
the solution.) Then ‘ dx ‘ = ‘ cos0do ‘

/ V1 —x2 = / V1 —sin? 9 Using our (inverse) substitution

= /\/0082 OcosOdo Since sin® 0 +cos? 0 = 1
= /|c059|-c059d9 Since Vcos? 0 = |cos 6|
= /cos29d9 Since for 6 € [—7%, 5| we have cos 6 > 0.

Often we omit the step containing the absolute value by our discussion above. Now, to integrate a power
of cosine we use the guidelines for products of sine and cosine and make use of the identity

1
cos’ 0 = 5(1 +cos(20)).

Our integral then becomes

1 6 sin(26
/\/1—x2dx:5/(1+cos(29))d9:§+smg e

To write the answer back in terms of x we use a right triangle. Since sin & = x/1 we have the triangle:
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V11— 22
The triangle gives sin 6, cos 0, tan 6, but have a sin(26). Thus, we use an identity to write

V]—2
sin(20) :2sin6cos6:2<§> < 1 a )

For 6 by itself we use 6 = sin~! x. Thus, the integral is

- —1 2
V1=
/\/l—xza’x:sm2 x+x 5 i +C

Example 7.25: Secant Substitution

V25x2 —4
Evaluate / de
X

Solution. We do not have v/x2 — a? because of the 25, but if we factor 25 out we get:

/ V25(x2 — (4/25)) / s VX —(4/25) 4/25) i

X

Now, a=2/5,s0letx = % sec 0. Alternatively, we can think of the integral as being:
5x)2 —4
/ V)R -4
X

Then we could let u = 5x followed by u = 2sec 0, etc. Or equivalently, we can avoid a u-substitution by
letting 5x = 2sec 6. In either case we are using the trigonometric substitution x = % sec 6, but do use the

method that makes the most sense to you! As x = % sec O we have = % secOtan0d0 |
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> / 29
3 2_4 54sec
/L = / 25 5secGtanGalG
X

Using the substitution

5 25ecH

= / \/4(sec26 — 1) -tan6dO Cancelling

= Z/Vtan2 -tan0dO Using tan? 0 + 1 = sec’ 0

= 2 / tan” 0 d6 Simplifying

= 2/(sec 0—1)deé Using tan® @ + 1 = sec® 0

= 2(tan6—0)+C Since [sec’?0d6 =tan @ +C

For tan 6, we use a right triangle.
2 1 2

ngsece — X=35250 — c059:§

Using SOH CAH TOA, the triangle is then

5

V2522 — 4

For 0 by itself, we use 8 = sec™!(5x/2). Thus,

V25x* —4 V25x% —4 4 [ 5x
/fdx:Z —— —sec +C

2 2

&

In the context of the previous example, some resources give alternate guidelines when choosing a
trigonometric substitution.

a .
—b2x2 — x= —sin0

Vb2 +a? or (BPx*+a®?) — x= %tan@

a
b2x2 —g?2 — x= Esec@

We next look at a tangent substitution.
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Example 7.26: Tangent Substitution

1
Evaluate / —dx.
V25 +x2

Solution. Let x = Stan 6 so that W =|5sec’0d8 |

1 1
e -dx = / -_5 sec20d0| Using our substitution
/\/25 +x2 dx V25 +25tan? 0 &

.5sec20d6O Factor out 25

1
/ /25(1+tan?6)

1
= —— .5sec’0d6 Using tan” 0 + 1 = sec? 0
/SVSec29 s
= / sec6do Simplifying
= In|secO+tanB|+C By/sec@dx:ln|sec€—|—tan9|—|—C

Since tan 0 = x/5, we draw a triangle:

V25 + 22

x
6 .
5
Then
1 V25 +x2
secO = = .
cos 6 5
Therefore, the integral is
1 V25 +x2
/7dx:ln VOIY Ke
V25 4 x? 5 5

)

In the next example, we will use the technique of completing the square in order to rewrite the inte-
grand.

Example 7.27: Completing the Square

X
Evaluate / - dx.
V3 —2x—x2
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Solution. First, complete the square to write
3_2x—x*=4—(x+1)?
Now, we may let u = x+ 1 so that du = dx (note that x = u — 1) to get:

u—1

| e e

Let u =2sin0 giving du =2cos0d0:

u—1 2sinf — 1
L SmP=1 o, 9d9:/2'9—1d9
T o0 B cos (2sin )
Integrating and using a triangle we get:
/ X = 2cos6-6 +C
V3 —2x—x?
= —V4—u?—sin"! (g) +C
1
= —V3—2x—x2—sin"! < -12- ) +C
Note that in this problem we could have skipped the u-substitution if instead we let x4+ 1 = 2sin 6. (For
1
the triangle we would then use sin 6 = X-lz- ) &

Exercises for 7.3

Exercise 7.3.1 / V2 1dx Exercise 7.3.6 / VA2 4 2xdx

Exercise 7.3.2 / V9 +4x2dx Exercise 7.3.7 / 21+ x2) dx

Exercise 7.3.3 / xV 1 —x%dx Exercise 7.3.8 / \/——x

Exercise 7.3.4 / /1 —x2dx Exercise 7.3.9 /

V1 —x
E ise 7.3.5 / ! d Exercise 7.3.10 / a d
xercise 7.3. X 3. —dx
V1+x? Vax?—1

Apply Trigonometric Substitution to evaluate the indefinite integrals.
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Exercise 7.3.11 / Vx2+1dx Exercise 7.3.17 / VAax? +1 dx
Exercise 7.3.12 / Vo2 4 dx Exercise 7.3.18 / V1—0x2 dx

Exercise 7.3.13 / Ny Exercise 7.3.19 / V1632 — 1 dx

8
. Exercise 7.3.20 / dx
Exercise 7.3.14 / V9 —x2 dx V2+2
3
: AT Exercise 7.3.21 / dx
Exercise 7.3.15 / x*—1dx V-2
5
ise 7.3. V2 — Exercise 7.3.22 / dx
Exercise 7.3.16 / X 16 dx \/m

Exercises 7.3.11 to 7.3.22 were adapted by Lyryx from APEX Calculus, Version 3.0, written by G. Hartman. This material
is released under Creative Commons license CC BY-NC (https://creativecommons.org/licenses/by-nc/4.0/). See
the Copyright and Revision History pages in the front of this text for more information.

7.4 Integration by Parts

To explore the technique known as integration by parts, we start with the product rule:

£ F08x) = £ (g0) + F)g/ (o).
We can rewrite this as
080 = [ F@edx+ [ g/ () dx
and then
[ 108 W dx = )0~ [ ' (0gx)d

This may not seem particularly useful at first glance, but it turns out that in many cases we have an integral
of the form

[ £)g ) ax
but that

[ £ @etodx

is easier. This technique for turning one integral into another is called integration by parts, and is usually
written in more compact form. If we let u = f(x) and v = g(x) then du = f’(x)dx and dv = g’ (x) dx and

/udv:uv—/vdu.

To use this technique we need to identify likely candidates for u = f(x) and dv = g’ (x) dx.
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Example 7.28: Product of a Linear Function and Logarithm

Evaluate /xlnxdx.

Solution. Let u = Inx so du = 1 /xdx. Then we must let dv = xdx so v = x*/2 and

2

2 2 2
x“Inx x“1 x“Inx X x“Inx x
/xlnxdx— 5T igdx— > —/de— > _Z—H'

Example 7.29: Product of a Linear Function and Trigonometric Function

Evaluate / xsinxdx.

Solution. Let u = x so du = dx. Then we must let dv = sinxdx so v = —cosx and

/xsinxdx = —XCOSX— / —cosxdx = —xcosx—i—/cosxdx = —xcosx+sinx+C.

Example 7.30: Secant Cubed (again)

Evaluate / sec> xdx.

Solution. Let u = secx and dv = sec?xdx. Then du = secxtanx and v = tanx and

/sec3xdx = secxtanx—/tanzxsecxdx
= secxtanx—/(seczx—l)secxdx

= secxtanx— /sec3xdx+ / secxdx.
At first this looks useless—we’re right back to / sec’ xdx. But looking more closely:

/sec3xdx = secxtanx—/sec3xdx+/secxdx
/sec3xdx+/sec3xdx = secxtanx+/secxdx

2/seCSxdx = secxtanx+/secxdx

t 1
/sec3xdx = W—i—i/secxdx
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secxtanx In|secx+ tanx|
2 2

+C.

Example 7.31: Product of a Polynomial and Trigonometric Function

Evaluate / *? sinxdx.

Solution. Let u = x2, dv = sinxdx; then du = 2xdx and v = — cosx. Now
/x2 sinxdx = —x* cosx—i—/Zxcosxdx.

This is better than the original integral, but we need to do integration by parts again. Let u = 2x, dv =
cosxdx; then du = 2 and v = sinx, and

/xzsinxdx = —xzcosx—f—/Zxcosxdx

= —x*cosx+ 2xsinx—/25inxdx

= —x*cosx+2xsinx+2cosx+C.

&

Such repeated use of integration by parts is fairly common, but it can be a bit tedious to accomplish,
and it is easy to make errors, especially sign errors involving the subtraction in the formula. There is a
nice tabular method to accomplish the calculation that minimizes the chance for error and speeds up the
whole process. We illustrate with the previous example. Here is the table:

sign | u dv
+ | x%| sinx
- | 2x | —cosx
+ | 2 | —sinx
- 0 | cosx

To form this table, we start with u at the top of the second column and repeatedly compute the derivative;
starting with dv at the top of the third column, we repeatedly compute the antiderivative. In the first
column, we place a “—" in every second row. To form the second table we combine the first and second
columns by ignoring the boundary; if you do this by hand, you may simply start with two columns and
add a “—" to every second row.

Alternatively, we can use the following table:

u dv
x? sinx
—2x | —cosx
2 —sinx
0 cosx




7.4. Integration by Parts = 277

To compute with this second table we begin at the top. Multiply the first entry in column u by the second
entry in column dv to get —x?cosx, and add this to the integral of the product of the second entry in
column « and second entry in column dv. This gives:

—x2 cosx—l—/Zxcosxdx,

or exactly the result of the first application of integration by parts. Since this integral is not yet easy, we
return to the table. Now we multiply twice on the diagonal, (x*)(—cosx) and (—2x)(—sinx) and then
once straight across, (2)(—sinx), and combine these as

—x?cosx -+ 2xsinx — /2 sinxdx,

giving the same result as the second application of integration by parts. While this integral is easy, we

may return yet once more to the table. Now multiply three times on the diagonal to get (x*)(—cosx),

(—2x)(—sinx), and (2)(cosx), and once straight across, (0)(cosx). We combine these as before to get
—x? cosx+ 2xsinx+2cosx+ /de = —x?cosx+ 2xsinx+2cosx+C.

Typically we would fill in the table one line at a time, until the “straight across” multiplication gives an

easy integral. If we can see that the u column will eventually become zero, we can instead fill in the whole
table; computing the products as indicated will then give the entire integral, including the “+C”, as above.

Exercises for 7.4

Find the antiderivatives.

Exercise 7.4.1 / xcosxdx Exercise 7.4.8 / x> sinxdx
Exercise 7.4.2 / x? cosxdx Exercise 7.4.9 / x> cosxdx
Exercise 7.4.3 / xe* dx Exercise 7.4.10 / xsin® xdx
Exercise 7.4.4 / xe* dx Exercise 7.4.11 / xsinxcosxdx
Exercise 7.4.5 / sin® xdx Exercise 7.4.12 / arctan(/x) dx
Exercise 7.4.6 / Inxdx Exercise 7.4.13 / sin(v/x) dx

Exercise 7.4.7 / xarctanxdx Exercise 7.4.14 / sec?xcsc? xdx
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Find the antiderivatives.

Exercise 7.4.15 / xsinx dx
Exercise 7.4.16 / xe ™ dx
Exercise 7.4.17 / X% sinx dx
Exercise 7.4.18 / x> sinx dx
Exercise 7.4.19 / xe® dx
Exercise 7.4.20 / B dx
Exercise 7.4.21 / xe > dx
Exercise 7.4.22 / e sinx dx
Exercise 7.4.23 / e cosx dx
Exercise 7.4.24 / ¢ sin(3x) dx
Exercise 7.4.25 / e>* cos(5x) dx
Exercise 7.4.26 / sinxcosx dx
Exercise 7.4.27 / sin~ ' x dx

Exercise 7.4.28 / tan~ ! (2x) dx

Exercise 7.4.29 / xtan~ ' x dx
Exercise 7.4.30 / sin~!x dx
Exercise 7.4.31 / xInx dx
Exercise 7.4.32 / (x—2)Inx dx
Exercise 7.4.33 / xn(x—1) dx
Exercise 7.4.34 / xIn(x?) dx
Exercise 7.4.35 / X Inx dx
Exercise 7.4.36 / (Inx)? dx
Exercise 7.4.37 / (In(x+1))* dx
Exercise 7.4.38 / xsec?x dx
Exercise 7.4.39 / xcsc?x dx
Exercise 7.4.40 / xVx—2 dx
Exercise 7.4.41 / xsecxtanx dx

Exercise 7.4.42 / xcscxcotx dx

Evaluate the indefinite integral after first making a substitution.

Exercise 7.4.43 / sin(Inx) dx

Exercise 7.4.44 / sin(v/x) dx

Exercise 7.4.45 / In(1/x) dx

Exercise 7.4.46 / eV dx
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Exercise 7.4.47 / e dx
Evaluate the definite integral.

T 1
Exercise 7.4.48 / xsinx dx Exercise 7.4.53 / et dx
0 0

1
Exercise 7.4.49 / xe ¥ dx 5
-l Exercise 7.4.54 / xe ¥ dx
1

Exercise 7.4.50 / *% sinx dx
/4
T
Exercise 7.4.55 / " sinx dx
0

Exercise 7.4.51 / x> sinx dx
/2

Exercise 7.4.52 / xe dx Exercise 7.4.56 / e cosx dx

Exercises 7.4.15 to 7.4.56 were adapted by Lyryx from APEX Calculus, Version 3.0, written by G. Hartman. This material
is released under Creative Commons license CC BY-NC (https://creativecommons.org/licenses/by-nc/4.0/). See
the Copyright and Revision History pages in the front of this text for more information.

7.5 Rational Functions

A rational function is a fraction with polynomials in the numerator and denominator. For example,

X’ 1 x4+ 1
X2 4+x—6 (x—3)%’ x2—1’

are all rational functions of x. There is a general technique called “partial fractions” that, in principle,
allows us to integrate any rational function. The algebraic steps in the technique are rather cumbersome
if the polynomial in the denominator has degree more than 2, and the technique requires that we factor
the denominator, something that is not always possible. However, in practice one does not often run
across rational functions with high degree polynomials in the denominator for which one has to find the
antiderivative function. So we shall explain how to find the antiderivative of a rational function only when
the denominator is a quadratic polynomial ax? + bx + c.

We should mention a special type of rational function that we already know how to integrate: If the
denominator has the form (ax+ b)", the substitution u = ax + b will always work. The denominator
becomes ", and each x in the numerator is replaced by (u—b)/a, and dx = du/a. While it may be tedious
to complete the integration if the numerator has high degree, it is merely a matter of algebra.

Example 7.32: Substitution and Splitting Up a Fraction
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Solution. Using the substitution u = 3 — 2x we get

X3 —23 — 92 —|—27u 27
" _dx = d
/(3—2x)5 * —2/ 0 16/ !

= 16 /u_z —u 3427 —27u  du

B i u_1_9u_2+27u_3_27u_4 LC
16\ -1 =2 -3 —4
1 /(3=2x)"1 9(3—2x)"2 273—-2x)"3% 27(3—2x)*
_ 1 (B-297 93297 273-2097 23297
16 —1 ) -3 —4
1 9 9 27
= — + - + +C

16(3—2x) ' 32(3—2x)2  16(3—2x)% ' 64(3 —2x)*
)

We now proceed to the case in which the denominator is a quadratic polynomial. We can always
factor out the coefficient of x* and put it outside the integral, so we can assume that the denominator
has the form x” + bx + ¢. There are three possible cases, depending on how the quadratic factors: either
X2+ bx+c=(x—r)(x—s), ¥’ +bx+c = (x—r)?% or it doesn’t factor. We can use the quadratic formula
to decide which of these we have, and to factor the quadratic if it is possible.

Example 7.33: Factoring a Quadratic

Determine whether x> +x -+ 1 factors, and factor it if possible.

Solution. The quadratic formula tells us that x> 4+x+1=0 when

—-1++v1—4
xX=—,
2
Since there is no square root of —3, this quadratic does not factor. &

Example 7.34: Factoring a Quadratic with Real Roots

Determine whether x> —x — 1 factors, and factor it if possible.

Solution. The quadratic formula tells us that x> —x—1=0 when

C1EVT+4 1£V5
2 2

> L 1+V5 1-5
X —X—1=|X— ) X — ) .

Therefore
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If x> + bx+ ¢ = (x — r)* then we have the special case we have already seen, that can be handled with
a substitution. The other two cases require different approaches.

If x> + bx+c = (x—r)(x —s), we have an integral of the form

(x)
=i

where p(x) is a polynomial. The first step is to make sure that p(x) has degree less than 2.

Rewrite

x3
[ e

in terms of an integral with a numerator that has degree less than 2.

Solution. To do this we use long division of polynomials to discover that

x x Tx—6 Tx—6
(x—2)(x+3) x*2+x—6 x2+x—6 (x—2)(x+3)
Then ;
X 7x 6
———dx —1d dx.
/(x—2)(x+3) / x—|—/ )(x+3)
The first integral is easy, so only the second requires some work. )

Now consider the following simple algebra of fractions:

A B A(x—s)+B(x—r) (A+B)x—As—Br
x—r x—s  (x—r)(x—s)  (x—r)(x—s)

That is, adding two fractions with constant numerator and denominators (x — r) and (x —s) produces a
fraction with denominator (x — r)(x —s) and a polynomial of degree less than 2 for the numerator. We
want to reverse this process: Starting with a single fraction, we want to write it as a sum of two simpler
fractions. An example should make it clear how to proceed.

Example 7.36: Partial Fraction Decomposition

3

X
Evaluat — dx.
Va”“/(x—z)(x+3) o

Solution. We start by writing = 7x)( 33) as the sum of two fractions. We want to end up with

Tx—6 A . B
(x—2)(x+3) x—2 x+3
If we go ahead and add the fractions on the right hand side, we seek a common denominator, and get:

7x—6  (A+B)x+3A—-2B
(x—2)(x+3) (x—=2)(x+3)
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So all we need to do is find A and B so that 7x — 6 = (A + B)x + 3A — 2B, which is to say, we need
7=A+B and —6 = 3A —2B. This is a problem you’ve seen before: Solve a system of two equations
in two unknowns. There are many ways to proceed; here’s one: If 7=A + B then B=7— A and so
—6=3A—-2B=3A—-2(7—A) =3A— 14+ 2A = 5A — 14. This is easy to solve for A: A = 8/5, and then
B=7—A=7-8/5=27/5. Thus

76 i 8 27
dx= STnjx—2|+ L inje+3| +C.
/(x 13)” 5x 2 5x+3 sinp =2+ 5 Inj+3l+

The answer to the original problem is now

x° 7x 6
Y i = [x-1
/(x—Z)(x—l—S)dx /X dx+/ )(x+3) dx

x2

8 27
= S xt glnlx—2|+?ln|x+3|+C.

&

Now suppose that x> + bx + ¢ doesn’t factor. Again we can use long division to ensure that the numer-
ator has degree less than 2, then we complete the square.

Example 7.37: Denominator Does Not Factor

x+1

Evaluate/x2+4x+8 X

Solution. The quadratic denominator does not factor. We could complete the square and use a trigono-
metric substitution, but it is simpler to rearrange the integrand:

/ x+1 d / x+2 d / 1 d
—  dx= | ————dx— | ———dx
X2 +4x+8 X2 4+4x+8 X2 4+4x+8

The first integral is an easy substitution problem, using u = x> 4 4x + 8:

) U fdu 1,
e N S N L 4x 18,
/x2+4x+8 X 2/ = mb a8

For the second integral we complete the square:

2 2 x+2 2
X +4x+8=(x+2)"+4=4 7 +1],

1/ 1
— [ ————dx
Y

making the integral

) x+2
Using u = > we get

1/ 1 / 4 1 . ( +2)
— —_— X = —arctan .
4 (%)ZH “4) 2+l 2 2
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1 1 2
/Ld ——ln\x +4x—|—8\——arctan< Xt )+C.

x2+4x+8

Exercises for 7.5

Exercise 7.5.1 / ) dx

Exercise 7.5.2 /

—a W

E 753 [
xercise / 2+ 10x+25

Exercise 7.5.4 / 12 X

dx

Exercise 7.5.5
xercise / e

Evaluate the indefinite integral.

Tx+7
Exercise 7.5.11 / )ﬁi_—lo dx

Tx—2
X dx

Exercise 7.5.12 /

E 7513 [ ———= dx
xercise / S 12

Exercise 7.5.14 / x—i—7 dx

Exercise 7.5.15 / M dx
x—l— 8

2
Exercise 7.5.16 / M dx
x(x+1)2

—12x%2 —x+33

Exercise 7.5.17 /

3620

2

Exercise 7.5.6 /m dx

Exercise 7.5.7 /

i dx

Exercise 7.5.8 /m dx

E 7.5.9 /70,'
xercise 2 3

Exercise 7.5.10 / dx
x2 4+ 3x

94x% — 10x
E 7.5.1
xercise 8 / (7Tx+3)(5x—1)(3x—1) dx

2
Exercise 7.5.19 / w dx
xX24+x-—2

x3

E 7520 [ " dx
xercise / —T

Exercise 7.5.21 / w dx
—2x+3

Exercise 7.5.22 /m dx
¥ 4x+5

Exercise 7.5.23 /m X

1222 +21x+3
(x+1)(3x2+5x—1)

Exercise 7.5.24 /
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6x24+8x—4
E 7.5.25
xercise / (x—3) (x> 4+ 6x+10)
Exercise 7.5.26 / 2x—|-—x+1
(x+1)(x2+ 9)
Exercise 7.5.27 / X! —20x—69
7)(x% +2x+17)

Evaluate the definite integral.

9x% — 60x + 33
(x—9)(x%2 —2x+11)

Exercise 7.5.28 /

6x> +45x + 121
(x+2) (x> + 10x+27)

Exercise 7.5.29 /

8x+21 1 x> 4555
Exercise 7.5.30 _— E ise 7.5.32 /
L (+2)(x+3) xereise L1 (x—10)(x:Z+4x+5)
5
Exercise 7.5.31 / 14x+6 Exercise 7.5.33 / 2x dx
0 Bx+2)(x+4) (x+1)(x*+2x+1)

Exercises 7.5.11 to 7.5.33 were adapted by Lyryx from APEX Calculus, Version 3.0, written by G. Hartman. This material
is released under Creative Commons license CC BY-NC (https://creativecommons.org/licenses/by-nc/4.0/). See
the Copyright and Revision History pages in the front of this text for more information.

7.6 Numerical Integration

We have now seen some of the most generally useful methods for discovering antiderivatives, and there
are others. Unfortunately, some functions have no simple antiderivatives. In such cases, if the value of a
definite integral is needed it will have to be approximated. We will see two methods that work reasonably
well and yet are fairly simple; in some cases more sophisticated techniques will be needed.

Of course, we already know one way to approximate an integral: If we think of the integral as comput-
ing an area, we can add up the areas of some rectangles. While this is quite simple, it is usually the case
that a large number of rectangles is needed to get acceptable accuracy. A similar approach is much better.
We approximate the area under a curve over a small interval as the area of a trapezoid. In figure 7.1 we
see an area under a curve approximated by rectangles and by trapezoids; it is apparent that the trapezoids
give a substantially better approximation on each subinterval.

Figure 7.1: Approximating an area with rectangles and with trapezoids.

As with rectangles, we divide the interval into n equal subintervals of length Ax. A typical trapezoid is


https://creativecommons.org/licenses/by-nc/4.0/

7.6. Numerical Integration = 285

pictured in figure 7.2; it has area

f (i) + fxit1)
2Ax.

If we add up the areas of all trapezoids we get

f(x0)+f(X1)Ax+f(x1)+f(x2)Ax+_,_+f(xn—1)+f(xn)Ax
2 2 2
= (L5204 ) )4 )+ L e

For a modest number of subintervals this is not too difficult to do with a calculator; a computer can easily
do many subintervals.

(xi’f(xi))

) :(xi+1,f(xi+1))

Xi Xi+1

Figure 7.2: A single trapezoid.

In practice, an approximation is useful only if we know how accurate it is; for example, we might need
a particular value accurate to three decimal places. When we compute a particular approximation to an
integral, the error is the difference between the approximation and the true value of the integral. For any
approximation technique, we need an error bound, a value that is guaranteed to be larger than the actual
error. If A is an approximation and E is the associated error bound, then we know that the true value of the
integral is between A — E and A + E. In the case of our approximation of the integral, we want E = E(Ax)
to be a function of Ax that gets small rapidly as Ax gets small. Fortunately, for many functions, there is
such an error bound associated with the trapezoid approximation.

Theorem 7.38: Error for Trapezoid Approximation

Suppose f has a second derivative " everywhere on the interval [a,b|, and | f"(x)| < M for all x in
the interval. With Ax = (b — a) /n, an error bound for the trapezoid approximation is

(b—a)’

E(Ax) = M(Ax)? = oM

Let’s see how we can use this.
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Example 7.39: Approximate an Integral With Trapezoids

1 2
Approximate / e " dx to two decimal places.
0

Solution. The second derivative of f = e is (4x% — 2)e_x2, and it is not hard to see that on [0, 1] | /"' (x)]
has a maximum value of 2, thus we begin by estimating the number of subintervals we are likely to need.
To get two decimal places of accuracy, we will certainly need E(Ax) < 0.005 or

1,1
—(2)5 0.005
12( )n2 <
1
~(200) < n?
6

100

With n = 6, the error bound is thus 1/ 63 < 0.0047. We compute the trapezoid approximation for six
intervals: 0 A 1
(% +f(1/6)+ f(2/6)+---+ f(5/6) —i—%) 3 ~ 0.74512.

So the true value of the integral is between 0.74512 —0.0047 = 0.74042 and 0.74512 +0.0047 = 0.74982.
Unfortunately, the first rounds to 0.74 and the second rounds to 0.75, so we can’t be sure of the correct
value in the second decimal place; we need to pick a larger n. As it turns out, we need to go to n =
12 to get two bounds that both round to the same value, which turns out to be 0.75. For comparison,
using 12 rectangles to approximate the area gives 0.7727, which is considerably less accurate than the
approximation using six trapezoids.

In practice it generally pays to start by requiring better than the maximum possible error; for example,
we might have initially required E(Ax) < 0.001, or

—(2)= 001
(2)— < 0.00

12
1
8(1000) < n?
1291 = Sﬂ < n
3
Had we immediately tried n = 13 this would have given us the desired answer. &

The trapezoid approximation works well, especially compared to rectangles, because the tops of the
trapezoids form a reasonably good approximation to the curve when Ax is fairly small. We can extend this
idea: what if we try to approximate the curve more closely by using something other than a straight line?
The obvious candidate is a parabola: If we can approximate a short piece of the curve with a parabola with
equation y = ax? 4+ bx+ ¢, we can easily compute the area under the parabola.

There are an infinite number of parabolas through any two given points, but only one through three
given points. If we find a parabola through three consecutive points (x;, f(x;)), (xXi+1,f(xi+1))s (Xir2, f(xi+2))
on the curve, it should be quite close to the curve over the whole interval [x;,x;12], as in Figure 7.3. If
we divide the interval [a,b| into an even number of subintervals, we can then approximate the curve by
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a sequence of parabolas, each covering two of the subintervals. For this to be practical, we would like a
simple formula for the area under one parabola, namely, the parabola through (x;, f(x;)), (xi+-1,f(xi+1)),
and (x;12, f(x;12)). That is, we should attempt to write down the parabola y = ax? + bx + ¢ through these
points and then integrate it, and hope that the result is fairly simple. Although the algebra involved is
messy, this turns out to be possible. The algebra is well within the capability of a good computer algebra
system like Sage, so we will present the result without all of the algebra.

To find the parabola, we solve these three equations for a, b, and c:
fx) = a(xipn—Ax)? +b(xip1 —Ax) +c
f(xiv) = a(xis1)? +b(xis1) +c
fxiya) = alxipn+Ax)% +b(xig1 +Ax) +c

Not surprisingly, the solutions turn out to be quite messy. Nevertheless, Sage can easily compute and
simplify the integral to get

Xip1+Ax ) Ax

[ b eds = S0+ 4 () + o)
Xip1—Ax 3

Now the sum of the areas under all parabolas is

Ax

— (F(0) +4f (1) + f(x2) + flo2) +4f (x3) - f(xa) - f (2) +4f (in1) + £ (xa)) =

S x0) 4 4 xr) 2 (30) 47 (33) 2 (x) -+ 27 (i -2) 447 (50 1) + ()

This is just slightly more complicated than the formula for trapezoids; we need to remember the alter-
nating 2 and 4 coefficients, and that the interval must be divided into an even number of subintervals. This
approximation technique is referred to as Simpson’s Rule.

(xi2, f(xi12))

(xi, f(xi)) \o

Xi Xit+1 Xi4+2

Figure 7.3: A parabola (dashed) approximating a curve (solid).

As with the trapezoid method, this is useful only with an error bound:

Theorem 7.40: Error for Simpson’s Approximation

Suppose f has a fourth derivative f*) everywhere on the interval [a,b], and | f*) (x)| < M for all x
in the interval. With Ax = (b — a) /n, an error bound for Simpson’s approximation is

b—a)’
= M(Ax)* = 7( M
180 & 180n4
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Example 7.41: Approximate an Integral With Parabolas

1 2
Let us again approximate / e " dx to two decimal places.
0

Solution. The fourth derivative of f =™ is (16x* —48x2+12)e " ; on [0, 1] this is at most 12 in absolute
value. We begin by estimating the number of subintervals we are likely to need. To get two decimal places
of accuracy, we will certainly need E(Ax) < 0.005, but taking a cue from our earlier example, let’s require
E(Ax) < 0.001:

1 1
@(12)114 < 0.001
200 _ 4
_— n
3
286~ 1 ? < n

So we try n = 4, since we need an even number of subintervals. Then the error bound is 12/180/ 4% <
0.0003 and the approximation is

(F(O)+4F(1/4)+2£(1/2) +4F(3/4) + f(l))31—4 ~ 0.746855.

So the true value of the integral is between 0.746855 — 0.0003 = 0.746555 and 0.746855 + 0.0003 =
0.7471555, both of which round to 0.75. s

Exercises for 7.6

In the following problems, compute the trapezoid and Simpson approximations using 4 subintervals, and
compute the error bound for each. (Finding the maximum values of the second and fourth derivatives can
be challenging for some of these; you may use a graphing calculator or computer software to estimate the
maximum values.)

3
Exercise 7.6.1 / xdx

1

3
Exercise 7.6.2 / x% dx

0

4
Exercise 7.6.3 / x> dx

2

31
Exercise 7.6.4 / 2 dx
1 X

2

d
1 1+x2 o

Exercise 7.6.5
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1
Exercise 7.6.6 / xV1+xdx
0

X

d
1+x o

5
Exercise 7.6.7 /
1

1

Exercise 7.6.8 / Ve + Ldx
0
1

Exercise 7.6.9 / vVt 4+ 1dx
0

4
Exercise 7.6.10 / 1+ 1/xdx
1

Exercise 7.6.11 Using Simpson’s rule on a parabola f(x), even with just two subintervals, gives the exact
value of the integral, because the parabolas used to approximate f will be f itself. Remarkably, Simpson’s
rule also computes the integral of a cubic function f(x) = ax® + bx* + cx+d exactly. Show this is true by

showing that
X2 — X0

[ =0 () 44 (0 +22)/2) + ).

This does require a bit of messy algebra, so you may prefer to use Sage.

7.7 Improper Integrals

Recall that the Fundamental Theorem of Calculus says that if f is a continuous function on the closed

interval [a,b], then

b
=F(b)—F(a),

[y as =)

where F is any antiderivative of f.

Both the continuity condition and closed interval must hold to use the Fundamental Theorem of

b
Calculus, and in this case, / f(x)dx represents the net area under f(x) from a to b:
a

f(z)

We begin with an example where blindly applying the Fundamental Theorem of Calculus can give an
incorrect result.
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Example 7.42: Using FTC

L
Explain why / — dx is not equal to —2.
_1X

Solution. Here is how one might proceed:

h1 b —1
/ —zdx = / X “dx = —x
—1X —1

However, the above answer is WRONG! Since f(x) = 1/x? is not continuous on [—1, 1], we cannot
directly apply the Fundamental Theorem of Calculus. Intuitively, we can see why —2 is not the correct
answer by looking at the graph of f(x) = 1/x?> on [—1, 1]. The shaded area appears to grow without bound
as seen in the figure below.

1 X|_

&

Formalizing this example leads to the concept of an improper integral. There are two ways to extend
the Fundamental Theorem of Calculus. One is to use an infinite interval, i.e., [a,o0), (—oo,b] or (—o0,00).
The second is to allow the interval [a,b] to contain an infinite discontinuity of f(x). In either case,
the integral is called an improper integral. One of the most important applications of this concept is
probability distributions.

To compute improper integrals, we use the concept of limits along with the Fundamental Theorem of
Calculus.

Definition 7.43: Definitions for Improper Integrals

If f(x) is continuous on [a, ), then the improper integral of f over [a,o) is:

/aoof(x)dx = lim Rf(x)dx.

R—>°° a

If f(x) is continuous on (—eo,b], then the improper integral of f over (—eo,b] is:
b b
/ F@)dx:= tim | f(x)de

—o0 R——o0 R

. v

If the limit exists and is a finite number, we say the improper integral converges. Otherwise, we say
the improper integral diverges.
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To get an intuitive (though not completely correct) interpretation of improper integrals, we attempt to

analyze [ f(x)dx graphically. Here assume f(x) is continuous on [a,o):
a

y y

f(z)

. Area
|
' X

We let R be a fixed number in [a,0). Then by taking the limit as R approaches oo, we get the improper
integral:

/:f(x)dx = lim Rf(x)dx.

R—o0 a
We can then apply the Fundamental Theorem of Calculus to the last integral as f(x) is continuous on the
closed interval [a,R].

We next define the improper integral for the interval (—oo, oo).

Definition 7.44: Definitions for Improper Integrals

a oo
If both / f(x)dx and / f(x)dx are convergent, then the improper integral of f over (—oo,) is:
oo a

/_O;f(x)dx;: /_:f(x)dx+/:f(x)dx

The above definition requires both of the integrals

/a f(x)dx and /:f(x) dx

—o0

%}

to be convergent for /

—o0

a oo
f(x)dx to also be convergent. If either of / f(x)dxor / f(x)dx is divergent,
o a

{es)

then so is / f(x)dx.

Example 7.45: Improper Integral

. =1 . .
Determine whether / —dx is convergent or divergent.
1 X

Solution. Using the definition for improper integrals we write this as:

R

/ Zdx=1tim [ ~dx=limln|x]| = lim In|R|—In|1| = lim In|R| = +eo
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Therefore, the integral is divergent. s

Example 7.46: Improper Integral

o0

Determine whether / xsin(xz) dx is convergent or divergent.

—o0

oo 0
Solution. We must compute both / xsin(x?)dx and / xsin(x?) dx. Note that we don’t have to split the
0 _eo

integral up at 0, any finite value a will work. First we compute the indefinite integral. Let u = x?, then

du = 2xdx and hence, . .
/xsin(xz)dx = E/sin(u) du = ~3 cos(x?) +C

Using the definition of improper integral gives:

R R

* 1 1 1
/ xsin(x*)dx = lim [ xsin(x?)dx = lim {—5 cos(xz)] = —— lim cos(R?) + =
0

R—oo J R—o0 0 2 R—o0 2

This limit does not exist since cosx oscillates between —1 and +1. In particular, cosx does not approach

any particular value as x gets larger and larger. Thus, / xsin(x?) dx diverges, and hence, / xsin(x?) dx
0 o0

diverges. &

When there is a discontinuity in [a,b] or at an endpoint, then the improper integral is as follows.

Definition 7.47: Definitions for Improper Integrals

If f(x) is continuous on (a,b], then the improper integral of f over (a,b] is:
b

/a ’ fx)dx:= lim [ f (x)dx.

R—a* JR

If f(x) is continuous on [a,b), then the improper integral of f over [a,b) is:

b R
/a F)de:= tim | f(x)dx.

R—b= Ja

If the limit above exists and is a finite number, we say the improper integral converges. Otherwise, we
say the improper integral diverges.

When there is a discontinuity in the interior of [a,b], we use the following definition.

Definition 7.48: Definitions for Improper Integrals

c b
If f has a discontinuity at x = ¢ where ¢ € [a,b], and both both / f(x)dx and / f(x)dx are
a C

convergent, then f over |a,D] is:

/abf(x)dx:: /acf(x)dx—i-/cbf(x)dx
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Again, we can get an intuitive sense of this concept by analyzing / x) dx graphically. Here assume

f(x) is continuous on (a,b] but discontinuous at x = a:

Y| o y

f(x) Limit f(z)
: Area <

We let R be a fixed number in (a,b). Then by taking the limit as R approaches a from the right, we get

the improper integral:
b b
/ F(x)dx:= lim / F(x)dx
a R—at JR

Now we can apply FTC to the last integral as f(x) is continuous on [R,b].

Example 7.49: A Divergent Integral

— dx is convergent or divergent.

Determine if / 3
1 X

Solution. The function f(x)=1/x*hasa discontinuity at x = 0, which lies in [—1,1]. We must compute

01
/ xzdxand/ —dx Letsstartw1th/ —dx
1

1

1 1 1
/ —dx = lim —dx= lim —-
0

. 1
5 5 =—1+ lim —
X R—0+JR X R—0t X R

R R—0t

dx and / — dx is divergent.
s

11
which diverges to +oo. Therefore, / — dx is divergent since one of / =
-1 X 1X

Example 7.50: Integral of the Logarithm

Determine if / Inxdx is convergent or divergent. Evaluate it if it is convergent.

Solution. Note that f(x) = Inx is discontinuous at the endpoint x = 0. We first use integration by parts to

compute / Inxdx. We let u = Inx and dv = dx. Then du = (1/x)dx, v = x, giving:

/lnxdx = xlnx—/x-ldx
X
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= xlnx—/ldx
= xlnx—x+C

1
Now using the definition of improper integral for / Inxdx:
0

1

lnxdx— lim lnxdx— lim (xInx—x)| =—1— lim (RInR)+ lim R

R—0T R—0T R R—0* R—0*
Note that 11%1 R = 0. We next compute hm (RlnR) First, we rewrite the expression as follows:
R—0*
InR
lim (RInR) = lim s
x—=0F R—0t 1/R’

Now the limit is of the indeterminate type (—oo) /(o) and I"Hopital’s Rule can be applied.

InR 1/R RS
lim (RInR) = lim 2% _ lim / 5 = lim = lim (-R) =0
R—0F rR—0t 1/R  R-0t —1/R?> R0t R R0+
Thus, lim (RInR) = 0. Thus
R—0* .
/ Inxdx = —1,
0

and the integral is convergent to —1.

Graphically, one might interpret this to mean that the net area under Inx on [0, 1] is —1 (the area in this
case lies below the x-axis).

f(x) = In(x)

Example 7.51: Integral of a Square Root

4
Determine if / is convergent or divergent. Evaluate it if it is convergent.

dx
0 V4—x

Solutlon Note that \/4? is discontinuous at the endpoint x = 4. We use a u-substitution to compute

=4 — x, then du = —dx, giving:

/ _ du
Vi—x ] ur
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= /—u_l/zdu

= 2uw)'?+cC
= -2V4—x+C

dx
4—x

4
Now using the definition of improper integrals for /
0

4 dx
/ = lim (—2v4—x)

R
4—x R—4~ 0

= lim —2v4—R4+2V4=4
R—4~

Example 7.52: Improper Integral

2 dx
Determine if / ( is convergent or divergent. Evaluate it if it is convergent.
I (x

_ 1)1/3

Solution. Note that f(x) = is discontinuous at the endpoint x = 1. We first use substitution to

— 1)1

ﬁnd/(dixm. We let u = x — 1. Then du = dx, giving
x—1

/( dx / du —/u_1/3du:%u2/3+C:§(X—1)2/3—|—C.
X

EETUER e 2
. . . . 2 dx
Now using the definition of improper integral for / W :
1 (x—
2 4 2 4 3 >3 3 3
/ 7x1/3: lim 7)61/3: lim —(x—l)z/3 :——lim—(R—1)2/3:—,
1 (x—1) R+1FJR (x—1) R—1+2 R 2 Ro1T2 2

and the integral is convergent to % Graphically, one might interpret this to mean that the net area under

1 .
m on [1,2] 1S %
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154

0.5

&

The following test allows us to determine convergence/divergence information about improper inte-
grals that are hard to compute by comparing them to easier ones. We state the test for [a,ec), but similar
versions hold for the other improper integrals.

The Comparison Test

Assume that f(x) > g(x) > 0 for x > a.

i If / f(x)dx converges, then / g(x)dx also converges.
a a

ii. If / g(x) dx diverges, then / f(x)dx also diverges.
a a

Informally, (i) says that if f(x) is larger than g(x), and the area under f(x) is finite (converges), then
the area under g(x) must also be finite (converges). Informally, (ii) says that if f(x) is larger than g(x), and
the area under g(x) is infinite (diverges), then the area under f(x) must also be infinite (diverges).

y y

f(x) \

\e® |

EArea Under f

f) \

N |

% %Area under g

a X a X
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Example 7.53: Comparison Test

2

Show that / cos
2

2 dx converges.

Solution. We use the comparison test to show that it converges. Note that 0 < cos?x < 1 and hence

COSZX

0<

<1
x2 T x%

|
Thus, taking f(x) = 1/x? and g(x) = cos®x/x*> we have f(x) > g(x) > 0. One can easily see that / —dx
2 X
2
S

(o]
converges. Therefore, / dx also converges. &
2

X2

Exercises for Section 7.7

. : il .
Exercise 7.7.1 Determine whether / — dx is convergent or divergent.
1 X

Exercise 7.7.2 Determine whether / dx is convergent or divergent.
e

xvInx
Exercise 7.7.3 Evaluate the improper integral / e dx.
0

1

e
Exercise 7.7.4 Determine if / —
1 x(Inx)?

dx is convergent or divergent. Evaluate it if it is convergent.

e T
Exercise 7.7.5 Show that / e ¥ sin? (7)6) dx converges.
0

{o0)

1 00
Exercise 7.7.6 Evaluate / dx and / de.
X241 X241

Exercise 7.7.7 Determine whether the following improper integrals are convergent or divergent. Evaluate
those that are convergent.

1
241
x
x2+1

(a) [y dx

b Jo dx

(c) [y e *(cosx+sinx)dx. [Hint: What is the derivative of —e™*cosx?]

(d) fon/z sec? xdx



298 = Techniques of Integration

1
(e) fémdx

o 1
Exercise 7.7.8 Prove that the integral || —pdx is convergent if p > 1 and divergent if 0 < p < 1.
x

1
Exercise 7.7.9 Suppose that p > 0. Find all values of p for which fol = dx converges.
X

sin? x

x(Vx+1)

Evaluate the given improper integral.

Exercise 7.7.10 Show that [|” dx converges.

Exercise 7.7.11 /0 e dx Exercise 7.7.23 / —dx

Exercise 7.7.12 / — dx

3
Exercise 7.7.24 /
1

Exercise 7.7.13 / x4 T
1 Exercise 7.7.25 / sec?x dx
0

Exercise 7.7.14 / 5
—o0 X

Exercise 7.7.26 /

T

0
Exercise 7.7.15 / 2% dx

0 1 X
Exercise 7.7.16 / (§> dx

Exercise 7.7.27 / xe * dx
0

Exercise 7.7.28 / xe ™ dx
0

Exercise 7.7.17 / dx
X241
o Exercise 7.7.29 / xe*)62 dx
Exercise 7.7.18 / dx —e
X244
Exercise 7.7.30 / _dx
Exercise 7.7.19 / 7a’x ol e
(x—1)2
2 1 . 1
Exercise 7.7.20 / dx Exercise 7.7.31 /0 xInx dx
1 (x—1)?
0o “Inx
Exercise 7.7.21 / dx Exercise 7.7.32 / — dx
2

2 1 1
Exercise 7.7.22 / dx Exercise 7.7.33 / Inx dx
1 - 0
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Exercise 7.7.34 / B lnx dx Exercise 7.7.36 / e ¥sinx dx
0

< Inx

Exercise 7.7.35 / — dx Exercise 7.7.37 / e *cosx dx
0

Exercises 7.7.11 to 7.7.37 were adapted by Lyryx from APEX Calculus, Version 3.0, written by G. Hartman. This material
is released under Creative Commons license CC BY-NC (https://creativecommons.org/licenses/by-nc/4.0/). See
the Copyright and Revision History pages in the front of this text for more information.

7.8 Additional Exercises

These problems require the techniques of this chapter, and are in no particular order. Some problems may
be done in more than one way.

Exercise 7.8.1 / (t44)° dr Exercise 7.8.12 / cos*rdr
2 2 Exercise 7.8.14 # dt
Exercise 7.8.3 /(et +16)te" dt e 21412
. sec?t
Exercise 7.8.4 / sint cos 2z dt Exercise 7.8.15 / (1+ tant)3 t
. 3./.2
Exercise 7.8.5 / tant sec’ ¢ dt Exercise 7.8.16 / eV Ldr
2%+ 1 Exercise 7.8.17 / ¢’ sint dt

Exercise 7.8.6 / —dt
24143

. Exercise 7.8.18 /(t3/2 +47)3 V1 dt
Exercise 7.8.7 / ———~ dt
t(t

—4)

Exercise 7.8.19 / W dt
ExerClse 7 8 8 / m

E 7820 [ ——dt

xercise / R 4t2)
Exercise 7.8.9 / cos3t
Vsin 3t Exercise 7.8.21 arctan 2t dt
14472

Exercise 7.8.10 / tsec’tdt

Exercise 7.8.22 / ——dt

12+ 2t -3

Exercise 7.8.11 / \/ﬁ Exercise 7.8.23 / sin’ tcos*t dt


https://creativecommons.org/licenses/by-nc/4.0/
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1

Exercise 7.8.24 / S Exercise 7.8.27 / 3 dt
t2—6t+9
. 1 t+1

Exercise 7.8.26 / t(Int)? dt



Applications of Integration

8.1 Distance, Velocity, Acceleration

We recall a general principle that will later be applied to distance-velocity-acceleration problems, among

b
other things. If F(u) is an anti-derivative of f(u), then / f(u)du= F(b)— F(a). Suppose that we want

to let the upper limit of integration vary, i.e., we replacg b by some variable x. We think of a as a fixed
starting value xg. In this new notation the last equation (after adding F'(a) to both sides) becomes:

F(x) = F(xo) + / 0 Flu)du.

Here u is the variable of integration, called a “dummy variable,” since it is not the variable in the function

F(x). In general, it is not a good idea to use the same letter as a variable of integration and as a limit of
X

integration. That is, / f(x)dx is bad notation, and can lead to errors and confusion.

X0

An important application of this principle occurs when we are interested in the position of an object at

time 7 (say, on the x-axis) and we know its position at time #y. Let s(¢) denote the position of the object

at time ¢ (its distance from a reference point, such as the origin on the x-axis). Then the net change in

position between 7y and 7 is s(¢) — s(fp). Since s(¢) is an anti-derivative of the velocity function v(z), we

can write .

s(t) =s(to) + | v(u)du.

fo
Similarly, since the velocity is an anti-derivative of the acceleration function a(t), we have
t

v(t) =v(to) + | a(u)du.

fo

Example 8.1: Constant Force

Suppose an object is acted upon by a constant force F. Find v(t) and s(t).

Solution. By Newton’s law F = ma, so the acceleration is ' /m, where m is the mass of the object. Then

we first have

t t

F F
D=v(t)+ | —du=vo+ —
v(t) = v(1) u=vp u

F
=vg+ —(t—1y),
i 0 m( 0)

fo
using the usual convention vy = v(fy). Then

1 t

s(t) = s(n)+ <v0 + g(u —to)) du = so+ (vou+ %(u —19)?)

fo to

F 2
- t—1o) + —(t—19)>.
50+ vo( 0)+2m( 0)

301
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For instance, when F/m = —g is the constant of gravitational acceleration, then this is the falling body
formula (if we neglect air resistance) familiar from elementary physics:

S0+V0(Z —t()) — %(l —lo)z,

or in the common case that 7y = 0,
S0 +Vvot — %t 2,

&

Recall that the integral of the velocity function gives the net distance traveled. If you want to know the
total distance traveled, you must find out where the velocity function crosses the ¢-axis, integrate separately
over the time intervals when v(z) is positive and when v(¢) is negative, and add up the absolute values of
the different integrals. For example, if an object is thrown straight upward at 19.6 m/sec, its velocity
function is v(¢) = —9.8¢ 4+ 19.6, using g = 9.8 m/sec for the force of gravity. This is a straight line which
is positive for ¢ < 2 and negative for r > 2. The net distance traveled in the first 4 seconds is thus

4
/ (~9.8¢ +19.6)dr = 0,
0
while the total distance traveled in the first 4 seconds is

2 4
/ (—9.8t+19.6)dt+’ / (—9.8¢ +19.6)dr| = 19.6+ | — 19.6] = 39.2
0 2

meters, 19.6 meters up and 19.6 meters down.

Example 8.2: Net and Total Distance

The acceleration of an object is given by a(t) = cos(xt), and its velocity at time t = 0 is 1/(27).
Find both the net and the total distance traveled in the first 1.5 seconds.

Solution. We compute

t

= l(l +sin(7r)).

v(t) = v(0) + /0 ' cos(mu)du = — + %sin(im) =2

27

The net distance traveled is then

5(3/2)—5(0) = /0 3/2% G —|—sin(7rt)) di

1/t 1 3/2
= E <§—ECOS(7U)) .
= i—|—Lz0.340meters.
4w = w2

To find the total distance traveled, we need to know when (0.5 +sin(7t)) is positive and when it is negative.
This function is 0 when sin(7zt) is —0.5, i.e., when wt = 71/6, 117/6, etc. The value it = 71/6, i.e.,



8.2. Area Between Curves = 303

t =7/6, is the only value in the range 0 < ¢ < 1.5. Since v(¢) > 0 fort < 7/6 and v(r) < 0 fort > 7/6, the

total distance traveled is
7/6 1 3/2 1
/0 p- <2—|—sm(7rt ) dt—l—‘/7 - <§—|—sin(7rt)) dt‘

1/7 1
= (L4 cos(7 _’____7’
7r<12+ cos(7m/6) + ) + —cos(77/6)
13 13
- <ﬁ+n 2 +E> _’4 12+7r 2
~ 0.409 meters.

Exercises for Section 8.1

Exercise 8.1.1 An object moves so that its velocity at time t is v(t) = —9.8t + 20 m/s. Describe the motion
of the object between t = 0 and t = 5, find the total distance traveled by the object during that time, and
find the net distance traveled.

Exercise 8.1.2 An object moves so that its velocity at time t is v(t) = sint. Set up and evaluate a single
definite integral to compute the net distance traveled between t =0 and t = 2.

Exercise 8.1.3 An object moves so that its velocity at time t is v(t) = 1 + 2sint m/s. Find the net distance
traveled by the object between t = 0 and t = 2m, and find the total distance traveled during the same
period.

Exercise 8.1.4 Consider the function f(x) = (x+2)(x+1)(x—1)(x—2) on [—2,2]. Find the total area
between the curve and the x-axis (measuring all area as positive).

Exercise 8.1.5 Consider the function f(x) = x*> —3x+2 on [0,4]. Find the total area between the curve
and the x-axis (measuring all area as positive).

Exercise 8.1.6 Evaluate the three integrals:

3 4 3
A:/ (—x*49)dx B:/ (—x* +9)dx C:/ (—x* +9)dx,
0 0 4

and verify that A = B+ C.

8.2 AreaBetween Curves

We have seen how integration can be used to find an area between a curve and the x-axis. With very little
change we can find some areas between curves; indeed, the area between a curve and the x-axis may be
interpreted as the area between the curve and a second “curve” with equation y = 0.
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Suppose we would like to find the area below f(x) = —x* +4x+ 3 and above g(x) = —x° + 7x* —
10x+ 5 over the interval 1 <x < 2. We can approximate the area between two curves by dividing the area
into thin sections and approximating the area of each section by a rectangle, as indicated in figure 8.1. The
area of a typical rectangle is Ax(f(x;) — g(x;)), so the total area is approximately

n—1

Y (f(xi) — g(xi)Ax.

i=0

This is exactly the sort of sum that turns into an integral in the limit, namely the integral

2
| 1@ =g

Then
? 2 49
/f(X)—g(x)dxz/ (=2 +4x+3) — (= + 76" — 10x+ 5) dx = .
1 I
10
5_ |
R
= |
|
0 | | |
0 1 2 3

Figure 8.1: Approximating area between curves with rectangles.

This procedure can informally be thought of as follows.

Area Between Two Curves
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More formally, the area A of the region bounded by the curves y = f(x) and y = g(x) and the lines
x=aandx=bis:

b
A= [ 1) g d

Example 8.3: Area between Curves

Find the area between f(x) = —x” +4x and g(x) = x*> — 6x+5; the curves are shown in figure 8.2.

Solution. Here we are not given a specific interval, so it must be the case that there is a “natural” region
involved. Since the curves are both parabolas, the only reasonable interpretation is the region between the
two intersection points, which can be computed as:

S+t+15

R

If we let a = (5—+/15) /2 and b = (5 +V/15) /2, the total area is

b b
/ —x?+4x— (x* —6x+5)dx = / —2x* +10x — Sdx
a a

2,3 b
= 24525y
3 a
= 5V15.
after a bit of simplification. [ )
5 —
0
_5

Figure 8.2: Area bounded by two curves.

Some general guidelines to compute the area between two curves follows.
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Guidelines for Area Between Two Curves

1. Find the intersection points.
2. Draw a sketch of the two curves.

3. Using the sketch determine which curve is the top curve and which curve is the bottom curve.
You may need to split the area up into multiple regions if the curves intersect multiple times
in [a,b].

4. Put the above information into the appropriate formula (once for each region):
b
Area = / (top curve) — (bottom curve)dx, a <x <b.
a

5. Evaluate the integral using the Fundamental Theorem of Calculus (you should get a positive
number representing an area).

Example 8.4: Area Between Two Curves

Determine the area enclosed by y = x?, y = \/x, x = 0 and x = 2.

Solution. The points of intersection of y = x* and y = /x are
=X — Mt =x — X' —x=0 — x(x* —1) =0.

Thus, either x = 0 or x = 1. Sketching the curves gives:

y

L f(z) = o
3+ Area=A A,

2 —

N f@) =z

The area we want to compute is the shaded region. Since the top curve changes at x = 1, we need to
use the formula twice. For A| we have a = 0, b = 1, the top curve is y = \/x and the bottom curve is y = x°.

For A, we have a = 1, b = 2, the top curve is y = x* and the bottom curve is y = {/x.

1 2
Area = A +A, = / (\/)_c—xz)dx—l—/ (x> — V/x)dx
0 1
For the first integral we have:
Lo

0 3

/Ol(ﬁ—xz)dx - (%ﬁ/z—%)é)
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Thus,

S 8 2(v2)° 1 2 10 —4+/2
1=§+K§‘ 3 )‘(5‘5)]=f

Example 8.5: Area Between Sine and Cosine

Determine the area enclosed by y = sinx and y = cosx on the interval [0, 27].

Solution. The curves y = sinx and y = cosx intersect when:

. T .
sinx = cosx — tanx = 1 — x= 7 + 7k, k an integer.

We have the following sketch:

y
sin(x) 1T

The area we want to compute is the shaded region. The top curve changes at x = /4 and x = 57 /4,
thus, we need to split the area up into three regions: from 0 to 7 /4; from /4 to 57 /4; and from 57 /4 to
27.

T 3z 2n
Area = /ﬁt(cosx—sinx)dx—i—/4 (sinx—cosx)alx—i—/5 (cosx —sinx)dx
0 i T

/4 5m/4 2m
= (sinx+cosx) + (—cosx —sinx) + (sinx + cosx)

0 /4 Sm/4
= (vV2-1)+ (v2+v2) + (1+V2)
= 42

&

Sometimes the given curves are not functions of x. In this instances, it may be more useful to use the
following.
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x=g(y)
left

/=f<y)

1. right

The area A of the region bounded by the curves x = f(y) and x = g(y) and the lines y = c and y =d is:

A=/cd|f(y)—g(y)|dy.

Informally this can be thought of as follows:

Area Between Two Curves

d
Area = / (right curve) — (left curve) dy, c<y<d.
c

Example 8.6: Area Between Two Curves

Determine the area enclosed by x = y* and x = 8.

Solution. Note that x = y? and x = 8 intersect when:
¥ =8 — y=+v8 — y= +2v2
Sketching the two curves gives:

Y+ 2

|
o0

>

I
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From the sketch ¢ = —2v/2, d = 2+/2, the right curve is x = 8 and the left curve is x = y2.

d 2v2 1
Area = / [right — left|dy = / (8—yH)dy = (8)7 - —)’3)
c 72\/5 3

2V/2

,2\/5

= [8(2\@) (2\@)3} —~ {8(—2\/5)—%(—2\/5)3} _ 642

!
3 3

Exercises for Section 8.2

Find the area bounded by the curves.

Exercise 8.2.1 y = x* —x? and y = x* (the part to the right of the y-axis)
Exercise 8.2.2 x = y3 and x = y2

Exercise 8.2.3 x=1—y> andy = —x— 1

Exercise 8.2.4 x=3y—y andx+y =3

Exercise 8.2.5 y = cos(7x/2) and y = 1 — x* (in the first quadrant)
Exercise 8.2.6 y = sin(nx/3) and y = x (in the first quadrant)

Exercise 8.2.7 y = /x and y = x*

Exercise 8.2.8 y=+/xandy=vx+1,0<x<4

Exercise 8.2.9 x = 0 and x = 25 — y?

Exercise 8.2.10 y =sinxcosxandy =sinx, 0 <x <7

Exercise 8.2.11 y = /% and y= x2/3

Exercise 8.2.12 y=x>—2xandy =x—2

8.3 Volume

You may recall how to compute certain areas by using integration; we will now look into how some
volumes may also be computed by evaluating an integral. Generally, the volumes that we can compute
this way have cross-sections that are easy to describe.
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|/ \
4 \
Yi — |/|/ \‘\l
Vv \
4 \
4 \
V \
4 | \
Xi

Figure 8.3: Volume of a pyramid approximated by rectangular prisms.

Example 8.7: Volume of a Pyramid

Find the volume of a pyramid with a square base that is 20 meters tall and 20 meters on a side at the
base.

Solution. As with most of our applications of integration, we begin by asking how we might approximate
the volume. Since we can easily compute the volume of a rectangular prism (that is, a “box”), we will
use some boxes to approximate the volume of the pyramid, as shown in figure 8.3: On the left is a cross-
sectional view, on the right is a 3D view of part of the pyramid with some of the boxes used to approximate
the volume.

Each box has volume of the form (2x;)(2x;)Ay. Unfortunately, there are two variables here; fortunately,
we can write x in terms of y: From the cross-sectional view we see that a height of 20 is achieved at the
midpoint of the base. We will also position the cross-sectional view symmetrically about the y-axis. Thus
at x =0, y = 20, and we have a slope of m = —2. So

y=-2x+b
20=-2(0)+b
20=">.

Therefore, y = 20 — 2x, and in the terms of x: x = 10 —y/2 or x; = 10 — y; /2. Then the total volume is
approximately
n—1
Y 4(10—y;/2)*Ay
i=0
and in the limit we get the volume as the value of an integral:

20—y)31* 03 203 8000

20
(10—y/2)2dy=/0 20—y)Pdy= """ | =—— - =——.

20
4
3 |, 3 3 3
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As you may know, the volume of a pyramid is (1/3)(height)(area of base) = (1/3)(20)(400), which
agrees with our answer. &

Example 8.8: Volume of an Object

The base of a solid is the region between f(x) = x> — 1 and g(x) = —x*> + 1, and its cross-sections
perpendicular to the x-axis are equilateral triangles, as indicated in Figure 8.4. The solid has been
truncated to show a triangular cross-section above x = 1/2. Find the volume of the solid.

Figure 8.4: Solid with equilateral triangles as cross-sections.

Solution. A cross-section at a value x; on the x-axis is a triangle with base 2(1 — x?) and height v/3(1 —x7),
so the area of the cross-section is

1
E(base)(height) = (1—x)V3(1—x3),
and the volume of a thin “slab” is then

(1—x)V3(1 —x})Ax.

Thus the total volume is ' 6
/ V3(1—x2)2dx = —/3.
1 15
)
One easy way to get “nice” cross-sections is by rotating a plane figure around a line. For example, in

Figure 8.5 we see a plane region under a curve and between two vertical lines; then the result of rotating
this around the x-axis, and a typical circular cross-section is a circle.
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Figure 8.5: A solid of rotation.

Of course a real “slice” of this figure will not have straight sides, but we can approximate the volume
of the slice by a cylinder or disk with circular top and bottom and straight sides; the volume of this disk

will have the form mr°Ax. As long as we can write r in terms of x we can compute the volume by an
integral.

Example 8.9: Volume of a Right Circular Cone

Find the volume of a right circular cone with base radius 10 and height 20. (A right circular cone is
one with a circular base and with the tip of the cone directly over the center of the base.)

Solution. We can view this cone as produced by the rotation of the line y = x/2 rotated about the x-axis,

as indicated in figure 8.6.
‘))))

Figure 8.6: A region that generates a cone; approximating the volume by circular disks.

o
[\

0

At a particular point on the x-axis, say x;, the radius of the resulting cone is the y-coordinate of the
corresponding point on the line, namely y; = x; /2. Thus the total volume is approximately

n—1

Z m(x;/2)? dx

i=0

and the exact volume is

/ZOnxz J 720> 20007
—ax=—-——= .
0 4 4 3 3
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Note that we can instead do the calculation with a generic height and radius:

h i r? 2, nr*h®  wrth
—SxTdx = —5— = ,
o h? h? 3 3
giving us the usual formula for the volume of a cone. s

Example 8.10: Volume of an Object with a Hole

Find the volume of the object generated when the area between y = x> and y = x is rotated around
the x-axis.

Solution. This solid has a “hole” in the middle; we can compute the volume by subtracting the volume
of the hole from the volume enclosed by the outer surface of the solid. In figure 8.7 we show the region
that is rotated, the resulting solid with the front half cut away, the cone that forms the outer surface, the
horn-shaped hole, and a cross-section perpendicular to the x-axis.

1_

Figure 8.7: Solid with a hole, showing the outer cone and the shape to be removed to form the hole.

We have already computed the volume of a cone; in this case it is /3. At a particular value of x, say
x;, the cross-section of the horn is a circle with radius xiz, so the volume of the horn is

1 1 1
/ n(x*)%dx = / nxtdx =m=,
0 5

0
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so the desired volume is 7/3 — /5 =2x/15.

As with the area between curves, there is an alternate approach that computes the desired volume “all
at once” by approximating the volume of the actual solid. We can approximate the volume of a slice of
the solid with a washer-shaped volume, as indicated in Figure 8.7.

The volume of such a washer is the area of the face times the thickness. The thickness, as usual, is Ax,
while the area of the face is the area of the outer circle minus the area of the inner circle, say TR? — 7rr2, or
7(TOP)? — £(BOTTOM)?. In the present example, at a particular x;, the radius R (The “TOP” function)

is x; and r (The “BOTTOM” function) xl-z. Hence, the whole volume is
L (L. 1\ _o
o \3 5) 15

Of course, what we have done here is exactly the same calculation as before, except we have in effect
recomputed the volume of the outer cone. &

1 1 R
/ 7 (TOP?> — BOTTOM?) dx = / mx’ —mxtdx =1 <§ - §)
0 0

Suppose the region between f(x) = x+ 1 and g(x) = (x — 1)? is rotated around the y-axis; see Fig-
ure 8.8. It is possible, but inconvenient, to compute the volume of the resulting solid by the method we
have used so far. The problem is that there are two “kinds” of typical rectangles: Those that go from the
line to the parabola and those that touch the parabola on both ends. To compute the volume using this
approach, we need to break the problem into two parts and compute two integrals:

n/()1(1+\/§>2—(1—ﬁ)zdy+n/14(1+ﬁ)Z—(y—mzdy: gﬂ%n: 2_27,r

If instead we consider a typical vertical rectangle, but still rotate around the y-axis, we get a thin “shell”
instead of a thin “washer”. Note that “washers” are related to the area of a circle, 7%, whereas “shells”
are related to the surface area of a cylinder, 27rh. If we add up the volume of such thin shells we will get
an approximation to the true volume. What is the volume of such a shell? Consider the shell at x;. Imagine
that we cut the shell vertically in one place and “unroll” it into a thin, flat sheet, namely the surface of a
cylinder. This sheet will be almost a rectangular prism that is Ax thick, f(x;) — g(x;) (TOP—BOTTOM)
tall, and 27mx; wide. The volume will then be approximately the volume of a rectangular prism with these
dimensions: 27x;( f(x;) — g(x;))Ax. If we add these up and take the limit as usual, we get the integral

3 3 3 27
/ 27x(f(x) — g(x)) dx = / 27x (TOP — BOTTOM) dx — / 2mx(x+ 1 (r— 1) dr= 27
0 0 0
Not only does this accomplish the task with only one integral, the integral is somewhat easier than those in
the previous calculation. Things are not always so neat, but it is often the case that one of the two methods
will be simpler than the other, so it is worth considering both before starting to do calculations.
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4 4 A
3+ 3+
2 2 —
. . =
0 T | | 0 T | |

0 1 2 3 0 1 2 3

Figure 8.8: Computing volumes with ‘“shells”.

Example 8.11

Suppose the area undery = —x% 41 between x = 0 and x = 1 is rotated around the x-axis. Find the
volume by both methods.

Solution. Using the disk method we obtain:

Using the shell method we obtain:

1 8
/0 2ny\/1 —ydy = En

Exercises for 8.3

1 4
Exercise 8.3.1 Verify that 7'L'/ (1+9) = (1= ) dy+ 7'[/ 1+ = (y—1)dy= §7r+ %n =
0 1
7,
5T
. : 3 ) 27

Exercise 8.3.2 Verify that / 2ax(x+1—(x—1)")dx= 5

0

! 8

Exercise 8.3.3 Verify that / m(l—x*)dx = R

0

1 8
Exercise 8.3.4 Verify that / 2ny\/ 1 —ydy = Eﬂ:
0

Exercise 8.3.5 Use integration to find the volume of the solid obtained by revolving the region bounded
by x+y = 2 and the x- and y-axes around the x-axis.
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Exercise 8.3.6 Find the volume of the solid obtained by revolving the region bounded by y = x —x* and
the x-axis around the x-axis.

Exercise 8.3.7 Find the volume of the solid obtained by revolving the region bounded by y = v/sinx
between x =0 and x = 1 /2, the y-axis, and the line y = 1 around the x-axis.

Exercise 8.3.8 Let S be the region of the xy-plane bounded above by the curve x°y = 64, below by the line
y =1, on the left by the line x =2, and on the right by the line x = 4. Find the volume of the solid obtained
by rotating S around.:

(a) the x-axis; (c) the y-axis; and

(b) the liney=1; (d) the line x = 2.

Exercise 8.3.9 The equation x* /9+ y? /4 =1 describes an ellipse. Find the volume of the solid obtained
by rotating the ellipse around the x-axis and also around the y-axis. These solids are called ellipsoids, one
is vaguely rugby-ball shaped, one is sort of flying-saucer shaped, or perhaps squished-beach-ball-shaped.

e
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Figure 8.9: Ellipsoids.

Exercise 8.3.10 Use integration to compute the volume of a sphere of radius r. You should of course get
the well-known formula 4xr /3.

Exercise 8.3.11 A hemispheric bowl of radius r contains water to a depth h. Find the volume of water in
the bowl.

Exercise 8.3.12 The base of a tetrahedron (a triangular pyramid) of height h is an equilateral triangle
of side s. Its cross-sections perpendicular to an altitude are equilateral triangles. Express its volume V
as an integral, and find a formula for V in terms of h and s. Verify that your answer is (1/3)(area of
base)(height).

Exercise 8.3.13 The base of a solid is the region between f(x) = cosx and g(x) = —cosx, —w/2 <x <
7t/2, and its cross-sections perpendicular to the x-axis are squares. Find the volume of the solid.

8.4 Average Value of a Function

The average of some finite set of values is a familiar concept. If, for example, the class scores on a quiz
are 10,9, 10,8, 7,5, 7, 6, 3, 2,7, 8, then the average score is the sum of these numbers divided by the size
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of the class:

10+94+10+84+74+5+7+64+34+2+7+8 82
average score = B =1 ~ 6.83.

Suppose that between r = 0 and 7 = 1 the speed of an object is sin(7¢). What is the average speed of the
object over that time? The question sounds as if it must make sense, yet we can’t merely add up some
number of speeds and divide, since the speed is changing continuously over the time interval.

To make sense of “average” in this context, we fall back on the idea of approximation. Consider the
speed of the object at tenth of a second intervals: sin0, sin(0.17), sin(0.27), sin(0.37),.. ., sin(0.97). The
average speed “should” be fairly close to the average of these ten speeds:

—Zsm mi/10) ~ —063_063

Of course, if we compute more speeds at more times, the average of these speeds should be closer to
the “real” average. If we take the average of n speeds at evenly spaced times, we get:

1111

— Z sin(7i/n).

Here the individual times are #; = i/n, so rewriting slightly we have

1 n—1
— Z sin(7t;).
niZo

This is almost the sort of sum that we know turns into an integral; what’s apparently missing is A7—but in
fact, Ar = 1/n, the length of each subinterval. So rewriting again:

Z sin Jtt, Z sin(7t;)A

Now this has exactly the right form, so that in the limit we get

! ok 0 2
average speed = / sin(7t) dt = _cos() = _cos(#) + cos(0) = — ~0.6366 ~ 0.64.
0 T T T T

It’s not entirely obvious from this one simple example how to compute such an average in general.
Let’s look at a somewhat more complicated case. Suppose that the velocity of an object is 1612+ 5 feet
per second. What is the average velocity between t = 1 and t = 3?7 Again we set up an approximation to
the average:

1 n—1

- Y 1667 +5,

miZ0
where the values ¢; are evenly spaced times between 1 and 3. Once again we are “missing” At, and this
time 1/n is not the correct value. What is Az in general? It is the length of a subinterval; in this case we
take the interval [1,3] and divide it into n subintervals, so each has length (3 —1)/n=2/n = At. Now with
the usual “multiply and divide by the same thing” trick we can rewrite the sum:

1n—1 5 — —1 1n—1 5 2 171—1 )
— 16t,—+5— (1617 +5 = 16t; +5)— = = 1617 +5)At.
ng(’) ; n 2;6( )n 2;6( )



318 = Applications of Integration

In the limit this becomes

1446 223
16> +5dt = = .
/ 23 3

Does this seem reasonable? Let’s picture it: In Figure 8.10 we see the velocity function together with
the horizontal line y = 223 /3 ~ 74.3. Certainly the height of the horizontal line looks at least plausible for
the average height of the curve.

150
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Figure 8.10: Average velocity.

Here’s another way to interpret “average” that may make our computation appear even more reason-
able. The object of our example goes a certain distance between ¢ = 1 and ¢ = 3. If instead the object were
to travel at the average speed over the same time, it should go the same distance. At an average speed of
223/3 feet per second for two seconds the object would go 446/3 feet. How far does it actually go? We

know how to compute this:
3 3. 5 446
1 1

So now we see that another interpretation of the calculation is:

1446 223
|
/ 67+ 5dr =2 = =0

which is the total distance traveled divided by the time in transit, namely, the usual interpretation of average
speed.

In the case of speed, or more properly velocity, we can always interpret “average” as total (net) dis-
tance divided by time. However, in the case of a different sort of quantity this interpretation does not
obviously apply, while the approximation approach always does. We might interpret the same problem
geometrically: What is the average height of 16x> 45 on the interval [1,3]? We approximate this in exactly
the same way, by adding up many sample heights and dividing by the number of samples. In the limit we
get the same result:

1446 223

r}grolonZMx +5== /16x -l-5dx-2 3 —T.
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We can interpret this result in a slightly different way. The area under y = 16x> + 5 above [1,3] is

446
3
The area under y = 223 /3 over the same interval [1,3] is simply the area of a rectangle that is 2 by 223 /3

with area 446/3. So the average height of a function is the height of the horizontal line that produces the
same area over the given interval.

3
/ 16t> +5dt =
|

Exercises for 8.4

Exercise 8.4.1 Find the average height of cosx over the intervals [0,7 /2], [-7/2,7/2), and [0,27].
Exercise 8.4.2 Find the average height of x* over the interval [—2,2).

Exercise 8.4.3 Find the average height of 1/x* over the interval [1,A).

Exercise 8.4.4 Find the average height of \/ 1 —x? over the interval [—1,1].

Exercise 8.4.5 An object moves with velocity v(t) = —t2 + 1 feet per second between t =0 and t = 2.
Find the average velocity and the average speed of the object betweent =0 and t = 2.

Exercise 8.4.6 The observation deck on the 102nd floor of the Empire State Building is 1,224 feet above
the ground. If a steel ball is dropped from the observation deck its velocity at time t is approximately
v(t) = —32t feet per second. Find the average speed between the time it is dropped and the time it hits the
ground, and find its speed when it hits the ground.

8.5 Work

A fundamental concept in classical physics is work: If an object is moved in a straight line against a force
F for a distance d the work done is W = Fd.

Example 8.12: Constant Force

How much work is done in lifting a 10 pound weight vertically a distance of 5 feet?

Solution. The force due to gravity on a 10 pound weight is 10 pounds at the surface of the earth, and it
does not change appreciably over 5 feet. The work done is W = 10-5 = 50 foot-pounds. s

In reality few situations are so simple. The force might not be constant over the range of motion, as in
the next example.

Example 8.13: Lifting a Weight

How much work is done in lifting a 10 pound weight from the surface of the earth to an orbit 100
miles above the surface?
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Solution. Over 100 miles the force due to gravity does change significantly, so we need to take this into
account. The force exerted on a 10 pound weight at a distance r from the center of the earth is F = k/ P
and by definition it is 10 when r is the radius of the earth (we assume the earth is a sphere). How can we
approximate the work done? We divide the path from the surface to orbit into n small subpaths. On each
subpath the force due to gravity is roughly constant, with value k/ ”1'2 at distance r;. The work to raise the
object from r; to r;y is thus approximately &/ r,-2Ar and the total work is approximately

or in the limit

Using rp = 20925525 feet we have r; = 21453525. The force on the 10 pound weight at the surface of the
earth is 10 pounds, so 10 = k/209255252, giving k = 4378775965256250. Then

k k491052320000
_k k1052320000 5150050 foot-pounds.
"t r 95349 ooTPoIREs

Note that if we assume the force due to gravity is 10 pounds over the whole distance we would calculate
the work as 10(r; — rg) = 10-100- 5280 = 5280000, somewhat higher since we don’t account for the
weakening of the gravitational force. &

Example 8.14: Lifting an Object

How much work is done in lifting a 10 kilogram object from the surface of the earth to a distance D
from the center of the earth?

Solution. This is the same problem as before in different units, and we are not specifying a value for D.

As before
b kK k

D l”().

Dk k
W = —dr=——

r()r

ro
While “weight in pounds” is a measure of force, “weight in kilograms” is a measure of mass. To convert
to force we need to use Newton’s law F = ma. At the surface of the earth the acceleration due to gravity
is approximately 9.8 meters per second squared, so the force is F = 10-9.8 = 98. The units here are
“kilogram-meters per second squared” or “kg m/s>”, also known as a Newton (N), so F = 98 N. The
radius of the earth is approximately 6378.1 kilometers or 6378100 meters. Now the problem proceeds as
before. From F = k/r* we compute k: 98 = k/6378100%, k = 3.986655642 - 10'°. Then the work is:

k
W = -5+ 6.250538000- 108 Newton-meters.
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As D increases W of course gets larger, since the quantity being subtracted, —k/D, gets smaller. But note
that the work W will never exceed 6.250538000 - 108, and in fact will approach this value as D gets larger.
In short, with a finite amount of work, namely 6.250538000 - 108 N-m, we can lift the 10 kilogram object
as far as we wish from earth. &

Next is an example in which the force is constant, but there are many objects moving different dis-
tances.

Example 8.15: Multiple Objects Moving

Suppose that a water tank is shaped like a right circular cone with the tip at the bottom, and has
height 10 meters and radius 2 meters at the top. If the tank is full, how much work is required to
pump all the water out over the top?

Solution. Here we have a large number of atoms of water that must be lifted different distances to get to
the top of the tank. Fortunately, we don’t really have to deal with individual atoms—we can consider all
the atoms at a given depth together.

To approximate the work, we can divide the water in the tank into horizontal sections, approximate the
volume of water in a section by a thin disk, and compute the amount of work required to lift each disk to
the top of the tank. As usual, we take the limit as the sections get thinner and thinner to get the total work.

«2=

Figure 8.11: Cross-section of a conical water tank.

At depth h the circular cross-section through the tank has radius r = (10 — &) /5, by similar triangles,
and area 7t(10— )2 /25. A section of the tank at depth / thus has volume approximately (10 — /)% /25Ah
and so contains o7r(10 — h)?/25Ah kilograms of water, where & is the density of water in kilograms per
cubic meter; 6 =~ 1000. The force due to gravity on this much water is 9.867(10 — h)2 /25Ah, and finally,
this section of water must be lifted a distance &, which requires #9.867(10 — h)?/25Ah Newton-meters of
work. The total work is therefore

8ox [10 80000
280m [ 10— ny2an =2
25 Jo

W= T~ 1026254 Newton-meters.

&

A spring has a “natural length,” its length if nothing is stretching or compressing it. If the spring
is either stretched or compressed the spring provides an opposing force; according to Hooke’s Law the
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magnitude of this force is proportional to the distance the spring has been stretched or compressed: F = kx.
The constant of proportionality, k, of course depends on the spring. Note that x here represents the change
in length from the natural length.

Example 8.16: Compressing a Spring

Suppose k = 5 for a given spring that has a natural length of 0.1 meters. Suppose a force is applied
that compresses the spring to length 0.08. What is the magnitude of the force?

Solution. Assuming that the constant k has appropriate dimensions (namely, kg/s?), the force is 5(0.1 —
0.08) =5(0.02) = 0.1 Newtons. &

Example 8.17: Compressing a Spring (continued)

How much work is done in compressing the spring in the previous example from its natural length
to 0.08 meters? From 0.08 meters to 0.05 meters? How much work is done to stretch the spring
from 0.1 meters to 0.15 meters?

Solution. We can approximate the work by dividing the distance that the spring is compressed (or stretched)
into small subintervals. Then the force exerted by the spring is approximately constant over the subinter-
val, so the work required to compress the spring from x; to x;; is approximately 5(x; —0.1)Ax. The total
work is approximately

n—1
Y 5(xi—0.1)Ax
i=0
and in the limit
0.08 5x—0.1)2"%  50008-0.12 5(0.1-0.1)2 1
W=[ 5x—0l)dx=">—"2| = - = —N-m.
oy ST 0D)dx 2 o 2 2 1000

The other values we seek simply use different limits. To compress the spring from 0.08 meters to 0.05
meters takes

0.05 50—0.121""  50005-0.1)2 50.08-0.1)2 21
W=[ 5x—0l)de=>"—"| = _ _ N-
hos 0 70D dx 2 oo 2 2 000
and to stretch the spring from 0.1 meters to 0.15 meters requires
0.15 5c—0.1)2""  500.15-0.1)2 50.1-0.1)> 1
= —0.l)dx= 22 = - - ‘m.
w . 5(x—0.1)dx 7 0 7 7 160 N-m
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Exercises for 8.5

Exercise 8.5.1 How much work is done in lifting a 100 kilogram weight from the surface of the earth to
an orbit 35,786 kilometers above the surface of the earth?

Exercise 8.5.2 How much work is done in lifting a 100 kilogram weight from an orbit 1000 kilometers
above the surface of the earth to an orbit 35,786 kilometers above the surface of the earth?

Exercise 8.5.3 A water tank has the shape of an upright cylinder with radius r = 1 meter and height 10
meters. If the depth of the water is 5 meters, how much work is required to pump all the water out the top
of the tank?

Exercise 8.5.4 Suppose the tank of the previous problem is lying on its side, so that the circular ends are
vertical, and that it has the same amount of water as before. How much work is required to pump the
water out the top of the tank (which is now 2 meters above the bottom of the tank)?

Exercise 8.5.5 A water tank has the shape of the bottom half of a sphere with radius r = 1 meter. If the
tank is full, how much work is required to pump all the water out the top of the tank?

Exercise 8.5.6 A spring has constant k = 10 kg/s>. How much work is done in compressing it 1/10 meter
from its natural length?

Exercise 8.5.7 A force of 2 Newtons will compress a spring from 1 meter (its natural length) to 0.8 meters.
How much work is required to stretch the spring from 1.1 meters to 1.5 meters?

Exercise 8.5.8 A 20 meter long steel cable has density 2 kilograms per meter, and is hanging straight
down. How much work is required to lift the entire cable to the height of its top end?

Exercise 8.5.9 The cable in the previous problem has a 100 kilogram bucket of concrete attached to its
lower end. How much work is required to lift the entire cable and bucket to the height of its top end?

Exercise 8.5.10 Consider again the cable and bucket of the previous problem. How much work is required
to lift the bucket 10 meters by raising the cable 10 meters? (The top half of the cable ends up at the height
of the top end of the cable, while the bottom half of the cable is lifted 10 meters.)

8.6 Center of Mass

Suppose a beam is 10 meters long, and that there are three weights on the beam: a 10 kilogram weight 3
meters from the left end, a 5 kilogram weight 6 meters from the left end, and a 4 kilogram weight 8 meters
from the left end. Where should a fulcrum be placed so that the beam balances? Let’s assign a scale to
the beam, from O at the left end to 10 at the right, so that we can denote locations on the beam simply as
x-coordinates; the weights are at x = 3, x = 6, and x = 8, as in Figure 8.12.
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10 5 4
3 AN 8

Figure 8.12: A beam with three masses.

Suppose to begin with that the fulcrum is placed at x = 5. What will happen? Each weight applies a
force to the beam that tends to rotate it around the fulcrum; this effect is measured by a quantity called
torque, proportional to the mass times the distance from the fulcrum. Of course, weights on different
sides of the fulcrum rotate the beam in opposite directions. We can distinguish this by using a signed
distance in the formula for torque. So with the fulcrum at 5, the torques induced by the three weights will
be proportional to (3 —5)10= —20, (6 —5)5 =5, and (8 — 5)4 = 12. For the beam to balance, the sum of
the torques must be zero; since the sum is —20+ 5 + 12 = —3, the beam rotates counter-clockwise, and to
get the beam to balance we need to move the fulcrum to the left. To calculate exactly where the fulcrum
should be, we let X denote the location of the fulcrum when the beam is in balance. The total torque on
the beam is then (3 —X)10+ (6 —X)5 + (8 —X)4 = 92 — 19&. Since the beam balances at £ it must be that
92 —19x=0o0rx =92/19 ~ 4.84, that is, the fulcrum should be placed at x = 92/19 to balance the beam.

Now suppose that we have a beam with varying density—some portions of the beam contain more
mass than other portions of the same size. We want to figure out where to put the fulcrum so that the beam
balances.

mo | my | my | m3 | myg | mMs | meg | My | mg | My

Figure 8.13: A solid beam.

Example 8.18: Balance Point of a Beam

Find the balance point of a solid beam, illustrated in Figure 8.13, assuming the beam is 10 meters
long and that the density is 1 + x kilograms per meter at location x on the beam.

Solution. To approximate the solution, we can think of the beam as a sequence of weights “on” a beam.
For example, we can think of the portion of the beam between x = 0 and x = 1 as a weight sitting at x = 0,
the portion between x = 1 and x = 2 as a weight sitting at x = 1, and so on, as indicated in Figure 8.13. We
then approximate the mass of the weights by assuming that each portion of the beam has constant density.
So the mass of the first weight is approximately my = (14 0)1 = 1 kilograms, namely, (1 + 0) kilograms
per meter times 1 meter. The second weight is m; = (1+ 1)1 = 2 kilograms, and so on to the tenth weight
with mg = (1+9)1 = 10 kilograms. So in this case the total torque is

O—x)my+(1—%)m+---+(9—x)mg=(0—x)1 4+ (1 —%)2+---+ (9 —x)10.

If we set this to zero and solve for X we get ¥ = 6. In general, if we divide the beam into n portions, the
mass of weight number i will be m; = (14 x;)(x;+1 —x;) = (1 +x;)Ax and the torque induced by weight
number i will be (x; — X)m; = (x; — X)(1 + x;)Ax. The total torque is then

(xo = X) (1 +x0)Ax + (x1 — %) (1 +x1)Ax+ -+ + (-1 — %) (1 +2x,-1)Ax
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n—1 n—1
=) xi(14x)Ax— ) %(14x)Ax
i=0 i=0

n—1 n—1
=Y xi(1+x)Ax—x Y (1+x)Ax.
i=0 i=0

If we set this equal to zero and solve for X we get an approximation to the balance point of the beam:

n—1 n—1
0= xi(l4+x)Ax—%) (1+x)Ax
i=0 i=0
n—1 n—1
) (T4x)Ax =) xi(1+x;)Ax
i=0 i=0

n—1
Z x,—(l —|—x,~)Ax
i=0

r= n—1

Z (I+x;)Ax

i=0
The denominator of this fraction has a very familiar interpretation. Consider one term of the sum in the
denominator: (14 x;)Ax. This is the density near x; times a short length, Ax, which in other words is
approximately the mass of the beam between x; and x;;;. When we add these up we get approximately
the mass of the beam.

Now each of the sums in the fraction has the right form to turn into an integral, which in turn gives us
the exact value of x:

/Olox(l—i—x)dx
/Olo(l-i-x)dx.

The numerator of this fraction is called the moment of the system around zero:

10 10 1150
/ x(l-l—x)dx:/ x+xtdx=——,
0 0 3

X =

and the denominator is the mass of the beam:
10
/ (1+x)dx =60,
0

and the balance point, officially called the center of mass is

1150 1 115

3 @= 13 ~ 6.39.

X =

&

It should be apparent that there was nothing special about the density function ¢(x) = 1 + x or the
length of the beam, or even that the left end of the beam is at the origin. In general, if the density of the
beam is ¢ (x) and the beam covers the interval [a, b], the moment of the beam around zero is

b
Moz/ x0 (x)dx
a
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and the total mass of the beam is

and the center of mass is at

Example 8.19: Center of Mass of a Beam

Suppose a beam lies on the x-axis between 20 and 30, and has density function 6 (x) = x— 19. Find
the center of mass.

Solution. This is the same as the previous example except that the beam has been moved. Note that the
density at the left end is 20 — 19 = 1 and at the right end is 30 — 19 = 11, as before. Hence the center of
mass must be at approximately 20 4 6.39 = 26.39. Let’s see how the calculation works out.

30 30 3 192217 4750
Mo= [ xtr—19)dx= [ 2 - 1ovar=" - 05 0
20 20 3 2 1y 3
30 2 30
M = x—19dx= ——19x| =60
20 2 20

My 47501 475
Y- 3 60" 18 ~ 26.39.

Example 8.20: Centroid of a Flat Plate

Suppose a flat plate of uniform density has the shape contained by y = x?,y=1, and x = 0, in the
first quadrant. Find the center of mass. (Since the density is constant, the center of mass depends
only on the shape of the plate, not the density, or in other words, this is a purely geometric quantity.
In such a case the center of mass is called the centroid.)

Solution. This is a two dimensional problem, but it can be solved as if it were two one dimensional
problems: we need to find the x- and y-coordinates of the center of mass, X and y, and fortunately we can
do these independently. Imagine looking at the plate edge on, from below the x-axis. The plate will appear
to be a beam, and the mass of a short section of the “beam”, say between x; and x; 1, is the mass of a strip
of the plate between x; and x; 1. See Figure 8.14 showing the plate from above and as it appears edge on.

1

0 )é,' 1 0 Jéi 1

Figure 8.14: Center of mass for a two dimensional plate.
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Since the plate has uniform density we may as well assume that ¢ = 1. Then the mass of the plate
between x; and x;, | is approximately m; = 6(1 —x?)Ax = (1 —x?)Ax. Now we can compute the moment
around the y-axis:

1 1

M, = 1—x*)dx = -

y/ox( x“)dx 2
1

and the total mass

2
M:/ (1—x*)dx=2=
0 3
and finally
_ 13 3
=127 3

SO

1 2
M, = /O yﬁdy = g
and
23 3
52 5
since the total mass M is the same. The center of mass is shown in Figure 8.14. &

Example 8.21: Center of Mass under Cosine

Find the center of mass of a thin, uniform plate whose shape is the region between y = cosx and the
x-axis betweenx = —m/2 and x = 1w /2.

Solution. It is clear that X = 0, but for practice let’s compute it anyway. We will need the total mass, so
we compute it first:

/2 o m/2
M = / cosxdx = sinx =
—m/2 —m/2
The moment around the y-axis is
71'/2 ) 71:/2
M, = xcosxdx = cosx+xsinx =

and the moment around the x-axis is

l 1— 2 . -
Mx :/ y-2arccosydy = yzarCCOSy— Yy y arcsiny oz
0 7 5 ;
0
Thus 0
T
—:_, _:—%0393
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Exercises for 8.6

Exercise 8.6.1 A beam 10 meters long has density o (x) = x° at distance x from the left end of the beam.
Find the center of mass X.

Exercise 8.6.2 A beam 10 meters long has density 6(x) = sin(7x/10) at distance x from the left end of
the beam. Find the center of mass X.

Exercise 8.6.3 A beam 4 meters long has density ¢(x) = x> at distance x from the left end of the beam.
Find the center of mass X.

xV1—x2  arcsinx
+ +C

Exercise 8.6.4 Verify that / 2xarccosxdx = x> arccosx — 5 >

Exercise 8.6.5 A thin plate lies in the region between y = x* and the x-axis between x = 1 and x = 2. Find
the centroid.

Exercise 8.6.6 A thin plate fills the upper half of the unit circle x>+ y2 = 1. Find the centroid.
Exercise 8.6.7 A thin plate lies in the region contained by y = x and y = x°. Find the centroid.
Exercise 8.6.8 A thin plate lies in the region contained by y = 4 — x? and the x-axis. Find the centroid.

Exercise 8.6.9 A thin plate lies in the region contained by y = x'/3 and the x-axis between x = 0 and
x = 1. Find the centroid.

Exercise 8.6.10 A thin plate lies in the region contained by \/x+./y = 1 and the axes in the first quadrant.
Find the centroid.

Exercise 8.6.11 A thin plate lies in the region between the circle x>+ y2 — 4 and the circle x> + y2 =1,
above the x-axis. Find the centroid.

Exercise 8.6.12 A thin plate lies in the region between the circle X+ y2 — 4 and the circle x> + y2 =1lin
the first quadrant. Find the centroid.

Exercise 8.6.13 A thin plate lies in the region between the circle x*> +y* = 25 and the circle x> +y* = 16
above the x-axis. Find the centroid.

8.7 Arc Length

Here is another geometric application of the integral: Find the length of a portion of a curve. As usual, we
need to think about how we might approximate the length, and turn the approximation into an integral.

We already know how to compute one simple arc length, that of a line segment. If the endpoints are
Py(x0,y0) and P;(x1,y;) then the length of the segment is the distance between the points,

\/ (x1 —x0)2+ (y1 — y0)?, from the Pythagorean theorem, as illustrated in Figure 8.15.
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(x1,y1)

V (x1 =x0)2 4+ (v1 — y0)?
Y1 —Yo

(x0,¥0) X1 —Xo

Figure 8.15: The length of a line segment.

Now if the graph of f is “nice” (say, differentiable) it appears that we can approximate the length of
a portion of the curve with line segments, and that as the number of segments increases, and their lengths
decrease, the sum of the lengths of the line segments will approach the true arc length; see Figure 8.16.

Figure 8.16: Approximating arc length with line segments.

Now we need to write a formula for the sum of the lengths of the line segments, in a form that we know
becomes an integral in the limit. So we suppose we have divided the interval [a,b] into n subintervals as
usual, each with length Ax = (b — a)/n, and endpoints a = xg, x, X, ..., X, = b. The length of a typical

line segment, joining (x;, f(x;)) to (xit1,f(xis1)), is \/(Ax)z-l- (f(xix1) — f(x;))%. By the Mean Value
Theorem, there is a number #; in (x;,x;11) such that f/(¢;)Ax = f(x;y1) — f(x;), so the length of the line
segment can be written as

\/ (Ax)2+ (f'(8:))*Ax* = \/ 1+ (f(17)) 2 Ax.

i 31+ R s [ (s

Note that the sum looks a bit different than others we have encountered, because the approximation con-
tains a t; instead of an x;. In the past we have always used left endpoints (namely, x;) to get a representative
value of f on [x;,x;+1]; now we are using a different point, but the principle is the same.

Then arc length is:

To summarize, to compute the length of a curve on the interval |a,b]|, we compute the integral

[ e e
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Unfortunately, integrals of this form are typically difficult or impossible to compute exactly, because
usually none of our methods for finding antiderivatives will work. In practice this means that the integral
will usually have to be approximated.

Example 8.22: Circumference of a Circle

Let f(x) = \/r?> — x2, the upper half circle of radius r. The length of this curve is half the circum-
ference, namely mr. Compute this with the arc length formula.

Solution. The derivative f” is —x/v/r? —x? so the integral is

e = ==

Using a trigonometric substitution, we find the antiderivative, namely arcsin(x/r). Notice that the integral

is improper at both endpoints, as the function 1/1/(r? — x?) is undefined when x = +r. So we need to
compute

0 1
lim / > dx+ lim >
D——rtJD r<—Xx D—r—J0 r<-—Xx

This is not difficult, and has value 7, so the original integral, with the extra r in front, has value 7r as
expected. )

Exercises for 8.7

Exercise 8.7.1 Find the arc length of f(x) = x*/% on [0,2].
Exercise 8.7.2 Find the arc length of f(x) = x*/8 —Inx on [1,2].
Exercise 8.7.3 Find the arc length of f(x) = (1/3)(x>+2)/? on the interval [0, .

Exercise 8.7.4 Find the arc length of f(x) = In(sinx) on the interval [m/4,7/3].
a
Exercise 8.7.5 Let a > 0. Show that the length of y = coshx on [0,a] is equal to / coshxdx.
0

Exercise 8.7.6 Find the arc length of f(x) = coshx on [0,1n2].

Exercise 8.7.7 Set up the integral to find the arc length of sinx on the interval [0, t|; do not evaluate the
integral. If you have access to appropriate software, approximate the value of the integral.

Exercise 8.7.8 Set up the integral to find the arc length of y = xe” ™ on the interval [2,3]; do not evaluate
the integral. If you have access to appropriate software, approximate the value of the integral.

Exercise 8.7.9 Find the arc length of y = " on the interval [0,1]. (This can be done exactly; it is a bit
tricky and a bit long.)

Find the arc length of the function on the given interval.
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Exercise 8.7.10 f(x) = x on [0,1] Exercise 8.7.15 f(x) = coshx on [—1n2,In2]

ise 8.7. = — . 1
Exercise 8.7.11 f(x) = v/8x on [—1,1] Exercise 8.7.16 f(x) = E(e +e™) on [0,In5]
1
Exercise 8.7.12 f(x) = §x3/2 —x'2 on[0,1] | |
Exercise 8.7.17 =— — 1,1
1 1 xercise flx)= 12x + 5.3 O" [.1,1]
Exercise 8.7.13 f(x) = —x° -|— — on [1,4]
12 Exercise 8.7.18 f(x) = In (sinx) on [/6,7/2]
. 32 1 .
Exercise 8.7.14 f(x) =2x"/" — 6\/7_5 on [0,9] Exercise 8.7.19 f(x) =1In(cosx) on [0,7/4]
Set up the integral to compute the arc length of the function on the given interval. Do not evaluate the
integral.
Exercise 8.7.20 f(x) =x on [0, 1] Exercise 8.7.25 f(x) = \/1—x2/9 on [-3.3].
. Note: this describes the top half of an ellipse with
E 8.7.21 0.1 (
xercise flx) = > on 0,1] a major axis of length 6 and a minor axis of length
Exercise 8.7.22 f(x) = v/x on [0,1] 2.)
1
Exercise 8.7.23 f(x) =1Inxon [1,e] Exercise 8.7.26 f(x) = ~ on [1,2]
X

Exercise 8.7.24 f(x) =+/1—x? on [—1,1]. (Note:

this describes the top half of a circle with radius 1.)

Exercises 8.7.10 to 8.7.26 were adapted by Lyryx from APEX Calculus, Version 3.0, written by G. Hartman. This material
is released under Creative Commons license CC BY-NC (https://creativecommons.org/licenses/by-nc/4.0/). See
the Copyright and Revision History pages in the front of this text for more information.

8.8 Surface Area

Another geometric question that arises naturally is: “What is the surface area of a volume?” For example,
what is the surface area of a sphere? More advanced techniques are required to approach this question in
general, but we can compute the areas of some volumes generated by revolution.

As usual, the question is: How might we approximate the surface area? For a surface obtained by
rotating a curve around an axis, we can take a polygonal approximation to the curve, as in the last section,
and rotate it around the same axis. This gives a surface composed of many “truncated cones”; a truncated
cone is called a frustum of a cone. Figure 8.17 illustrates this approximation.


https://creativecommons.org/licenses/by-nc/4.0/
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Figure 8.17: Approximating a surface (left) by portions of cones (right).

So we need to be able to compute the area of a frustum of a cone. Since the frustum can be formed
by removing a small cone from the top of a larger one, we can compute the desired area if we know the
surface area of a cone. Suppose a right circular cone has base radius r and slant height A. If we cut the
cone from the vertex to the base circle and flatten it out, we obtain a sector of a circle with radius / and arc
length 27r, as in Figure 8.18. The angle at the center, in radians, is then 27r/h, and the area of the cone
is equal to the area of the sector of the circle. Let A be the area of the sector; since the area of the entire
circle is 7rh2, we have

A 2mr/h
Th>  2xm
A = mrh.
27r
h
2nr/h

Figure 8.18: The area of a cone.

Now suppose we have a frustum of a cone with slant height / and radii ry and ry, as in Figure 8.19.
The area of the entire cone is 7r|(ho + h), and the area of the small cone is mryhop; thus, the area of the
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frustum is 7wry (hg 4+ h) — wrohg = w((r1 — ro)ho + rih). By similar triangles,

ho . ho+h

o r
With a bit of algebra this becomes (r; — ro)ho = roh; substitution into the area gives

ro+ri

71'((7‘1 — I’o)ho -+ rlh) = ﬂ(l’oh—l— rlh) = ﬁh(l‘o -+ rl) =2r h=2nrh.

The final form is particularly easy to remember, with r equal to the average of rg and rq, as it is also the

formula for the area of a cylinder. (Think of a cylinder of radius r and height / as the frustum of a cone of
infinite height.)

Figure 8.19: The area of a frustum.

Now we are ready to approximate the area of a surface of revolution. On one subinterval, the situation
is as shown in Figure 8.20. When the line joining two points on the curve is rotated around the x-axis, it
forms a frustum of a cone. The area is

2mrh = 27l +2f(x"“) 1+ (f/(t))2 Ax.

Here \/ 1+ (f'(#;))? Ax is the length of the line segment, as we found in the previous section. Assuming f

is a continuous function, there must be some x; in [x;,x;;1] such that (f(x;) + f(xi+1))/2 = f(x7), so the

approximation for the surface area is
n—1
) 2mf () 1+ (f' (1)) Ax.
i=0

This is not quite the sort of sum we have seen before, as it contains two different values in the interval
[xi,x;+1], namely x; and #;. Nevertheless, using more advanced techniques than we have available here, it

turns out that |
n— b
lim ¥ 27/ () )14 (71))28r = [ 2mf(0)/1+ (702
i=0 a
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is the surface area we seek. (Roughly speaking, this is because while x; and ¢ are distinct values in
[xi,xi+1], they get closer and closer to each other as the length of the interval shrinks.)

(i1, f(xiv1))

(xi, f (7))

Figure 8.20: One subinterval.

Example 8.23: Surface Area of a Sphere

Compute the surface area of a sphere of radius r.

Solution. The sphere can be obtained by rotating the graph of f(x) = v/r2 —x? about the x-axis. The
derivative f” is —x/+/r? —x2, so the surface area is given by

r 2
A = 27:/ V=2 1+ 2x — dx
—r —
= 27r/ Vr —xzw
—r

= / rdx=2nr ldx = 47r?
_r _,

[ )

If the curve is rotated around the y-axis, the formula is nearly identical, because the length of the line
segment we use to approximate a portion of the curve doesn’t change. Instead of the radius f(x}), we use
the new radius ¥; = (x; +x;11)/2, and the surface area integral becomes

/abzm, 1+ (F/(x))2dx.

Example 8.24: Surface Around y-axis

Compute the area of the surface formed when f(x) = x% between 0 and 2 is rotated around the
y-axis.
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Solution. We compute f’(x) = 2x, and then

2
2n/ o/ T+addy=Z(1712 -1),
0

by a simple substitution. [

Exercises for 8.8

Exercise 8.8.1 Compute the area of the surface formed when f(x) =2+/1 — x between —1 and 0 is rotated
around the x-axis.

Exercise 8.8.2 Compute the surface area of example 8.24 by rotating f(x) = \/x around the x-axis.

Exercise 8.8.3 Compute the area of the surface formed when f(x) = x> between 1 and 3 is rotated around
the x-axis.

Exercise 8.8.4 Compute the area of the surface formed when f(x) = 2+ cosh(x) between 0 and 1 is
rotated around the x-axis.

Exercise 8.8.5 Consider the surface obtained by rotating the graph of f(x) = 1/x, x > 1, around the x-
axis. This surface is called Gabriel’s horn or Toricelli’s trumpet. Show that Gabriel’s horn has infinite
surface area.

Exercise 8.8.6 Consider the circle (x — 2)2 + y2 = 1. Sketch the surface obtained by rotating this circle
about the y-axis. (The surface is called a torus.) What is the surface area?

Exercise 8.8.7 Consider the ellipse with equation x* /4+ y? = 1. If the ellipse is rotated around the x-axis
it forms an ellipsoid. Compute the surface area.

Exercise 8.8.8 Generalize the preceding result: rotate the ellipse given by x* / a*+y? / b* = 1 about the
x-axis and find the surface area of the resulting ellipsoid. You should consider two cases, when a > b and
when a < b. Compare to the area of a sphere.
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Consider the following sum:

The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a
numerical value to an infinite sum? While at first it may seem difficult or impossible, we have certainly
done something similar when we talked about one quantity getting “closer and closer” to a fixed quantity.
Here we could ask whether, as we add more and more terms, the sum gets closer and closer to some fixed
value. That is, look at

1 1
)

3_1+1

4 2 4
7_1. 1.1

8 2 4 8

15 1 1 1 1

6 2 473816

and so on, and consider whether these values have a limit. It seems likely that they do, namely 1. In fact,
as we will see, it’s not hard to show that

1+1+1+1++1_2i—1_1 1

2 4 8 16 20 2 2i
and then |
liml— —
i 2i’

which gets closer and closer to 1 as i gets larger.

There is a context in which we already implicitly accept this notion of infinite sum without really
thinking of it as a sum: The representation of a real number as an infinite decimal. For example,
3 3 1

. 3 .3
033333 =16 " 700 * 1000 " 10000 T T 3

or likewise | 4 | s 9
3.14159... =3+ — R
* 10 * 100 * 1000 * 10000 * 100000 * d
An infinite sum is called a series, and is usually written using sigma notation. In this case, however, we

use oo to indicate that there is no ‘last term’. The series we first examined can be written as
1 1 1 > 1

SRR TN T

A related notion that will aid our investigations is that of a sequence. A sequence is just an ordered

(possibly infinite) list of numbers. For example,
TSI
2°3 n
We will begin by learning some useful facts about sequences.

337
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9.1 Sequences

While the idea of a sequence of numbers, aj,as,as, ... is straightforward, it is useful to think of a sequence
as a function. We have dealt with functions whose domains are the real numbers, or a subset of the real
numbers, like f(x) = sinx. A sequence can be regarded as a function with domain as the natural numbers
N ={1,2,3,...} or the non-negative integers, 720 = {0,1,2,3,...}. The range of the function is still
allowed to be the set of all real numbers; we say that a sequence is a function f : N — R. Sequences are
commonly denoted in several different, but equally acceptable ways:

ay,ay,az, ...
{an},-
{f(n)}

As with functions of the real numbers, we will most often encounter sequences that can be expressed
by a formula. We have already seen the sequence a; = f(i) = 1 — 1/2". Some other simple examples are:

i) =—

fm) =5,

f(n) =sin(nm/6)
Fli) = (i 1)251—#2)

Frequently these formulas will make sense if thought of either as functions with domain R or N, though
occasionally one will make sense for integer values only.

The main question of interest when dealing with sequences is what happens to the terms as we go
further and further down the list. In particular, as i becomes extremely large, does a; get closer to one
specific value? This is reminiscent of a question we asked when looking at limits of functions. In fact, the
problems are closely related and we define the limit of a sequence as follows:

Suppose that {a,}, _, is a sequence. We say that lim a,, = L if for every € > 0 there is an N > 0 so
n—oo
that whenevern > N, |a, —L| < €. If lim a,, = L we say that the sequence converges to L, otherwise
n—soo

it diverges.

Intuitively, lim,_,. ap = L means that the further we go in the sequence, the closer the terms get to L.

Example 9.2: Exponential Sequence

Show that {2!/7}_ converges to 1.

Solution. Suppose € > 0. Then let N = m. Note that N > 0. Now if n > N, then

1
n>-———
log,(1+¢€)
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1
log,(1+¢€) > "
1+e>2ln
e>2l/mn

e>’21/"—1’

&

Note that we generally need to work “backwards” from the last line of the proof to determine how to
choose N. Having done so, we write the actual proof as we have done here to show that this value of N
‘works’.

If a sequence is defined by a formula {f(7)}7>,, we can often expand the domain of the function f to
the set of all (or almost all) real numbers. For example, f(i) = % is defined for all non-zero real numbers.

When this happens, we can sometimes find the limit of the sequence {f (i)} ; more easily by finding
the limit of the function f(x), x € R, as x approaches infinity.

Theorem 9.3: Limit of a Sequence

Iflim, oo f(x) = L, where f : R — R, then { f(i)};2, converges to L.

Proof. This follows immediately from earlier definitions and 9.1. &

Hereafter we will use the convention that x refers to a real-valued variable and i and n are integer-
valued.

Example 9.4: Sequence of 1/n

Show that {%};’;:0 converges to 0.

Solution. Since lim,_co % =0, lim;_e % =0. &

Note that the converse of Theorem 9.3 is not true.
Let f(n) = sin(nm). This is the sequence

sin(0x),sin(1x),sin(2x),sin(3x),... =0,0,0,0,...

since sin(nm) = 0 when n is an integer. Thus lim f(n) = 0. But lim f(x), when x is real, does not exist:
n—oo X—ro0

as x gets bigger and bigger, the values sin(x7r) do not get closer and closer to a single value, but take on
all values between —1 and 1 over and over. In general, whenever you want to know lign f(n) you should
n—oo

first attempt to compute lim f(x), since if the latter exists it is also equal to the first limit. But if for some
X—ro0
reason 1i_r>n f(x) does not exist, it may still be true that lgn f(n) exists, but you’ll have to figure out another
X—>0 n—oo
way to compute it.

It is occasionally useful to think of the graph of a sequence. Since the function is defined only for
integer values, the graph is just a sequence of points. In Figure 9.1 we see the graphs of two sequences
and the graphs of the corresponding real functions.
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5 q 5
4 4
31 3
o fw=1 3
11 @ 1
0 ® e e e o o o o 0
0 5 10 0 5 10
. f(x) = sin(xm)

f(n) = sin(nr) ;W /\ A A
SR AL RVRTAVAY

Figure 9.1: Graphs of sequences and their corresponding real functions.

Not surprisingly, the properties of limits of real functions translate into properties of sequences quite
easily. The Properties of Limits theorem becomes:

Theorem 9.5: Properties of Sequences

Suppose that lgn a, =L and lgll b, = M and k is some constant. Then
n—ro0 N—yc0

lim ka,, = k lim a,, = kL
n—soo n—soo

lim (a, +b,) = lim a, + lim b, =L+ M
n—oo n—oo n—oo

lim (@, — b,) = lima, — limb, =L—M
n—oo n—oo n—oo

lim (a,b,) = lim a, - lim b, = LM

n—oo n—oo n—yoo

L
=—————=— ifMisnot0

Likewise the Squeeze Theorem becomes:

Theorem 9.6: Squeeze Theorem for Sequences

Suppose that a,, < b,, < ¢, for alln > N, for some N. If lim a, = lim ¢, = L, then lim b,, = L.

n—soo n—oo n—oo

And a final useful fact:

Theorem 9.7: Absolute Value Sequence

lim |a,| = 0 if and only if lim a, = 0.
n—oo n—-oo

This says simply that the size of |a,| gets close to zero if and only if a, gets close to zero.
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Example 9.8: Convergence of a Rational Fraction

. n "~ . . .
Determine whether { 1 } converges or diverges. If it converges, compute the limit.
n=0

n

Solution. Defining f(x) = -7 we obtain

=lim1— ! =1-0=1.

x—=oo x4 1 x—eo x+1

Thus the sequence converges to 1. L )

Example 9.9: Convergence of Ratio with Natural Logarithm

] Inn)” . . .
Determine whether {—} converges or diverges. If it converges, compute the limit.
i n=1

Solution. We compute

1 1
fim M jim 1
x—e0 X x—eo ]
using L’ Hopital’s Rule. Thus the sequence converges to 0. s

Example 9.10: Alternating Ones

Determine whether {(—1)"},_, converges or diverges. If it converges, compute the limit.

Solution. f(x) = (—1)* is undefined for irrational values of x so lim,_,.(—1)* does not exist. However,
the sequence has a very simple pattern:
I,—-1,1,—1,1...

and clearly diverges. &

Example 9.11: Convergence of Exponential

Determine whether {(—1/2)"},_, converges or diverges. If it converges, compute the limit.

Solution. We consider the sequence {|(—1/2)"|}—o = {(1/2)"};—- Then

(Y
xl—I>Iolo 2 _xl—I>Iol<>2x_ ’

so by Theorem 9.7 the sequence converges to 0. s
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Example 9.12: Using the Squeeze Theorem for Sequences

Determine whether {(sinn)/+/n}s_, converges or diverges. If it converges, compute the limit.

Solution. Since |sinn| < 1, 0 < |sinn/v/n| < 1/4/n and we can use Theorem 9.6 with a, = 0 and ¢, =
1/+/n. Since li_r)n a, = li_I)Il ¢, =0, 1i_I>Il sinn/y/n = 0 and the sequence converges to 0. &
n—soo n—soo n—o0

Example 9.13: Geometric Sequence

Let r be a fixed real number. Determine when {r"}:_, coverges.

Solution. A particularly common and useful sequence is {r"}, _, for various values of r. Some are quite
easy to understand: If » = 1 the sequence converges to 1 since every term is 1, and likewise if r = 0 the
sequence converges to 0. If » = —1 this is the sequence of Example 9.10 and diverges. If r > 1 or r < —1
the terms " get large without limit, so the sequence diverges. If 0 < r < 1 then the sequence converges to
0.If —1 <r<Othen |r"| =|r|"and 0 < |r| < 1, so the sequence {|r|" },_, converges to 0, so also {r"},_,
converges to 0. converges. In summary, {r"} converges precisely when —1 < r < 1 in which case

lim 7" =

n—oo

0 if—1l<r<l1
1 ifr=1

)

Sequences of this form, or the more general form {kr"}’_,, are called geometric sequences or geo-

metric progressions. They are encountered in a large variety of mathematical and real-world applications.

Sometimes we will not be able to determine the limit of a sequence, but we still would like to know
whether it converges. In some cases we can determine this even without being able to compute the limit.

A sequence is called increasing or sometimes strictly increasing if a; < a;; for all i. It is called
non-decreasing or sometimes (unfortunately) increasing if a; < a; for all i. Similarly a sequence is
decreasing if a; > a; for all i and non-increasing if a; > a;, | for all i. If a sequence has any of these
properties it is called monotonic.

Example 9.14

The sequence

is increasing, and

is decreasing.

\.

A sequence is bounded above if there is some number N such that a, < N for every n, and bounded
below if there is some number N such that a, > N for every n. If a sequence is bounded above and bounded
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below it is bounded. If a sequence {a,},_ is increasing or non-decreasing it is bounded below (by ay),
and if it is decreasing or non-increasing it is bounded above (by ag). Finally, with all this new terminology
we can state an important theorem.

Theorem 9.15: Bounded Monotonic Sequence

If a sequence is bounded and monotonic then it converges.

We will not prove this, but the proof appears in many calculus books. It is not hard to believe: suppose
that a sequence is increasing and bounded, so each term is larger than the one before, yet never larger
than some fixed value N. The terms must then get closer and closer to some value between ag and N. It
need not be N, since N may be a “too-generous” upper bound; the limit will be the smallest number that
is above all of the terms «;.

Example 9.16

i

i

Determine whether { } converges.
i=1

Solution. For every i > 1 we have 0 < (2i -1)/ 2 < 1, so the sequence is bounded, and we have already
observed that it is necessary. Therefore, the sequence converges. &

We don’t actually need to know that a sequence is monotonic to apply this theorem—it is enough to
know that the sequence is “eventually” monotonic, that is, that at some point it becomes increasing or
decreasing. For example, the sequence 10, 9, 8, 15, 3,21, 4,3/4,7/8,15/16,31/32,... is not increasing,
because among the first few terms it is not. But starting with the term 3 /4 it is increasing, so the theorem
tells us that the sequence 3/4,7/8,15/16,31/32,... converges. Since convergence depends only on what
happens as n gets large, adding a few terms at the beginning can’t turn a convergent sequence into a
divergent one.

Example 9.17

Show that {n'/"} converges.

Solution. We first show that this sequence is decreasing, that is, that nl/n > (n+ 1)1/ (n+1) " Consider the
real function f(x) = x'/* when x > 1. We can compute the derivative, f'(x) = x'/*(1 —Inx) /x%, and note
that when x > 3 this is negative. Since the function has negative slope, n'/n > (n+ 1)1/ (+1) When n > 3.
Since all terms of the sequence are positive, the sequence is decreasing and bounded when n > 3, and so
the sequence converges. (As it happens, we can compute the limit in this case, but we know it converges
even without knowing the limit; see Exercise 9.1.1.) &

Example 9.18

Show that {n!/n"} converges.
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Solution. If we look at the ratio of successive terms we see that:

ap1  (n+1) A" (n+1)! n" n-i—l( n )"_( n )"<1

an _(n+1)n+1H: n! (n-i—l)”“:n-i—l n+1 n+1

Therefore a,1 < a,, and so the sequence is decreasing. Since all terms are positive, it is also bounded,
and so it must converge. (Again it is possible to compute the limit; see Exercise 9.1.2.) &

Exercises for 9.1

Exercise 9.1.1 Compute lim XX,
X—roo

|

. . n!
Exercise 9.1.2 Use the squeeze theorem to show that lim — = 0.
n—e p

Exercise 9.1.3 Determine whether {\/n+47 — \/n};_, converges or diverges. If it converges, compute
the limit.

2 1 *°
Exercise 9.1.4 Determine whether {(HT—'—DZ} converges or diverges. If it converges, compute the
n =0
limit. !
n+47

Exercise 9.1.5 Determine whether { } converges or diverges. If it converges, compute the
n=1

Vn?+3n
limit.
n

Exercise 9.1.6 Determine whether {—'} converges or diverges.
n!
n=0

9.2 Series

While much more can be said about sequences, we now turn to our principal interest, series. Recall that a
series, roughly speaking, is the sum of a sequence: If {a,},_ is a sequence then the associated series is

ap=ap+atay+---
i=0

Associated with a series is a second sequence, called the sequence of partial sums {s,},_:

n
i=0

So
so =ap, S1=ap+ay, S;=ap+a+ay,

A series converges if the sequence of partial sums converges, and otherwise the series diverges.
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If {kx"}*_, is a geometric sequence, then the associated series Yi7 o kx' is called a geometric series.

Theorem 9.19: Geometric Series Convergence

L ; k : o
If |x| < 1, the geometric series ka’ converges to T otherwise the series diverges (unless k =0).
. —Xx
1

Proof. If a, = kx", Z an 1s called a geometric series. A typical partial sum is
n=0

Sp=k+kx ko ko ok =k(1Fx+x2+25 - 42,

We note that

su(1—x) =k(1+x+x2+x 4+ +2")(1 —x)
=k(l+x+2 4+ X k(I x4+ +5 + X )
=k(l4+x+x2 45+ 4 —x—x = — = =D
= k(1 —x"t1)
SO
(1—x) = k(1 —x""1
l_xn+1
=k
o I—x
If |x| < 1, limx" =0so
n—yoo |
1 —x" 1
lim s, = lim &k =k .
n—so0 n—oo 1—x 1—x
Thus, when |x| < 1 the geometric series converges to k/(1 —x). L
When, for example, k =1 and x = 1/2:
1_(1/2)n+1 ont+l _ 1
= = =2—— d = =2.
K P 21 o Z 1—1/2
We began the chapter with the series
|

Y o
n=1
namely, the geometric series without the first term 1. Each partial sum of this series is 1 less than the

corresponding partial sum for the geometric series, so of course the limit is also one less than the value of
the geometric series, that is,

Y 5=

: 2 B

It is not hard to see that the following theorem follows from Theorem 9.5.
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Theorem 9.20: Series are Linear

Suppose that Zan and an are convergent series, and c is a constant. Then

1. ann is convergent and ann = cZan
2. Z(an + by,) is convergent and Z(an +b,) = Zan + an.

Note that when c is non-zero, the converse of the first part of this theorem is also true. That is, if )’ ca,
is convergent, then ) a, is also convergent; if )’ ca, converges then %ann must converge.

On the other hand, the converse of the second part of the theorem is not true. For example, if a,, = 1
and b, = —1, then Y} a, + Y b, = Y} 0 = 0 converges, but each of } a, and } b, diverges.

In general, the sequence of partial sums s, is harder to understand and analyze than the sequence of
terms a,, and it is difficult to determine whether series converge and if so to what. The following result
will let us deal with some simple cases easily.

Theorem 9.21: Divergence Test

If )" a, converges then lim a, = 0.

Proof. Since ) a, converges, lim s, = L and lim s,,_; = L, because this really says the same thing but
n—oo n—oo

“renumbers” the terms. By Theorem 9.5,

lim (s, —s,—1) = lims, — lim s, =L—L=0.
n—oo n—oo n—oo

But
Spn—Sp—1 = (ap+ay+ax+---+a,) —(ap+ar+ay+---+a,_1) = a,

so as desired lim a,, = 0. &
n—soo

This theorem presents an easy divergence test: Given a series ) ay, if the limit lim a, does not exist or
n—roo
has a value other than zero, the series diverges. Note well that the converse is not true: If lim a,, = 0 then
n—soo

the series does not necessarily converge.

Theorem 9.22: The n-th Term Test

If lim a, # 0 or if the limit does not exist, then Zan diverges.
n—oo

Proof. Consider the statement of the theorem in contrapositive form:
If a, converges, then lim a,, = 0.

If s, are the partial sums of the series, then the assumption that the series converges gives us

lims, ==+
n—yoo
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for some number s. Then

lim a, = lim (s, —s,—1) = lim s, — lim 5,1 =s—s5=0.
n—0o n—0o

n—soo n—soo
&
Example 9.23
> n
Show that diverges.
n; n+1 £

Solution. We compute the limit:
n

li =1#0.
e n+1 7
Looking at the first few terms perhaps makes it clear that the series has no chance of converging:
1+2+3+4+
2 3 45
will just get larger and larger; indeed, after a bit longer the series starts to look very much like --- 41+
I1+141+---, and of course if we add up enough 1’s we can make the sum as large as we desire. s

Example 9.24: Harmonic Series

= 1
Show that Z — diverges.
n=1"

Solution. Here the theorem does not apply: li_I)Il 1/n =0, so it looks like perhaps the series converges.
n—oo
Indeed, if you have the fortitude (or the software) to add up the first 1000 terms you will find that

1000 1

Z - =~ 749,

n=1 n

so it might be reasonable to speculate that the series converges to something in the neighborhood of 10.
But in fact the partial sums do go to infinity; they just get big very, very slowly. Consider the following:

1+1+1+1>1+1+1+1—1+1+1

2 3 4 2 4 4 2 2
1+1+1+1+1+1+1+1>1+1+1+1+1+1+1+1—1+1+1+1

2 3 4 5 6 7 8 2 4 4 8 8 8 8 2 2 2
1+1+1+ +—1>1+1+1+1+1+ +J+—1+ +—1—1+1+1+1+1

23 16 2 4 48 8 16 6 2 2 2 2

and so on. By swallowing up more and more terms we can always manage to add at least another 1/2 to
the sum, and by adding enough of these we can make the partial sums as big as we like. In fact, it’s not
hard to see from this pattern that

RIS .
23 o 2’
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so to make sure the sum is over 100, for example, we’d add up terms until we get to around 1/ 2198, that
is, about 4 - 10°” terms. This series, ¥(1/n), is called the harmonic series. )

We will often make use of the fact that the first few (e.g. any finite number of) terms in a series are
irrelevant when determining whether it will converge. In other words, }7° a, converges if and only if
Y.~ an converges for some N > 1.

Exercises for 9.2

2

Exercise 9.2.1 Explain why Z > ’21 diverges.
n=1

nc+1

Exercise 9.2.2 Explain why Z

n=1

s
————— alverges.
21/n 14 V8

=3
Exercise 9.2.3 Explain why Z — diverges.
n=1"

Exercise 9.2.4 Compute ) -
=0 (=3) 3
Exercise 9.2.5 Compute i i + i
2. p Lz TR

00 4n+l
Exercise 9.2.6 Compute ZE) S
n—=

oo 3n+1

Exercise 9.2.7 Compute Z FTIE
n=0

oo 3 n
Exercise 9.2.8 Compute Z <§> .

n=1

n

Exercise 9.2.9 Compute 2'1 SirT
n—=

9.3 The Integral Test

It is generally quite difficult, often impossible, to determine the value of a series exactly. In many cases
it is possible at least to determine whether or not the series converges, and so we will spend most of our
time on this problem.
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If all of the terms a, in a series are non-negative, then clearly the sequence of partial sums s, is
non-decreasing. This means that if we can show that the sequence of partial sums is bounded, the series
must converge. Many useful and interesting series have this property, and they are among the easiest to
understand. Let’s look at an example.

Example 9.25

=
Show that Z — converges.
n

n=1

Solution. The terms 1/ n? are positive and decreasing, and since li_>m 1 /x2 =0, the terms 1/ n? approach
X—>00

zero. We seek an upper bound for all the partial sums, that is, we want to find a number N so that s, < N
for every n. The upper bound is provided courtesy of integration, and is illustrated in figure 9.2.

2_

A=1/4
0 / I I |

0 1 2 3 4 5

Figure 9.2: Graph of y =1 /x2 with rectangles.

The figure shows the graph of y =1 /x2 together with some rectangles that lie completely below the
curve and that all have base length one. Because the heights of the rectangles are determined by the height
of the curve, the areas of the rectangles are 1/ 12,1 / 22,1 / 32, and so on—in other words, exactly the
terms of the series. The partial sum s, is simply the sum of the areas of the first n rectangles. Because the
rectangles all lie between the curve and the x-axis, any sum of rectangle areas is less than the corresponding
area under the curve, and so of course any sum of rectangle areas is less than the area under the entire curve.
Unfortunately, because of the asymptote at x = 0, the integral [;° é is infinite, but we can deal with this
by separating the first term from the series and integrating from 1:

L "] n |
=3 z=1+) 5< 1+/ —dx < 1+/ —dx=1+1=2
i=1" i=2! X 1 x
(Recalling that we computed this improper integral in section 7.7). Since the sequence of partial sums s,
is increasing and bounded above by 2, we know that lgll sp = L < 2, and so the series converges to some
n—oo

number less than 2. In fact, it is possible, though difficult, to show that L = 2 /6~ 1.6. &

We already know that Y"1 /n diverges. What goes wrong if we try to apply this technique to it? Here’s
the calculation:

1 1 1 1 n] <1
sn:—+——|——+~-~—|——<l—|—/ —dx<1—|—/ —dx =1+oo.
1 2 3 n 1 X 1 X
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The problem is that the improper integral doesn’t converge. Note that this does not prove that ) 1/n
diverges, just that this particular calculation fails to prove that it converges. A slight modification, however,
allows us to prove in a second way that )} 1 /n diverges.

Consider a slightly altered version of Figure 9.2, shown in Figure 9.3.

2_
1_
A=1
0 |
0 1 2 3 4 5

Figure 9.3: Graph of y = 1 /x with rectangles.

This time the rectangles are above the curve, that is, each rectangle completely contains the corre-
sponding area under the curve. This means that
1 1 1 1 ntl ] n+1
— — — e - > — d = 1 == 1 1 .
sm=1tytytot /1 dx=lInx| n(n+1)
As n gets bigger, In(n+ 1) goes to infinity, so the sequence of partial sums s, must also go to infinity, so
the harmonic series diverges.

The key fact in this example is that

So these two examples taken together indicate that we can prove that a series converges or prove that
it diverges with a single calculation of an improper integral. This is known as the integral test, which we
state as a theorem.

Theorem 9.26: Integral Test

Suppose that f(x) > 0 and is decreasing on the infinite interval [1,0) and that a,, = f(n). Then the

series Z a, converges if and only if the improper integral / f(x)dx converges.
n=1 1

The two examples we have seen are called p-series; a p-series is any series of the form Z 1/nP. If
p <0, 1i_r>n 1/n? # 0, so the series diverges. For positive values of p we can determine precisely which
n—oo

series converge.

Theorem 9.27: p-Series Convergence

A p-series with p > 0 converges if and only if p > 1.
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Proof. We use the integral test; we have already done p = 1, so assume that p # 1.

If p>1thenl—p<0and l%im D'"P =0, so the integral converges. If 0 < p <1 then 1 —p > 0 and
—>00

l%im D'"P = oo, 50 the integral diverges. s
—>00

Example 9.28: p-Series

= 1
Show that ) — converges.
n=1"

Solution. We could of course use the integral test, but now that we have the theorem we may simply note
that this is a p-series with p > 1. &

Example 9.29: p-Series

= 5
Show that Z —; converges.
n

n=1

Solution. We know that if

1/n* converges then Z 5/n* also converges, by Theorem 9.20. Since
n=1 n=1

Z 1/n* is a convergent p-series, Z 5/n* converges also. s
n=1 n=1

Example 9.30: p-Series

5

Show that ) —= diverges.
L
=1
Solution. This also follows from Theorem 9.20: Since Z 7 is a p-series with p = 1/2 < 1, it diverges,
n=1 n
= 5
and so does —. &
n=1 \/ﬁ

Since it is typically difficult to compute the value of a series exactly, a good approximation is fre-
quently required. In a real sense, a good approximation is only as good as we know it is, that is, while an
approximation may in fact be good, it is only valuable in practice if we can guarantee its accuracy to some
degree. This guarantee is usually easy to come by for series with decreasing positive terms.
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Example 9.31

Approximate Z 1/n? to within 0.01.

N
Solution. Referring to Figure 9.2, if we approximate the sum by Z 1/ n?, the size of the error we make is
n=1
the total area of the remaining rectangles, all of which lie under the curve 1/ x? from x = N to infinity. So
we know the true value of the series is larger than the approximation, and no bigger than the approximation
plus the area under the curve from N to infinity. Roughly, then, we need to find N so that

= 1
/N 5 dx<1/100.

<1 1
/ —zdx:—,
N X N

so if we choose N = 100 the error will be less than 0.01. Adding up the first 100 terms gives approxi-
mately 1.634983900. In fact, we can do a bit better. Since we know that the correct value is between our
approximation and our approximation plus the error (not minus), we can cut our error bound in half by
taking the value midway between these two values. If we take N = 50, we get a sum of 1.6251327 with an
error of at most 0.02, so the correct value is between 1.6251327 and 1.6451327, and therefore the value
halfway between these, 1.6351327, is within 0.01 of the correct value. We have mentioned that the true
value of this series can be shown to be 72/6 ~ 1.644934068 which is 0.0098 more than our approxima-
tion, and so (just barely) within the required error. Frequently approximations will be even better than the
“guaranteed” accuracy, but not always, as this example demonstrates. s

We can compute the integral:

Exercises for 9.3

Determine whether each series converges or diverges.

Exercise 9.3.1 Z — Exercise 9.3.5 —
- n”/ 4 — ol
n=1 n=1
. oo n . [e e} n
Exercise 9.3.2 21 e Exercise 9.3.6 3 =
n= n—
. > Inn . > 1
Exercise 9.3.3 Z — Exercise 9.3.7
n=1" = nlnn

1
n2+1

o
n(lnn)?

Exercise 9.3.4 Z Exercise 9.3.8 Z
n=1 n=2

A |
Y — +0.005.
n

n=1

> 1 N1
Exercise 9.3.9 Find an N so that Z — is between Z — and
n=1 n n=1 n
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Noq

> 1 No1
Exercise 9.3.10 Find an N so that Z — is between Z — and — +107%
n=0 e’ n=0 e n=0 e’
| N1 Nl
Exercise 9.3.11 Find an N so that Z n_zn is between Z n_zn and n_zn +0.005.
n=1 n n=1 n n=1 n
Exercise 9.3.12 Find an N thti ! s bet i ! dﬁ: ! +0.005
3. ind an N so tha ——— is between ——an _ .005.
= n(lnn)? = n(lnn)? = n(lnn)?

9.4 Alternating Series

Next we consider series with both positive and negative terms, but in a regular pattern: they alternate, as
in the alternating harmonic series:

O DL B B B 1
Y —— =1t t3t =1
n=1

Q| =
|-

_|_

N =

n 1 2 3 4

In this example the magnitude of the terms decrease, that is, |a,| forms a decreasing sequence, although
this is not required in an alternating series. Recall that for a series with positive terms, if the limit of the
terms is not zero, the series cannot converge; but even if the limit of the terms is zero, the series still may
not converge. It turns out that for alternating series, the series converges exactly when the limit of the
terms is zero. In Figure 9.4, we illustrate what happens to the partial sums of the alternating harmonic
series. Because the sizes of the terms a, are decreasing, the odd partial sums sy, §3, 55, and so on, form
a decreasing sequence that is bounded below by s, so this sequence must converge. Likewise, the even
partial sums s», 54, Sg, and so on, form an increasing sequence that is bounded above by sy, so this sequence
also converges. Since all the even numbered partial sums are less than all the odd numbered ones, and
since the “jumps” (that is, the a; terms) are getting smaller and smaller, the two sequences must converge
to the same value, meaning the entire sequence of partial sums sy, 52,53, ... converges as well.

1
02:—§
as
ae
' S S S5 |§
1 52:% 4 6 5 |83 =5 —a
4 as

as

Figure 9.4: The alternating harmonic series.

The same argument works for any alternating sequence with terms that decrease in absolute value. The
alternating series test is worth calling a theorem.
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Theorem 9.32: Alternating Series Test

Suppose that {a,},_, is a non-increasing sequence of positive numbers and lim a, = 0. Then the
n—oo
alternating series Z (=1)""'a, converges.
n=1

Proof. The odd-numbered partial sums, s1,s53,Ss,...,5%+1,- .., fOrm a non-increasing sequence, because
$2k+3 = Sok41 — A2k+2 + @3 < Soks1, SINCe apryp > arky3. This sequence is bounded below by s7, so
it must converge, to some value L. Likewise, the partial sums s», 54,56, - - -, S2, - - -, fOrm a non-decreasing

sequence that is bounded above by s1, so this sequence also converges, to some value M. Since lim a, =0
n—oeo

and sog41 = Sk + A2k+1,
L = lim sy, = lim (SZk + a2k+1) = lim so; + lim agp 1 =M +0=M,
k—>o0 k—>o0 k—>o0 k—ro0
so L = M the two sequences of partial sums converge to the same limit, and this means the entire sequence
of partial sums also converges to L. &

Another useful fact is implicit in this discussion. Suppose that

Because the terms are decreasing in size, we know that the true value of L must be between this approxi-
mation and the next one, that is, between

N N+1
Z(—l)”_lan and Z (—1)" a,.
n=1 n=1

Depending on whether N is odd or even, the second will be larger or smaller than the first.

Example 9.33

Approximate the sum of the alternating harmonic series to within 0.05.

Solution. We need to go to the point at which the next term to be added or subtracted is 1/10. Adding up
the first nine and the first ten terms we get approximately 0.746 and 0.646. These are 1/10 apart, so the
value halfway between them, 0.696, is within 0.05 of the correct value. &

We have considered alternating series with first index 1, and in which the first term is positive, but a

little thought shows this is not crucial. The same test applies to any similar series, such as Z (—1)'ay,,
n=0

) o)

Y (=1)"an, Y (—1)"ay, etc.

n=1 n=17
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Exercises for 9.4

Determine whether the following series converge or diverge.

l)nfl
2n+5

n
3n—2

Exercise 9.4.3 ) (—

n=1

Exercise 9.4.1 Z

—1)n! = 1
=0 Exercise 9.4.4 Z(—l)”‘IM

Exercise 9.4.2
Z vn—3 n=1 n

- 1
Exercise 9.4.5 Approximate Z (=1t — to within 0.005.
n

n=1

- 1
Exercise 9.4.6 Approximate Z (—1)r! —; to within 0.005.
n

n=1

9.5 Comparison Tests

As we begin to compile a list of convergent and divergent series, new ones can sometimes be analyzed by
comparing them to ones that we already understand.

Example 9.34

1
?
Does Z‘ Tnn converge:

Solution. The obvious first approach, based on what we know, is the integral test. Unfortunately, we
can’t compute the required antiderivative. But looking at the series, it would appear that it must converge,
because the terms we are adding are smaller than the terms of a p-series, that is,
1 < 1
n’lnn ~ n%’
when n > 3. Since adding up the terms 1/ n? doesn’t get “too big”, the new series “should” also converge.
Let’s make this more precise.

> 1 > 1
The series Z n converges if and only if Z In converges—all we’ve done is dropped the
= n-Inn = n”lnn

L o 1 . : .
initial term. We know that E — converges. Looking at two typical partial sums:
n
n=3

1 1 1 1 1 1 1 1

Pm3  2md  2ms Tme S Tttt

Since the p-series converges, say to L, and since the terms are positive, t, < L. Since the terms of the new
series are positive, the s, form an increasing sequence and s, < f, < L for all n. Hence the sequence {s,}
is bounded and so converges. s

Sn:
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Sometimes, even when the integral test applies, comparison to a known series is easier, so it’s generally
a good idea to think about doing a comparison before doing the integral test.

Example 9.35

sinn
Does Z >— converge?
n

Solution. We can’t apply the integral test here, because the terms of this series are not decreasing. Just as

in the previous example, however,
|sinn| 1

2 =
because |sinn| < 1. Once again the partial sums are non-decreasing and bounded above by Z 1/ n?>=1L,
so the new series converges.

Like the integral test, the comparison test can be used to show both convergence and divergence. In
the case of the integral test, a single calculation will confirm whichever is the case. To use the comparison
test we must first have a good idea as to convergence or divergence and pick the sequence for comparison
accordingly.

Example 9.36
— 1
Does ——— converge?
n=2 n>—3

Solution. We observe that the —3 should have little effect compared to the n? inside the square root, and
therefore guess that the terms are enough like 1/vn? = 1/n that the series should diverge. We attempt to
show this by comparison to the harmonic series. We note that

1 1 1
> ==,
Vn2—=3  Vn2 n
so that
! + ! +-F ! > : + ! +- : t
S, = SR — — — e — = s
TTV22=3 /323 -3 2 3 n "
where ¢, is 1 less than the corresponding partial sum of the harmonic series (because we start at n = 2
instead of n = 1). Since lim ¢,, = o, lim s, = o as well. &

n—oo n—o0

So the general approach is this: If you believe that a new series is convergent, attempt to find a con-
vergent series whose terms are larger than the terms of the new series; if you believe that a new series is
divergent, attempt to find a divergent series whose terms are smaller than the terms of the new series.

Example 9.37

o)

1
Does ——— converge?
243
n=1Vn-+
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Solution. Just as in the last example, we guess that this is very much like the harmonic series and so
diverges. Unfortunately,

1 1
<—,
V43 n

so we can’t compare the series directly to the harmonic series. A little thought leads us to

1 1 1

> = ,
V243 Vn2+3n2  2n

so if ) 1/(2n) diverges then the given series diverges. But since Y. 1/(2n) = (1/2)¥.1/n, Theorem 9.20
implies that it does indeed diverge. &

For reference we summarize the comparison test in a theorem.

Theorem 9.38: Comparison Theorem

Suppose that a,, and b,, are non-negative for all n and that a, < b, whenn > N, for some N.

e If ) b, converges, so does Z a.
—0 n—

n 0

e If

%)
n=

ay diverges, so does Z b,.
0 n=0

Exercises for 9.5

Determine whether the series converge or diverge.

. - 1
Exercise 9.5.1 n;l 22 +3n+5

Exercise 9.5.2 Z >

Exercise 9.5.3 Z

= 3n+4
Exercise 9.5.4 Z ﬁ
n n

n=1

Exercise 9.5.5 Z ﬁ
n n

n=1

= |
Exercise 9.5.6 ) —
n=1 "

[

Exercise 9.5.7 —
n=1 n

> 1
Exercise 9.5.8 ) —
n=2

— Inn

) — 3"
Exercise 9.5.9 n;l ST

Exercise 9.5.10
xercise ,;1 3
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9.6 Absolute Convergence

Roughly speaking there are two ways for a series to converge: As in the case of ¥ 1 /n?, the individual terms
get small very quickly, so that the sum of all of them stays finite, or, as in the case of Z’(—l)”_1 /n, the
terms don’t get small fast enough (Y 1/n diverges), but a mixture of positive and negative terms provides
enough cancellation to keep the sum finite. You might guess from what we’ve seen that if the terms
get small fast enough that the sum of their absolute values converges, then the series will still converge
regardless of which terms are actually positive or negative.

Theorem 9.39: Absolute Convergence

If Z |a,| converges, then Z a, converges.
n=0 n=0

Proof. Note that 0 < a,, + |a,| < 2|a,| so by the comparison test Z (an+ |ay|) converges. Now
n=0

Z (an+ |an|) — Z |an| = Zan+|an| —lan| = Zan
n=0 =0 n=0

converges by Theorem 9.20. s

So given a series ) a, with both positive and negative terms, you should first ask whether Y |a,| con-
verges. This may be an easier question to answer, because we have tests that apply specifically to terms
with non-negative terms. If Y |a,| converges then you know that ¥ a,, converges as well. If ¥ |a,,| diverges
then it still may be true that ) a, converges, but you will need to use other techniques to decide. Intuitively
this results says that it is (potentially) easier for )" a, to converge than for )’ |a,| to converge, because terms
may partially cancel in the first series.

If ¥ |a,| converges we say that Y a, converges absolutely; to say that } a, converges absolutely is to
say that the terms of the series get small (in absolute value) quickly enough to guarantee that the series
converges, regardless of whether any of the terms cancel each other. If Y a, converges but Y |a,| does

[e)

1
not, we say that Y a, converges conditionally. For example Z (—1)”_1—2 converges absolutely, while
n=1 n

Z converges conditionally.

n:

Example 9.40

sinn
Does Z —— converge?
n?

n=2

converges, so the given series converges absolutely.

&

o |
|sinn|
)

Solution. In Example 9.35 we saw that Z
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Example 9.41

- 3n+4
Does Z (— 1)”# converge?

- 3n+4
Solution. Taking the absolute value, n;() m diverges by comparison to Z Ton” so if the series

converges it does so conditionally. It is true that lgn (3n44)/(2n*+3n+5) =0, s0 to apply the alternating
n—oo

series test we need to know whether the terms are decreasing. If we let f(x) = (3x+4)/(2x> +3x+5)
then f'(x) = —(6x* + 16x — 3)/(2x*> + 3x+5)?, and it is not hard to see that this is negative for x > 1, so
the series is decreasing and by the alternating series test it converges. s

Exercises for 9.6

Determine whether each series converges absolutely, converges conditionally, or diverges.

) d 1 . - 1
Exercise 9.6.1 ngl(— PR Exercise 9.6.5 n;z(— 1)”ﬂ

> 3n?+4 = 3"

ise 9.6. S Exercise 9.6.6 Y (-

Exercise 9.6.2 n;l( 1) 2130t xercise ng)( on 451
Exercise 9.6.3 ,1;(—1)"—1 — Exercise 967 . (-1)' 5

- 1 - t
Exercise 9.6.4 Y (—1)""' Exercise 9.6.8 Y (—1)" ' T—"

n=1 n n=1 n
9.7 The Ratio and Root Tests
"

Does the series Z — converge? It is possible, but a bit unpleasant, to approach this with the integral test

=0
or the comparlson test, but there is an easier way. Consider what happens as we move from one term to

the next in this series:

n (n+1)
+5n+ 5n+l

The denominator goes up by a factor of 5, 5""! = 5.5", but the numerator goes up by much less:
(n+1)>=n’+ Sn + 101> 4 10n? 4 51+ 1, which is much less than 51° when n is large, because 51 is
much less than n°. So we might guess that in the long run it begins to look as if each term is 1/5 of the
previous term. We have seen series that behave like this: The geometric series.
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=1
Yo-g

So we might try comparing the given series to some variation of this geometric series. This is possible,
but a bit messy. We can in effect do the same thing, but bypass most of the unpleasant work.

The key is to notice that

i 9 (n+1)>5" 1
ngrolo a, _ngrolo 5+l lﬁ_n%w nd g

This is really just what we noticed above, done a bit more formally: in the long run, each term is one
fifth of the previous term. Now pick some number between 1/5 and 1, say 1/2. Because

.a 1
lim ntl _

n—eo @, 5’

then when 7 is big enough, say n > N for some N,

anpy1 1 a
Lo 50 apyr < =
a, 2

So any1 < an/2, anio < any1/2 < an/4, ani3 < ay+2/2 < an/8, and so on. The general form is
anx < an/2X. So if we look at the series

Y anik = ay+aniFaniatayes o angg e,
k=0

its terms are less than or equal to the terms of the sequence

—
ay+ X N N Y N oy,

2 4 8 2k

So by the comparison test, Z an+x converges, and this means that Z a, converges, since we’ve just
k=0 n=0
added the fixed number ag + a1+ -+ - +ay—_1.

Under what circumstances could we do this? What was crucial was that the limit of a,/ay,, say L,
was less than 1 so that we could pick a value r so that L < r < 1. The fact that L < r (1/5 < 1/2 in our
example) means that we can compare the series ) a, to ) 7", and the fact that » < 1 guarantees that }_ 7"
converges. That’s really all that is required to make the argument work. We also made use of the fact that
the terms of the series were positive; in general we simply consider the absolute values of the terms and
we end up testing for absolute convergence.

Theorem 9.42: The Ratio Test
Suppose that 1i_r>n |an+1/an) = L. If L < 1 the series Y a, converges absolutely, if L > 1 the series
n—roc0

diverges, and if L = 1 this test gives no information.
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Proof. The example above essentially proves the first part of this, if we simply replace 1/5 by L and 1/2
by r. Suppose that L > 1, and pick r so that 1 < r < L. Then for n > N, for some N,

|an+l|
|an|

>r and |apy1| > rlag.

This implies that |ay_«| > *|ay|, but since r > 1 this means that I}im |an x| # 0, which means also
—00

that lim a, # 0. By the divergence test, the series diverges.
n—oo

To see that we get no information when L = 1, we need to exhibit two series with L = 1, one that
converges and one that diverges. The series ¥ 1/n% and ¥ 1 /1 provide a simple example. &

The ratio test is particularly useful for series involving the factorial function.

Example 9.43
Anal —.
nalyze n;) -
Solution.
5Lt sitl gl 1
li — =l —————=1m5 =0.
e (I 1)157  ntm 51 (nt 1)l noe (nt 1)
Since 0 < 1, the series converges. &

A similar argument justifies a similar test that is occasionally easier to apply.

Theorem 9.44: The Root Test

1/n

Suppose that 1i_r>n la,|'/" = L. If L <1 the series Y. a, converges absolutely, if L > 1 the series
n—yoo

diverges, and if L = 1 this test gives no information.

The proof of the root test is actually easier than that of the ratio test, and is left as an exercise.

Example 9.45

5n I/n gn\1/n
lim (—) = lim (5") = lim § =0.

n—o0 (nn)l/” n—on
Since 0 < 1, the series converges. )

The root test is frequently useful when n appears as an exponent in the general term of the series.
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Exercises for 9.7

Exercise 9.7.1 Compute lgn |ani1/an| for the series ¥, 1/n?.
Nn—>co

Exercise 9.7.2 Compute lgn |11/ an| for the series Y. 1 /n.
Exercise 9.7.3 Compute lim |a,|'/" for the series ¥.1/n.
n—yoo

Exercise 9.7.4 Compute 1im |a,|'/" for the series ¥.1/n.
n—yoo

Exercise 9.7.5 Determine whether the series converge.

o n3n o n5
(a) n;)(—w = (c) n;ﬁ

© 1 = (n))?
® Lo @ X

Exercise 9.7.6 Prove Theorem 9.44, the root test.

9.8 Power Series

Recall that the sum of a geometric series can be expressed using the simple formula:

> k
n;okxnz —

if |x| < 1, and that the series diverges when |x| > 1. At the time, we thought of x as an unspecified constant,
but we could just as well think of it as a variable, in which case the series

i kx"
n=0

is a function, namely, the function k/(1 — x), as long as |x| < 1: Looking at this from the opposite per-
spective, this means that the function k/(1 — x) can be represented as the sum of an infinite series. Why
would this be useful? While k/(1 —x) is a reasonably easy function to deal with, the more complicated
representation ) kx"* does have some advantages: it appears to be an infinite version of one of the simplest
function types—a polynomial. Later on we will investigate some of the ways we can take advantage of
this ‘infinite polynomial’ representation, but first we should ask if other functions can even be represented
this way.

The geometric series has a special feature that makes it unlike a typical polynomial—the coefficients
of the powers of x are all the same, namely k. We will need to allow more general coefficients if we are to
get anything other than the geometric series.



9.8. Power Series m 363

A power series is a series of the form
(e o]
L and",
n=0

where each a, is a real number.

As we did in the section on sequences, we can think of the a, as being a function a(n) defined on the
non-negative integers. Note, however, that the a, do not depend on x.

Example 9.47

[e)
Determine whether the power series Z — converges.
n
n=1

Solution. We can investigate convergence using the ratio test:

Xt m . n
im — = lim |x| = |x|.
n—eo 41 |x|"  noe n41

Thus when |x| < 1 the series converges and when |x| > 1 it diverges, leaving only two values in doubt.
When x = 1 the series is the harmonic series and diverges; when x = —1 it is the alternating harmonic

series (actually the negative of the usual alternating harmonic series) and converges. Thus, we may think
n

of Z ol as a function from the interval [—1, 1) to the real numbers. &
n=1 n

A bit of thought reveals that the ratio test applied to a power series will always have the same nice
form. In general, we will compute

n+1
fim 9t W

|an+1| . . |an+l| _
nse Jan| x| L —— = |x| lim = L|x|,

|an| n—eo |ay|

assuming that lim|a,1|/|a,| exists. Then the series converges if L|x| < 1, that is, if |x| < 1/L, and
diverges if |x| > 1/L. Only the two values x = +1/L require further investigation. Thus the series will
always define a function on the interval (—1/L, 1/L), that perhaps will extend to one or both endpoints as
well. Two special cases deserve mention: if L = 0 the limit is 0 no matter what value x takes, so the series
converges for all x and the function is defined for all real numbers. If L = oo, then no matter what value x
takes the limit is infinite and the series converges only when x = 0. The value 1/L is called the radius of
convergence of the series, and the interval on which the series converges is the interval of convergence.

We can make these ideas a bit more general. Consider the series

i (x+2)"

n
n=0 3

This looks a lot like a power series, but with (x+ 2)" instead of x". Let’s try to determine the values of x
for which it converges. This is just a geometric series, so it converges when

lx+2|/3<1
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lx+2| <3
—3<x+2<3
—S<x<1.

So the interval of convergence for this series is (—5, 1). The center of this interval is at —2, which is at

distance 3 from the endpoints, so the radius of convergence is 3, and we say that the series is centered at
=2.

Interestingly, if we compute the sum of the series we get

i x+2\" 1 3
3 =2 —x

n=0

Multiplying both sides by 1/3 we obtain

which we recognize as being equal to
LY
n=0
so we have two series with the same sum but different intervals of convergence.

This leads to the following definition:

A power series centered at ¢ has the form

Z an(x—c)",
n=0

where ¢ and each a,, are real numbers.

Exercises for 9.8

Exercise 9.8.1 Find the radius and interval of convergence for each series. In part c), do not attempt to
determine whether the endpoints are in the interval of convergence.

o o0 2
(a) an” (d) Z (n'n) (x—2)"
n=0 n—1 "
o 1 oo n
()ng)n! (e)ng‘ln(n—l—l)

&0 |
(c) Y %(x—z)"
n=1



9.9. Calculus with Power Series = 365

. . : . e n!
Exercise 9.8.2 Find the radius of convergence for the series Z —nx".
- n

9.9 Calculus with Power Series

We now know that some functions can be expressed as power series, which look like infinite polynomials.
Since it is easy to find derivatives and integrals of polynomials, we might hope that we can take derivatives
and integrals of power series in an analogous way. In fact we can, as stated in the following theorem, which
we will not prove here.

Theorem 9.49

[}

Suppose the power series f(x) Z an(x—a)" has radius of convergence R. Then
n=0

= inan(x—a)"_l,
/f( )dx_c+2

nOn

and these two series have radius of convergence R.

Example 9.50

Find a power series representation of In |1 — x|.

Solution. Starting with the geometric series:

1—x n=0
1 |
/ dx=—In|1—x| =Y ——x"*!
I—x =ntl
— 1
In|l—x| =Y ———x"*!
= ntl
when |x| < 1. The series does not converge when x = 1 but does converge when x = —1 or I —x = 2. The

interval of convergence is [—1,1), or 0 < 1 —x < 2. We can use this series to express In(a) as a series
when 0 < a < 2 by setting x — 1 = a. For example
- 1
In(3/2) =1n(1—(—1/2)) nzb n+12n+1

1 1 1

1 1 1 909

We can use this in turn to approximate In(3/2):
1

In(3/2) ~ = — =+ — — — - -
n(3/2)~ 2 8 24 64 + 160 384 * 896 2240

~ 0.406.
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Because this is an alternating series with decreasing terms, we know that the true value is between
909/2240 and 909/2240 — 1/2048 = 29053 /71680 == .4053, so 0.4053 < In(3/2) < 0.406. )

With a bit of arithmetic, we can approximate values outside of the interval of convergence:

Example 9.51

Find an approximation for In(9/4).

Solution. We can use the approximation we just computed, plus some rules for logarithms:
In(9/4) =1n((3/2)?) =2In(3/2) ~ 0.812,

and using our bounds above,
0.8106 <1In(9/4) < 0.812.

Exercises for 9.9

Exercise 9.9.1 Find a series representation for In2.
Exercise 9.9.2 Find a power series representation for 1/(1 —x)%
Exercise 9.9.3 Find a power series representation for 2/(1 —x)>.

Exercise 9.9.4 Find a power series representation for 1 /(1 — x)3. What is the radius of convergence?

Exercise 9.9.5 Find a power series representation for / In(1 —x)dx.

9.10 Taylor Series

We have seen that some functions can be represented as series, which may give valuable information
about the function. So far, we have seen only those examples that result from manipulation of our one
fundamental example, the geometric series. We would like to start with a given function and produce a
series to represent it, if possible.

)

Suppose that f(x) = Z a,x"* on some interval of convergence centered at 0. Then we know that we

n=0
can compute derivatives of f by taking derivatives of the terms of the series. Let’s look at the first few in
general:

f(x)= Z na X"~ = aj + 2a0x + 3asx’ +dag + - -
n=1
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(o)

f'(x)= Z n(n—1)ax""? =2ay+3 - 2a3x+4 - 3a*> + - --
n=2

" (x) = Z n(n—1)(n—2)ax" > =3-2a3+4-3 - 2asx+ - --

n=3

By examining these it’s not hard to discern the general pattern. The kth derivative must be

O (x i (n—1)(n—2)(n—k+a**
( —

D(k=2)---(2)(Vag + (k+1)(k) - (2) a1+
+ (k+2)(k+1) -+ (B)aggax 4+

We can express this more clearly by using factorial notation:

> ! 3 k+2
= Z " —k'ak+(k+1)'ak+1x+ ( ) ak+2x2—|—~-~
n=k (n - 2.
We can solve for a,, by substituting x = 0 in the formula for f*)(x):
n!
FR(0) = klag + 4,0 F = kg,
o %1 (n—k) "
&) (o
o Y0

k!
Note that the original series for f yields f(0) = ao.
So if a function f can be represented by a series, we can easily find such a series. Given a function f,

the series
i f(n)
n=0

is called the Maclaurin series for f.

Example 9.52: Maclaurin Series

Find the Maclaurin series for f(x) = 1/(1 —x).

Solution. We need to compute the derivatives of f (and hope to spot a pattern).

fa)=0-x7"
flla)=01-x7"
f'0)=2(1-x)7"
f"(x) = 6(1—x)~
@) =412
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So ) |
n 1(1—0)""
I ACIC BT
n! n!
and the Maclaurin series is 5 -
Z 1-X'= Z X",
n=0 n=0
the geometric series. &

A warning is in order here. Given a function f we may be able to compute the Maclaurin series,
but that does not mean we have found a series representation for f. We still need to know where the
series converges, and if, where it converges, it converges to f(x). While for most commonly encountered
functions the Maclaurin series does indeed converge to f on some interval, this is not true of all functions,
so care is required.

As a practical matter, if we are interested in using a series to approximate a function, we will need
some finite number of terms of the series. Even for functions with messy derivatives we can compute
these using computer software like Sage. If we want to describe a series completely, we would like to
be able to write down a formula for a typical term in the series. Fortunately, a few of the most important
functions are very easy.

Example 9.53: Maclaurin Series

Find the Maclaurin series for sin x.

Solution. Computing the first few derivatives is simple: f/(x) = cosx, f”(x) = —sinx, f"”'(x) = —cosux,
f (4) (x) = sinx, and then the pattern repeats. The values of the derivative when x =0 are: 1,0, —1, 0, 1, 0,
—1,0,..., and so the Maclaurin series is

3 5 00 2n+1
X X X

et = Y (D)

TR U

We should always determine the radius of convergence:

P @enr 2

1 :
e (204 3)! WP ate (204 3)(2n12)

so the series converges for every x. Since it turns out that this series does indeed converge to sinx every-
where, we have a series representation for sinx for every x. s

Sometimes the formula for the nth derivative of a function f is difficult to discover, but a combination
of a known Maclaurin series and some algebraic manipulation leads easily to the Maclaurin series for f.

Example 9.54: Maclaurin Series

Find the Maclaurin series for xsin(—x).
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Solution. To get from sinx to xsin(—x) we substitute —x for x and then multiply by x. We can do the same
thing to the series for sinx:

) (_x) 2n+1 o0 x2n+1 x2n+2

x;(_n" (2n+1)! :x;o(_l)n(_l)zm Qn+1)! ,;)(_ " (2n+1)1

&

As we have seen, a power series can be centered at a point other than zero, and the method that
produces the Maclaurin series can also produce such series.

Example 9.55: Taylor Series

Find a series centered at —2 for 1 /(1 — x).

Solution. If the series is Z an(x+2)" then looking at the kth derivative:
n=0

an(x+2)""

-+ =Y

and substituting x = —2 we get k1371 = klap and g =375 = 1/3]‘“, so the series is
> (x+2)"
s
)
Such a series is called the Taylor series for the function, and the general term has the form
f('Z !(a) (x—a)".

A Maclaurin series is simply a Taylor series with a = 0.
Exercises for 9.10

Exercise 9.10.1 For each function, find the Maclaurin series or Taylor series centered at a, and the radius
of convergence.

(a) cosx
(b) €

() 1/x,a=5
(d) Inx, a=1
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(¢) Inx,a=2

() 1/x% a=1

(g) 1/v/1—x

(h) Find the first four terms of the Maclaurin series for tanx (up to and including the x> term).

(i) Use a combination of Maclaurin series and algebraic manipulation to find a series centered at zero
for xcos(x?).

(j) Use a combination of Maclaurin series and algebraic manipulation to find a series centered at zero

for xe™™.

9.11 Taylor's Theorem

One of the most important uses of infinite series is using an initial portion of the series for f to approximate
f. We have seen, for example, that when we add up the first n terms of an alternating series with decreasing
terms that the difference between this and the true value is at most the size of the next term. A similar
result is true of many Taylor series.

Theorem 9.56

Suppose that f is defined on some open interval I around a and suppose f i H)(x) exists on this
interval. Then for each x # a in I there is a value 7z between x and a so that

B N f(n)(a) . f(N+1)(Z)
f(X)_,;) — (x—a) +7(N—|—1)! (x—a)Nt1,

Proof. The proof requires some cleverness to set up, but then the details are quite elementary. We define a
function F(¢) as follows:
() (1)

py (x—1)"+B(x—1)V*!,

N
F(r) = gof

Here we have replaced a by ¢ in the first N 4- 1 terms of the Taylor series, and added a carefully chosen term
on the end, with B to be determined. Note that we are temporarily keeping x fixed, so the only variable in
this equation is 7, and we will be interested only in ¢ between a and x. Now substitute t = a:

N () (g
g S

- (x—a)"+B(x—a)¥"!.

F(a)

n=0

Set this equal to f(x):

N £(n)(q
= L 0 e+ Bea

n.

Since x # a, we can solve this for B, which is a “constant”—it depends on x and a but those are temporarily
fixed. Now we have defined a function F(¢) with the property that F(a) = f(x). Also, all terms with
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a positive power of (x —t) become zero when we substitute x for 7, so F(x) = £ (x)/0! = f(x). So
F(a) = F(x). By Rolle’s theorem, we know that there is a value z € (a,x) such that F'(z) = 0. But what
is F’? Each term in F(t), except the first term and the extra term involving B, is a product, so to take the
derivative we use the product rule on each of these terms.

@) )

=0+ e+ D e e 0 g
N
—|—f(N)!(t)(x—l‘)N—l—B(x—t)N+l.
So the derivative is
O ®
Po)=rw+ (T 0!
® 3
+ 1!(t>(x—z)1(—1>+ 2!(t>(x—t>2
3 @
+ f2!(t)(x_t)2(_1>+f3!(1)(x_t>3 ot
™) v+
e @(X—f)N)

+B(N+1)(x—1)N(-1).

The second term in each parenthesis cancel with the first term in the next one, leaving just

F'(t) = %(x—t)N—FB(N—i— D(x—t)N(=1).
At some z, F'(z) =0 so
0= %(x—z)lv—i—B(N—l— D(x—2)N(-1)
BN+ 1)(x—2)V = %(X—Z)N
f(N+l')(Z)
GRS
Now we can write N o) 1)
F(t) _ n;of n!<t) (x—t)n+ ];‘N—i_ 1(;) (x—l‘)N+1.
Recalling that F(a) = f(x) we get
N f(n)(a) . f(N+1)( )
F(x) =F(a) :EO —= (x—a) +(NT1)Z!(X_G>N+1’

which is what we wanted to show. )
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It may not be immediately obvious that this is particularly useful; let’s look at some examples.

Example 9.57

Find a polynomial approximation for sinx accurate to +0.005 for values of x in [—7 /2,7 /2].

Solution. From Taylor’s theorem with a = 0:

N £(n) (N+1)
e 3 S0@ o SO

T YT )
What can we say about the size of the term
f(N+l) (Z) +1 r)
(N+1)!

Every derivative of sinx is &sinx or 4= cosx, so |f(N+l) ()| < 1.

So we need to pick N so that

AN+
————1<0.005.
o
Since we have limited x to [—7 /2,7 /2],
AN+ IN+1
< .
(N—l—l)!{ (N+1)!
The quantity on the right decreases with increasing N, so all we need to do is find an N so that
N+1
< 0.005.
(N+1)!
A little trial and error shows that N = 8 works, and in fact 29 /9! < 0.0015, so
8 () (o
sinx =Y S0) 10,0015
n=0 n!
3 5 7
X X X
=x——+————=+0.0015.
¥~ 120 5040
Figure 9.5 shows the graphs of sinx and and the approximation on [0,37/2]. As x gets larger, the approx-
imation heads to negative infinity very quickly, since it is essentially acting like —x’. s

Figure 9.5: sinx and a polynomial approximation.
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Note that we can now approximate the value of sin(x) to within 0.005 by using simple trigonometric
identities to translate x into the interval [—7/2, 7 /2].

We can extract a bit more information from this example. If we do not limit the value of x, we still
have

f(N+l)(Z)xN+l - xN+1
(N+1)! “|(N+1)!
so that sinx is represented by
N r(n) +1
= n! (N+1)!

If we can show that

+1
N (N+1)"_
for each x then ) -
. o S0, ¢ n X
sinx = = 1)
* g n EO( G

that is, the sine function is actually equal to its Maclaurin series for all x. How can we prove that the
limit is zero? Suppose that N is larger than |x|, and let M be the largest integer less than |x| (if M = O the
following is even easier). Then

i T O O T = T O a1
(N+1)! N+INN—-1 M+I1MM—-1 21
D T TOUE I A e |
“N+1 MM—1 21
b
N+1 M

The quantity x| /M! is a constant, so

b ™

lim — =
N—eoN+1 M!

and by the Squeeze Theorem (9.6)
+1

(N+1)!

as desired. Essentially the same argument works for cos x and ¢*; unfortunately, it is more difficult to show
that most functions are equal to their Maclaurin series.

lim
N—yoo

Example 9.58

Find a polynomial approximation for ¢* near x = 2 accurate to £0.005.

Solution. From Taylor’s theorem:
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since £ (x) = ¢* for all n. We are interested in x near 2, and we need to keep |(x —2)¥"!| in check, so
we may as well specify that [x —2| <1, sox € [1,3]. Also

e3

<
S INFD

‘ez

(N+1)!

so we need to find an N that makes ¢® /(N + 1)! < 0.005. This time N = 5 makes ¢> /(N 4 1)! < 0.0015,
so the approximating polynomial is

* = o2 4o 2)+62( 2)2 4 62( 2)3 + 62( 2)* 4+ - (x—2)°£0.0015
e =e +e(x— —(x— —(x— —(x— —(x— . .
2 6 24 120
Note that our approximation requires that we already have a very accurate approximation of the value
%, which we shouldn’t assume we have in the context of trying to approximate ¢*. For this reason we
typically try to center our series on values for which the derivative of the function is easy to evaluate (e.g.

a=0). &

Note well that in these examples we found polynomials of a certain accuracy only on a small interval,
even though the series for sinx and e¢* converge for all x; this is typical. To get the same accuracy on a
larger interval would require more terms.

Exercises for 9.11

Exercise 9.11.1 Find a polynomial approximation for cosx on [0, ], accurate to +1073

Exercise 9.11.2 How many terms of the series for Inx centered at 1 are required so that the guaranteed
error on [1/2,3/2] is at most 1073 ? What if the interval is instead [1,3/2]?

Exercise 9.11.3 Find the first three nonzero terms in the Taylor series for tanx on [—n/4,7/4], and
compute the guaranteed error term as given by Taylor’s theorem. (You may want to use Sage or a similar

aid.)

Exercise 9.11.4 Show that cosx is equal to its Taylor series for all x by showing that the limit of the error
term is zero as N approaches infinity.

Exercise 9.11.5 Show that €* is equal to its Taylor series for all x by showing that the limit of the error
term is zero as N approaches infinity.



Differential Equations

Many physical phenomena can be modeled using the language of calculus. For example, observational
evidence suggests that the temperature of a cup of tea (or some other liquid) in a room of constant tem-
perature will cool over time at a rate proportional to the difference between the room temperature and the
temperature of the tea.

In symbols, if 7 is the time, M is the room temperature, and f(¢) is the temperature of the tea at time ¢
then f(t) = k(M — f(¢)) where k > 0 is a constant which will depend on the kind of tea (or more generally
the kind of liquid) but not on the room temperature or the temperature of the tea. This is Newton’s law
of cooling and the equation that we just wrote down is an example of a differential equation. Ideally
we would like to solve this equation, namely, find the function f(¢) that describes the temperature over
time, though this often turns out to be impossible, in which case various approximation techniques must
be used. The use and solution of differential equations is an important field of mathematics; here we see
how to solve some simple but useful types of differential equation.

Informally, a differential equation is an equation in which one or more of the derivatives of some func-
tion appears. Typically, a scientific theory will produce a differential equation (or a system of differential
equations) that describes or governs some physical process, but the theory will not produce the desired
function or functions directly.

10.1 First Order Differential Equations

We start by considering equations in which only the first derivative of the function appears.

Definition 10.1: First Order Differential Equation

A first order differential equation is an equation of the form F(t,y,y') = 0. A solution of a first
order differential equation is a function f(t) that makes F (t, f(t), f'(t)) = O for every value oft.

Here, F is a function of three variables which we label 7, y, and y’. It is understood that y’ will explicitly
appear in the equation although ¢ and y need not. The term “first order” means that the first derivative of y
appears, but no higher order derivatives do.

Example 10.2: Newton’s Law of Cooling

The equation from Newton’s law of cooling, y' = k(M —y) is a first order differential equation;
F(t.y.y) =k(M—y)—Y.

Example 10.3: A First Order Differential Equation

y' =12 +1 is a first order differential equation; F (t,y,y') = y' —t*> — 1. All solutions to this equation
are of the form 13 /3 +1+C.

375
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Definition 10.4: First Order Initial Value Problem

A first order initial value problem is a system of equations of the form F (t,y,y') = 0, y(ty) = yo.
Here 1, is a fixed time and yq is a number. A solution of an initial value problem is a solution f(t)
of the differential equation that also satisfies the initial condition f (7)) = yo.

Example 10.5: An Initial Value Problem

Verify that the initial value problem y' = t*>+ 1, y(1) = 4 has solution f(t) =13 /341 +8/3.

Solution. Observe that f/(t) = >+ 1 and f(1) = 13/2+1+48/3 = 4 as required. &

The general first order equation is too general, so we can’t describe methods that will work on them
all, or even a large portion of them. We can make progress with specific kinds of first order differential
equations. For example, much can be said about equations of the form y’ = ¢(z,y) where ¢ is a function
of the two variables ¢ and y. Under reasonable conditions on ¢, such an equation has a solution and the
corresponding initial value problem has a unique solution. However, in general, these equations can be
very difficult or impossible to solve explicitly.

Example 10.6: IVP for Newton’s Law of Cooling

Consider this specific example of an initial value problem for Newton’s law of cooling: y' =2(25 —
y), y(0) = 40. Discuss the solutions for this initial value problem.

Solution. We first note the zero of the equation: If y(f9) = 25, the right hand side of the differential
equation is zero, and so the constant function y(¢) = 25 is a solution to the differential equation. It is
not a solution to the initial value problem, since y(0) # 25. (The physical interpretation of this constant
solution is that if a liquid is at the same temperature as its surroundings, then the liquid will stay at that
temperature.) So long as y is not 25, we can rewrite the differential equation as

dy 1 _ 5
dt25—y

1
- - 2
5y dy dt,

SO

1
_ dy= [2as,
/25—y 4 /

that is, the two anti-derivatives must be the same except for a constant difference. We can calculate these
anti-derivatives and rearrange the results:

—_— = 2dt
/25 yy /

(—DI[25—y| = 2r+Cp

In[25—y| = —2r—Co=—2t+C
|25 _yl _ e—2t+C — e—2teC
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y=25 = £
y = 25+ee ¥ =25+Ae 2.

Here A = 4 ¢€ = 4 ¢~ is some non-zero constant. Since we want ¥(0) = 40, we substitute and solve for
A:

40 = 25+A
15 = A,

and so y = 25+ 15¢~% is a solution to the initial value problem. Note that y is never 25, so this makes sense
for all values of . However, if we allow A = 0 we get the solution y = 25 to the differential equation, which
would be the solution to the initial value problem if we were to require y(0) = 25. Thus, y = 25 +Ae
describes all solutions to the differential equation y' = 2(25 —y), and all solutions to the associated initial
value problems. )

Why could we solve this problem? Our solution depended on rewriting the equation so that all in-
stances of y were on one side of the equation and all instances of ¢t were on the other. Of course, in this
case the only 7 was originally hidden, since we didn’t write dy/dt in the original equation. This is not
required, however.

Example 10.7: Solving an IVP

Solve the differential equation y’ = 2¢(25 —y).

Solution. This is almost identical to the previous example. As before, y(t) = 25 is a solution. If y # 25,

1
——dy = /tht

25—y
(=DIn25—y| = 2+C
25—y = —*—Co=—1>+C
25—y = e T TC =" eC

y—25 = +efet’
y = 25+¢Ce =251+ A"

* allowing A to be zero. &

Definition 10.8: Separable Differential Equations

A first order differential equation is separable if it can be written in the form

Y = f(0)g ).

As before, all solutions are represented by y = 254 Ae™

As in the examples, we can attempt to solve a separable equation by converting to the form

/g(l—y)dy:/f(t)dt.
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This technique is called separation of variables. The simplest (in principle) sort of separable equation is
one in which g(y) = 1, in which case we attempt to solve

/ldy:/f(t)dt.

We can do this if we can find an anti-derivative of f(¢).

As we have seen so far, a differential equation typically has an infinite number of solutions. Such
a solution is called a general solution. A corresponding initial value problem will give rise to just one
solution. Such a solution in which there are no unknown constants remaining is called a particular
solution.

The general approach to separable equations is as follows: Suppose we wish to solve Yy = f(1)g(y)
where f and g are continuous functions. If g(a) = 0 for some a then y(¢) = a is a constant solution of the
equation, since in this case y = 0 = f(t)g(a). For example, y’ = y> — 1 has constant solutions y(z) = 1 and
y(t) =—1.

To find the nonconstant solutions, we note that the function 1/g(y) is continuous where g # 0, so 1 /g
has an antiderivative G. Let F be an antiderivative of f. Now we write

Go) = [ %dyz [rwar=ray+c.

so G(y) = F(t) + C. Now we solve this equation for y.

Of course, there are a few places this ideal description could go wrong: We need to be able to find the
antiderivatives G and F, and we need to solve the final equation for y. The upshot is that the solutions to
the original differential equation are the constant solutions, if any, and all functions y that satisfy G(y) =
F(t)+C.

Example 10.9: Population Growth and Radioactive Decay

Analyze the differential equation y' = ky.

Solution. When k > 0, this describes certain simple cases of population growth: It says that the change
in the population y is proportional to the population. The underlying assumption is that each organism in
the current population reproduces at a fixed rate, so the larger the population the more new organisms are
produced. While this is too simple to model most real populations, it is useful in some cases over a limited
time. When k < 0, the differential equation describes a quantity that decreases in proportion to the current
value; this can be used to model radioactive decay.

The constant solution is y(z) = 0; of course this will not be the solution to any interesting initial value
problem. For the non-constant solutions, we proceed much as before:

/ldy - /kdt
y

Inly| = kt+C
bl = e
y = +ebeM

y = A,
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Again, if we allow A = 0 this includes the constant solution, and we can simply say that y = AéM s the
general solution. With an initial value we can easily solve for A to get the solution of the initial value
problem. In particular, if the initial value is given for time r = 0, y(0) = yg, then A = y and the solution is

y = yoe'. *

Exercises for 10.1

Exercise 10.1.1 Which of the following equations are separable?

(a) y = sin(ty)

(b) Y =eé'e

(c)yy =t

(d) y = (£ —1t) arcsin(y)

(e) y =t*Iny+43Iny

Exercise 10.1.2 Solve y’ =1/(1+1?).

Exercise 10.1.3 Solve the initial value problem y' = " with y(0) = 1 and n > 0.
Exercise 10.1.4 Solve y' = Int.

Exercise 10.1.5 Identify the constant solutions (if any) of y/ = tsiny.

Exercise 10.1.6 Identify the constant solutions (if any) of y = té’.

Exercise 10.1.7 Solve y' =t/y.

Exercise 10.1.8 Solve y =y* — 1.

Exercise 10.1.9 Solvey =t/ (y3 —5). You may leave your solution in implicit form: that is, you may stop
once you have done the integration, without solving for y.

Exercise 10.1.10 Find a non-constant solution of the initial value problem y' = y'/3, y(0) = 0, using
separation of variables. Note that the constant function y(t) = 0 also solves the initial value problem.
This shows that an initial value problem can have more than one solution.

Exercise 10.1.11 Solve the equation for Newton’s law of cooling leaving M and k unknown.

Exercise 10.1.12 After 10 minutes in Jean-Luc’s room, his tea has cooled to 40° Celsius from 100°
Celsius. The room temperature is 25° Celsius. How much longer will it take to cool to 35°?
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Exercise 10.1.13 Solve the logistic equation Yy = ky(M —y). (This is a somewhat more reasonable
population model in most cases than the simpler y' = ky.) Sketch the graph of the solution to this equation
when M = 1000, k = 0.002, y(0) = 1.

Exercise 10.1.14 Suppose that y = ky, y(0) = 2, and y'(0) = 3. What is y?

Exercise 10.1.15 A radioactive substance obeys the equation y' = ky where k < 0 and y is the mass of the
substance at time t. Suppose that initially, the mass of the substance is y(0) = M > 0. At what time does
half of the mass remain? (This is known as the half life. Note that the half life depends on k but not on
M.)

Exercise 10.1.16 Bismuth-210 has a half life of five days. If there is initially 600 milligrams, how much
is left after 6 days? When will there be only 2 milligrams left?

Exercise 10.1.17 The half life of carbon-14 is 5730 years. If one starts with 100 milligrams of carbon-14,
how much is left after 6000 years? How long do we have to wait before there is less than 2 milligrams?

Exercise 10.1.18 A certain species of bacteria doubles its population (or its mass) every hour in the lab.
The differential equation that models this phenomenon is y = ky, where k > 0 and y is the population of
bacteria at time t. What is y?

Exercise 10.1.19 If a certain microbe doubles its population every 4 hours and after 5 hours the total
population has mass 500 grams, what was the initial mass?

10.2 First Order Homogeneous Linear Equations

A simple, but important and useful, type of separable equation is the first order homogeneous linear
equation:

A first order homogeneous linear differential equation is one of the form y' + p(t)y = 0 or equiva-
lently y' = —p(t)y.

“Homogeneous” refers to the zero on the right side of the equation, provided that y’ and y are on the
left. “Linear” in this definition indicates that both y’ and y appear independently and explicitly; we don’t
see y' or y to any power greater than 1, or multiplied by each other (i.e. y'y).

Example 10.11: Linear Examples

The equationy’ = 2¢(25 —y) can be written y’ + 2ty = 50¢. This is linear, but not homogeneous. The
equation y' = ky, or y’ —ky = 0 is linear and homogeneous, with a particularly simple p(t) = —k.
The equation y' +y> = 0 is homogeneous, but not linear.
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Since first order homogeneous linear equations are separable, we can solve them in the usual way:

yl
/%dy = /—p(t)dt
Inly] = P(t)+C

y = +P0)
y = AeP(f),

where P(¢) is an anti-derivative of —p(¢). As in previous examples, if we allow A = 0 we get the constant
solution y = 0.

Example 10.12: Solving an IVP

Solve the initial value problem
y +ycost =0,

subject toy(0) =1/2 and y(2) = 1/2.

Solution. We start with
P(t) = /—costdt = —sint,

so the general solution to the differential equation is

y — Ae_ Sint.
To compute A we substitute:
% :Ae—sino :A,
so the solutions is :
— —e” sint.
)
For the second problem,
1 .
e Ae—st
2
1 .
A = — sin2
2e
so the solution is {
in2 —sint
y==e'ee S,
2

Example 10.13

Solve the initial value problemty' +3y =0, y(1) = 2, assumingt > 0.
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Solution. We write the equation in standard form: y’ +3y/t = 0. Then
3
P(t) = /—; dt = —31Int

and

y:Aef3lnt :At73.

Substituting to find A: 2 = A(l)*3 = A, so the solution is y = 2173, &

Exercises for 10.2

Find the general solution of each equation in the following exercises.

Y

Exercise 10.2.1 y' +5y =0 Exercise 10.2.3 )/ + 20
Exercise 10.2.2 y/ —2y =0 Exercise 10.2.4 y +12y =0

In the following exercises, solve the initial value problem.
Exercise 10.2.5 y +y =0, y(0) =4 Exercise 10.2.10 y' +ycos(¢') =0, y(0) =0
Exercise 10.2.6 y —3y =0, y(1) = -2 Exercise 10.2.11 1y —2y =10, y(1) =4
Exercise 10.2.7 y' +ysint =0, y(7) = 1 Exercise 10.2.12 12y +y =0, y(1)=-2,t>0
Exercise 10.2.8 y' +ye' =0, y(0) = e Exercise 10.2.13 13y =2y, y(1)=1,1>0
Exercise 10.2.9 Y/ +yv/1+1* =0, y(0) =0 Exercise 10.2.14 3y =2y, y(1) =0, > 0

Exercise 10.2.15 A function y(t) is a solution of y' +ky = 0. Suppose that y(0) = 100 and y(2) = 4. Find
k and find y(t).

Exercise 10.2.16 A function y(t) is a solution of y +t*y = 0. Suppose that y(0) = 1 and y(1) = e~ 13,
Find k and find y(t).

Exercise 10.2.17 A bacterial culture grows at a rate proportional to its population. If the population is
one million att =0 and 1.5 million at t = 1 hour, find the population as a function of time.

Exercise 10.2.18 A radioactive element decays with a half-life of 6 years. If a mass of the element weighs
ten pounds at t = 0, find the amount of the element at time t.
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10.3 First Order Linear Equations

As you might guess, a first order linear differential equation has the form y' + p(¢)y = f(t). Not only is this
closely related in form to the first order homogeneous linear equation, we can use what we know about
solving homogeneous equations to solve the general linear equation.

Suppose that y; () and y,(t) are solutions to y' + p(t)y = f(¢). Let g(t) = y; — y2. Then

(1) +pt)gt) = Yi—ya+pt) 1 —y)
= 01+p)y1)—(O2+p)y)
= f(t)—f@)=0.

In other words, g(¢) = y; — y» is a solution to the homogeneous equation y’ + p(¢)y = 0. Turning this
around, any solution to the linear equation y' + p(t)y = f(t), call it y;, can be written as y, + g(t), for
some particular y, and some solution g(¢) of the homogeneous equation y' + p(¢)y = 0. Since we already
know how to find all solutions of the homogeneous equation, finding just one solution to the equation
y + p(t)y = f(t) will give us all of them.

How might we find that one particular solution to y' + p(¢)y = f(¢)? Again, it turns out that what we
already know helps. We know that the general solution to the homogeneous equation y' + p(¢)y = 0 looks
like Ae”™). We now make an inspired guess: Consider the function v(t)eP ), in which we have replaced
the constant parameter A with the function v(z). This technique is called variation of parameters. For
convenience write this as s(r) = v(¢)h(r), where h(t) = ¢'¥) is a solution to the homogeneous equation.
Now let’s compute a bit with s(7):

S(t)+p(t)s(t) = v(
= V(t)h(z).

The last equality is true because /() + p(t)h(¢) = 0. Since h(t) is a solution to the homogeneous equation.
We are hoping to find a function s(z) so that s'(t) + p(¢)s(t) = f(¢); we will have such a function if we

can arrange to have v/ (¢)h(t) = f(t), that is, v/(¢) = f(¢)/h(t). But this is as easy (or hard) as finding an
anti-derivative of f(¢)/h(t). Putting this all together, the general solution to y' + p(t)y = f(t) is

v()h(t) + A = v(1)eP ) + AL,

Example 10.14: Solving an IVP

Find the solution of the initial value problem y' +3y/t = 1%, y(1) = 1/2.

Solution. First we find the general solution; since we are interested in a solution with a given condition at
t =1, we may assume ¢ > 0. We start by solving the homogeneous equation as usual; call the solution g:

g :Ae—f(3/t)dt :Ae—3lnt :At_3

Then as in the discussion, A(t) =~ and V' (t) = 12/t > = 1>, so v(t) = 1°/6. We know that every solution
to the equation looks like

-3 —3_f—3 —3_f -3
v(t)t > + At _6t +At —6—|—At )
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Finally we substitute to find A:

> N =
(@)

The solution is then

&

Another common method for solving such a differential equation is by means of an integrating factor.
In the differential equation y' + p(¢)y = f(t), we note that if we multiply through by a function I() to get
1(t)y' +1(t)p(t)y = I(t) f(t), the left hand side looks like it could be a derivative computed by the product

rule:
d

LU0y = I(t)y' +1'(1)y.

Now if we could choose I(r) so that I'(t) = I(t)p(¢), this would be exactly the left hand side of the
differential equation. But this is just a first order homogeneous linear equation, and we know a solution

is 1(r) = 21), where Q(t) = /pdt; note that Q(r) = —P(t), where P(t) appears in the variation of

parameters method and P'(r) = —p. Now the modified differential equation is
e Py +e PUp(t)y = e PO f(r)

d, _ _
S(eTy) = O s,
Integrating both sides gives

POy — / PO £(1)dt
N—_0 / e PO £(1) dt.

If you look carefully, you will see that this is exactly the same solution we found by variation of parameters,
because e PO f(1) = £(1) /().

Some people find it easier to remember how to use the integrating factor method, rather than variation
of parameters. Since ultimately they require the same calculation, you should use whichever of the two
methods appeals to you more strongly. Using this method, the solution of the previous example would look
just a bit different: Starting with y' +3y/t = 1%, we recall that the integrating factor is el 3 = Bt — 3,
Then we multiply through by the integrating factor and solve:

3y +33y/t = 1
2y +123y = ¢

d 3 5
—(%y) =t
)
Py = 1°/6
y = 1£3/6.

This is the same answer, of course, and the problem is then finished just as before.



Exercises for 10.3

In the following exercises, find the general solution of the equation.

Exercise 10.3.1 y +4y =38

Exercise 10.3.2 y -2y =6

Exercise 10.3.3 y' +1y = 5¢

Exercise 10.3.4 y +¢'y = —2¢'

Exercise 10.3.5 y — y = ¢?

Exercise 10.3.6 2y +y =1

Exercise 10.3.7 1y —2y =1/t,t >0

Exercise 10.3.8 1y +y= 1,1t >0

Exercise 10.3.9 y'cost +ysint =1, —n/2 <t < /2

Exercise 10.3.10 y' +ysect = tant, —71/2 <t < 1/2

10.4 Approximation

10.4. Approximation

385

We have seen how to solve a restricted collection of differential equations, or more accurately, how to
attempt to solve them—we still may not be able to find the required anti-derivatives. Not surprisingly,
non-linear equations can be even more difficult to solve. Yet much is known about solutions to some more

general equations.

Suppose ¢ (,y) is a function of two variables. A more general class of first order differential equations
has the form y’ = ¢(¢,y). This is not necessarily a linear first order equation, since ¢ may depend on y
in some complicated way; note however that y' appears in a very simple form. Under suitable conditions
on the function @, it can be shown that every such differential equation has a solution, and moreover
that for each initial condition the associated initial value problem has exactly one solution. In practical

applications this is obviously a very desirable property.

Example 10.15: First Order Non-linear

The equationy' =t — y? is a first order non-linear equation, because y appears to the second power.

We will not be able to solve this equation.
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Example 10.16: Non-linear and Separable

The equation y = y* is also non-linear, but it is separable and can be solved by separation of
variables.

Not all differential equations that are important in practice can be solved exactly, so techniques have
been developed to approximate solutions. We describe one such technique, Euler’s Method, which is
simple though not particularly useful compared to some more sophisticated techniques.

Suppose we wish to approximate a solution to the initial value problem y' = ¢(z,y), y(to) = yo, for
t > to. Under reasonable conditions on ¢, we know the solution exists, represented by a curve in the ¢y-
plane; call this solution f(¢). The point (fy,yo) is of course on this curve. We also know the slope of the
curve at this point, namely ¢ (79, o). If we follow the tangent line for a brief distance, we arrive at a point
that should be almost on the graph of f(¢), namely (¢o+ At,yo+ ¢ (£, yo)At); call this point (¢,y;). Now we
pretend, in effect, that this point really is on the graph of f(¢), in which case we again know the slope of the
curve through (#1,y1), namely ¢(¢1,y;). So we can compute a new point, (f,y2) = (1 +At, y1 + @ (t1,y1)Ar)
that is a little farther along, still close to the graph of f(¢) but probably not quite so close as (¢1,y;). We
can continue in this way, doing a sequence of straightforward calculations, until we have an approximation
(tn,yn) for whatever time #, we need. At each step we do essentially the same calculation, namely:

(tix1,yie1) = (ti + At yi + 0 (1, yi)At).

We expect that smaller time steps Ar will give better approximations, but of course it will require more
work to compute to a specified time. It is possible to compute a guaranteed upper bound on how far off the
approximation might be, that is, how far y, is from f(z,). Suffice it to say that the bound is not particularly
good and that there are other more complicated approximation techniques that do better.

Example 10.17: Approximating a Solution

Compute an approximation to the solution fory =t —y?, y(0) =0, whent = 1.

Solution. We will use At = 0.2, which is easy to do even by hand, though we should not expect the
resulting approximation to be very good. We get

(t1,y1) =(0+0.2,0+(0—-0%)0.2) = (0.2,0)

(t2,y2) = (0.240.2,0+ (0.2 —0%)0.2) = (0.4,0.04)

(t3,y3) = (0.6,0.04 + (0.4 —0.04%)0.2) = (0.6,0.11968)

(t4,y4) = (0.8,0.11968 4 (0.6 —0.119682)0.2) = (0.8,0.23681533952)

(ts,y5) = (1.0,0.23681533952 + (0.6 —0.236815339522)0.2) = (1.0,0.385599038513605)

So y(1) ~ 0.3856. As it turns out, this is not accurate to even one decimal place. Figure 10.1 shows these
points connected by line segments (the lower curve) compared to a solution obtained by a much better
approximation technique. Note that the shape is approximately correct even though the end points are
quite far apart.
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5
>

0.5 1

0.0 —>
0 1!

Figure 10.1: Approximating a solution to y =t — 2, y(0) = 0.

If you need to do Euler’s method by hand, it is useful to construct a table to keep track of the work,
as shown in Figure 10.2. Each row holds the computation for a single step: The starting point (z;,y;); the
stepsize Ar; the computed slope ¢(#;,y;); the change in y, Ay = ¢ (¢;,y;)At; and the new point, (¢i41,yit+1) =
(t;+ At,y; 4+ Ay). The starting point in each row is the newly computed point from the end of the previous
row.

( ) At ¢(t’y> Ay:(l)(l,y)At (I+At’y+Ay>
0,0) 0210 0 (0.2,0)
(0.2,0) 02102 0.04 (0.4,0.04)
(0.4,004) 0203984 |0.07968 (0.6,0.11968)
(0.6,0.11968) | 0.2 1 0.58... |0.117... (0.8,0.236...)
(0.8,0.236...) | 0.2 1 0.743...|0.148... (1.0,0.385...)

Figure 10.2: Computing with Euler’s Method.

&

Euler’s method is related to another technique that can help in understanding a differential equation in
a qualitative way. Euler’s method is based on the ability to compute the slope of a solution curve at any
point in the plane, simply by computing ¢ (¢,y). If we compute ¢(z,y) at many points, say in a grid, and
plot a small line segment with that slope at the point, we can get an idea of how solution curves must look.
Such a plot is called a slope field. A slope field for ¢ =1 — y? is shown in Figure 10.3; compare this to
figure 10.1. With a little practice, one can sketch reasonably accurate solution curves based on the slope
field, in essence doing Euler’s method visually.
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Figure 10.3: A slope field for y =t — .

Even when a differential equation can be solved explicitly, the slope field can help in understanding
what the solutions look like with various initial conditions. Recall the logistic equation y = ky(M — y):
y is a population at time ¢, M is a measure of how large a population the environment can support, and k
measures the reproduction rate of the population. Figure 10.4 shows a slope field for this equation that is
quite informative. It is apparent that if the initial population is smaller than M it rises to M over the long
term, while if the initial population is greater than M it decreases to M.
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Figure 10.4: A slope field for y’ = 0.2y(10 —y).

Exercises for 10.4

In the following exercises, compute the Euler approximations for the initial value problem for 0 <7 <1
and Ar = 0.2. If you have access to Sage, generate the slope field first and attempt to sketch the solution
curve. Then use Sage to compute better approximations with smaller values of Ar.

Exercise 10.4.1 y =¢/y, y(0) =1

Exercise 10.4.2 y =7+°, y(0) =1



10.5. Second Order Homogeneous Equations = 389

Exercise 10.4.3 y' = cos(r +y), y(0) = 1

Exercise 10.4.4 y =tIny, y(0) =2

10.5 Second Order Homogeneous Equations

A second order differential equation is one containing the second derivative y”. These are in general
quite complicated, but one fairly simple type is useful: The second order linear equation with constant
coefficients.

Example 10.18: Second Order Homogeneous Equation

Analyze the initial value problem y” —y' —2y =0, y(0) = 5, y/(0) = 0.

Solution. We make an inspired guess: might there be a solution of the form e””? This seems at least
plausible, since in this case ¥, y/, and y all involve ¢".

If such a function is a solution then

rPel —re" =27 =
(P —r=2) =
(rz—r—2) =
(r=2)(r+1) =

S O O O

b

so ris 2 or —1. Not only are f = ¢* and g = e’ solutions, but notice that y = A f + By is also, for any
constants A and B:

(Af+Bg)" — (Af+Bg) —2(Af+Bg) = Af’'+Bg"—Af —Bg —2Af—2Bg
= A(f"—f'-2f)+B(g"—¢ —28)
= A(0)+B(0)=0.
Can we find A and B so that this is a solution to the initial value problem? Let’s substitute:
5=y(0) =Af(0)+Bg(0) — A"+ B =A+B
and
0=y'(0) =Af'(0) +Bg'(0) = A2¢" + B(—1)e® = 24 — B.

So we need to solve this system of two equations with two unknowns:

A+B =5
2A—B =0

Let B = 2A, substitute into the first equation to get 5 =A +2A = 3A. Then A =5/3 and B = 10/3, and the
desired solution is (5/3)e* + (10/3)e™". You now see why the initial condition in this case included both
y(0) and y’(0): We needed two equations in the two unknowns A and B &
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You should of course wonder whether there might be other solutions, but as it turns out, the answer is
no. We will not prove this, but here is the theorem that tells us what we need to know:

Theorem 10.19: Solutions to Second Order Homogeneous

Given the differential equation ay” + by’ +cy =0, a # 0, consider the quadratic polynomial ar* +
br + ¢ = 0, called the characteristic polynomial. Using the quadratic formula, this polynomial
always has one or two roots, call them ry and r,. The general solution of the differential equation
is:

(a) y =Ae"" +Be'™, if the roots ri and r» are real numbers, and ry # r».

(b) y=Ae""" +Bte', if r| = r, is a real, repeated root.

(c) y=Acos(Bt)e™ + Bsin(Bt)e™, if the roots are complex numbers, r = o =+ Bi.

Example 10.20

Solve the differential equation y" + A%y = 0.

Solution. First we write the characteristic equation, r2+A% = 0. Then we find the roots of the characteristic
equation:
rr=-A? = r=2Ai

These are imaginary roots, so the solution of the differential equation is in the form:

y = c1 cos(Ar) + ¢z sin(At)

Example 10.21

Solve the differential equation y” — A%y = 0.

Solution. First we write the characteristic equation, r2— A% = 0. Then we find the roots of the characteristic
equation:
=A% — r=+A

These are imaginary roots, so the solution of the differential equation is in the form:

_ (5]
y=C1€At+C2€ At=C1€At+E

Example 10.22: Damped Spring Oscillation

Use a differential equation to describe the position of a mass hung on a spring.
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Solution. Suppose a mass m is hung on a spring with spring constant k. If the spring is compressed or
stretched and then released, the mass will oscillate up and down. Due to friction, the oscillation will
be damped: Eventually the motion will cease. The damping will depend on the amount of friction; for
example, if the system is suspended in oil the motion will cease sooner than if the system is in air. Using
some simple physics, it is not hard to see that the position of the mass is described by the differential
equation: my” +by +ky =0. Using m =1, b =4, and k = 5 we find the motion of the mass. The
characteristic polynomial is 72 +4r-+5 = 0, with roots » = (—441/16 — 20) /2 = —2 +i. Thus the general
solution is y = Acos(t)e 2 + Bsin(t)e . Suppose we know that y(0) = 1 and y’(0) = 2. Then as before
we form two simultaneous equations: From y(0) = 1 we get 1 = Acos(0)e? + Bsin(0)e® = A. For the
second we compute

y' = —2A¢ % cos(t) +Ae ¥ (—sin(t)) — 2Be ¥ sin(t) 4+ Be % cos(1),
and then

2 = —2A¢cos(0) — Ae° sin(O) —2B¢sin(0) + Be® cos(0) = —24 + B.
SowegetA=1,B=4, and y=cos(r)e ¥ +4sin(r)e *.

Here is a useful trick that makes this easier to understand: We have y = (cost —|—4sint)e*2t . The
expression cos? +4sint is a bit reminiscent of the trigonometric formula cos(ot — ) = cos(a) cos(B) +
sin(a) sin(f) with a = ¢. Let’s rewrite it a bit as

\/_(\/_COSt+\/751nt).

Note that (1/v/17)? + (4/v/17)* = 1, which means that there is an angle B with cosf = 1/v/17 and
sinf3 =4/v/'17 (of course, f may not be a “nice” angle). Then

cost +4sint =V 17 (costcos +sinfBsint) = V' 17cos(t — fB).

Thus, the solution may also be written y = v/17¢~> cos(z — B). This is a cosine curve that has been shifted
B to the right; the v/ 17¢ has the effect of diminishing the amplitude of the cosine as ¢ increases. &

Other physical systems that oscillate can also be described by such differential equations. Some elec-
tric circuits, for example, generate oscillating current.

Example 10.23

Find the solution to the initial value problem y" — 4y’ +4y =0, y(0) = -3, y'(0) = 1.

Solution. The characteristic polynomial is P2—4r+4 = (r— 2)2, so there is one root, r = 2, and the
general solution is Ae? + Bre* . Substituting r = 0 we get —3 = A+ 0 = A. The first derivative is 24¢* +
2Bte* + Be?'; substituting t = 0 gives 1 =24 4+0+B =2A+B=2(-3)+B= —6+B, so B="7. The
solution is —3e* + 7te*. &

Exercises for 10.5

Exercise 10.5.1 Solve the initial value problem y' — ®*y =0, y(0) = 1, y'(0) = 1, assuming @ # 0.
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Exercise 10.5.2 Solve the initial value problem 2y" +18y = 0, y(0) =2, y/(0) = 15.
Exercise 10.5.3 Solve the initial value problem y" + 6y’ +5y =0, y(0) = 1, y/(0) = 0.
Exercise 10.5.4 Solve the initial value problem y” —y' —12y =0, y(0) =0, y/(0) = 14.
Exercise 10.5.5 Solve the initial value problem y" + 12y’ 4+ 36y =0, y(0) = 5, y/(0) = —10.
Exercise 10.5.6 Solve the initial value problem y" — 8y’ +16y =0, y(0) = -3, y/(0) = 4.
Exercise 10.5.7 Solve the initial value problem y" +5y = 0, y(0) = -2, y/(0) = 5.
Exercise 10.5.8 Solve the initial value problemy" +y =0, y(/4) =0, ¥ (n/4) = 2.
Exercise 10.5.9 Solve the initial value problem y" + 12y’ +37y =0, y(0) = 4, y'(0) = 0.
Exercise 10.5.10 Solve the initial value problem y" + 6y’ + 18y =0, y(0) = 0, y'(0) = 6.
Exercise 10.5.11 Solve the initial value problem y" +4y = 0, y(0) = /3, y'(0) = 2.
Exercise 10.5.12 Solve the initial value problem y" + 100y = 0, y(0) = 5, ¥/(0) = 50.
Exercise 10.5.13 Solve the initial value problem y" +4y' 4+ 13y =0, y(0) =1, y/(0) = 1.
Exercise 10.5.14 Solve the initial value problem y" — 8y’ +25y =0, y(0) = 3, y/(0) = 0.

Exercise 10.5.15 A mass-spring system my’ +by +kx has k =29, b =4, and m = 1. At time t = 0 the
position is y(0) = 2 and the velocity is ¥y (0) = 1. Find y(t).

Exercise 10.5.16 A mass-spring system my” + by +kx has k = 24, b =12, and m = 3. At time t = 0 the
position is y(0) = 0 and the velocity is ¥y (0) = —1. Find y(t).

Exercise 10.5.17 Consider the differential equation ay” + by = 0, with a and b both non-zero. Find the
general solution by the method of this section. Now let g = y'; the equation may be written as ag’ +bg =0,
a first order linear homogeneous equation. Solve this for g, then use the relationship g =y to find y.

Exercise 10.5.18 Suppose that y(t) is a solution to ay” +by' +cy =0, y(tg) = 0, ¥ (t9) = 0. Show that
y(t) =0.

10.6 Second Order Linear Equations - Method of Undetermined Coeffi-
cients

Now we consider second order equations of the form ay” + by +cy = f(t), with a, b, and ¢ constant. Of
course, if a = 0 this is really a first order equation, so we assume a # 0. Also, if ¢ = 0 we can solve the
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related first order equation ah’ +bh = f(t), and then solve & =y’ for y. So we will only examine examples
in which ¢ # 0.

Suppose that y; () and y,(¢) are solutions to ay” +by' +cy = f(t), and consider the function & =y —y».
We substitute this function into the left hand side of the differential equation and simplify:

a(yi —y2)" +b(y1 —y2)' +c(y1 —y2) = ay| + by} +cy1 — (ays +bys +cy2) = f(t) — f(t) = 0.

So h is a solution to the homogeneous equation ay” + by’ +cy = 0. Since we know how to find all such
h, then with just one particular solution y, we can express all possible solutions y;, namely, y; = h+ Yy,
where now £ is the general solution to the homogeneous equation. Of course, this is exactly how we
approached the first order linear equation.

To make use of this observation we need a method to find a single solution y,. This turns out to
be somewhat more difficult than the first order case, but if f(z) is of a certain simple form, we can find a
solution using the method of undetermined coefficients, sometimes more whimsically called the method
of judicious guessing.

Example 10.24: Second Order Linear Equation

Solve the differential equation y" —y — 6y = 18> +5.

Solution. The general solution of the homogeneous equation is Ae* + Be 2. We guess that a solution to
the non-homogeneous equation might look like f(¢) itself, namely, a quadratic y = at® + bt + c. Substitut-
ing this guess into the differential equation we get

y' —y — 6y =2a— (2at +b) — 6(at* + bt +¢) = —6at® + (—2a — 6b)t + (2a — b — 6¢).
We want this to equal 18t2+5, so we need

—6a = 18
—2a—6b = 0
2a—b—6¢c = 5

This is a system of three equations in three unknowns and is not hard to solve: a = =3, b =1, c = —2.
Thus the general solution to the differential equation is Ae® + Be % — 31> +1 — 2. s

So the “judicious guess” is a function with the same form as f(¢) but with undetermined (or better, yet
to be determined) coefficients. This works whenever f(¢) is a polynomial.

Example 10.25: Mass-Spring System with No Damping

Analyze the initial value problem my” +ky = —mg, y(0) = 2, y'(0) = 50.

Solution. The left hand side represents a mass-spring system with no damping, i.e., b = 0. Unlike the
homogeneous case, we now consider the force due to gravity, —mg, assuming the spring is vertical at
the surface of the earth, so that g = 980. To be specific, let us take m = 1 and k = 100. The general
solution to the homogeneous equation is A cos(10¢) + Bsin(10¢). For the solution to the non-homogeneous
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equation we guess simply a constant y = a, since —mg = —980 is a constant. Then y” + 100y = 100a so
a = —980/100 = —9.8. The desired general solution is then Acos(10¢) + Bsin(10z) — 9.8. Substituting
the initial conditions we get

2 = A-98
50 = 10B
so A =11.8 and B =5 and the solution is 11.8cos(10¢) 4+ 5sin(107) —9.8. s

More generally, this method can be used when a function similar to f(¢) has derivatives that are also
similar to f(¢); in the examples so far, since f(z) was a polynomial, so were its derivatives. The method
will work if f(¢) has the form p(¢)e® cos(Bt) + q(t)e™ sin(Bt), where p(t) and g(t) are polynomials;
when o = B = 0 this is simply p(¢), a polynomial. In the most general form it is not simple to describe
the appropriate judicious guess; we content ourselves with some examples to illustrate the process.

Example 10.26: Solving a Second Order Linear Equation

Find the general solution to y" 47y’ 4+ 10y = e

Solution. The characteristic equation is 7> 4 7r + 10 = (r +5)(r +2), so the solution to the homoge-
neous equation is Ae > + Be~%. For a particular solution to the inhomogeneous equation we guess Ce™.
Substituting we get

9Ce™ +21Ce™ + 10Ce™ = £ 40C.

When C = 1/40 this is equal to f(t) = e, so the solution is Ae ™ + Be~% + (1/40)e>. &

Example 10.27: Solving a Second Order Linear Equation

Find the general solution toy” +7y + 10y = e~ %.

Solution. Following the last example we might guess Ce™%, but since this is a solution to the homogeneous
equation it cannot work. Instead we guess Cte . Then

(—2Ce™ —2Ce™ 2 +4Cte ™) 4+7(Ce % —2Cte ) 4+10Cte > = % (—3C).
Then C = —1/3 and the solution is Ae ™ + Be™% — (1/3)te™ 2. &

In general, if f(¢) = ¢ and k is one of the roots of the characteristic equation, then we guess CreX’
instead of Ce¥. If k is the only root of the characteristic equation, then CreX will also not work, so we
must guess Cr2eX.

Example 10.28: Solving a Second Order Linear Equation

Find the general solution to y' — 6y’ + 9y = ™.

Solution. The characteristic equation is P —6r+9= (r— 3)2, so the general solution to the homogeneous
equation is Ae> + Bre>. Guessing Ct?e* for the particular solution, we get

(9Cr%e¥ 4+ 6Cte™ +6Cte™ +2Ce™) — 6(3C12e> +2Cte™ ) +9Cr%e™ = ¥2C.
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Thus, the solution is Ae™ + Bre™ + (1/2)1%e™ . )

It is common in various physical systems to encounter an f(¢) of the form acos(wt) + bsin(t).

Example 10.29: Solving a Second Order Linear Equation

Find the general solution to y" + 6y’ +25y = cos(4t).

Solution. The roots of the characteristic equation are —3 44, so the solution to the homogeneous equation
is e ¥ (Acos(4t) + Bsin(4r)). For a particular solution, we guess Ccos(4) + Dsin(4¢). Substituting as
usual:

(—16Ccos(4t) + —16Dsin(4t)) + 6(—4Csin(4t) +4Dcos(4t)) +25(Ccos(4t) + Dsin(4t))

= (24D +9C) cos(4t) + (—24C+9D)sin(4tz).

To make this equal to cos(47) we need

24D+9C = 1
9D -24C = 0

which gives C = 1/73 and D = 8/219. The full solution is then e > (A cos(4¢) 4 Bsin(41)) 4 (1/73) cos(4t) +
(8/219)sin(4t).

The function e > (A cos(4t) + Bsin(4¢)) is a damped oscillation as in example 10.25, while (1/73) cos(4t)+
(8/219)sin(4t) is a simple undamped oscillation. As ¢ increases, the sum e~ (A cos(4t) + Bsin(4t)) ap-
proaches zero, so the solution

e ¥ (Acos(4t) + Bsin(4r)) + (1/73) cos(4t) 4 (8/219) sin(4¢)

becomes more and more like the simple oscillation (1/73) cos(4¢) 4 (8/219) sin(4f)—notice that the initial
conditions don’t matter to this long term behavior. The damped portion is called the transient [part of the]
solution, and the simple oscillation is called the steady state [part of the] solution. A physical example
is a mass-spring system. If the only force on the mass is due to the spring, then the behavior of the system
is a damped oscillation. If in addition an external force is applied to the mass, and if the force varies
according to a function of the form acos(wt) + bsin(wr), then the long term behavior will be a simple
oscillation determined by the steady state portion of the general solution; the initial position of the mass
will not matter. L)

As with the exponential form, such a simple guess may not work.

Example 10.30: Solving a Second Order Linear Equation

Find the general solution to y" + 16y = —sin(4t).

Solution. The roots of the characteristic equation are +4i, so the solution to the homogeneous equa-
tion is Acos(4t) + Bsin(4¢). Since both cos(4¢) and sin(4¢) are solutions to the homogeneous equation,
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Ccos(4t) + Dsin(4t) is also, so it cannot be a solution to the non-homogeneous equation. Instead, we
guess Ct cos(4t) + Dt sin(4t). Then substituting:

(—16Ct cos(4t) — 16Dsin(4t) + 8D cos(41) — 8Csin(4t))) + 16(Ctcos(4t) + Dt sin(41))

= 8Dcos(4t) —8Csin(41).
Thus C = 1/8, D =0, and the solution is Ccos(4t) + Dsin(4t) + (1/8)tcos(4t). )

In general, if f(7) = acos(wr) + bsin(wr), and £wi are the roots of the characteristic equation, then
instead of Ccos(wt) + Dsin(wt) we guess Ct cos(@t) + Dt sin(@t).

Exercises for 10.6

Find the general solution to the differential equation.

Exercise 10.6.1 y” — 10y’ +25y = cost
Exercise 10.6.2 y" +2v/2y +2y =10
Exercise 10.6.3 y' + 16y = 8/> +3r —4
Exercise 10.6.4 y" +2y = cos(5¢) + sin(5¢)
Exercise 10.6.5 y"' — 2y + 2y = ¢*
Exercise 10.6.6 y' —6y+13=1+2t+e¢’
Exercise 10.6.7 y' +y —6y=e¢"
Exercise 10.6.8 "' — 4y + 3y = ¢
Exercise 10.6.9 y" + 16y = cos(4t)
Exercise 10.6.10 y" +9y = 3sin(3¢)
Exercise 10.6.11 y”’ + 12y +36y = 6¢~*
Exercise 10.6.12 y” — 8y’ + 16y = —2¢*
Exercise 10.6.13 ' +6y +5y=4
Exercise 10.6.14 y' —y' — 12y =¢

Exercise 10.6.15 y" + 5y = 8sin(2¢)

Exercise 10.6.16 y’ — 4y = 4¢*
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Solve the initial value problem.

Exercise 10.6.17 y" —y=3t+5,y(0) =0, y'(0) =0

Exercise 10.6.18 y” +9y = 4¢, y(0) =0, y/(0) =0

Exercise 10.6.19 " + 12y +37y = 10e™#, y(0) =4, y/(0) =0

Exercise 10.6.20 y” 4 6y’ + 18y = cost —sint, y(0) =0, y'(0) =2

Exercise 10.6.21 Find the solution for the mass-spring equation y" + 4y’ +29y = 689 cos(2t).

Exercise 10.6.22 Find the solution for the mass-spring equation 3y" + 12y’ 4 24y = 2sint.

Exercise 10.6.23 Consider the differential equation my” + by’ +ky = cos(t), with m, b, and k all positive

and b* < 2mk; this equation is a model for a damped mass-spring system with external driving force
cos(@t). Show that the steady state part of the solution has amplitude

1
V (k—mw?)? + 02b?
Vamk —2b?
Show that this amplitude is largest when @ = mzi This is the resonant frequency of the system.
m

10.7 Second Order Linear Equations -
Variation of Parameters

The method of the last section works only when the function f(¢) in ay” +by' +cy = f(t) has a particularly
nice form, namely, when the derivatives of f look much like f itself. In other cases we can try variation
of parameters as we did in the first order case.

Since as before a # 0, we can always divide by a to make the coefficient of y” equal to 1. Thus, to
simplify the discussion, we assume a = 1. We know that the differential equation y” + by’ + cy = 0 has a
general solution y = Ay; + By,. As before, we guess a particular solution to y” + by’ +cy = f(t); this time
we use the guess y = u(t)y; +v(t)y,. Compute the derivatives:

/

= 'y +uy| +Vyr+ vy
W'y +u'y) +u'yy +uy] Vv VY VY .

/!

Now substituting:

Yiby ey = d'yi+uyy Hulyi Vv VS VY 0y
+bu'y1 + by’ + bv'yy + bvys + cuyy + cvy,
= (wy +buy| + cuyr) + (vyh +bvy, +cvys)
Fb(u'yr +Vy2) + (u"y1 +u'yy +Vy2 V5 + (W) +v')
= 04+0+b(u'y1 +Vy2) + (W'yy +u'y| +V"y2 +Vy5) + ('y] +V'y5).
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The first two terms in parentheses are zero because y; and y, are solutions to the associated homogeneous
equation. Now we engage in some wishful thinking. If u'y; +v'y, = 0, then we also have uy; +u'y] +
v"'y2 +V'y, = 0 by taking derivatives of both sides. This reduces the entire expression to 'y} +1'y, = 0.
We want this to be f(¢), that is, we need u'y; +v'y5 = f(t). So we would very much like these equations
to be true:

yr+vy, = 0
uyi+vys = f(t).

This is a system of two equations in the two unknowns #’ and v/, so we can solve as usual to get u' = g(¢)
and v/ = h(t). Then we can find u and v by computing antiderivatives. This is of course the sticking point
in the whole plan, since the antiderivatives may be impossible to find. Nevertheless, this sometimes works
out and is worth a try.

Example 10.31: Variation of Parameters

Consider the equation y"" — 5y’ + 6y = sint. Solve using variation of parameters.

Solution. The solution to the homogeneous equation is Ae?* + Be | so the simultaneous equations to be
solved are

Wer Vel = 0

2u'e* +3ved = sint.

If we multiply the first equation by 2 and subtract it from the second equation we get

! 3t

Ve’ = sint
vV = e Fsing
1 ) _
v o= —E(3smt—|—cost)e 3

using integration by parts. Then from the first equation:

W = —e e = —eHe Hsin(r)e™ = —e ¥ sint
1
u = §(2sint+cost)e_2t.
Now the particular solution we seek is
1 1
ue* +ve¥ = §(2sint+cost)e_2te2’ — E(S sin +cost)e e
1 1
= §(2sint+cost)—E(3sint+cost)
! (sint +cost)
= —(sinz+cost),
10

and the solution to the differential equation is Ae* + Be> + (sint 4 cost)/10. For comparison (and prac-
tice) you might want to solve this using the method of undetermined coefficients—both techniques should
yield the same result. L)
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Example 10.32: Variation of Parameters

The differential equation y" — 5y’ + 6y = €' sint can be solved using the method of undetermined
coefficients, though we have not seen any examples of such a solution. Again, we will solve it by
variation of parameters.

Solution. The equations to be solved are
Wer +v'ed = 0
2le® +3Ve¥ = ¢ sint.

If we multiply the first equation by 2 and subtract it from the second equation we get

Vel = e sint
Vo= e desint =e ¥ sint
1, . _
v = —§(2smt+cost)e A,
Then substituting we get
W = —e Vel = —eHe Hsin(r)e¥ = —e'sint
1, . _
u = E(smt—i—cost)e L
The particular solution is
2t 3t 1 : —t 2t 1 : —2t 3t
ue” +ve’ = E(smt—f—cost)e e’ — g(Zsmt—i—cost)e e

1 1
= E(sint—i-cost)e’ — g(2sint +cost)e’

1
= I_O(Sim +3cost)é,

and the solution to the differential equation is Ae* + Be™ + ¢/ (sint 4 3 cost)/10. &

Example 10.33: Solving a DE

The differential equationy” —2y' +y=¢'/ 1% is not of the form amenable to the method of undeter-
mined coefficients. Solve it using variation of parameters.

Solution. The solution to the homogeneous equation is Ae’ + Bte' and so the simultaneous equations are
We +vte = 0
we +Vte +ve = .

Subtracting the equations gives



400 = Differential Equations

1
/ — J—
Vo= )
1
v = ——.
t
Then substituting we get
!t /, t 1 !
we = —vte =——te
t
1
W = ——
t
u = —Int.
The solution is Ae’ + Bte' —é' Int — €. &

Exercises for 10.7

Find the general solution to the differential equation using variation of parameters.

Exercise 10.7.1 y” +y = tanx

Exercise 10.7.2 y"' +y = ¢*

Exercise 10.7.3 " +4y = secx
Exercise 10.7.4 y’ +4y = tanx
Exercise 10.7.5 "'+ — 6y = r?¢*
Exercise 10.7.6 y" —2y’ +2y = ¢’ tan(r)

Exercise 10.7.7 y" —2y’ + 2y = sin(t) cos(t) (This is rather messy when done by variation of parameters;
compare to undetermined coefficients.)



Polar Coordinates, Parametric Equations

11.1 Polar Coordinates

Coordinate systems are tools that let us use algebraic methods to understand geometry. While the rectan-
gular (also called Cartesian) coordinates that we have been using are the most common, some problems
are easier to analyze in alternate coordinate systems.

A coordinate system is a scheme that allows us to identify any point in the plane or in three-dimensional
space by a set of numbers. In rectangular coordinates these numbers are interpreted, roughly speaking, as
the lengths of the sides of a rectangle. In polar coordinates a point in the plane is identified by a pair of
numbers (7, 0). The number 6 measures the angle between the positive x-axis and a ray that goes through
the point, as shown in Figure 11.1; the number r measures the distance from the origin to the point (the
radius). Figure 11.1 shows the point with rectangular coordinates (1,1/3) and polar coordinates (2,7/3),
2 units from the origin and 7 /3 radians from the positive x-axis.

1.728 1 (2,7m/3)

1
Figure 11.1: Polar coordinates of the point (1,/3).

Just as we describe curves in the plane using equations involving x and y, so can we describe curves
using equations involving r and 6. Most common are equations of the form r = f(6).

Example 11.1: Circle in Polar Coordinates

Graph the curve given by r = 2.

Solution. All points with r = 2 are at distance 2 from the origin, so » = 2 describes the circle of radius 2
with center at the origin. &

Example 11.2: Cardioid

Graph the curve given by r =1+ cos 0.

Solution. We first consider y = 1 +cosux, as in figure 11.2. As 6 goes through the values in [0,27], the
value of r tracks the value of y, forming the “cardioid” shape of figure 11.2. For example, when 6 = 7/2,
r=1+4-cos(m/2) = 1, so we graph the point at distance 1 from the origin along the positive y-axis, which

401
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is at an angle of /2 from the positive x-axis. When 6 = 77/4, r = 1 +cos(7n/4) = 1+v2/2 ~ 1.71,
and the corresponding point appears in the fourth quadrant. If we look at the curve, we should explain the
indentation which occurs at 8 = 7. It should be obvious that cosx < 0 on (7/2,37/2), thus r = 1 +cos 6 <

1. Specifically, when 6@ = &, cos T = —1, so r =0, and we get the resulting indentation. This illustrates one
of the potential benefits of using polar coordinates: the equation for this curve in rectangular coordinates
would be quite complicated. s

2 4

1 i

0

/2 T 3n/2 2n
Figure 11.2: A cardioid: y = 1 + cosx on the left, r = 1 4 cos 6 on the right.

Each point in the plane is associated with exactly one pair of numbers in the rectangular coordinate
system; each point is associated with an infinite number of pairs in polar coordinates. In the cardioid
example, we considered only the range 0 < 6 < 27, and already there was a duplicate: (2,0) and (2,27)
are the same point. Indeed, every value of 6 outside the interval [0,27) duplicates a point on the curve
r=14cos6 when 0 < 6 < 2mw. We can even make sense of polar coordinates like (—2,7/4): Go to the
direction /4 and then move a distance 2 in the opposite direction; see figure 11.3. As usual, a negative
angle 6 means an angle measured clockwise from the positive x-axis. The point in figure 11.3 also has
coordinates (2,57 /4) and (2,—37/4).

2_
1 1 ,
/7r/4
S 1 2
;71
¢

Figure 11.3: The point (—2,7/4) = (2,5n/4) = (2,—37/4) in polar coordinates.

The relationship between rectangular and polar coordinates is quite easy to understand. The point with
polar coordinates (r, 0) has rectangular coordinates x = rcos 6 and y = rsin 6; this follows immediately
from the definition of the sine and cosine functions. Using figure 11.3 as an example, the point shown has
rectangular coordinates x = (—2) cos(7/4) = —v/2 ~ 1.4142 and y = (—2)sin(7/4) = —+/2. This makes
it very easy to convert equations from rectangular to polar coordinates.

Example 11.3: Straight Line in Polar Coordinates

Find the equation of the line y = 3x+ 2 in polar coordinates.
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2
sin® —3cos O’

&

Solution. We merely substitute: 7sin@ = 3rcos0 +2, or r =

Example 11.4: Equation of a Circle

Find the equation of the circle (x — 1/2)? +y? = 1/4 in polar coordinates.

Solution. Again substituting: (rcos8 —1/2)%>4r?sin? @ = 1/4. A bit of algebra turns this into r = cos(t).
You should try plotting a few (r, 0) values to convince yourself that this makes sense. s

Example 11.5: Spiral of Archimedes

Graph the polar equation r = 6.

Solution. Here the distance from the origin exactly matches the angle, so a bit of thought makes it clear
that when 6 > 0 we get the spiral of Archimedes in figure 11.4. When 0 < 0, r is also negative, and so the

full graph is the right hand picture in the figure. s
(m/2,7/2) (—m/2,—7/2)
1,1
(z.7) Y erom o (~7.-7)

Figure 11.4: The spiral of Archimedes and the full graph of » = 6.

Converting polar equations to rectangular equations can be somewhat trickier, and graphing polar
equations directly is also not always easy.

Example 11.6: Graphing Polar Equations

Graphr =2sin 0.

Solution. Given that the sine is periodic, we know that we will get the entire curve for values of 6 in
[0,27). As 6 runs from O to /2, r increases from O to 2. Then as 6 continues to 7, r decreases again
to 0. When 6 runs from 7 to 27, r is negative, and it is not hard to see that the first part of the curve is
simply traced out again, so in fact we get the whole curve for values of 6 in [0, 7). Thus, the curve looks
something like figure 11.5. Now, this suggests that the curve could possibly be a circle, and if it is, it
would have to be the circle x> + (y— 1)2 = 1. Having made this guess, we can easily check it. First we
substitute for x and y to get (rcos 8) + (rsin® — 1) = 1; expanding and simplifying does indeed turn this
into r = 2sin Q. &
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10 1
Figure 11.5: Graph of r = 2sin 6.

Exercises for 11.1

Exercise 11.1.1 Plot these polar coordinate points on one graph: (2,m/3), (=3,7n/2), (=2,—7m/4),
(1/2,m), (1,4m/3), (0,37/2).

Exercise 11.1.2 Find an equation in polar coordinates that has the same graph as the given equation in
rectangular coordinates.

(a) y=3x (d) ¥ +y* =5 (g) y=>5x+2
(b) y=—4 (e) y=x (h) x=2
(c) xy2:1 (f) y=sinx (i)y:x2+1

Exercise 11.1.3 Sketch the following curves:

(a) r=cosH (e) r=06/2,0>0
(b) r=1+06'/n? (f) r=cotBcsch

1
(c) r=sin(0 +m/4) (8) r= sin O + cos 6
(d) r=—secO (h) ¥ = —2secHcsch

Exercise 11.1.4 Find an equation in rectangular coordinates that has the same graph as the given equa-
tion in polar coordinates.

(a) r=sin(30) (c) r=secBcscO

(b) r=sin’6 (d) r=tan6
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11.2 Slopes in Polar Coordinates

When we describe a curve using polar coordinates, it is still a curve in the xy-plane. We would like to be
able to compute slopes and areas for these curves using polar coordinates.

We have seen that x = rcos @ and y = rsin 0 describe the relationship between polar and rectangular
coordinates. If in turn we are interested in a curve given by r = f(0), then we can write x = f(6) cos 6 and
y = f(0)sin 0, describing x and y in terms of 0 alone. The first of these equations describes 6 implicitly
in terms of x, so using the chain rule we may compute

dy _ dydo
dx  dO dx’
Since d6 /dx = 1/(dx/d6), we can instead compute

dy dy/d®  f(6)cosO+ f'(6)sin6

dx dx/d® —f(0)sin®+ f'(0)cosO’

Example 11.7: Horizontal Tangent Line

Find the points at which the curve given by r = 1 +cos 0 has a vertical or horizontal tangent line.

Solution. Since this function has period 27, we may restrict our attention to the interval [0,27) or (-7, 7],
as convenience dictates. First, we compute the slope:

dy  (14cos6)cos®—sin@sin®  cos6+cos? O —sin> O
dx —(1+cosB)sin® —sinBcos®  —sinh —2sinHcosO

This fraction is zero when the numerator is zero (and the denominator is not zero). The numerator is
2cos” 0 +cos O — 1 so by the quadratic formula

“1=Vi4d2 ]
4 T 2

cos O =

This means 6 is 7w or =7 /3. However, when 6 = 7, the denominator is also 0, so we cannot conclude that
the tangent line is horizontal.

Setting the denominator to zero we get

—0 —2sinBcos® = 0
sin@(1+2cos® = 0,

so either sin® = 0 or cos @ = —1/2. The first is true when 6 is 0 or 7, the second when 6 is 27 /3 or
47 /3. However, as above, when 6 = 7, the numerator is also 0, so we cannot conclude that the tangent
line is vertical. Figure 11.6 shows points corresponding to 6 equal to 0, £1.318, 27/3 and 47/3 on the
graph of the function. Note that when 6 = 7 the curve hits the origin and does not have a tangent line.

&
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{

Figure 11.6: Points of vertical and horizontal tangency for »r = 1 4 cos 0.

We know that the second derivative f”(x) is useful in describing functions, namely, in describing
concavity. We can compute f”(x) in terms of polar coordinates as well. We already know how to write
dy/dx =y’ in terms of 6, then

ddy dy dy'do dy'/do
dxdx dx dOdx dx/d®’

Example 11.8: Second Derivative of Cardioid

Find the second derivative for the cardioid r = 1 +cos 6.

Solution.
icos9+cos29—sin29 - B 3(1+cos0) 1
dO —sin® —2sin@cos® dx/d® ~  (sin@+2sinBcosB)? —(sin@ +2sinHcosB)
B —3(14cos0)
~ (sin@ +2sinBcos )3’

The ellipsis here represents rather a substantial amount of algebra. We know from above that the cardioid
has horizontal tangents at 4-7/3; substituting these values into the second derivative we get y”(7/3) =

—V/3/2 and y’(—m/3) = /3/2, indicating concave down and concave up respectively. This agrees with
the graph of the function. )

Exercises for 11.2

Exercise 11.2.1 Compute y = dy/dx and y' = d*y/dx.

(a) r=20 (d) r=sin0
(b) r=1+sin0 (e) r=secH
(c) r=cos@ (f) r=sin(26)

Exercise 11.2.2 Sketch the curves over the interval [0,27] unless otherwise stated.
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(a) r=sin6 +cosO (g) r=sin(6/3),0<0<6x () 1
.5 1 —cos®
(b) r=2+2sin6 (h) r=sin“ 0
1
(c) r:%—i—sine (i) r=1+cos”(26) () =1 Gne
(j) r=sin*(36)
(d) r=2+cos6 (p) r=cot(20)
| (k) r=tan0
(¢) r=>5+cosd () r=sec(6/2).0<6<4n (9 7=7/0.0=0<e
(f) r=cos(6/2),0<60<4r  (m) r=1+sech (r) r=14+m/6,0<6 <o

11.3 Areas in Polar Coordinates

We can use the equation of a curve in polar coordinates to compute some areas bounded by such curves.
The basic approach is the same as with any application of integration: Find an approximation that ap-
proaches the true value. For areas in rectangular coordinates, we approximated the region using rectan-
gles; in polar coordinates, we use sectors of circles, as depicted in Figure 11.7. Recall that the area of a
sector of a circle is ar? /2, where ¢ is the angle subtended by the sector. If the curve is given by r = £(8),
and the angle subtended by a small sector is A8, the area is (AQ)(f(6))?/2. Thus we approximate the

total area as
n—1

Y 5/(6)° 0.

As a limit, this will give rise to:

Example 11.9: Area inside a Cardioid

Find the area inside the cardioid r = 1 +cos0.

Solution.

2 It

0 sin29)
0 2

27 ) 1 2= ) 1 .
/ —(1+cosB) dG:—/ 1+2cosB+cos“0dO =—|60+2sin0+ —+
o 2 2.Jo 2 2 4

&

As in the example above, if a function is defined over the complete region [0, 27], then the bounds for
the integral are a = 0, b = 27. However, sometimes we need to be careful!

Example 11.10: Area inside a Loop

Find the area inside the loop r = /cos 0.
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Solution. We look for points of intersection.

0=+cosO
0=cosHO

This has solutions 8 = /2 and 37 /2, but we must select our bounds for integration correctly. Since cos 6
is negative on (7/2,371/3), v/cos 0 is undefined. Note that one full revolution is 27; that is, the function
is 27 periodic. If we were to integrate on [37/2,7/2] we would get the same answer, and can avoid a
scenario in which v/cos 6 is undefined. Equivalently, we can integrate on [—7/2,7/2].

b1 5 /2 1 2 1 r7/2 1,
/a Ef(e) d9=/n/25<\/cos6) dezi/n/zcosecm:E(smO)

2
) _1
—n/2

Figure 11.7: Approximating area by sectors of circles.

Example 11.11: Area Between Circles

Find the area between the circles r = 2 and r = 4sin 0, as shown in figure 11.8.

Solution. The two curves intersect where 2 = 4sin6, or sinf = 1/2, so 6 = /6 or 51/6. The area we
want is then

1 r57/6 ) 4

- 16sin*0 —4d6 = —7+2V/3.

2 71:/6 3

Figure 11.8: An area between curves.
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This first example makes the process appear more straightforward than it is. Since points have many
different representations in polar coordinates, it is not always so easy to identify points of intersection.

Example 11.12: Shaded Area

Find the shaded area in the first graph of figure 11.9 as the difference of the other two shaded areas.
The cardioid is r = 1 +sin 0 and the circle is r = 3sin 0.

Solution. We attempt to find points of intersection:

14+sin@ = 3sin6
1 = 2sin6
1/2 = sin6.
This has solutions 6 = /6 and 57/6; /6 corresponds to the intersection in the first quadrant that we
need. Note that no solution of this equation corresponds to the intersection point at the origin, but fortu-

nately that one is obvious. The cardioid goes through the origin when 6 = —7/2; the circle goes through
the origin at multiples of 7, starting with 0.

Now the larger region has area

2/ (1+sin0) d9_§_1_6\/§’

/2

and the smaller has area

1 [7/6 3
5/0 (3s5in0)2d0 = °F _ 2 \f3,

so the difference is the area we seek, which is /8. &

DC

Figure 11.9: An area between curves.

Exercises for 11.3

Exercise 11.3.1 Find the area enclosed by the curve.
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(a) r=+/sin6O (d) r=c0s0,0<0<m/3
(b) r=2+4cos0 (e) r=2acos0,a >0
(c) r=secB,m/6<6<m/3 (f) r=4+3sinb

Exercise 11.3.2 Find the area inside the loop formed by r = tan(6/2).

Exercise 11.3.3 Find the area inside one loop of r = cos(30).

Exercise 11.3.4 Find the area inside one loop of r = sin® 6.

Exercise 11.3.5 Find the area inside the small loop of r = (1/2) + cos 6.

Exercise 11.3.6 Find the area inside r = (1/2) +cos 0, including the area inside the small loop.

Exercise 11.3.7 Find the area inside one loop of r* = cos(26).

csc o
ok

Exercise 11.3.9 Find the area inside r = 2 cos 0 and outside r = 1.

Exercise 11.3.8 Find the area enclosed by r =tan 0 and r =

Exercise 11.3.10 Find the area inside r = 2sin 0 and above the line r = (3/2)csc6.
Exercise 11.3.11 Find the area inside r = 0, 0 < 0 < 2m.

Exercise 11.3.12 Find the area inside r = /6, 0 < 6 < 27.

Exercise 11.3.13 Find the area inside both r = \/3cos 8 and r = sin 6.

Exercise 11.3.14 Find the area inside bothr =1 —cos 0 and r = cos 0.

Exercise 11.3.15 The center of a circle of radius 1 is on the circumference of a circle of radius 2. Find
the area of the region inside both circles.

Exercise 11.3.16 Find the shaded area in figure 11.10. The curveisr =0, 0 < 0 < 37.
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Figure 11.10: An area bounded by the spiral of Archimedes.

11.4 Parametric Equations

When we computed the derivative dy/dx using polar coordinates, we used the expressions x = f(6)cos 6
and y = f(60)sin 6. These two equations completely specify the curve, though the form r = () is simpler.
The expanded form has the virtue that it can easily be generalized to describe a wider range of curves than
can be specified in rectangular or polar coordinates.

Suppose f(t) and g(¢) are functions. Then the equations x = f(¢) and y = g(¢) describe a curve in the
plane. In the case of the polar coordinates equations, the variable ¢ is replaced by 6 which has a natural
geometric interpretation. In general, ¢ is simply an arbitrary variable, often called in this case a parameter,
and this method of specifying a curve is known as parametric equations. One important interpretation of
t is time. In this interpretation, the equations x = f(¢) and y = g(¢) give the position of an object at time ¢.

Example 11.13: Position of a Path

Describe the path of an object that moves so that its position at timet is given by x = cost,y = cos>t.

Solution. We see immediately that y = x*, so the path lies on this parabola. The path is not the entire
parabola, however, since x = cost is always between —1 and 1. It is now easy to see that the object
oscillates back and forth on the parabola between the endpoints (1,1) and (—1,1), and is at point (1,1) at
time r = 0. s

It is sometimes quite easy to describe a complicated path in parametric equations when rectangular
and polar coordinate expressions are difficult or impossible to devise.

Example 11.14: Wheel

A wheel of radius 1 rolls along a straight line, say the x-axis. A point on the rim of the wheel will
trace out a curve, called a cycloid. Assume the point starts at the origin; find parametric equations
for the curve.

Solution. Figure 11.11 illustrates the generation of the curve. The wheel is shown at its starting point, and
again after it has rolled through about 490 degrees. We take as our parameter ¢ the angle through which
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the wheel has turned, measured as shown clockwise from the line connecting the center of the wheel to
the ground. Since the radius is 1, the center of the wheel has coordinates (¢,1). We seek to write the
coordinates of the point on the rim as (7 + Ax, 1 + Ay), where Ax and Ay are as shown in figure 11.12.
These values are nearly the sine and cosine of the angle ¢, from the unit circle definition of sine and cosine.
However, some care is required because we are measuring ¢ from a nonstandard starting line and in a
clockwise direction, as opposed to the usual counterclockwise direction. A bit of thought reveals that
Ax = —sint and Ay = —cost. Thus the parametric equations for the cycloid are x =t —sint, y = 1 — cost.

&
T ¢ L‘\‘\ - /ﬁhﬁﬁ“\\
0 Y 1 \

Figure 11.11: A cycloid.

N

Figure 11.12: The wheel.

Exercises for 11.4

Exercise 11.4.1 What curve is described by x = 1>, y = t*? If t is interpreted as time, describe how the
object moves on the curve.

Exercise 11.4.2 What curve is described by x = 3cost, y = 3sint? If t is interpreted as time, describe
how the object moves on the curve.

Exercise 11.4.3 What curve is described by x = 3cost, y = 2sint? If t is interpreted as time, describe
how the object moves on the curve.

Exercise 11.4.4 What curve is described by x = 3sint, y = 3cost? If t is interpreted as time, describe
how the object moves on the curve.

Exercise 11.4.5 Sketch the curve described by x = —t, y= 1. If t is interpreted as time, describe how
the object moves on the curve.

Exercise 11.4.6 A wheel of radius 1 rolls along a straight line, say the x-axis. A point P is located halfway
between the center of the wheel and the rim; assume P starts at the point (0,1/2). As the wheel rolls, P
traces a curve; find parametric equations for the curve.
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11.5 Calculus with Parametric Equations

We have already seen how to compute slopes of curves given by parametric equations—it is how we
computed slopes in polar coordinates.

Example 11.15: Slope of Cycloid

Find the slope of the cycloid x =t —sint, y = 1 — cost.

Solution. We compute x' = 1 — cost, ¥ = sint, so

dy  sint

dx 1—cost’

Note that when 7 is an odd multiple of 7, like 7 or 37, this is (0/2) = 0, so there is a horizontal tangent
line, in agreement with figure 11.11. At even multiples of 7, the fraction is 0/0, which is undefined. The
figure shows that there is no tangent line at such points. )

Areas can be a bit trickier with parametric equations, depending on the curve and the area desired. We
can potentially compute areas between the curve and the x-axis quite easily.

Example 11.16: Area Under Cycloid Arch

Find the area under one arch of the cycloid x =t —sint, y = 1 — cost.

Solution. We would like to compute

2
/ ydx,
0

but we do not know y in terms of x. However, the parametric equations allow us to make a substitution:
use y = 1 — cost to replace y, and compute dx = (1 — cost) dt. Then the integral becomes

2
/ (1 —cost)(1 —cost)dt =3m.
0

Note that we need to convert the original x limits to ¢ limits using x = ¢ — sint. When x = 0, t = sint,
which happens only when ¢ = 0. Likewise, when x = 27, t — 27 = sint and t = 27. Alternately, because
we understand how the cycloid is produced, we can see directly that one arch is generated by 0 <t < 27.
In general, of course, the ¢ limits will be different than the x limits. &

This technique will allow us to compute some quite interesting areas, as illustrated by the exercises.

As a final example, we see how to compute the length of a curve given by parametric equations. The
arc length for functions given as y in terms of x is the formula:

b dy 2
1 — ] d
/a * (dx) g
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Using some properties of derivatives, including the chain rule, we can convert this to use parametric
equations x = f(t),

1), y=2g():
[ () o = L)+ (%) (2) e
MOROK

= [ror+goyrar

Here u and v are the ¢ limits corresponding to the x limits a and b.

Example 11.17: Length of Cycloid Arch

Find the length of one arch of the cycloid.
Solution. From x = ¢ —sint, y = 1 — cost, we get the derivatives f/ = 1 —cost and g’ = sint, so the length
1S

2r 2r
/ \/(1—cost)2—|—sin2tdt:/ V2 —2cost dt.
0 0

Now we use the formula sin®(r/2) = (1 —cos(t)) /2 or 4sin®(t/2) = 2 — 2cost to get

/02” \/4sin?(1/2) dt.

Since 0 < <2m, sin(z/2) > 0, so we can rewrite this as

2
/ 2sin(1/2) di = 8.
0

Exercises for 11.5

Exercise 11.5.1 Consider the curve of 11.4.6 in section 11.4. Find all values of t for which the curve has
a horizontal tangent line.

Exercise 11.5.2 Consider the curve of 11.4.6 in section 11.4. Find the area under one arch of the curve.

Exercise 11.5.3 Consider the curve of 11.4.6 in section 11.4. Set up an integral for the length of one arch
of the curve.
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11.6 Conics in Polar Coordinates

A conic section is a curve obtained as the intersection of a cone and a plane. One useful geometric
definition that only involves the plane is that a conic consists of those points whose distances to some
point, called a focus, and some line, called a directrix, are in a fixed ratio, called the eccentricity.

The three types of conic sections are the ellipse, parabola and hyperbola (with the circle being a
degenerate case of an ellipse).

Circle

Ellipse

Let F be a fixed point (the focus), L be a line (the directrix) not containing F' and e be a nonnegative
real number (the eccentricity). The conics sections are obtained by the set of all points P whose distance
to F equals e times their distance to L, that is:

|PF|
T — €.
|PL|

In the case that:

* ¢ < 1 we obtain an ellipse (and when e = 0 we obtain the degenerate case: A circle),
* ¢ =1 we obtain a parabola,

* ¢ > 1 we obtain a hyperbola.

To obtain a simple polar equation we place the focal point at the origin. The formulation for a conic
section is then given in the polar form by

pe
rzi
1+ecosO

pe

and - r =17 e

where e is the eccentricity and p is the focal parameter representing the distance from the focus (or one of
the two foci) to the directrix.
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The three different types of conic sections are shown below. Focal points corresponding to all conic
sections are placed at the origin. First is the parabola.

r — 2a y
" 1l—cosf A
|
y? = 4a(z + a) |
|
I (0,2a)
|
|
| r
|
| 0
2 ¢ > U
(—2a,0) |
|
| (70/7 0)
|
|
|
|
|
Directrix Y
Next is the ellipse.
b2 Yy
T =
((1—\/(12—b2 cos 9) A
—VaZ—p2)? 2
E_%_L+%:1
(v50)

——

(\/a2 — b2, O)

A

<'7;\l>x

Directrix v Directrix

Finally, we have the hyperbola.
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r= -
(a—\/aQ—I-b2 cos 9)

(xwaiﬁf 2
a

7
'

I
I
I
N
+
I
I
I
I
1
7

Directrix
—2a2 b2

|
|
|
|
|
Vo |

T =

Some things to keep in mind with respect to the denominator of polar equations of various conics are
the following:

If the denominator is 1+ esin 6, it has a horizontal directrix above the focal point.

If the denominator is 1 — esin 6, it has a horizontal directrix below the focal point.

If the denominator is 1 +ecos 6, it has a vertical directrix to the right of the focal point.

If the denominator is 1 —ecos 6, it has a vertical directrix to the left of the focal point.

Example 11.18: Polar Equations for a Parabola

Find the equation of a parabola with focus at the origin and whose directrix is the line x = —1.

Solution. Since we have a parabola, e = 1. Furthermore, p = 1. Since the graph has a vertical directrix,
the equation will use 1 — ecos 0 in the denominator. Thus, the equation is:

2
y = —-
1—sinf

Exercises for 11.6

Exercise 11.6.1 Identify the following conics and find the eccentricity.
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(a) r= 1+sin6 (¢) r= 1—sin0
(b) r=-t I B
r_2—|—cose r_2—|—251n9

Exercise 11.6.2 Write the polar equation of a parabola with focus at the origin and directrix x = 3.

Exercise 11.6.3 Write the polar equation of a hyperbola with focus at the origin, directrix x = 4 and
eccentricity 2.

Exercise 11.6.4 Write the polar equation of an ellipse with focus at the origin, directrix x = 4sec 0 and
eccentricity 1/2.



Three Dimensions

12.1 The Coordinate System

Throughout the text thus far we have focused on investigating functions of the form y = f(x), with one
independent and one dependent variable. Such functions can be represented in two dimensions, using two
numerical axes that allow us to identify every point in the plane with two numbers. We now shift our focus
to three-dimensional space; to identify every point in three dimensions we require three numerical values.
The obvious way to make this association is to add one new axis, perpendicular to the x- and y-axes we
already understand. We could, for example, add a third axis, the z-axis, with the positive z-axis coming
straight out of the page, and the negative z-axis going out the back of the page. This is difficult to work
with on a printed page, so more often we draw a view of the three axes from an angle:

y

You must then imagine that the z-axis is perpendicular to the other two. Just as we have investigated
functions of the form y = f(x) in two dimensions, we will investigate three dimensions largely by consid-
ering functions; now the functions will (typically) have the form z = f(x,y). Due to the fact that we are
used to having the result of a function graphed in the vertical direction, it is somewhat easier to maintain
that convention in three dimensions. To accomplish this, we normally rotate the axes so that z points up;
the result is then:

419
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Note that if you imagine looking down from above, along the z-axis, the positive z-axis will come
straight toward you, the positive y-axis will point up, and the positive x-axis will point to your right, as
usual. Any point in space is identified by providing the three coordinates of the point, as shown; naturally,
we list the coordinates in the order (x,y,z). One useful way to think of this is to use the x- and y-coordinates
to identify a point in the xy-plane, then move straight up (or down) a distance given by the z-coordinate.

It is now fairly simple to understand some ‘“‘shapes” in three dimensions that correspond to simple
conditions on the coordinates. In two dimensions the equation x = 1 describes the vertical line through
(1,0). In three dimensions, it still describes all points with x-coordinate 1, but this is now a plane, as in
Figure 12.1.

Figure 12.1: The plane x = 1.

Recall the very useful distance formula in two dimensions which comes directly from the Pythagorean
Theorem: the distance between points (x1,y1) and (x2,y2) is v/(x1 —x2)% + (y1 —y2)2. What is the dis-
tance between two points (x1,y;,z1) and (x2,y7,z2) in three dimensions? Geometrically, we want the length
of the long diagonal labelled ¢ in the “box” in Figure 12.2. Since a, b, ¢ form a right triangle, a* + b* = ¢2.
b is the vertical distance between (x1,y;,z1) and (x2,y2,22), s0 b = |z; — z2|. The length a runs parallel to

the xy-plane, so it is simply the distance between (x1,y;) and (x2,y2), that is, a> = (x; —x2)% + (y1 — y2)>.
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Now we see that ¢? = (X1 —XZ)Z + (y1 —y2)2 + (Zl —Z2)2 and ¢ = \/(xl —)Q)Z + (yl —y2)2 + (Zl —Zz)z.

It is sometimes useful to give names to points, for example we might let P; = (x,y1,21), or more
concisely we might refer to the point P;(x1,y1,z1), and subsequently use just P;. Distance between two
points in either two or three dimensions is sometimes denoted by d, so for example the formula for the
distance between Py (x1,y1,z1) and P>(xp,y2,z2) might be expressed as

d(P,P,) = \/(xl —x2)2+ (y1 —y2)% + (21 —22)%

Distance

The distance between points Py (x;,y;) and P>(x3,y;) in two dimensions is

d(P,P) = \/(X1 —x2)2+(y1—y2)?

The distance between points Py (x;,y1,z1) and P>(x2,y2,22) in three dimensions is

d(P,P,) = \/(Xl — 1)+ (y1 —¥2)> + (21 — 22)?

X

Figure 12.2: Distance in three dimensions.

In two dimensions, the distance formula immediately gives us the equation of a circle: the circle
of radius r and center at (h,k) consists of all points (x,y) at distance r from (h,k), so the equation is
r=+/(x—h)24+(y—k)2 or r* = (x—h)?> 4 (y — k). Now we can get the similar equation r*> = (x — k) +
(y —k)? 4 (z —1)?, which describes all points (x,y,z) at distance r from (h,k,[), namely, the sphere with
radius r and center (h,k,1).

Exercises for 12.1

Exercise 12.1.1 Sketch the location of the points (1,1,0), (2,3,—1), and (—1,2,3) on a single set of axes.
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Exercise 12.1.2 Describe geometrically the set of points (x,y,z) that satisfy 7 = 4.
Exercise 12.1.3 Describe geometrically the set of points (x,y,z) that satisfy y = —3.
Exercise 12.1.4 Describe geometrically the set of points (x,y,z) that satisfy x+y = 2.

Exercise 12.1.5 The equation x+y+z =1 describes some collection of points in R>. Describe and sketch
the points that satisfy x+y+z = 1 and are in the xy-plane, in the xz-plane, and in the yz-plane.

Exercise 12.1.6 Find the lengths of the sides of the triangle with vertices (1,0,1), (2,2,—1), and (—3,2,-2).
Exercise 12.1.7 Find the lengths of the sides of the triangle with vertices (2,2,3), (8,6,5), and (—1,0,2).
Why do the results tell you that this isn’t really a triangle?

Exercise 12.1.8 Find an equation of the sphere with center at (1,1, 1) and radius 2.

Exercise 12.1.9 Find an equation of the sphere with center at (2,—1,3) and radius 5.

Exercise 12.1.10 Find an equation of the sphere with center (3,—2,1) and that goes through the point
(4,2,5).

Exercise 12.1.11 Find an equation of the sphere with center at (2,1,—1) and radius 4. Find an equation
for the intersection of this sphere with the yz-plane; describe this intersection geometrically.

Exercise 12.1.12 Consider the sphere of radius 5 centered at (2,3,4). What is the intersection of this
sphere with each of the coordinate planes?

Exercise 12.1.13 Show that for all values of 6 and @, the point (asin@ cos 8,asin@sin0,acos @) lies on

the sphere given by x* +y> + 7> = a’.

Exercise 12.1.14 Prove that the midpoint of the line segment connecting (x1,y1,21) to (x2,y2,22) is at
(xl +x2 yi+y2 2 +Zz)

2 7 2 72

Exercise 12.1.15 Any three points Pi(x1,y1,21), P>(x2,¥2,22), P3(x3,y3,23), lie in a plane and form a
triangle. The triangle inequality says that d(Py,P;) < d(P1,P2) +d (P>, P3). Prove the triangle inequality
using either algebra (messy) or the law of cosines (less messy).

Exercise 12.1.16 Is it possible for a plane to intersect a sphere in exactly two points? Exactly one point?
Explain.
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12.2 Vectors

A vector, denoted v, is a quantity consisting of a non-negative magnitude and a direction. We could
represent a vector in two dimensions as (m, ), where m is the magnitude and 6 is the direction, measured
as an angle from some agreed upon direction. For example, we might think of the vector (5,45°) as
representing “S km toward the northeast”; that is, this vector might be a displacement vector, indicating,
say, that your grandfather walked 5 kilometers toward the northeast to school in the snow. On the other
hand, the same vector could represent a velocity, indicating that your grandfather walked at 5 km/hr
toward the northeast. What the vector does not indicate is where this walk occurred: a vector represents a
magnitude and a direction, but not a location. Pictorially it is useful to represent a vector as an arrow; the
direction of the vector, naturally, is the direction in which the arrow points; the magnitude of the vector is
reflected in the length of the arrow.

It turns out that many, many quantities behave as vectors, e.g., displacement, velocity, acceleration,
force. Already we can get some idea of their usefulness using displacement vectors. Suppose that your
grandfather walked 5 km NE and then 2 km SSE; if the terrain allows, and perhaps armed with a compass,
how could your grandfather have walked directly to his destination? We can use vectors (and a bit of
geometry) to answer this question. We begin by noting that since vectors do not include a specification of
position, we can “place” them anywhere that is convenient. So we can picture your grandfather’s journey
as two displacement vectors drawn head to tail:

The displacement vector for the shortcut route is the vector drawn with a dashed line, from the tail of
the first to the head of the second. With a little trigonometry, we can compute that the third vector has
magnitude approximately 4.62 and direction 21.43°, so walking 4.62 km in the direction 21.43° north of
east (approximately ENE) would get your grandfather to school. This sort of calculation is so common,
we dignify it with a name: we say that the third vector is the sum of the other two vectors.

There is another common way to picture the sum of two vectors. Put the vectors tail to tail and then
complete the parallelogram they indicate; the sum of the two vectors is the diagonal of the parallelogram:

This is a more natural representation in some circumstances. For example, if the two original vectors
represent forces acting on an object, the sum of the two vectors is the net or effective force on the object,
and it is convenient to draw all three with their tails at the location of the object.
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We also define scalar multiplication for vectors: if v is a vector (m,0) and a > 0 is a real number,
the vector av is (am, 0), namely, it points in the same direction but has a times the magnitude. If a < 0,
av is (|a|m, 0 + ), with |a| times the magnitude and pointing in the opposite direction (unless we specify
otherwise, angles are measured in radians).

Now we can understand subtraction of vectors: v—w = v+ (—1)w:

Note that as you would expect, W+ (v —w) = v.

We can represent a vector in ways other than (m, 6). How else could we describe a particular vector?
Consider again the vector (5,45°). Let’s draw it again, but impose a coordinate system. If we put the tail
of the arrow at the origin, the head of the arrow ends up at the point (5/v/2,5/v/2) ~ (3.54,3.54).

(3.54,3.54)
5

45°

In this picture the coordinates (3.54,3.54) identify the head of the arrow, provided we know that the tail
of the arrow has been placed at (0,0). Then in fact the vector can always be identified as (3.54,3.54), no
matter where it is placed; we just have to remember that the numbers 3.54 must be interpreted as a change
from the position of the tail, not as the actual coordinates of the arrow head; to emphasize this we will
write (3.54,3.54) to mean the vector and (3.54,3.54) to mean the point. Then if the vector (3.54,3.54) is
drawn with its tail at (1,2) it looks like this:

(4.54,5.54)

Consider again the two part trip: 5 km NE and then 2 km SSE. The vector representing the first part
of the trip is (5/v/2,5/v/2), and the second part of the trip is represented by (2cos(_T3”),2$in(_T3”)) ~
(0.77,—1.85). We can represent the sum of these with the usual head to tail picture:
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It is clear from the picture that the coordinates of the destination point are (5/v/2+2cos(—37/8),5/v2+
2sin(—37/8)) or approximately (4.3, 1.69), so the sum of the two vectors is (5/v/2+2cos(—37/8),5/v2+
2sin(—37/8)) ~ (4.3,1.69). Adding the two vectors is easier in this form than in the (m, 8) form, provided
that we’re willing to have the answer in this form as well.

It is easy to see that scalar multiplication and vector subtraction are also easy to compute in this form:
a(v,w) = (av,aw) and (vi,w;) — (vo,w2) = (v{ —v2,w; —wy). What about the magnitude? The magnitude
of the vector (v,w) is still the length of the corresponding arrow representation; this is the distance from
the origin to the point (v, w), namely, the distance from the tail to the head of the arrow. Using the familiar

distance formula the magnitude of the vector is simply \/v2 4+ w2, which we also denote with absolute
value bars: [(v,w)| = vV v2 4+ w2

In three dimensions, vectors are still quantities consisting of a magnitude and a direction, but of course
there are many more possible directions. It’s not clear how we might represent the direction explicitly,
but the coordinate version of vectors makes just as much sense in three dimensions as in two. By (1,2,3)
we mean the vector whose head is at (1,2,3) if its tail is at the origin. As before, we can place the vector
anywhere we want; if it has its tail at (4,5,6) then its head is at (5,7,9). It remains true that arithmetic is
easy to do with vectors in this form.

Arithmetic of Vectors

Sum of vectors:
(vi,v2,v3) + (Wi, w2, w3) = (vi +wi,v2 + w2, vz +w3)

Scalar Multiplication of vectors:
a(vi,va,v3) = (avy,ava,avs)
Subtraction of vectors:
(v1,v2,v3) — (Wi, w2, w3) = (Vi — W1, V2 — W2, V3 — w3)

The magnitude of the vector is the distance from the origin to the head of the vector, or

](vl,vz,V3)] = \/V%—FV%—FV%.
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Figure 12.3: The vector (2,4,5) with its tail at the origin.

Three particularly simple vectors turn out to be quite useful: i = (1,0,0), j = (0, 1,0), and k = (0,0, 1).
These play much the same role for vectors that the axes play for points. In particular, notice that

(v1,v2,v3) = (v1,0,0) + (0,v,,0) + (0,0, v3)
—v1(1,0,0) +v2(0, 1,0) + v3(0,0, 1)
=vii+wnj+nk

Thus far, we have focused our discussion on vectors which begin at the origin and end at a point.
However we will frequently want to produce a vector that points from one point to another. That is, if P
and Q are pointSﬂe seek the vector x such that when the tail of x is placed at P, its head is at Q; we refer

to this vector as PQ. If we know the coordinates of P and Q, the coordinates of the vector are easy to find.

%
Suppose P = (1,—2,4) and Q = (—2,1,3). The vector PQ is (—2—1,1—(-2),3—4) = (-3,3,—1)
H
and QP = (3,-3,1).

Exercises for 12.2

Exercise 12.2.1 Draw the vector (3,—1) with its tail at the origin.
Exercise 12.2.2 Draw the vector (3,—1,2) with its tail at the origin.
Exercise 12.2.3 Let v be the vector with tail at the origin and head at (1,2); let w be the vector with tail

at the origin and head at (3,1). Draw v and w and a vector u with tail at (1,2) and head at (3,1). Draw
u with its tail at the origin.
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Exercise 12.2.4 Let v be the vector with tail at the origin and head at (—1,2); let w be the vector with
tail at the origin and head at (3,3). Draw v and w and a vector u with tail at (—1,2) and head at (3,3).
Draw u with its tail at the origin.

Exercise 12.2.5 Let v be the vector with tail at the origin and head at (5,2); let w be the vector with tail
at the origin and head at (1,5). Draw v and w and a vector u with tail at (5,2) and head at (1,5). Draw

u with its tail at the origin.

Exercise 12.2.6 Find |[v|,v+w,v—w,

v+w|, [v—w|and —2v forv = (1,3) and w = (—1,-5).

Exercise 12.2.7 Find

14

Vv+w, v—w, v+w|, [v—w|and —2v forv =(1,2,3) andw = (—1,2,-3).

>

Exercise 12.2.8 Find |[v|,v+w,v—w,

v+w|, [v—w|and —2v forv = (1,0,1) and w = (—1,—-2,2).

Exercise 12.2.9 Find

14

Vvt+w, v—w, v+w|, [v—w|and —2v forv=(1,—1,1) and w = (0,0, 3).

>

Exercise 12.2.10 Find |[v|,v+w, v—w,

v+w|, [v—w|and —2v forv=(3,2,1) andw = (—1,—1,—1).

— —
Exercise 12.2.11 Let P = (4,5,6), Q = (1,2,—5). Find PQ. Find a vector with the same direction as PQ
%

but with length 1. Find a vector with the same direction as PQ but with length 4.

- =y =
Exercise 12.2.12 If A, B, and C are three points, find AB + BC + CA.

Exercise 12.2.13 Consider the 12 vectors that have their tails at the center of a clock and their respective
heads at each of the 12 digits. What is the sum of these vectors? What if we remove the vector corre-
sponding to 4 o’clock? What if, instead, all vectors have their tails at 12 o’clock, and their heads on the
remaining digits?

Exercise 12.2.14 Let a and b be nonzero vectors in two dimensions that are not parallel or anti-parallel.
(Vectors are parallel if they point in the same direction, anti-parallel if they point in opposite directions.)
Show, algebraically, that if ¢ is any two dimensional vector, there are scalars s and t such that ¢ = sa +tb.

Exercise 12.2.15 Does the statement in the previous exercise hold if the vectors a, b, and ¢ are three
dimensional vectors? Explain.

12.3 The Dot Product

The goal of this section is to answer the following question. Given two vectors, what is the angle between
them?

Since vectors have no position, we are free to place vectors wherever we like. If the two vectors are
placed tail-to-tail, there is now a reasonable interpretation of the question: we seek the measure of the
smallest angle between the two vectors, in the plane in which they lie. Figure 12.4 illustrates the situation.
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Figure 12.4: The angle between vectors v and w.

Since the angle 6 lies in a triangle, we can compute it using a bit of trigonometry, namely, the law of
cosines. Remember that the law of cosines states ¢> = a> + b*> — 2abcosC.

The lengths of the sides of the triangle in Figure 12.4 are |v|, |w|, and |[v—w|. Let v = (v1,v,v3) and
w = (wy,wp,w3); then

Iv—w|? = |v]> + |w|> = 2|v||w|cos 6
2|v||w|cos 8 = |v|]* +|w|* — |v — w|?
=V V3wl ws w3 — (v —wi)? — (v —w)? — (v3 —w3)?
=i+ v+ +wi+wi 4wl
— (v} = 2vywy +wh) — (V3 —2vaws +w3) — (V5 — 2v3w3 +w3)
=2viwy 4+ 2vowy + 2v3ws
|v||w|cos O = viw) +vows +v3ws3
cos 0 = (viw) +vowa +v3w3)/(|v]|w|)

A bit of simple arithmetic with the coordinates of v and w allows us to compute the cosine of the angle
between them. If necessary we can use the arccosine to get 8, but in many problems cos 6 turns out to be
all we really need.

The numerator of the fraction that gives us cos 6 turns up a lot, so we give it a name and more compact
notation: we call it the dot product, and write it as

V-W=V{W] +Vows+V3w3

This is the same symbol we use for ordinary multiplication, but there should never be any confusion; you
can tell from context whether we are “multiplying” vectors or numbers. (We might also use the dot for
scalar multiplication: a - v = av; again, it is clear what is meant from context.)

Find the angle between the vectors v= (1,2,1) and w = (3,1,—5).

Solution. We know that cos® =v-w/(|v||w|) = (1-34+2-1+1-(=5))/(]v|]|]w|) =0, so 6 = /2, that is,
the vectors are perpendicular. s

Find the angle between the vectors v= (3,3,0) and w = (1,0,0).
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Solution. We compute

cos®=(3-1+3-04+0-0)/(v9+9+0vV1+0+0)
=3/V18=1/V2

s0 0 =m/4. &
The following are some special cases worth looking at.
Example 12.4

Find the angles between:
1. vand v

2. vand —v

3. vand 0= (0,0,0)

Solution.

1. cos® =v-v/(]v]|v]) = (v} +13 +v§)/(\/v%+v%+v§\/v%+v%+v§) =1, so the angle between v
and itself is zero, which of course is correct.

2. cosO=v-—v/(|v|]|—V]) = (—v%—v%—v%)/(\/v%—i—v%—l—v%\/v%—|—v%—|—v§) = —1, so the angle is 7,

that is, the vectors point in opposite directions, as of course we already knew.

0
3. cosO =v-0/(]v[][0]) = (04+0+0)/(y/vi +v3+153V 02 +02+0%) = o which is undefined. On
the other hand, note that since v-0 = 0 it looks at first as if cos @ will be zero, which as we have

seen means that vectors are perpendicular; only when we notice that the denominator is also zero
do we run into trouble. One way to “fix” this is to adopt the convention that the zero vector 0 is
perpendicular to all vectors; then we can say in general that if v-w = 0, v and w are perpendicular.

&

Generalizing the examples, note the following useful facts.

o If v is parallel or anti-parallel to w then v-w/(|v||w|) = %1, and conversely, if v-w/(|v||w|) = 1, v
and w are parallel, while if v-w/(|v||w|) = —1, v and w are anti-parallel.

e If v is perpendicular to w then v-w/(|v||w|) = 0, and conversely if v-w/(|v||w|) = 0 then v and w
are perpendicular.

Given two vectors, it is often useful to find the projection or vector projection of one vector onto
the other, because this turns out to have important meaning in many circumstances. More precisely, given
v and w, we seek a vector parallel to w but with length determined by v in a natural way, as shown in
Figure 12.5. p is chosen so that the triangle formed by v, p, and v — p is a right triangle.
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Figure 12.5: p is the projection of v onto w.

Using a little trigonometry, we see that

V-W VW
[p| = [v[cos 6 = || =
vilwl  [w]

this is sometimes called the scalar projection of v onto w. To get p itself, we multiply this length by a

vector of length one parallel to w:
VW W VW

p=——="—5W.
w| [w] |w]?
Be sure that you understand why w/|w| is a vector of length one (also called a unit vector) parallel to w.

The discussion so far implicitly assumed that 0 < 0 < /2. If 7/2 < 6 < =, the picture is like Fig-
ure 12.6. In this case v - w is negative, so the vector

is anti-parallel to w, and its length is
VW

|wi
In general, the scalar projection of v onto w may be positive or negative. If it is negative, it means that
the projection vector is anti-parallel to w and that the length of the projection vector is the absolute value

of the scalar projection. Of course, you can also compute the length of the projection vector as usual, by
applying the distance formula to the vector.

Figure 12.6: p is the projection of v onto w.

Note that the phrase “projection onto w” is a bit misleading if taken literally; all that w provides is a
direction; the length of w has no impact on the final vector. In Figure 12.7, for example, w is shorter than
the projection vector, but this is perfectly acceptable.
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Figure 12.7: p is the projection of v onto w.

Physical force is a vector quantity. It is often necessary to compute the “component” of a force acting
in a different direction than the force is being applied.

Example 12.5: Components of the Force Vector

Suppose a ten pound weight is resting on an inclined plane—a pitched roof, for example. Gravity
exerts a force of ten pounds on the object, directed straight down. It is useful to think of the compo-
nent of this force directed down and parallel to the roof, and the component down and directly into
the roof. These forces are the projections of the force vector onto vectors parallel and perpendicular
to the roof. Suppose the roof is tilted at a 30° angle, as in Figure 12.8. Compute the component of
the force directed down the roof and the component of the force directed into the roof.

Solution. A vector parallel to the roof is (—+/3,—1), and a vector perpendicular to the roof is (1, —+/3).
The force vector is F = (0, —10). The component of the force directed down the roof is then

F(—V31) 10
T TR

with length 5. The component of the force directed into the roof is

F, — F-<1,—\/§)<1,_\/§>: 10V/3

(—V3,—1) = (—5V/3/2,-5/2)

l:

(1,—V3) = (5V/3/2,—15/2)

(1, —V3)2 22
with length 5v/3. Thus, a force of 5 pounds is pulling the object down the roof, while a force of 5v/3
pounds is pulling the object into the roof. &

F;

| )
F

Figure 12.8: Components of a force.

The dot product has some familiar-looking properties that will be useful later, so we list them here.
These may be proved by writing the vectors in coordinate form and then performing the indicated calcu-
lations; subsequently it can be easier to use the properties instead of calculating with coordinates.



432 = Three Dimensions

Theorem 12.6: Dot Product Properties

If u, v, and w are vectors and a is a real number, then
1. u-u=|u?
2. u-v=v-u
3 u(v+tw=u-v+u-w

4. (au)-v=a(u-v)=u-(av)

Exercises for 12.3

Exercise 12.3.1 Find (1,1,1)-(2,-3,4).
Exercise 12.3.2 Find (1,2,0) - (0,0,57).
Exercise 12.3.3 Find (3,2,1)-(0,1,0).
Exercise 12.3.4 Find (—1,-2,5)-(1,0,—1).
Exercise 12.3.5 Find (3,4,6)-(2,3,4).

Exercise 12.3.6 Find the cosine of the angle between (1,2,3) and (1,1,1); use a calculator if necessary
to find the angle.

Exercise 12.3.7 Find the cosine of the angle between (—1,—2,—3) and (5,0,2); use a calculator if
necessary to find the angle.

Exercise 12.3.8 Find the cosine of the angle between (47,100,0) and (0,0,5); use a calculator if neces-
sary to find the angle.

Exercise 12.3.9 Find the cosine of the angle between (1,0,1) and (0,1,1); use a calculator if necessary
to find the angle.

Exercise 12.3.10 Find the cosine of the angle between (2,0,0) and (—1,1,—1); use a calculator if nec-
essary to find the angle.

Exercise 12.3.11 Find the angle between the diagonal of a cube and one of the edges adjacent to the
diagonal.

Exercise 12.3.12 Find the scalar and vector projections of (1,2,3) onto (1,2,0).

Exercise 12.3.13 Find the scalar and vector projections of (1,1,1) onto (3,2,1).
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Exercise 12.3.14 A force of 10 pounds is applied to a wagon, directed at an angle of 30°. Find the
component of this force pulling the wagon straight up, and the component pulling it horizontally along the
ground.

F

7

N
\/ N\

Figure 12.9: Pulling a wagon.

Exercise 12.3.15 A force of 15 pounds is applied to a wagon, directed at an angle of 45°. Find the
component of this force pulling the wagon straight up, and the component pulling it horizontally along the
ground.

Exercise 12.3.16 Use the dot product to find a non-zero vector w perpendicular to bothu = (1,2, —3) and
v=(2,0,1).

Exercise 12.3.17 Letx = (1,1,0) andy = (2,4,2). Find a unit vector that is perpendicular to both x and
y.

Exercise 12.3.18 Do the three points (1,2,0), (=2,1,1), and (0,3, —1) form a right triangle?
Exercise 12.3.19 Do the three points (1,1,1), (2,3,2), and (5,0,—1) form a right triangle?
Exercise 12.3.20 Show that |v-w| < |v||w|.

Exercise 12.3.21 Let x and y be perpendicular vectors. Use Theorem 12.6 to prove that |x|*> + |y|> =
lx +y|%. What is this result better known as?

Exercise 12.3.22 Prove that the diagonals of a rhombus intersect at right angles.

Exercise 12.3.23 Suppose that z = |x|y + |y|x where x, y, and z are all nonzero vectors. Prove that z
bisects the angle between x and y.

Exercise 12.3.24 Prove Theorem 12.6.

12.4 The Cross Product

Suppose we are given two vectors. In many cases it is useful to find a third vector perpendicular to the
first two. There are of course an infinite number of such vectors of different lengths. Nevertheless, let
us find one. Suppose v = (vi,vp,v3) and w = (w,wp,w3). We want to find a vector ¢ = (cy,¢p,c3) with
c-v=c-w=0,or

vicy +vacp +v3e3 =0,
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wict +wacy +wscz = 0.
Multiply the first equation by w3 and the second by vz and subtract to get

wivicl +wivaco +wivzes =0
vswicy +v3wacy +vawszez =0
(V1W3 —W1V3>C1 + (V2W3 — W2V3)Cz =0

Of course, this equation in two variables has many solutions; a particularly easy one to see is ¢; = vow3 —
wov3, co = wivsz — viws. Substituting back into either of the original equations and solving for c¢3 gives
C3 =VIWy —WV).

This particular answer to the problem turns out to have some nice properties, and it is dignified with a
name: the cross product:

VXW= <V2W3 —WoVv3,Wiv3 — VW3, ViWwy — W1V2>.

While there is a nice pattern to this vector, it can be a bit difficult to memorize; here is a convenient
mnemonic. The determinant of a two by two matrix is

a b
c d

‘:ad—cb.

This is extended to the determinant of a three by three matrix:

X <
v 3) | = V2 V3 Vi v3 Vi V2
! 2 3 wy w3 w1 wjs wp wsp
wr w2 w3

= x(vawz —wav3) —y(viwz —wqv3) +z(viwa — wiva)
= x(vaw3 —wov3) +y(wivy —viws) +z(viwa —wiwa).

Each of the two by two matrices is formed by deleting the top row and one column of the three by three
matrix; the subtraction of the middle term must also be memorized. This is not the place to extol the uses of
the determinant; suffice it to say that determinants are extraordinarily useful and important. Here we want
to use it merely as a mnemonic device. You will have noticed that the three expressions in parentheses on
the last line are precisely the three coordinates of the cross product; replacing x, y, z by i, j, k gives us

i K
V1 V2 V3| = (v2W3 — W2V3)i — (V1W3 —W1V3>j + (V1W2 —W1V2>k
Wi wy w3
= (V2W3 — W2V3)i + (W1V3 — V1W3)j + (V1W2 — W]Vg)k
= (Vaws — WoV3, WiV3 — VIW3, VW2 — WiV2)
=V XW.

Given v and w, there are typically two possible directions and an infinite number of magnitudes that
will give a vector perpendicular to both v and w. As we have picked a particular one, we should investigate
the magnitude and direction.
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We know how to compute the magnitude of v x w; it’s a bit messy but not difficult. It is somewhat
easier to work initially with the square of the magnitude, so as to avoid the square root:

VX W|? = (vaws —wav3)2 + (wivs — viws)? + (Viwy —wivy)?

= V%W% —2vow3wav3 + W%v% + W%V% —2wivaviws + V%W% + V%W% —2viwawiva + W%v%
While it is far from obvious, this nasty looking expression can be simplified:

v x W|2 = (v%—f—v% —l—v%)(w% —l—w% —|—W%) — (viw1 +vown —|—V3W3)2
= [V[*|w[* = (v-w)?

= [v]*|w]* = |v]*|w|*cos® 6

= |V|2|W|2(1 — cos? 0)

= \v|2|w\zsin29

[vx w| = |v||w|sin6

The magnitude of v X w is thus very similar to the dot product. In particular, notice that if v is parallel
to w, the angle between them is zero, so sin@ = 0, so |v x w| = 0, and likewise if they are anti-parallel,
sin@ = 0, and |v x w| = 0. Conversely, if |[v x w| = 0 and |v| and |w/| are not zero, it must be that sin 6 = 0,
so v is parallel or anti-parallel to w.

Here is a curious fact about this quantity that turns out to be quite useful later on: given two vectors,
we can put them tail to tail and form a parallelogram, as in Figure 12.10. The height of the parallelogram,
h, is |v|sin 6, and the base is |w|, so the area of the parallelogram is |v||w|sin 8, exactly the magnitude of
v x wl.

—_— e —_—— —_— — —

Figure 12.10: A parallelogram.

What about the direction of the cross product? Remarkably, there is a simple rule that describes the
direction. Let’s look at a simple example: let v= (a,0,0), w = (b, ¢,0). If the vectors are placed with tails
at the origin, v lies along the x-axis and w lies in the xy-plane, so we know the cross product will point
either up or down. The cross product is

VX W= = (0,0, ac).

> S =
o O =
oo

As predicted, this is a vector pointing up or down, depending on the sign of ac. Suppose that a > 0, so
the sign depends only on c: if ¢ > 0, ac > 0 and the vector points up; if ¢ < 0, the vector points down.
On the other hand, if a < 0 and ¢ > 0, the vector points down, while if a < 0 and ¢ < 0, the vector points
up. Here is how to interpret these facts with a single rule: imagine rotating vector v until it points in the
same direction as w; there are two ways to do this—use the rotation that goes through the smaller angle.
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If a>0and c >0, ora <0 and ¢ < 0, the rotation will be counter-clockwise when viewed from above;
in the other two cases, v must be rotated clockwise to reach w. The rule is: counter-clockwise means up,
clockwise means down. If v and w are any vectors in the xy-plane, the same rule applies—v need not be
parallel to the x-axis.

Although it is somewhat difficult computationally to see how this plays out for any two starting vectors,
the rule is essentially the same. Place v and w tail to tail. The plane in which v and w lie may be viewed
from two sides; view it from the side for which v must rotate counter-clockwise to reach w; then the vector
v X W points toward you.

This rule is usually called the right hand rule. Imagine placing the heel of your right hand at the point
where the tails are joined, so that your slightly curled fingers indicate the direction of rotation from v to
w. Then your thumb points in the direction of the cross product v x w.

One immediate consequence of these facts is that v x w # w X v, because the two cross products point
in opposite directions. On the other hand, since

|[vx w|=|v||w|sin® = |w||v|sin6 = |w X v|,

the lengths of the two cross products are equal, so we know that v w = —(w X v).

The cross product has some familiar-looking properties that will be useful later, so we list them here.
As with the dot product, these can be proved by performing the appropriate calculations on coordinates,
after which we may sometimes avoid such calculations by using the properties.

Theorem 12.7: Cross Product Properties

If u, v, and w are vectors and a is a real number, then
I ux(v+w)=uxv+uxw
2. (v+w)xu=vxu+wxu
3. (au) x v=a(uxv)=ux (av)
4. u-(vxw)=(uxv)-w
5

.ux(vxw)=(u-w)v—(u-v)w

Exercises for 12.4

Exercise 12.4.1 Find the cross product of (1,1,1) and (1,2,3).
Exercise 12.4.2 Find the cross product of (1,0,2) and (—1,-2,4).
Exercise 12.4.3 Find the cross product of (—2,1,3) and (5,2,—1).

Exercise 12.4.4 Find the cross product of (1,0,0) and (0,0, 1).
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Exercise 12.4.5 Two vectors u and v are separated by an angle of /6, and |u| =2 and |v| = 3. Find
lu xv|.

Exercise 12.4.6 Two vectors u and v are separated by an angle of /4, and |u| =3 and |v| = 7. Find
lu xv|.

Exercise 12.4.7 Find the area of the parallelogram with vertices (0,0), (1,2), (3,7), and (2,5).
Exercise 12.4.8 Find and explain the value of (i X j) x k and (i +j) x (i —j).

Exercise 12.4.9 Prove that for all vectors u and v, (u xv)-v =0.

Exercise 12.4.10 Prove Theorem 12.7.

Exercise 12.4.11 Define the triple product of three vectors, x, y, and z, to be the scalar x - (y X z). Show
that three vectors lie in the same plane if and only if their triple product is zero. Verify that (1,5,—2),
(4,3,0) and (6,13, —4) all lie in the same plane.

12.5 Lines and Planes

Lines and planes are perhaps the simplest of curves and surfaces in three dimensional space. They also
will prove important as we seek to understand more complicated curves and surfaces.

You may recall that the equation of a line in two dimensions is ax + by = c; it is reasonable to expect
that a line in three dimensions is given by ax + by + cz = d. However it turns out that this is the equation
of a plane. We will turn our attention to a study of planes and return to consider lines later in this section.

A plane does not have an obvious “direction” as does a line. It is possible to associate a plane with
a direction in a very useful way, however: there are exactly two directions perpendicular to a plane. Any
vector with one of these two directions is called normal to the plane. While there are many normal vectors
to a given plane, they are all parallel or anti-parallel to each other.

Suppose two points (vi,v2,v3) and (w1, wp, w3) are in a plane; then the vector (w; — vy, wy — vy, w3 —v3)
is parallel to the plane. In particular, if this vector is placed with its tail at (vi,v2,v3) then its head is at
(wy,wa,w3) and it lies in the plane. As a result, any vector perpendicular to the plane is perpendicular
to (w; —vi,wy —vo,w3 —v3). In fact, it is easy to see that the plane consists of precisely those points
(w1, wp,w3) for which (w; — v, wy — vp, w3 —v3) is perpendicular to a normal to the plane, as indicated in
Figure 12.11. Turning this around, suppose we know that (a,b,c) is normal to a plane containing the point
(vi,v2,v3). Then (x,y,z) is in the plane if and only if (a,b,c) is perpendicular to (x — v,y — v,z —v3). In
turn, we know that this is true precisely when (a,b,c) - (x — v,y —vp,z—v3) = 0. That is, (x,y,z) is in the
plane if and only if

(a,b,c)- (x—vi,y—vp,z—v3) =0

a(x—vy)+b(y—v2)+c(z—v3)=0

ax+by+cz—avi —bvy —cv3 =0
ax+by—+cz = avi + bvy 4 cvs.
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Working backwards, note that if (x,y,z) is a point satisfying ax + by + cz = d then
ax+by+cz=d
ax+by+cz—d=0
a(x—d/a)+b(y—0)+c(z—0)=0
(a,b,c)-(x—d/a,y,z) =0.
Namely, (a,b,c) is perpendicular to the vector with tail at (d/a,0,0) and head at (x,y,z). This means
that the points (x,y,z) that satisfy the equation ax + by + ¢z = d form a plane perpendicular to (a,b,c).

(This doesn’t work if a = 0, but in that case we can use b or ¢ in the role of a. That is, either a(x —0) +
b(y—d/b)+c(z—0)=0o0ra(x—0)+b(y—0)+c(z—d/c)=0.)

Figure 12.11: A plane defined via vectors perpendicular to a normal.

Thus, given a vector (a,b,c) we know that all planes perpendicular to this vector have the form ax+
by + cz = d, and any surface of this form is a plane perpendicular to (a,b,c).

Standard Form of a Plane

Any plane can be written in the form
ax+by+cz=d

where a, b, c,d are constants and not all a, b, ¢ are zero.
This plane is perpendicular to the vector (a,b,c).

Example 12.8: Perpendicular Plane

Find an equation for the plane perpendicular to (1,2,3) and containing the point (5,0,7).
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Solution. Using the formula above, the plane is 1x+ 2y + 3z = d. To find d we may substitute the known
point on the plane to get 1-5+2-0+3-7=d, sod =26. &

Example 12.9: Normal Vector

Find a vector normal to the plane 2x — 3y +z = 15.

Solution. One example is (2,—3,1). Any vector parallel or anti-parallel to this works as well, so for
example —2(2,—3,1) = (—4,6,—2) is also normal to the plane. &

We will frequently need to find an equation for a plane given certain information about the plane.
While there may occasionally be slightly shorter ways to get to the desired result, it is always possible,
and usually advisable, to use the given information to find a normal to the plane and a point on the plane,
and then to find the equation as above.

Example 12.10: Plane Perpendicular

The planes x —z = 1 and y + 2z = 3 intersect in a line. Find a third plane that contains this line and
is perpendicular to the plane x +y—2z = 1.

Solution. First, we note that two planes are perpendicular if and only if their normal vectors are perpen-
dicular. Thus, we seek a vector (a,b,c) that is perpendicular to (1,1,—2). In addition, since the desired
plane is to contain a certain line, (a,b,c) must be perpendicular to any vector parallel to this line. Since
(a,b,c) must be perpendicular to two vectors, we may find it by computing the cross product of the two.

Therefore we need a vector parallel to the line of intersection of the given planes. For this, it suffices to
know two points on the line. To find two points on this line, we must find two points that are simultaneously
on the two planes, x —z = 1 and y+ 2z = 3. Any point on both planes will satisfy x —z =1 and y+2z = 3.
It is easy to find values for x and z satisfying the first, such as x = 1,z =0 and x =2,z = 1. Then we can
find corresponding values for y using the second equation, namely y=3 and y = 1, so (1,3,0) and (2,1,1)
are two such points. They are both on the line of intersection since they are contained in both planes.

Now (2—1,1-3,1—-0) = (1,—2,1) is parallel to the line. Finally, we may choose (a,b,c) = (1,1,—2) x
(1,-2,1) = (—3,—3,-3). While this vector will do perfectly well, any vector parallel or anti-parallel to
it will work as well. For example we might choose (1, 1, 1) which is anti-parallel to it, and easier to work
with.

Now we know that (1,1, 1) is normal to the desired plane and (2,1,1) is a point on the plane. This
gives an equation of (1)x+ (1)y+ (1)z = d. Substituting the value of the point into the equation gives
d = 4, and therefore an equation of the plane is x+y+z = 4. As a quick check, since (1,3,0) is also on
the line, it should be on the plane; since 1+ 3 + 0 = 4, we see that this is indeed the case.

Note that had we used (—3, —3,—3) as the normal, we would have discovered the equation —3x — 3y —
3z = —12. Then we might well have noticed that we could divide both sides by —3 to get the equivalent
x+y+z=4 L)

We will now turn our attention to a study of lines. Unfortunately, it turns out to be quite inconvenient
to represent a typical line with a single equation; we need to approach lines in a different way.

Unlike a plane, a line in three dimensions does have an obvious direction, namely, the direction of any
vector parallel to it. In fact a line can be defined and uniquely identified by providing one point on the line
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and a vector parallel to the line (in one of two possible directions). That is, the line consists of exactly
those points we can reach by starting at the point and going for some distance in the direction of the vector.
Let’s see how we can translate this into more mathematical language.

Suppose a line contains the point (v,v;,v3) and is parallel to the vector (a, b, c). If we place the vector
(v1,v2,v3) with its tail at the origin and its head at (v,v,,v3), and if we place the vector (a,b,c) with its
tail at (v1,v2,v3), then the head of (a,b,c) is at a point on the line. We can get to any point on the line by
doing the same thing, except using #{a,b,c) in place of (a,b,c), where ¢ is some real number. Because of
the way vector addition works, the point at the head of the vector #{a,b,c) is the point at the head of the
vector (vi,v2,v3) +1t{a,b,c), namely (v| +ta, vy +1tb,v3+1tc); see Figure 12.12.

t{a,b,c) -

(vi,v2,v3

(vi,v2,v3) (vi,v2,v3) +1(a,b,c)

Figure 12.12: Vector form of a line.

In other words, as ¢ runs through all possible real values, the vector (vy,vs,v3) +t{a,b,c) points to
every point on the line when its tail is placed at the origin. It is occasionally useful to use this form of a
line even in two dimensions; a vector form for a line in the xy-plane is (vi,v2) +#(a,b), which is the same
as (v1,v2,0) +1(a,b,0).

Vector Equation of a Line

An equation for a line passing through point (v, v;,v3) and parallel to the vector (a,b,c) is

(vi,v2,v3) +t{a,b,c)

The vector (a,b,c) is called the direction vector for the line.
Another common way to write this is as a set of parametric equations:

xX=v|+ta y=vy+tb z=v3+tc.

Parametric Equations of a Line

A line in space can be described as

xX=vi+ta
y=1vy+tb
z=v3+Ic

where (v1,v7,v3) is a point on the line and (a, b, c) is parallel to the line.
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Example 12.11: Vector Expression

Find a vector expression for the line through (6,1, —3) and (2,4,5).

Solution. To get a vector parallel to the line we subtract (6,1, —3) — (2,4,5) = (4,—3,—8). The line is
then given by (2,4,5) +(4,—3,—8); there are of course many other possibilities, such as (6,1,—3) +
t(4,—3,-8). X

Example 12.12: Intersecting Lines

Determine whether the lines (1,1,1) +¢(1,2,—1) and (3,2,1) +1(—1,—5,3) are parallel, intersect,
or neither.

Solution. In two dimensions, two lines either intersect or are parallel; in three dimensions, lines that do
not intersect might not be parallel. In this case, since the direction vectors for the lines are not parallel or
anti-parallel we know the lines are not parallel. If they intersect, there must be two values a and b so that
(I, 1,1)+a(1,2,—1) = (3,2,1) + b(—1,-5,3). That is, the following must have a solution:

l+a=3-b
1+2a=2-5b
l—a=1+3b
This gives three equations in two unknowns, so there may or may not be a solution in general. In this case,
it is easy to discover that a = 3 and b = —1 satisfies all three equations. Substituting these values into
(L1,1)+a(l,2,—1) = (3,2,1) + b(—1,-5,3), the point of intersection is (4,7, —2). &

Example 12.13: Distance from a Point to a Plane

Find the distance from the point (1,2,3) to the plane 2x —y+3z = 5.

Solution. The distance from a point P to a plane is the shortest distance from P to any point on the plane;
this is the distance measured from P pergndicular to the plane; see Figure 12.13. This distance is the

absolute value of the scalar projection of QP onto a normal vector n, where Q is any point on the plane. It
is easy to find a point on the plane, say (1,0, 1). Thus the distance is

(0,2,2)-(2,—1,3) 4
[2.-13) V14
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Figure 12.13: Distance from a point to a plane.

Example 12.14: Distance from a Point to a Line

Find the distance from the point (—1,2,1) to the line (1,1,1) +1(2,3,—1).

Solution. Again we want the distance measured perpendicular to the line, as indicated in Figure 12.14.
The desired distance is

_>
QP x V|
v

where v is any vector parallel to the line. From the equation of the line, we can use Q = (1,1,1) and
v=(2,3,—1) along with P = (—1,2, 1), so the distance is

[(=2,1,0) x (2,3, -1)|  |(=1,-2,-8)| /69
(2,3, —1)] V14 V14

H
|QP|sinf =

\ |@| sin 6
\
\

-
-~
-
-~

-
Y
-~
~

Figure 12.14: Distance from a point to a line.
Exercises for 12.5

Exercise 12.5.1 Find an equation of the plane containing (6,2,1) and perpendicular to (1,1,1).

Exercise 12.5.2 Find an equation of the plane containing (—1,2,—3) and perpendicular to (4,5,—1).
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Exercise 12.5.3 Find an equation of the plane containing (1,2,—3), (0,1,—2) and (1,2,-2).
Exercise 12.5.4 Find an equation of the plane containing (1,0,0), (4,2,0) and (3,2,1).
Exercise 12.5.5 Find an equation of the plane containing (1,0,0) and the line (1,0,2) +1(3,2,1).

Exercise 12.5.6 Find an equation of the plane containing the line of intersection of x+y+z =1 and
x—y—+2z =2, and perpendicular to the xy-plane.

Exercise 12.5.7 Find an equation of the line through (1,0,3) and (1,2,4).

Exercise 12.5.8 Find an equation of the line through (1,0,3) and perpendicular to the plane x+2y — 7 =
1.

Exercise 12.5.9 Find an equation of the line through the origin and perpendicular to the plane x+y—z =
2.

Exercise 12.5.10 Find a and c so that (a,1,c¢) is on the line through (0,2,3) and (2,7,5).
Exercise 12.5.11 Explain how to discover the solution in Example 12.12.

Exercise 12.5.12 Determine whether the lines (1,3,—1) +1(1,1,0) and (0,0,0) +1¢(1,4,5) are parallel,
intersect, or neither.

Exercise 12.5.13 Determine whether the lines (1,0,2) +t(—1,—1,2) and (4,4,2) +1(2,2,—4) are paral-
lel, intersect, or neither.

Exercise 12.5.14 Determine whether the lines (1,2,—1) +1(1,2,3) and (1,0,1) +1(2/3,2,4/3) are par-
allel, intersect, or neither.

Exercise 12.5.15 Determine whether the lines (1,1,2) +1(1,2,—3) and (2,3,—1) +1(2,4,—6) are paral-
lel, intersect, or neither.

Exercise 12.5.16 Find a unit normal vector to each of the coordinate planes.
Exercise 12.5.17 Show that (2,1,3) +1(1,1,2) and (3,2,5) + s(2,2,4) are the same line.

Exercise 12.5.18 Give a prose description for each of the following processes:

(a) Given two distinct points, find the line that goes through them.

(b) Given three points (not all on the same line), find the plane that goes through them. Why do we need
the caveat that not all points be on the same line?

(c) Given a line and a point not on the line, find the plane that contains them both.

(d) Given a plane and a point not on the plane, find the line that is perpendicular to the plane through
the given point.
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Exercise 12.5.19 Find the distance from (2,2,2) tox+y+z= —1.

Exercise 12.5.20 Find the distance from (2,—1,—1) to 2x —3y+z=2.

Exercise 12.5.21 Find the distance from (2,—1,1) to (2,2,0) +1(1,2,3).

Exercise 12.5.22 Find the distance from (1,0,1) to (3,2,1) +¢(2,—1,-2).

Exercise 12.5.23 Find the cosine of the angle between the planes x+y+z =2 and x+2y+ 3z = 8.

Exercise 12.5.24 Find the cosine of the angle between the planes x —y+2z =2 and 3x —2y+z=15.

12.6 Other Coordinate Systems

Coordinate systems are tools that let us use algebraic methods to understand geometry. While the rect-
angular (also called Cartesian) coordinates that we have been discussing are the most common, some
problems are easier to analyze in alternate coordinate systems.

A coordinate system is a scheme that allows us to identify any point in the plane or in three-dimensional
space by a set of numbers. In rectangular coordinates these numbers are interpreted, roughly speaking, as
the lengths of the sides of a rectangular “box.”

In two dimensions you are already familiar (from Section 12.2) with an alternative, called polar co-
ordinates. In this system, each point in the plane is identified by a pair of numbers (r,0). The number
0 measures the counter-clockwise angle between the positive x-axis and a vector with tail at the origin
and head at the point, as shown in Figure 12.15; the number r measures the distance from the origin to
the point. Either of these may be negative; a negative 0 indicates the angle is measured clockwise from
the positive x-axis instead of counter-clockwise, and a negative r indicates the point at distance |r| in the
opposite of the direction given by 6.

The relationship between polar and rectangular coordinates is given by

x=rcosO

y=rsinf
and

7= A /x2+y2

tan 0 = Y
X

Example 12.15: Rectangular to Polar Coordinates

Convert the point (x,y) = (1,1/3) into polar coordinates.

Solution. First calculate r:

r=\/x2+y2=v14+3=2
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Now find 0 such that tan0 = ? The required 0 is % The polar coordinates are (2, %) &

Figure 12.15 also shows the point with rectangular coordinates (1,+/3) and polar coordinates (2,7 /3),
2 units from the origin and 7 /3 radians from the positive x-axis.

y y
(r.6) (2,7/3)

|

|

| .
,7sin 0
|

|

/3

rcos 9

Figure 12.15: Polar coordinates: the general case and the point with rectangular coordinates

(1,v3).

We can extend polar coordinates to three dimensions simply by adding a z coordinate; this is called
cylindrical coordinates. Each point in three-dimensional space is represented by three coordinates
(r,0,z) in the obvious way: this point is z units above or below the point (r, 8) in the xy-plane, as shown

in Figure 12.16. The point with rectangular coordinates (1,+/3,3) and cylindrical coordinates (2,7/3,3)
is also indicated in Figure 12.16.

< g
|
|
*(r,0,z) | *(2,7/3,3)
| | |
| | |
| | |
IZ | |
| | |
Ly Loty
6 7 w3
X x

Figure 12.16: Cylindrical coordinates: the general case and the point with rectangular coordinates

(1,v/3,3).

Some figures with relatively complicated equations in rectangular coordinates will be represented by
simpler equations in cylindrical coordinates. For example, the cylinder in Figure 12.17 has equation
x? +y% = 4 in rectangular coordinates, but equation » = 2 in cylindrical coordinates.
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Figure 12.17: The cylinder r = 2.

Given a point (r,0) in polar coordinates, it is easy to see (as in Figure 12.15) that the rectangular
coordinates of the same point are (rcos,rsin6), and so the point (r,0,z) in cylindrical coordinates is
(rcos6,rsin,z) in rectangular coordinates. This means it is usually easy to convert any equation from
rectangular to cylindrical coordinates: simply substitute

x=rcosO

y=rsinf

and leave z alone. For example, starting with x> 4 y?> = 4 and substituting x = rcos 8, y = rsin 0 gives

2 cos? 0 +r*sin @ =4

r*(cos® @ +sin* 0) = 4
=4
2.

r

Of course, it’s easy to see directly that this defines a cylinder as mentioned above.

Cylindrical coordinates are an obvious extension of polar coordinates to three dimensions, but the use
of the z-coordinate means they are not as closely analogous to polar coordinates as another standard co-
ordinate system. In polar coordinates, we identify a point by a direction and distance from the origin; in
three dimensions we can do the same thing, in a variety of ways. The question is: how do we represent a
direction? One way is to give the angle of rotation, 8, from the positive x-axis, just as in cylindrical coordi-
nates, and also an angle of rotation, ¢, from the positive z-axis. Roughly speaking, 0 is like longitude and
¢ is like latitude. (Earth longitude is measured as a positive or negative angle from the prime meridian,
and is always between 0 and 180 degrees, east or west; 6 can be any positive or negative angle, and we
use radians except in informal circumstances. Earth latitude is measured north or south from the equator;
¢ is measured from the north pole down.) This system is called spherical coordinates; the coordinates
are listed in the order (p, 0, @), where p is the distance from the origin, and like r in polar and cylindrical
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coordinates it may be negative. The general case and an example are pictured in Figure 12.18; the length
marked r is the r of cylindrical coordinates.

< <

(p.6.9) (V13,m/3,arctan(2/3))

/3

X

Figure 12.18: Spherical coordinates: the general case and the point with rectangular coordinates

(1,v/3,3).

As with cylindrical coordinates, we can easily convert equations in rectangular coordinates to the
equivalent in spherical coordinates, though it is a bit more difficult to discover the proper substitutions.
Figure 12.19 shows the typical point in spherical coordinates from Figure 12.18, viewed now so that the
arrow marked r in the original graph appears as the horizontal “axis” in the left hand graph. From this
diagram it is easy to see that the z-coordinate is p cos @, and that r = p sin ¢, as shown. Thus, in converting
from rectangular to spherical coordinates we will replace z by p cos ¢. To see the substitutions for x and y
we now view the same point from above, as shown in the right hand graph. The hypotenuse of the triangle
in the right hand graph is r = p sin ¢, so the sides of the triangle, as shown, are x = rcos @ = p sin¢ cos 0
and y = rsin@ = psin¢sin 0. Therefore to convert from rectangular to spherical coordinates, we make
these substitutions:

X = psin¢cos O
y=psin¢gsinO
Z=pcosq.

< psing - (p,0,9)

i
pcosd (o) ipsin(])sin@
¢ 0 |
. —
< psing > psingcos O

Figure 12.19: Converting from rectangular to spherical coordinates.

As the cylinder had a simple equation in cylindrical coordinates, so does the sphere in spherical coor-
dinates.
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Example 12.16

Find an equation for the sphere of radius 2 in spherical coordinates.

Solution. If we start with the Cartesian equation of the sphere and substitute, we get the spherical equation:
Ry =22
p2 sin’ [0} cos® 6 + p2 sin® [0} sin® @ + p2 cos? o= 22
p?sin® ¢ (cos® 6 +sin? 0) + p? cos? ¢ = 22
p2 sin? O+ p2 cos? 0= 22
p2(sin” ¢ +cos’ ¢) = 22
p? =122
p=2
Therefore, in spherical coordinates, a sphere of radius 2 is expressed p = 2. )

Although not as simple as with cylindrical coordinates, we can use spherical coordinates to describe
the equation of a cylinder.

Example 12.17: Cylinder Equation in Spherical Coordinates

Find an equation for the cylinder x> +y*> = 4 in spherical coordinates.

Solution. Proceeding as in the previous example:
24 yz 4
p?sin’ ¢ cos> 0 4 pZsin® @ sin® 6 = 4
p?sin® ¢ (cos® 6 +sin’ 0) = 4

p2sin®¢ =4
psing =2
2
P=Ging

Exercises for 12.6

Exercise 12.6.1 Convert the following points in rectangular coordinates to cylindrical and spherical
coordinates:

(a) (1,1,1)
(b) (7’ _7’5)
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(c) (cos(1),sin(1),1)
(d) (0,0,—m)

Exercise 12.6.2 Find an equation for the sphere x> +y?* + 72 = 4 in cylindrical coordinates.
Exercise 12.6.3 Find an equation for the yz-plane in cylindrical coordinates.
Exercise 12.6.4 Find an equation equivalent to x* +y* +2z> + 2z —5 = 0 in cylindrical coordinates.

. 2. . N .
Exercise 12.6.5 Suppose the curve z=e™" in the xz-plane is rotated around the z-axis. Find an equation
for the resulting surface in cylindrical coordinates.

Exercise 12.6.6 Suppose the curve z = x in the xz-plane is rotated around the z-axis. Find an equation for
the resulting surface in cylindrical coordinates.

Exercise 12.6.7 Find an equation for the plane y = 0 in spherical coordinates.
Exercise 12.6.8 Find an equation for the plane z = 1 in spherical coordinates.

Exercise 12.6.9 Find an equation for the sphere with radius 1 and center at (0,1,0) in spherical coordi-
nates.

Exercise 12.6.10 Suppose the curve z = x in the xz-plane is rotated around the z-axis. Find an equation
for the resulting surface in spherical coordinates.

Exercise 12.6.11 Plot the polar equations r = sin 0 and r = cos 0 and comment on their similarities. (If
you get stuck on how to plot these, you can multiply both sides of each equation by r and convert back to
rectangular coordinates).

Exercise 12.6.12 Extend Exercises 12.6.6 and 12.6.10 by rotating the curve 7 = mx around the z-axis and
converting to both cylindrical and spherical coordinates.

Exercise 12.6.13 Convert the spherical formula p = sin0sin@ to rectangular coordinates and describe
the surface defined by the formula (Hint: multiply both sides by p.)

Exercise 12.6.14 We can describe points in the first octant by x > 0, y > 0 and z > 0. Give similar
inequalities for the first octant in cylindrical and spherical coordinates.






Partial Differentiation

13.1 Functions of Several Variables

In single-variable calculus we were concerned with functions that map the real numbers R to R, sometimes
called “real functions of one variable”, meaning the “input” is a single real number and the “output” is
likewise a single real number. Now we turn to functions of several variables, where several input variables
are mapped to one value: functions f : R” — R. We will deal primarily with n = 2 and to a lesser extent
n = 3; in fact many of the techniques we discuss can be applied to larger values of n as well.

A function f : R? — R maps a pair of values (x,y) to a single real number. The three-dimensional
coordinate system we have already used is a convenient way to visualize such functions: above each point
(x,y) in the xy-plane we graph the point (x,y,z), where of course z = f(x,y).

Example 13.1: Plane

Describe the function f(x,y) = 3x+4y—5.

Solution. Writing this as z = 3x+4y —5 and then 3x+4 4y — z = 5 we recognize the equation of a plane. In
the form f(x,y) = 3x+4y — 5 the emphasis has shifted: we now think of x and y as independent variables
and z as a variable dependent on them, but the geometry is unchanged. s

Example 13.2: Sphere

Describe the equation x> +y? + 7> = 4.

Solution. We have seen that x> + y* 4 z2 = 4 represents a sphere of radius 2. We cannot write this in the
form f(x,y), since for each x and y in the disk x*> +y? < 4 there are two corresponding points on the sphere.
As with the equation of a circle, we can resolve this equation into two functions, fi(x,y) = /4 —x? —y?
and f>(x,y) = —/4 —x% —y2, representing the upper and lower hemispheres, respectively. Each of these
is an example of a function with a restricted domain: only certain values of x and y make sense (namely,
those for which x> +y?> < 4) and the graphs of these functions are limited to a small region of the plane.

[ )

Example 13.3: Square Root

Describe the function f(x,y) = /x4 /5.

Solution. This function is defined only when both x and y are non-negative. When y = 0 we get f(x,y) =
/%, the familiar square root function in the xz-plane, and when x = 0 we get the same curve in the yz-
plane. Generally speaking, we see that starting from f(0,0) = O this function gets larger in every direction
in roughly the same way that the square root function gets larger. For example, if we restrict attention to

451
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the line x =y, we get f(x,y) = 2+/x and along the line y = 2x we have f(x,y) = /x+ v2x = (1 +v/2)/x.
&

Figure 13.1: f(x,y) = /x+ /.

A computer program that plots such surfaces can be very useful, as it is often difficult to get a good
idea of what they look like. Still, it is valuable to be able to visualize relatively simple surfaces without
such aids. As in the previous example, it is often a good idea to examine the function on restricted subsets
of the plane, especially lines. It can also be useful to identify those points (x,y) that share a common
z-value.

Example 13.4: Elliptic Paraboloid

Describe the graph of f(x,y) = x> +y?.

Solution. When x = 0 this becomes f = y?, a parabola in the yz-plane; when y = 0 we get the “same”
parabola f = x? in the xz-plane.

Finally, picking a value z = k, at what points does f(x,y) = k? This means x> +y*> = k, which we
recognize as the equation of a circle of radius v/k. So the graph of f (x,y) has parabolic cross-sections, and
the same height everywhere on concentric circles with center at the origin. This fits with what we have
already discovered. s
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Figure 13.2: f(x,y) = x> +y°.

As in this example, the points (x,y) such that f(x,y) = k usually form a curve, called a level curve
of the function. A graph of some level curves can give a good idea of the shape of the surface; it looks
much like a topographic map of the surface. In Figure 13.2 both the surface and its associated level curves
are shown. Note that, as with a topographic map, the heights corresponding to the level curves are evenly
spaced, so that where curves are closer together the surface is steeper.

Functions f : R” — R behave much like functions of two variables; we will on occasion discuss
functions of three variables. The principal difficulty with such functions is visualizing them, as they do not
“fit” in the three dimensions we are familiar with. For three variables there are various ways to interpret
functions that make them easier to understand. For example, f(x,y,z) could represent the temperature at
the point (x,y,z), or the pressure, or the strength of a magnetic field. It remains useful to consider those
points at which f(x,y,z) = k, where k is some constant value. If f(x,y,z) is temperature, the set of points
(x,y,z) such that f(x,y,z) = k is the collection of points in space with temperature k; in general this is
called a level set; for three variables, a level set is typically a surface, called a level surface.

Example 13.5: Level Surfaces

Suppose the temperature at (x,y,z) is T (x,y,z) = e~ (®+"+2%) This function has a maximum value
of 1 at the origin, and tends to 0 in all directions. If k is positive and at most 1, the set of points for
which T (x,y,z) = k is those points satisfying x> 4+ y? 4+ z> = —1Ink, a sphere centered at the origin.
The level surfaces are the concentric spheres centered at the origin.

Exercises for 13.1

Exercise 13.1.1 Let f(x,y) = (x —y)?. Determine the equations and shapes of the cross-sections when
x=0,y=0, x =1y, and describe the level curves. Use a three-dimensional graphing tool to graph the
surface.

Exercise 13.1.2 Let f(x,y) = |x|+ |y|. Determine the equations and shapes of the cross-sections when
x=0, y=0, x =Yy, and describe the level curves. Use a three-dimensional graphing tool to graph the
surface.
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Exercise 13.1.3 Ler f(x,y) = e~ (P4 sin(x? +y?). Determine the equations and shapes of the cross-
sections when x =0, y =0, x =y, and describe the level curves. Use a three-dimensional graphing tool
to graph the surface.

Exercise 13.1.4 Let f(x,y) = sin(x —y). Determine the equations and shapes of the cross-sections when
x=0, y=0, x =y, and describe the level curves. Use a three-dimensional graphing tool to graph the
surface.

Exercise 13.1.5 Let f(x,y) = (x> —y?)%. Determine the equations and shapes of the cross-sections when
x=0, y=0, x =y, and describe the level curves. Use a three-dimensional graphing tool to graph the
surface.

Exercise 13.1.6 Find the domain of each of the following functions of two variables:

(@) VI—x2+/y2—4
(b) arcsin(x? 4 y> —2)

(c) V16 —x2—4y?

Exercise 13.1.7 Below are two sets of level curves. One is for a cone, one is for a paraboloid. Which is
which? Explain.

/ / — 1 \ AN N
Yy \ ST

o [ «’/ \\ V1 = “’/@ )

] A 0| Ji [ ]2 AT ‘N’, A :
O /) Ry
\\\\\—v\—*/ / // / T
\\ N /y/

13.2 Limits and Continuity

To develop calculus for functions of one variable, we needed to make sense of the concept of a limit,
which was used in the definition of a continuous function and the derivative of a function. Limits involving
functions of two variables can be considerably more difficult to deal with; fortunately, most of the functions
we encounter are fairly easy to understand.

The potential difficulty is largely due to the fact that there are many ways to “approach” a point in the
xy-plane. If we want to say that  lim : f(x,y) = L, we need to capture the idea that as (x,y) gets close
x,y)—(a,b

to (a,b) then f(x,y) gets close to L. For functions of one variable, f(x), there are only two ways that x can
approach a: from the left or right. But there are an infinite number of ways to approach (a,b): along any
one of an infinite number of straight lines, or even along a curved path in the xy-plane. We might hope
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that it’s really not so bad—suppose, for example, that along every possible line through (a,b) the value of
f(x,y) gets close to L; surely this means that “f(x,y) approaches L as (x,y) approaches (a,b)”. Sadly, no.

Xy

Figure 13.3: f(x,y) = m.

Example 13.6: Weird Limit

Analyze f(x,y) = xy* /(x> +y*).

Solution. When x =0 or y = 0, f(x,y) is 0, so the limit of f(x,y) approaching the origin along either
the x- or y-axis is 0. Moreover, along the line y = mx, f(x,y) = m?>x> /(x> + m*x*). As x approaches 0
this expression approaches 0 as well. So along every line through the origin f(x,y) approaches 0. Now
suppose we approach the origin along x = y?. Then

A A |

f(xay):y4+y4 :2—}74:2,

so the limit is 1/2. Looking at Figure 13.3, it is apparent that there is a ridge above x = y>. Approaching
the origin along a straight line, we go over the ridge and then drop down toward 0, but approaching along
the ridge the height is a constant 1/2. Therefore the limit does not exist. s
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Fortunately, we can define the concept of limit without needing to specify how a particular point is
approached—indeed, in Definition 3.3, we didn’t need the concept of “approach.” Roughly, that definition
says that when x is close to a then f(x) is close to L; there is no mention of “how” we get close to a. We
can adapt that definition to two variables quite easily:

Definition 13.7: Limit of a Multivariate Function

Suppose f(x,y) is a function. We say that

lim x,y)=1L
oty T )

if for every € > 0 there is a § > 0 so that whenever 0 < \/(x—a)2+ (y—b)2 < 8, |f(x,y) —L| <&.

. v

This says that we can make |f(x,y) — L| < €, no matter how small € is, by making the distance from
(x,y) to (a,b) “small enough”.

Example 13.8: Multivariate Limit

32

Show that lim ——=~ —0.
(xy)—=(0,0) X= +
Solution. Suppose € > 0. Then
3x%y B x? 3ly|
22| T 2yl
Note that x>/ (x*> +y?) < 1 and |y| = /32 < /x2+y2 < 8. So
2
x
——3ly|<1-3-6.
22

We want to force this to be less than € by picking & “small enough.” If we choose § = £/3 then

3 2
3y |5 E
x2 +y? 3
&
Recall that a function f(x) is continuous at x = a if 1i_1>n f(x) = f(a). We can say exactly the same
X—a
thing about a function of two variables: f(x,y) is continuous at (a,b) if lim  f(x,y) = f(a,b).

(xy)—(a,b)
The function f(x,y) = 3x%y/ (x> +y?) is not continuous at (0,0), because f(0,0) is not defined. How-
ever, we know that )lin(lo 0 f(x,y) =0, so we can make a continuous function, by extending the definition
x,y)—(0,

of f so that £(0,0) = 0. This surface is shown in Figure 13.4.
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3 2
Figure 13.4: f(x,y) = ﬁ

Note that we cannot extend the definition of the function in Example 13.6 to create a continuous
function, since the limit does not exist as we approach (0,0).

Fortunately, the functions we will be working with will usually be continuous almost everywhere.
As with single variable functions, two classes of common functions are particularly useful and easy to
describe. A polynomial in two variables is a sum of terms of the form ax™y", where a is a real number and
m and n are non-negative integers. A rational function is a quotient of polynomials.

Theorem 13.9: Continuity of Functions

Polynomials are continuous everywhere. Rational functions are continuous everywhere they are
defined.

Exercises for 13.2

Determine whether each limit exists. If it does, find the limit and prove that it is the limit; if it does not,
explain how you know.

2

Exercise 13.2.1 Iim ——=
(xy)—(0,0) X% + y2

Exercise 1322 lim  ———
(xy)—(0,0) X~ +y

Exercise 1323 lim -2
(x,y)—(0,0) 2x +y
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4 4

Exercise 13.2.4  lim — >
(x,y)—(0,0) X“ +y

. 2 2
Exercise 13.2.5  lim %
(xy)—=(0,0) Xx“—+Yy

Exercise 13.2.6  lim s

(23)=(0,0) \/2x% 4 y?

22
. ) eV —1
Exercise 13.2.7 lim — 5
(xy)—(0,0) x“+Yy

3,3
Exercise 13.2.8 lim %
(x.y)—=(0,0) X* +y

2 )
Exercise 1329  lim %
(x,y)—(0,0) 2x- + y

. 2
Exercise 13.2.10  lim Lllnxz
(xy)—=(1,0) (x—1)2+y

Exercise 13.2.11 lim 3x+4y
(ry)—=(1,-1)

4 2
Exercise 13.2.12  lim — >~
(x,)—(0,0) X* +y

Exercise 13.2.13 Does the function f(x,y) = % have any discontinuities? What about f(x,y) =
XTy

X—=Yy 9

m ! Explaln

13.3 Partial Differentiation

The derivative of a function of a single variable tells us how quickly the value of the function changes as
the value of the independent variable changes. Intuitively, it tells us how “steep” the graph of the function
is. We might wonder if there is a similar idea for graphs of functions of two variables, that is, surfaces. It
is not clear that this has a simple answer, nor how we might proceed. We will start with what seem to be
very small steps toward the goal. Surprisingly, it turns out that these simple ideas hold the keys to a more
general understanding.
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Figure 13.5: The intersection of a plane x4y = 1 and the surface f(x,y) = x> + .

The derivative of a single-variable function f(x) tells us how much f(x) changes as x increases. The
obvious analogue for a function of two variables g(x,y) would be something that tells us how quickly
g(x,y) increases as x and y increase. However, in most cases this will depend on how quickly x and y are
changing relative to each other.

Example 13.10

Analyze f(x,y) = y*.

Solution. If we look at a point (x,y, y2) on this surface, the value of a function does not change at all if we
fix y and let x increase, but increases like y? if we fix x and let y increase. s

Now let us consider what happens to f(x,y) when both x and y are increasing, perhaps at different
rates. We can think of this as being a movement in a certain direction of a point in the xy-plane. A point
and a direction defines a line in the xy-plane, and so we are asking how the function changes as we move
along this line.

Let us then imagine a plane perpendicular to the xy-plane that intersects the xy-plane along this line.
This plane will intersect the surface of f in a curve, so we can just look at the behaviour of this curve in
the given plane.

Figure 13.5 shows the plane x +y = 1, which is the plane above the line x+y = 1 in the xy-plane.
Observe that its intersection with the surface of f is a curve, in fact, a parabola. We will refer to such a
curve as the cross-section of the surface above the line in the xy-plane.

We can now look at the rate of change (or slope) of f in a particular direction by looking at the slope
of a curve in a plane — something we already have experience with.

Let’s start by looking at some particularly easy lines: Those parallel to the x- or y-axis. Suppose we
are interested in the cross-section of f(x,y) above the line y = b. If we substitute b for y in f(x,y), we get
a function in one variable, describing the height of the cross-section as a function of x. Because y = b is
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parallel to the x-axis, if we view it from a vantage point on the negative y-axis, we will see what appears
to be simply an ordinary curve in the xz-plane.

Figure 13.6: f(x,y) = x*> +?, cut by the plane y = 2.

Consider again the parabolic surface f(x,y) = x>+ y?. The cross-section above the line y = 2 consists
of all points (x,2,x> +4). Looking at this cross-section we see what appears to be just the curve f(x) =
44, At any point on the cross-section, (a, 2,0+ 4), the slope of the surface in the direction of the line
y = 2 is simply the slope of the curve f(x) = x> +4, namely 2x. Figure 13.6 shows the same parabolic
surface as before, but now cut by the plane y = 2. The left graph shows the cut-off surface, the right shows
just the cross-section.

If, for example, we’re interested in the point (—1,2,5) on the surface, then the slope in the direction
of the line y = 2 is 2x = 2(—1) = —2. This means that starting at (—1,2,5) and moving on the surface,
above the line y = 2, in the direction of increasing x values, the surface goes down; of course moving in
the opposite direction, toward decreasing x values, the surface will rise.

If we’re interested in some other line y = k, there is really no change in the computation. The equation
of the cross-section above y = k is x% + k% with derivative 2x. We can save ourselves the effort, small as it
is, of substituting k for y: all we are in effect doing is temporarily assuming that y is some constant. With
this assumption, the derivative %(x2 +y?) = 2x. To emphasize that we are only temporarily assuming
y is constant, we use a slightly different notation: %(x2 +y?) = 2x; the “d” reminds us that there are
more variables than x, but that only x is being treated as a variable. We read the equation as “the partial
derivative of (x* +y?) with respect to x is 2x.” A convenient alternate notation for the partial derivative of
f(x,y) with respect to x is fi(x,y).

Example 13.11: Partial Derivative with respect to x

Find the partial derivative with respect to x of x> + 3xy.

Solution. The partial derivative with respect to x of x> + 3xy is 3x> 4 3y. Note that the partial derivative
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includes the variable y, unlike the example x> + y?. It is somewhat unusual for the partial derivative to
depend on a single variable; this example is more typical. &

Of course, we can do the same sort of calculation for lines parallel to the y-axis. We temporarily hold
x constant, which gives us the equation of the cross-section above a line x = k. We can then compute the
derivative with respect to y; this will measure the slope of the curve in the y direction.

Example 13.12: Partial Derivative with respect to y

Find the partial derivative with respect to y of f(x,y) = sin(xy) + 3xy.

Solution. The partial derivative with respect to y of f(x,y) = sin(xy) + 3xy is

frlxy) = % (sin(xy) + 3xy) = cos(xy) % (xy) + 3x = xcos(xy) + 3x.

&

So far, using no new techniques, we have succeeded in measuring the slope of a surface in two quite
special directions. For functions of one variable, the derivative is closely linked to the notion of tangent
line. For surfaces, the analogous idea is the tangent plane—a plane that just touches a surface at a point,
and has the same slope as the surface in all directions. Even though we haven’t yet figured out how to
compute the slope in all directions, we have enough information to find tangent planes. Suppose we want
the plane tangent to a surface at a particular point (a,b,c). If we compute the two partial derivatives (with
respect to x and y) of the function for that point, we get enough information to determine two lines tangent
to the surface, both through (a,b,c) and both tangent to the surface in their respective directions. These
two lines determine a plane, that is, there is exactly one plane containing the two lines: the tangent plane.
Figure 13.7 shows (part of) two tangent lines at a point, and the tangent plane containing them.

Figure 13.7: Tangent vectors and tangent plane.

How can we discover an equation for this tangent plane? We know a point on the plane, (a,b,c); we
need a vector normal to the plane. If we can find two vectors, one parallel to each of the tangent lines we
know how to find, then the cross product of these vectors will give the desired normal vector.
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fe(2,b)

0 I I I rX
0 1 2 3 4

Figure 13.8: A tangent vector.

How can we find vectors parallel to the tangent lines? Consider first the line tangent to the surface
above the line y = b. A vector (u,v,w) parallel to this tangent line must have y component v = 0, and we
may as well take the x component to be u = 1. The ratio of the z component to the x component is the slope
of the tangent line, precisely what we know how to compute. The slope of the tangent line is fy(a,b), so

fr(a,b) = v_¥Y_..

u 1
In other words, a vector parallel to this tangent line is (1,0, f(a,b)), as shown in Figure 13.8. If we repeat
the reasoning for the tangent line above x = a, we get the vector (0, 1, f(a,b)).

Now to find the desired normal vector we compute the cross product, (0, 1, fy) X (1,0, fx) = (fx, fy. —1).
From our earlier discussion of planes, we can write down the equation we seek: fi(a,b)x+ fy(a,b)y—z=
k, and k as usual can be computed by substituting a known point: fy(a,b)(a)+ fy(a,b)(b) —c = k. There
are various more-or-less nice ways to write the result:

fulaby+ fylab)y—z = filaba+ fylab)b—c
fr(a,b)x+ fy(a,b)y — fr(a,b)a— fy(a,b)b+c=z
fela,b)(x—a)+ fi(a.b)(y—b)+c=z
fe(a.b)(x—a) + fy(a.b)(y—b) + f(a.b) =z

Example 13.13: Tangent Plane to a Sphere

Find the plane tangent to x> +y> +z> =4 at (1,1, \/5)

Solution. The point (1,1,1/2) is on the upper hemisphere, so we use f(x,y) = /4 —x2 —y2. Then

fley) = =x(4 = =) "2 and fy(xy) = =y = =) s0 £(1,1) = f,(1,1) = —1/v2 and
the equation of the plane is

1 1
z:—\ﬁ(x-n-ﬁ(y—lwﬁ.

The hemisphere and this tangent plane are pictured in Figure 13.7. s
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So it appears that to find a tangent plane, we need only find two quite simple ordinary derivatives,
namely f, and fy. This is true if the tangent plane exists. It is, unfortunately, not always the case that if
fx and f, exist there is a tangent plane. Consider the function xy? / (x2 + y4) with £(0,0) defined to be 0,
pictured in Figure 13.3. This function has value 0 when x = 0 or y = 0. Now it’s clear that f,(0,0) =
£+(0,0) = 0, because in the x and y directions the surface is simply a horizontal line. But it’s also clear
from the picture that this surface does not have anything that deserves to be called a tangent plane at the
origin, certainly not the xy-plane containing these two tangent lines.

When does a surface have a tangent plane at a particular point? What we really want from a tangent
plane, as from a tangent line, is that the plane be a “good” approximation of the surface near the point.
Here is how we can make this precise:

Let Ax = x —xp, Ay =y — yo, and Az = z — z9 where z9 = f(x0,y0). The function z = f(x,y) is
differentiable at (xo,yo) if

Az = fx(xo,yo)Ax + fy(xo,yo)Ay + €1Ax + & Ay,

where both g and &, approach 0 as (x,y) approaches (xg,yo)-

This definition takes a bit of absorbing. Let’s rewrite the central equation a bit:

2= fx(x0,y0) (x —x0) + fy(x0.¥0) (y —Yo) + f (x0,y0) + E1Ax + £2Ay. (13.1)

The first three terms on the right are the equation of the tangent plane, that is,

fx(x0.y0) (x —x0) + fy(x0,0) (y — Yo) + f (x0.0)

is the z-value of the point on the plane above (x,y). Equation 13.1 says that the z-value of a point on the
surface is equal to the z-value of a point on the plane plus a “little bit,” namely &€, Ax + &Ay. As (x,y)
approaches (xp,yo), both Ax and Ay approach 0, so this little bit £;Ax + €Ay also approaches 0, and the
z-values on the surface and the plane get close to each other. But that by itself is not very interesting:
since the surface and the plane both contain the point (xo,yo,z0), the z values will approach zo and hence
get close to each other whether the tangent plane is “tangent” to the surface or not. The extra condition in
the definition says that as (x,y) approaches (xg, o), the € values approach 0—this means that £;Ax+ &Ay
approaches 0 much, much faster, because € Ax is much smaller than either € or Ax. It is this extra
condition that makes the plane a tangent plane.

We can see that the extra condition on €; and & is just what is needed if we look at partial derivatives.
Suppose we temporarily fix y = yg, so Ay = 0. Then the equation from the definition becomes

Az = fi(x0,y0)Ax + €1Ax

or A
Z

v fx(x0,¥0) +€1.

Now taking the limit of the two sides as Ax approaches 0, the left side turns into the partial derivative of z

with respect to x at (xg,yo), or in other words fy(xo,y0), and the right side does the same, because as (x,y)

approaches (xo,yo), € approaches 0. Essentially the same calculation works for f;.
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Exercises for 13.3

Exercise 13.3.1 Find f, and f, where f(x,y) = cos(x?y) +°.

Xy

Exercise 13.3.2 Find f and f, where f(x,y) = Ty
XYy

Exercise 13.3.3 Find f, and f, where f(x,y) = &

Exercise 13.3.4 Find f and f, where f(x,y) = xyln(xy).

Exercise 13.3.5 Find f, and f, where f(x,y) = /1 —x* —y?.
Exercise 13.3.6 Find f and f, where f(x,y) = xtan(y).

1
Exercise 13.3.7 Find f and f, where f(x,y) = —.
Xy

Exercise 13.3.8 Find an equation for the plane tangent to 2x*> +3y* — 7> =4 at (1,1,-1).
Exercise 13.3.9 Find an equation for the plane tangent to f(x,y) = sin(xy) at (x,1/2,1).
Exercise 13.3.10 Find an equation for the plane tangent to f(x,y) = x> +y° at (3,1, 10).
Exercise 13.3.11 Find an equation for the plane tangent to f(x,y) = xIn(xy) at (2,1/2,0).
Exercise 13.3.12 Find an equation for the line normal to x* +4y* =2z at (2,1,4).

Exercise 13.3.13 Explain in your own words why, when taking a partial derivative of a function of multiple
variables, we can treat the variables not being differentiated as constants.

Exercise 13.3.14 Consider a differentiable function, f(x,y). Give physical interpretations of the meanings
of fx(a,b) and f,(a,b) as they relate to the graph of f.

Exercise 13.3.15 In much the same way that we used the tangent line to approximate the value of a
function from single variable calculus, we can use the tangent plane to approximate a function from mul-
tivariable calculus. Consider the tangent plane found in Exercise 13.3.11. Use this plane to approximate

£(1.98,0.4).

Exercise 13.3.16 The volume of a cylinder is given by V = wrh. Suppose that the current values of r and
harer="Tcmand h =3 cm. Is the volume more sensitive to a small change in radius or the same amount
of change in height? Why?

Exercise 13.3.17 Suppose that one of your colleagues has calculated the partial derivatives of a given
function, and reported to you that fi(x,y) = 2x+ 3y and that f,(x,y) = 4x+ 6y. Do you believe them?
Why or why not? If not, what answer might you have accepted for f,?
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Exercise 13.3.18 Suppose f(t) and g(t) are single variable differentiable functions. Find dz/dx and
dz/dy for each of the following two variable functions.

(a) z= f(x)g(y)
(b) z= f(xy)
(c) z= f(x/y)

13.4 The Chain Rule

Consider the surface z = x2y + xy?, and suppose that x = 2 +¢* and y = 1 — 3. We can think of the latter
two equations as describing how x and y change relative to, say, time. Then

=xy+x’ =2+ (1) +2+H(1-r)

tells us explicitly how the z-coordinate of the corresponding point on the surface depends on z. If we want
to know dz/dt we can compute it more or less directly, but it’s actually a bit simpler to use product and
chain rules:

d
d_j = xzy’ +2xx'y + x2yy + x’y2

= (2xy + )X + (x? +2xy)y/
=22+ =)+ =)@+ (2+H)?+22+H(1 =13)) (=32

If we look carefully at the middle step, dz/dt = (2xy +y?)x’ + (x> + 2xy)y’, we notice that 2xy + y* is
dz/dx, and x> 4 2xy is dz/dy. This turns out to be true in general, and gives us a new chain rule:

Theorem 13.15: Multivariate Chain Rule

Suppose that z = f(x,y), f is differentiable, x = g(t), and y = h(t). Assuming that the relevant

derivatives exist,
dz _dzdx  dzdy

dt ~ Oxdt i dy dt’

Proof. If f is differentiable, then
Az = fe(x0,y0)Ax+ fy(x0,y0)Ay + €1Ax + €24y,

where €] and &, approach 0 as (x,y) approaches (xg,yo). Then

AZ Ax Ay

13.2
fx +fyAt+81A +82At ( 3 )

As At approaches 0, (x,y) approaches (xg,yo) and so

l'mAZ dz
A—0Ar dt



466 = Partial Differentiation

lim &, 2% — . &
A0 YA dr
. Ay dy
lim&g—=0-—
Arlglo 2At dt

and so taking the limit of (13.2) as Ar goes to 0 gives

dz  .dx dy
dr —fxa +fyZ’

as desired. &
We can write the chain rule in a way that is somewhat closer to the single variable chain rule:
df
S () ),

or (roughly) the derivatives of the outside function “times” the derivatives of the inside functions. Not
surprisingly, essentially the same chain rule works for functions of more than two variables, for example,
given a function of three variables f(x,y,z), where each of x, y and z is a function of 7,

af
RN NN
We can even extend the idea further. Suppose that f(x,y) is a function and x = g(s,7) and y = h(s,t)
are functions of two variables s and ¢. Then f is “really” a function of s and ¢ as well, and
d d
a_f = fx&s +fyhs (9_{ = fx& +fyht-
The natural extension of this to f(x,y,z) works as well.
Recall that we used the ordinary chain rule to do implicit differentiation. We can do the same with the
new chain rule.

Example 13.16: Equation of a Sphere

Find the partial derivative of x> +y* + 7> = 4.

Solution. The equation x> 4+ y* + z*> = 4 defines a sphere, which is not a function of x and y, though it can
be thought of as two functions, the top and bottom hemispheres. We can think of z as one of these two
functions, so really z = z(x,y), and we can think of x and y as particularly simple functions of x and y, and
let f(x,y,z) = x> +y> +z%. Since f(x,y,z) = 4, df/dx = 0, but using the chain rule:

= (20)(1)+ (2)(0) + (20) 2
noting that since y is temporarily held constant its derivative dy/dx = 0. Now we can solve for dz/dx:
9z _ 2% _ %
dx 2z z

In a similar manner we can compute dz/dy. ' 3
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Exercises for 13.4

Exercise 13.4.1 Use the chain rule to compute dz/dt for z = sin(x* +y?), x =t>+3, y = 1.
Exercise 13.4.2 Use the chain rule to compute dz/dt for z = x*y, x =sin(t), y = t> + 1.

Exercise 13.4.3 Use the chain rule to compute dz/ds and dz/dt for z = x*y, x =sin(st), y = > + s°.

Exercise 13.4.4 Use the chain rule to compute dz/ds and dz/0t for z = x*y*, x = st, y = t*> — s°.

Exercise 13.4.5 Use the chain rule to compute dz/9dx and dz/dy for 2x* 4 3y* — 27> = 0.
Exercise 13.4.6 Use the chain rule to compute dz/dx and dz/dy for 2x* +y* + 7> = 0.

Exercise 13.4.7 Chemistry students will recognize the ideal gas law, given by PV = nRT which relates the
Pressure, Volume, and Temperature of n moles of gas. (R is the ideal gas constant). Thus, we can view
pressure, volume, and temperature as variables, each one dependent on the other two.

(a) If pressure of a gas is increasing at a rate of 0.2Pa/min and temperature is increasing at a rate of
LK /min, how fast is the volume changing?

(b) If the volume of a gas is decreasing at a rate of 0.3L/min and temperature is increasing at a rate of
0.5K /min, how fast is the pressure changing?

(c) If the pressure of a gas is decreasing at a rate of 0.4Pa/min and the volume is increasing at a rate
of 3L/min, how fast is the temperature changing?

Exercise 13.4.8 Verify the following identity in the case of the ideal gas law:

oP oV aT _
oV oT oP

Exercise 13.4.9 The previous exercise was a special case of the following fact, which you are to verify
here: If F(x,y,z) is a function of 3 variables, and the relation F (x,y,z) = 0 defines each of the variables
in terms of the other two, namely x = f(y,z), y = g(x,z) and z = h(x,y), then

dxdydz

dy dzdx
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13.5 Directional Derivatives

We still have not answered one of our first questions about the steepness of a surface: starting at a point
on a surface given by f(x,y), and walking in a particular direction, how steep is the surface? We are now
ready to answer the question.

We already know roughly what has to be done: as shown in Figure 13.5, we extend a line in the
xy-plane to a vertical plane, and we then compute the slope of the curve that is the cross-section of the
surface in that plane. The major stumbling block is that what appears in this plane to be the horizontal
axis, namely the line in the xy-plane, is not an actual axis—we know nothing about the “units” along the
axis. Our goal is to make this line into a ¢-axis; then we need formulas to write x and y in terms of this
new variable ¢7; then we can write z in terms of ¢ since we know z in terms of x and y; and finally we can
simply take the derivative.

So we need to somehow “mark off” units on the line, and we need a convenient way to refer to the
line in calculations. It turns out that we can accomplish both by using the vector form of a line. Suppose
that u is a unit vector (uy,u;) in the direction of interest. A vector equation for the line through (xg,yo) in
this direction is v(¢) = (u1t + xo,uzt + yo). The height of the surface above the point (u;f + xo, ust + yo) is
g(t) = f(uit + xo,uzt +yo). Because u is a unit vector, the value of ¢ is precisely the distance along the
line from (xg,yo) to (u1t + xo,ust + yp); this means that the line is effectively a r-axis, with origin at the
point (xg, o), so the slope we seek is

g'(0) = (fx(x0.y0). fy(x0.¥0)) - (w1, u2)

= <fx,fy>'u
:Vfu

Here we have used the chain rule and the derivatives % (u1t +xp) = u; and %(uzt +y0) = up. The vector
(fx, fy) is very useful, so it has its own symbol, V f, pronounced “del ”; it is also called the gradient of f.

Example 13.17: Slope

Find the slope of 7 = x> +y* at (1,2) in the direction of the vector (3,4).

Solution. We first compute the gradient at (1,2): Vf = (2x,2y), which is (2,4) at (1,2). A unit vector in
the desired direction is (3/5,4/5), and the desired slope is then (2,4) - (3/5,4/5) =6/5+16/5 = 22/5.
&

Example 13.18: Tangent Vector

Find a tangent vector to z = x> +y? at (1,2) in the direction of the vector (3,4) and show that it is
parallel to the tangent plane at that point.

Solution. Since (3/5,4/5) is a unit vector in the desired direction, we can easily expand it to a tangent
vector simply by adding the third coordinate computed in the previous example: (3/5,4/5,22/5). To see
that this vector is parallel to the tangent plane, we can compute its dot product with a normal to the plane.
We know that a normal to the tangent plane is

(f(1,2), £4(1,2), =1) = (2,4, - 1),
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and the dot product is (2,4,—1) - (3/5,4/5,22/5) = 6/5+416/5 —22/5 = 0, so the two vectors are per-
pendicular. (Note that the vector normal to the surface, namely (f, Sy —1), is simply the gradient with a
—1 tacked on as the third component.) &

The slope of a surface given by z = f(x,y) in the direction of a (two-dimensional) vector u is called the
directional derivative of f, written Dy f. The directional derivative immediately provides us with some
additional information. We know that

Dyf =Vf-u=|Vf||u|cos = |V f|cos O

if u is a unit vector; 0 is the angle between V f and u. This tells us immediately that the largest value of
Dy f occurs when cos 8 = 1, namely, when 8 = 0, so V f is parallel to u. In other words, the gradient V f
points in the direction of steepest ascent of the surface, and |V f| is the slope in that direction. Likewise,
the smallest value of Dy f occurs when cos @ = —1, namely, when 60 = 7, so V£ is anti-parallel to u. In
other words, —V f points in the direction of steepest descent of the surface, and —|V f| is the slope in that
direction.

Example 13.19: Direction of Steepest Ascent and Descent

Investigate the direction of steepest ascent and descent for z = x> + y”.

Solution. The gradient is (2x,2y) = 2(x,y); this is a vector parallel to the vector (x,y), so the direction
of steepest ascent is directly away from the origin, starting at the point (x,y). The direction of steepest
descent is thus directly toward the origin from (x,y). Note that at (0,0) the gradient vector is (0,0), which
has no direction, and it is clear from the plot of this surface that there is a minimum point at the origin,
and tangent vectors in all directions are parallel to the xy-plane. )

If V£ is perpendicular to u, Dy f = |V f|cos(7/2) = 0, since cos(mr/2) = 0. This means that in either
of the two directions perpendicular to V f, the slope of the surface is 0; this implies that a vector in either
of these directions is tangent to the level curve at that point. Starting with Vf = (f, fy), it is easy to find
a vector perpendicular to it: either (f,, —f;) or (—f, f) will work.

If f(x,y,z) is a function of three variables, all the calculations proceed in essentially the same way. The
rate at which f changes in a particular direction is V f-u, where now V f = (f5, f;, fz) and u = (uy,u,u3) is
a unit vector. Again V f points in the direction of maximum rate of increase, —V f points in the direction of
maximum rate of decrease, and any vector perpendicular to V£ is tangent to the level surface f(x,y,z) =k
at the point in question. Of course there are no longer just two such vectors; the vectors perpendicular to
V f describe the tangent plane to the level surface, or in other words V f is a normal to the tangent plane.
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Example 13.20: Gradient

Suppose the temperature at a point in space is given by T (x,y,z) = To/(1 +x> +y*> 4+ 2%); at the
origin the temperature in Kelvin is Ty > 0, and it decreases in every direction from there. It might
be, for example, that there is a source of heat at the origin, and as we get farther from the source,
the temperature decreases. The gradient is

VT _< —2T0x —2T0y —2T()Z >
(142424222 (1422432 +22)2 (1422 +y2 4 22)?
—2T)
N (1+x2+y2+z2)2<x’y’z>'

The gradient points directly at the origin from the point (x,y,z)—by moving directly toward the
heat source, we increase the temperature as quickly as possible.

Example 13.21: Tangent Plane

Find the points on the surface defined by x> +2y” + 3z> = 1 where the tangent plane is parallel to
the plane defined by 3x —y+3z = 1.

Solution. Two planes are parallel if their normals are parallel or anti-parallel, so we want to find the points
on the surface with normal parallel or anti-parallel to (3, —1,3). Let f = x> 4 2y? 4 3z?; the gradient of
f is normal to the level surface at every point, so we are looking for a gradient parallel or anti-parallel to
(3,—1,3). The gradient is (2x,4y,6z); if it is parallel or anti-parallel to (3,—1,3), then

(2x,4y,6z) = k(3,—1,3)
for some k. This means we need a solution to the equations
2x =3k 4y = —k 6z = 3k

but this is three equations in four unknowns—we need another equation. What we haven’t used so far is
that the points we seek are on the surface x> +2y”> + 3z = 1; this is the fourth equation. If we solve the
first three equations for x, y, and z and substitute into the fourth equation we get

3k\ 2 —k\? 3k\ 2
1—(7) “(T) *3(6)
(9 2 3\,
_(4+16+4)k

25

iy
8
2v2 2 2 V2 2 V2 2
sok:i?f. The desired points are <¥,—%,g> and ( %,%,—%), &
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Exercises for 13.5

Exercise 13.5.1 Find D, f for f = x* +xy+y? in the direction of u = (2,1) at the point (1,1).
Exercise 13.5.2 Find Dy f for f = sin(xy) in the direction of u = (—1,1) at the point (3,1).

Exercise 13.5.3 Find D, f for f = e*cos(y) in the direction 30 degrees from the positive x-axis at the
point (1,7 /4).

Exercise 13.5.4 The temperature of a thin plate in the xy-plane is T = x? -|—y2. How fast does temperature
change at the point (1,5) moving in a direction 30 degrees from the positive x-axis?

Exercise 13.5.5 Suppose the density of a thin plate at (x,y) is 1/v/x* +y? + 1. Find the rate of change of
the density at (2,1) in a direction /3 radians from the positive x-axis.

Exercise 13.5.6 Suppose the electric potential at (x,y) is In\/x*+y2. Find the rate of change of the
potential at (3,4) toward the origin and also in a direction at a right angle to the direction toward the
origin.

Exercise 13.5.7 A plane perpendicular to the xy-plane contains the point (2,1,8) on the paraboloid
z = x> +4y?%. The cross-section of the paraboloid created by this plane has slope 0 at this point. Find an
equation of the plane.

Exercise 13.5.8 A plane perpendicular to the xy-plane contains the point (3,2,2) on the paraboloid
36z = 4x% +9y?. The cross-section of the paraboloid created by this plane has slope 0 at this point. Find
an equation of the plane.

Exercise 13.5.9 Suppose the temperature at (x,y,z) is given by T = xy+sin(yz). In what direction should
you go from the point (1,1,1) to decrease the temperature as quickly as possible? What is the rate of

change of temperature in this direction?

Exercise 13.5.10 Suppose the temperature at (x,y,z) is given by T = xyz. In what direction can you go
from the point (1,1,1) to maintain the same temperature?

Exercise 13.5.11 Find an equation for the plane tangent to X2 — 3y2 +22="7at (1,1,3).
Exercise 13.5.12 Find an equation for the plane tangent to xyz = 6 at (1,2,3).

Exercise 13.5.13 Find an equation for the line normal to x* +2y* +4z> = 26 at (2,—3,—1).
Exercise 13.5.14 Find an equation for the line normal to x* +y* + 92> = 56 at (4,2,—2).
Exercise 13.5.15 Find an equation for the line normal to x>+ Sy2 —22=0at (4,2,6).

Exercise 13.5.16 Find the directions in which the directional derivative of f(x,y) = x> +sin(xy) at the
point (1,0) has the value 1.
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Exercise 13.5.17 Show that the curve r(t) = (In(t),t1n(t),t) is tangent to the surface xz> — yz+cos(xy) = 1
at the point (0,0,1).

Exercise 13.5.18 A bug is crawling on the surface of a hot plate, the temperature of which at the point x
units to the right of the lower left corner and y units up from the lower left corner is given by T (x,y) =
100 — x> — 3y3.

(a) Ifthe bug is at the point (2,1), in what direction should it move to cool off the fastest? How fast will
the temperature drop in this direction?

(b) If the bug is at the point (1,3), in what direction should it move in order to maintain its temperature?

Exercise 13.5.19 The elevation on a portion of a hill is given by f(x,y) = 100 — 4x> —2y. From the
location above (2,1), in which direction will water run?

Exercise 13.5.20 Suppose that g(x,y) =y — x*. Find the gradient at the point (—1,3). Sketch the level
curve to the graph of g when g(x,y) = 2, and plot both the tangent line and the gradient vector at the point
(—1,3). (Make your sketch large). What do you notice, geometrically?

Exercise 13.5.21 The gradient V f is a vector valued function of two variables. Prove the following
gradient rules. Assume f(x,y) and g(x,y) are differentiable functions.

(a) V(fg)=fV(g)+gV(f)
(b) V(f/g)=(gVf—fVg)/&*
(c) V((f(x.3)") =nf(xy)" 'Vf

13.6 Higher Order Derivatives

In single variable calculus we saw that the second derivative is often useful: in appropriate circumstances
it measures acceleration; it can be used to identify maximum and minimum points; it tells us something
about how sharply curved a graph is. Not surprisingly, second derivatives are also useful in the multi-
variable case, but again not surprisingly, things are a bit more complicated.

It’s easy to see where some complication is going to come from: with two variables there are four
possible second derivatives. To take a “derivative,” we must take a partial derivative with respect to x or y,
and there are four ways to do it: x then x, x then y, y then x, y then y.

Example 13.22: Second Derivatives

Compute all four second derivatives of f(x,y) = x>y.

Solution. Using an obvious notation, we get:

S = 2)’2 fxy = 4xy fyx = 4dxy fyy = 2x2
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&

You will have noticed that two of these are the same, the “mixed partials” computed by taking partial
derivatives with respect to both variables in the two possible orders. This is not an accident—as long as
the function is reasonably nice, this will always be true.

Theorem 13.23: Clairaut’s Theorem

If the mixed partial derivatives are continuous, they are equal.

Example 13.24: Mixed Partials

Compute the mixed partials of f = xy/(x*> +y?).

Solution. The mixed partial fy, is found by first taking the partial derivative with respect to x:

foo X=Xy
X ( X2+ yz)z ’
then with respect to y:
B X - 6x2y2 + y4
Jry == (x2+y2)3
We leave fy, as an exercise. &

Exercises for 13.6

Exercise 13.6.1 Let f = xy/(x> +y?); compute fr, Sy and fyy.

Exercise 13.6.2 Find all first and second partial derivatives of x>y + y°.
Exercise 13.6.3 Find all first and second partial derivatives of 4x> 4+ xy* + 10.
Exercise 13.6.4 Find all first and second partial derivatives of xsiny.
Exercise 13.6.5 Find all first and second partial derivatives of sin(3x) cos(2y).
Exercise 13.6.6 Find all first and second partial derivatives of &

Exercise 13.6.7 Find all first and second partial derivatives of In \/m.

Exercise 13.6.8 Find all first and second partial derivatives of z with respect to x and y if x> + 4y* +
1622 — 64 = 0.

Exercise 13.6.9 Find all first and second partial derivatives of z with respect to x and y if xy+yz+xz = 1.
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. : a2 : .
Exercise 13.6.10 Let o and k be constants. Prove that the function u(x,t) = e~ ¥7sin(kx) is a solution
to the heat equation u, = oy,

Exercise 13.6.11 Let a be a constant. Prove that u = sin(x — at) + In(x + at) is a solution to the wave
equation uy = azuxx.

Exercise 13.6.12 How many third-order derivatives does a function of 2 variables have? How many of
these are distinct?

Exercise 13.6.13 How many nth order derivatives does a function of 2 variables have? How many of
these are distinct?

13.7 Maxima and Minima

Suppose a surface given by f(x,y) has a local maximum at (xg,Y0,20); geometrically, this point on the
surface looks like the top of a hill. If we look at the cross-section in the plane y = yg, we will see a local
maximum on the curve at (xo,zp), and we know from single-variable calculus that % = 0 at this point.

Likewise, in the plane x = x, % = 0. So if there is a local maximum at (xo, yo,z0), both partial derivatives
at the point must be zero, and likewise for a local minimum. Thus, to find local maximum and minimum
points, we need only consider those points at which both partial derivatives are 0. As in the single-variable
case, it is possible for the derivatives to be 0 at a point that is neither a maximum or a minimum, so we
need to test these points further.

You will recall that in the single variable case, we examined three methods to identify maximum
and minimum points; the most useful is the second derivative test, though it does not always work. For
functions of two variables there is also a second derivative test; again it is by far the most useful test,
though it doesn’t always work.

Theorem 13.25: Extrema Test for Multivariate Functions

Suppose that the second partial derivatives of f(x,y) are continuous near (xo,yo), and fx(xo,yo) =
fy(x0,y0) = 0. We denote by D the discriminant D(xo,y0) = fxx(X0,¥0) fyy (%0, ¥0) — fay (X0, 30)%. If
D > 0 and fy(x0,y0) < O there is a local maximum at (xo,yo); if D > 0 and fy(xg,y0) > O there is a
local minimum at (xo,yo); if D < O there is neither a maximum nor a minimum at (xo,yo); it D = 0,
the test fails.

Example 13.26: Extrema on an Elliptic Paraboloid

Verify that f(x,y) = x> 4+ y? has a minimum at (0,0).

Solution. First, we compute all the needed derivatives:

Lh=2x =2  fu=2 fy=2  fo=0.
The derivatives f and f are zero only at (0,0). Applying the second derivative test there:

D(O’O) = fxx(0,0)fyy(0,0) _fxy(O,O)z =2-2—-0=4>0,
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so there is a local minimum at (0,0), and there are no other possibilities. &

Example 13.27: Extrema on a Hyperbolic Paraboloid

Find all local maxima and minima for f(x,y) = x*> — .

Solution. The derivatives:

fr=2x fy=-2y S =2 Sy =-2 Sy =0.
Again there is a single critical point, at (0,0), and

D(0,0) = £x(0,0) £1(0,0) — £15(0,0)> =2- =2 =0 = —4 <0,

so there is neither a maximum nor minimum there, and so there are no local maxima or minima. The
surface is shown in Figure 13.9. &

Figure 13.9: A saddle point, neither a maximum nor a minimum.

Example 13.28: Finding Extrema

Find all local maxima and minima for f(x,y) = +yt

Solution. The derivatives:

=4 =4 fu=122 f,=12y*  f,=0.
Again there is a single critical point, at (0,0), and

D(0,0) = £:(0,0) £34(0,0) — £,(0,0)>=0-0—0 =0,
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so we get no information. However, in this case it is easy to see that there is a minimum at (0,0), because
£(0,0) = 0 and at all other points f(x,y) > 0. s

Example 13.29: Finding Extrema

Find all local maxima and minima for f(x,y) = x> +°.

Solution. The derivatives:
=3¢ f=3"  fu=06r  fy=6y  fyu=0.
Again there is a single critical point, at (0,0), and
D(0,0) = f:x(0,0)£35(0,0) = f14(0,0)> =0-0-0=0,

so we get no information. In this case, a little thought shows there is neither a maximum nor a minimum
at (0,0): when x and y are both positive, f(x,y) > 0, and when x and y are both negative, f(x,y) < 0, and
there are points of both kinds arbitrarily close to (0,0). Alternately, if we look at the cross-section when
y =0, we get f(x,0) = x3, which does not have either a maximum or minimum at x = 0. &

Example 13.30: Optimizing Dimensions of a Box

Suppose a box with no top is to hold a certain volume V. Find the dimensions for the box that result
in the minimum surface area.

Solution. The surface area of the box is A = 2Aw + 2kl + Iw, and the volume is V = Iwh, so we can write
the area as a function of two variables,

2V 2V
Alllbw)= —+—+1iw.
[ w
Then - v
Al=——+4+w and A,=——+1
12 w?

If we set these equal to zero and solve, we find w = (2V)'/3 and I = (2V)'/3, and the corresponding height
ish=V/(2V)?3.
The second derivatives are

4V 4v
All_l_3 AWW_W Alw— 1,
so the discriminant is
_4v4ay

=7 W—lz4—123>0.
Since Ay is 2, there is a local minimum at the critical point. Is this a global minimum? It is, but it is
difficult to see this analytically; physically and graphically it is clear that there is a minimum, in which

case it must be at the single critical point. &
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Recall that when we did single variable global maximum and minimum problems, the easiest cases
were those for which the variable could be limited to a finite closed interval, for then we simply had to
check all critical values and the endpoints. The previous example is difficult because there is no finite
boundary to the domain of the problem—both w and / can be in (0,0). As in the single variable case, the
problem is often simpler when there is a finite boundary.

Theorem 13.31: Multivariate Absolute Extrema

If f(x,y) is continuous on a closed and bounded subset of R?, then it has both a maximum and
minimum value.

As in the case of single variable functions, this means that the maximum and minimum values must
occur at a critical point or on the boundary; in the two variable case, however, the boundary is a curve, not
merely two endpoints.

Example 13.32: Optimizing Volume of a Box

The length of the diagonal of a box is to be 1 meter; find the maximum possible volume.

Solution. If the box is placed with one corner at the origin, and sides along the axes, the length of the
diagonal is \/x2 + y2 + 72, and the volume is

V =xyz=xy\/1—x2—y2.

Clearly, x> +y* < 1, so the domain we are interested in is the quarter of the unit disk in the first quadrant.
Computing derivatives:

) 2 .3
szy yxX-—y
V1 —x2—y2
) 2 .3
Vy:x Xy~ —Xx

If these are both 0, then x = 0 or y = 0, or x = y = 1 /1/3. The boundary of the domain is composed of three
curves: x =0 fory € [0,1]; y =0 for x € [0,1]; and x*>+y? =1, where x > 0 and y > 0. In all three cases,

the volume xyy/1—x? —y? is 0, so the maximum occurs at the only critical point (1/ V3,1 / V3,1 / \/§)
See Figure 13.10. &
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Figure 13.10: The volume of a box with fixed length diagonal.

Exercises for 13.7

Exercise 13.7.1 Find all local maximum and minimum points of f = x> +4y> —2x+ 8y — 1.
Exercise 13.7.2 Find all local maximum and minimum points of f = x> —y> +6x— 10y +2.
Exercise 13.7.3 Find all local maximum and minimum points of f = xy.

Exercise 13.7.4 Find all local maximum and minimum points of f = 9+ 4x —y — 2x> — 3y,
Exercise 13.7.5 Find all local maximum and minimum points of f = x> +4xy +y* — 6y + 1.
Exercise 13.7.6 Find all local maximum and minimum points of f = x> — xy +2y* — 5x+ 6y —9.

Exercise 13.7.7 Find the absolute maximum and minimum points of f = x*> + 3y — 3xy over the region
bounded by y =x, y =0, and x = 2.

Exercise 13.7.8 A six-sided rectangular box is to hold 1/2 cubic meter; what shape should the box be to
minimize surface area?

Exercise 13.7.9 The post office will accept packages whose combined length and girth is at most 130
inches. (Girth is the maximum distance around the package perpendicular to the length; for a rectangular
box, the length is the largest of the three dimensions.) What is the largest volume that can be sent in a
rectangular box?

Exercise 13.7.10 The bottom of a rectangular box costs twice as much per unit area as the sides and top.
Find the shape for a given volume that will minimize cost.
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Exercise 13.7.11 Using the methods of this section, find the shortest distance from the origin to the plane
x+y+z=10.

Exercise 13.7.12 Using the methods of this section, find the shortest distance from the point (xo,yo,20) to
the plane ax+ by + cz = d. You may assume that ¢ # 0; use of Sage or similar software is recommended.

Exercise 13.7.13 A trough is to be formed by bending up two sides of a long metal rectangle so that the
cross-section of the trough is an isosceles trapezoid. If the width of the metal sheet is 2 meters, how should
it be bent to maximize the volume of the trough?

Exercise 13.7.14 Given the three points (1,4), (5,2), and (3,—2), (x—1)>+ (y—4)> + (x—5)>+ (y —
2)% + (x—3)2 4 (y +2)? is the sum of the squares of the distances from point (x,y) to the three points.
Find x and y so that this quantity is minimized.

Exercise 13.7.15 Suppose that f(x,y) = x*> +y?> + kxy. Find and classify the critical points, and discuss
how they change when k takes on different values.

Exercise 13.7.16 Find the shortest distance from the point (0,b) to the parabola y = x*.
Exercise 13.7.17 Find the shortest distance from the point (0,0,b) to the paraboloid 7 = x* +y?.
Exercise 13.7.18 Consider the function f(x,y) = x> —3x>y+y°.

(a) Show that (0,0) is the only critical point of f.
(b) Show that the discriminant test is inconclusive for f.

(c) Determine the cross-sections of f obtained by setting y = kx for various values of k.

(d) What kind of critical point is (0,0)?

Exercise 13.7.19 Find the volume of the largest rectangular box with edges parallel to the axes that can
be inscribed in the ellipsoid 2x* +72y* + 187> = 288.

13.8 Lagrange Multipliers

Many applied max/min problems take the following form: we want to find an extreme value of a function,
like V = xyz, subject to a constraint, like 1 = \/x2+y2+2z2. Often this can be done, as we have, by
explicitly combining the equations and then finding critical points. There is another approach that is often
convenient, the method of Lagrange multipliers.

It is somewhat easier to understand two variable problems, so we begin with one as an example.
Suppose the perimeter of a rectangle is to be 100 units. Find the rectangle with largest area. This is a
fairly straightforward problem from single variable calculus. We write down the two equations: A = xy,
P =100 = 2x+ 2y, solve the second of these for y (or x), substitute into the first, and end up with a one-
variable maximization problem. Let’s now think of it differently: the equation A = xy defines a surface,
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and the equation 100 = 2x 4 2y defines a curve (a line, in this case) in the xy-plane. If we graph both of
these in the three-dimensional coordinate system, we can phrase the problem like this: what is the highest
point on the surface above the line? The solution we already understand effectively produces the equation
of the cross-section of the surface above the line and then treats it as a single variable problem. Instead,
imagine that we draw the level curves (the contour lines) for the surface in the xy-plane, along with the
line.

Figure 13.11: Constraint line with contour plot of the surface xy.

Imagine that the line represents a hiking trail and the contour lines are, as on a topographic map, the
lines of constant altitude. How could you estimate, based on the graph, the high (or low) points on the
path? As the path crosses contour lines, you know the path must be increasing or decreasing in elevation.
At some point you will see the path just touch a contour line (tangent to it), and then begin to cross contours
in the opposite order—that point of tangency must be a maximum or minimum point. If we can identify
all such points, we can then check them to see which gives the maximum and which the minimum value.
As usual, we also need to check boundary points; in this problem, we know that x and y are positive, so
we are interested in just the portion of the line in the first quadrant, as shown. The endpoints of the path,
the two points on the axes, are not points of tangency, but they are the two places that the function xy is a
minimum in the first quadrant.

How can we actually make use of this? At the points of tangency that we seek, the constraint curve
(in this case the line) and the level curve have the same slope—their tangent lines are parallel. This also
means that the constraint curve is perpendicular to the gradient vector of the function; going a bit further,
if we can express the constraint curve itself as a level curve, then we seek the points at which the two level
curves have parallel gradients. The curve 100 = 2x+ 2y can be thought of as a level curve of the function
2x+ 2y; Figure 13.12 shows both sets of level curves on a single graph. We are interested in those points
where two level curves are tangent—but there are many such points, in fact an infinite number, as we’ve
only shown a few of the level curves. All along the line y = x are points at which two level curves are
tangent. While this might seem to be a show-stopper, it is not.
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Figure 13.12: Contour plots for 2x + 2y and xy.

The gradient of 2x+ 2y is (2,2), and the gradient of xy is (y,x). They are parallel when (2,2) = A (y,x),
that is, when 2 = Ay and 2 = Ax. We have two equations in three unknowns, which typically results in
many solutions (as we expected). A third equation will reduce the number of solutions; the third equation
is the original constraint, 100 = 2x+ 2y. So we have the following system to solve:

2=2A_Ay 2=2Ax 100 = 2x+ 2y.

In the first two equations, A can’t be 0, so we may divide by it to get x = y = 2/A. Substituting into the
third equation we get

2 2
22422 =100
277
8 —
100

so x =y = 25. Note that we are not really interested in the value of A—it is a clever tool, the Lagrange
multiplier, introduced to solve the problem. In many cases, as here, it is easier to find A than to find
everything else without using A.

The same method works for functions of three variables, except of course everything is one dimen-
sion higher: the function to be optimized is a function of three variables and the constraint represents a
surface—for example, the function may represent temperature, and we may be interested in the maximum
temperature on some surface, like a sphere. The points we seek are those at which the constraint surface
is tangent to a level surface of the function. Once again, we consider the constraint surface to be a level
surface of some function, and we look for points at which the two gradients are parallel, giving us three
equations in four unknowns. The constraint provides a fourth equation.

Example 13.33: Optimization with Constraints

Maximize the function xyz given the constraint 1 = \/x2 + y* +z2.

Solution. The constraint is 1 = \/x2 4+ y2 +z2, which is the same as 1 = x> +y? 4+ z2. The function to
maximize is xyz. The two gradient vectors are (2x,2y,2z) and (yz,xz,xy), so the equations to be solved are

yz = 2xA
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xz=2yA
xy = 2zA
1 :x2+y2+Z2

If A = 0 then at least two of x, y, z must be 0, giving a volume of 0, which will not be the maximum. If we
multiply the first two equations by x and y respectively, we get

xyz = 2x°A
xyz = 2y° A

s0 2x°A = 2y*A or x> = y?; in the same way we can show x> = z2. Hence the fourth equation becomes

l=x?+x*+xorx= 1/\/§, andsox=y=z= 1/\/§ gives the maximum volume. This is of course the
same answer we obtained previously. L )

Another possibility is that we have a function of three variables, and we want to find a maximum or
minimum value not on a surface but on a curve; often the curve is the intersection of two surfaces, so that
we really have two constraint equations, say g(x,y,z) = ¢ and h(x,y,z) = cp. It turns out that at points on
the intersection of the surfaces where f has a maximum or minimum value,

Vf=AVg+uVh.

As before, this gives us three equations, one for each component of the vectors, but now in five unknowns,
X, v, 2, A, and u. Since there are two constraint functions, we have a total of five equations in five
unknowns, and so can usually find the solutions we need.

Example 13.34: Intersection of a Plane with a Cylinder

The plane x+y—z = 1 intersects the cylinder x> +y* = 1 in an ellipse. Find the points on the ellipse
closest to and farthest from the origin.

Solution. We want the extreme values of f = \/x2 4 y2 4 z2 subject to the constraints g = x*> +y? = 1 and
h=x+y—z=1. To simplify the algebra, we may use instead f = x> +y> +z2, since this has a maximum
or minimum value at exactly the points at which /x2 + y2 + z2 does. The gradients are

Vf=(2x,2y,2z) Vg = (2x,2y,0) Vh=(1,1,-1),

so the equations we need to solve are

2x=A2x+u
2y =A2y+u
2z=0—u
1:x2—i-y2
l=x+y—z

Subtracting the first two we get 2y —2x = A(2y — 2x), so either A = l orx =y. If A = 1 then u =0, so
z =0 and the last two equations are

1=x>+y and I=x+y.
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Solving these gives x =1, y =0, or x = 0, y = 1, so the points of interest are (1,0,0) and (0, 1,0), which
are both distance 1 from the origin. If x = y, the fourth equation is 2x*> = 1, giving x =y = +1//2, and
from the fifth equation we get z = —1 & +/2. The distance from the origin to (1/v/2,1/v/2,—1+4+/2) is

4 —2+/2 2~ 1.08 and the distance from the origin to (—1/v/2,—1/v/2,—1—+/2) is V4422 ~ 2.6.
Thus, the points (1,0,0) and (0, 1,0) are closest to the origin and (—1/\/5, —1/\/5, —1- \/5) is farthest
from the origin. L )

Exercises for 13.8

Exercise 13.8.1 A six-sided rectangular box is to hold 1/2 cubic meter; what shape should the box be to
minimize surface area?

Exercise 13.8.2 The post office will accept packages whose combined length and girth are at most 130
inches (girth is the maximum distance around the package perpendicular to the length). What is the largest
volume that can be sent in a rectangular box?

Exercise 13.8.3 The bottom of a rectangular box costs twice as much per unit area as the sides and top.
Find the shape for a given volume that will minimize cost.

Exercise 13.8.4 Using Lagrange multipliers, find the shortest distance from the point (xy,yo,z0) to the
plane ax+by+cz =d.

Exercise 13.8.5 Find all points on the surface xy — z> + 1 = 0 that are closest to the origin.

Exercise 13.8.6 The material for the bottom of an aquarium costs half as much as the high strength glass
for the four sides. Find the shape of the cheapest aquarium that holds a given volume V.

Exercise 13.8.7 The plane x —y +z = 2 intersects the cylinder x*> +y* = 4 in an ellipse. Find the points
on the ellipse closest to and farthest from the origin.

Exercise 13.8.8 Find three positive numbers whose sum is 48 and whose product is as large as possible.

Exercise 13.8.9 Find all points on the plane x+y+z =5 in the first octant at which f(x,y,z) = xy2Z2 has
a maximum value.

Exercise 13.8.10 Find the points on the surface x*> —yz = 5 that are closest to the origin.

Exercise 13.8.11 A manufacturer makes two models of an item, standard and deluxe. It costs $40 to
manufacture the standard model and $60 for the deluxe. A market research firm estimates that if the
standard model is priced at x dollars and the deluxe at y dollars, then the manufacturer will sell 500(y — x)
of the standard items and 45,000 + 500(x — 2y) of the deluxe each year. How should the items be priced
to maximize profit?

Exercise 13.8.12 A length of sheet metal is to be made into a water trough by bending up two sides as
shown in Figure 13.13. Find x and ¢ so that the trapezoid—shaped cross section has maximum area, when
the width of the metal sheet is 27 inches (that is, 2x+y = 27).
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y

Figure 13.13: Cross-section of a trough.

Exercise 13.8.13 Find the maximum and minimum values of f(x,y,z) = 6x+ 3y + 2z subject to the con-
straint g(x,y,z) = 4x* +2y* + 2> —70 = 0.

Exercise 13.8.14 Find the maximum and minimum values of f(x,y) = € subject to the constraint g(x,y) =
3 3
x4y’ —16=0.

Exercise 13.8.15 Find the maximum and minimum values of f(x,y) = xy++/9 — x> — y when x>+ y2 <
9.

Exercise 13.8.16 Find three real numbers whose sum is 9 and the sum of whose squares is as small as
possible.

Exercise 13.8.17 Find the dimensions of the closed rectangular box with maximum volume that can be
inscribed in the unit sphere.



Multiple Integration

14.1 Volume and Average Height

Consider a surface f(x,y); you might temporarily think of this as representing physical topography—a
hilly landscape, perhaps. What is the average height of the surface (or average altitude of the landscape)
over some region?

As with most such problems, we start by thinking about how we might approximate the answer. Sup-
pose the region is a rectangle, [a,b] X [c,d]. We can divide the rectangle into a grid, m subdivisions in
one direction and # in the other, as indicated in Figure 14.1. We pick x values xg, xi,..., X;;,—1 in each
subdivision in the x direction, and similarly in the y direction. At each of the points (x;,y;) in one of the
smaller rectangles in the grid, we compute the height of the surface: f(x;,y;). Now the average of these
heights should be (depending on the fineness of the grid) close to the average height of the surface:

f(x0,y0) + f(x1,50) + -+ f(x0,y1) + f(x1,31) + -+ -+ F(Xm—1,Yn-1)
mn

As both m and n go to infinity, we expect this approximation to converge to a fixed value, the actual
average height of the surface. For reasonably nice functions this does indeed happen.

Y3

Ay
y2

Y1 —

Ax

T T T T T 1
a X| Xy X3 X4 X5 b

Figure 14.1: A rectangular subdivision of [a,b] X [c,d].

Using sigma notation, we can rewrite the approximation:

—1m—1 —lm— b d—
_Z fo]’yl = Z Z xj,y, a ¢

lO] n

~.

3

—_— O
5\
»—AO

HM

(b a ; x],yl AxAy

The two parts of this product have useful meaning: (b —a)(d — c) is of course the area of the rectangle,
and the double sum adds up mn terms of the form f(x;,y;)AxAy, which is the height of the surface at a

485
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point multiplied by the area of one of the small rectangles into which we have divided the large rectangle.
In short, each term f(x;,y;)AxAy is the volume of a tall, thin, rectangular box, and is approximately the
volume under the surface and above one of the small rectangles; see Figure 14.2. When we add all of these
up, we get an approximation to the volume under the surface and above the rectangle R = [a,b] x [c,d].
When we take the limit as m and n go to infinity, the double sum becomes the actual volume under the
surface, which we divide by (b —a)(d — c) to get the average height.

Figure 14.2: Approximating the volume under a surface.

Double sums like this come up in many applications, so in a way it is the most important part of this
example; dividing by (b —a)(d — ¢) is a simple extra step that allows the computation of an average. As
we did in the single variable case, we introduce a special notation for the limit of such a double sum:

n—1m—1

lim 3 % 1(uyaty = ] fls)avdy = ] 7x5)dA

the double integral of f over the region R. The notation dA indicates a small bit of area, without specifying
any particular order for the variables x and y; it is shorter and more “generic” than writing dxdy. The
average height of the surface in this notation is

m//lef(X,y)dA.

The next question, of course, is: How do we compute these double integrals? You might think that we
will need some two-dimensional version of the Fundamental Theorem of Calculus, but as it turns out we
can get away with just the single variable version, applied twice.

Going back to the double sum, we can rewrite it to emphasize a particular order in which we want to

add the terms:
n—1 [fm—1
Y ( f(xj,yi)Ax> Ay.

i=0 \ j=0
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In the sum in parentheses, only the value of x; is changing; y; is temporarily constant. As m goes to infinity,
this sum has the right form to turn into an integral:

m—1 b
n%iggto(xj-,yi)Ax:/ f(x,yi)dx.
j=0 ¢

So after we take the limit as m goes to infinity, the sum is

g ( / ’ f(x,y,-)dx) Ay.

Of course, for different values of y; this integral has different values; in other words, it is really a function
applied to y;:

G(y) = /a bf (x,y)dx.

If we substitute back into the sum we get

n—1

Y G(yi)Ay.

i=0

This sum has a nice interpretation. The value G(y;) is the area of a cross section of the region under the
surface f(x,y), namely, when y = y;. The quantity G(y;)Ay can be interpreted as the volume of a solid
with face area G(y;) and thickness Ay. Think of the surface f(x,y) as the top of a loaf of sliced bread.
Each slice has a cross-sectional area and a thickness; G(y;)Ay corresponds to the volume of a single slice
of bread. Adding these up approximates the total volume of the loaf. (This is very similar to the technique
we used to compute volumes in Section 8.3, except that there we need the cross-sections to be in some
way “the same”.) Figure 14.3 shows this “sliced loaf”” approximation using the same surface as shown in
Figure 14.2. Nicely enough, this sum looks just like the sort of sum that turns into an integral, namely,

n—1

d
lim ) G(y;)Ay = / G(y)dy

_ -/ ‘ / " fxy) drdy.

Let’s be clear about what this means: we first will compute the inner integral, temporarily treating y as a
constant. We will do this by finding an anti-derivative with respect to x, then substituting x =a and x = b
and subtracting, as usual. The result will be an expression with no x variable but some occurrences of y.
Then the outer integral will be an ordinary one-variable problem, with y as the variable.
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Figure 14.3: Approximating the volume under a surface with slices.

Example 14.1: Volume Under Surface

Figure 14.2 shows the function sin(xy) +6/5 on [0.5,3.5] x [0.5,2.5]. Find the volume under this
surface.

Solution. The volume under this surface is

25 35 6
/ / sin(xy) + - dxdy.
05 Jos 5

The inner integral is

35 —
/ gd _ —cos(xy) n 6x
0

0.5 y y 5

Unfortunately, this gives a function for which we can’t find a simple anti-derivative. To complete the
problem we could use Sage or similar software to approximate the integral. Doing this gives a volume of
approximately 8.84, so the average height is approximately 8.84/6 ~ 1.47. )

35
COS( y) COS( }7)

p s1n(xy)—|—5 X S s

Because addition and multiplication are commutative and associative, we can rewrite the original dou-
ble sum:

n—1m—1 m—1n—1
Z Z f(xj,yi) AxAy = Z Zf(xj,y,-)AyAx.
i—0 j=0 =0 i=0

Now if we repeat the development above, the inner sum turns into an integral:
n—

1 d
im ¥ £(x;y0)Ay = / F(xj.y)dy,

n—oo !
i=0

and then the outer sum turns into an integral:

m—1 d b rd
Tim J;( / f(x,-,y)dy)sz | [ reavaz
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In other words, we can compute the integrals in either order, first with respect to x then y, or vice versa.
Thinking of the loaf of bread, this corresponds to slicing the loaf in a direction perpendicular to the first.

We haven’t really proved that the value of a double integral is equal to the value of the corresponding
two single integrals in either order of integration, but provided the function is reasonably nice, this is true;
the result is called Fubini’s Theorem.

Example 14.2: Compute Volume in Two Ways

We compute // 14 (x—1)? 4 4y*dA, where R = [0,3] x [0,2], in two ways.
R

Solution. First,

2

3 2 3 4
/ / 1+(x—1)2+4y2dydx:/ y4+ (x—1)2y+=y*| dx
0 Jo 0 37 o

:/03 <2+2(x—1)2—|—33—2) — (0)dx

3

2 32
= 2x+ g(x— 1)3—1—?x

0

2 32 2
—64+--84+—-3—(0—1-=240
+3 +3 ( 3+)

=44,

In the other order:

3

2 242 2 (=1
/ / I+ (x—1)"+4y dxdy:/ X+ ———+4y°x
0 Jo 0

d
3 Y

0

—/23+8+122+1d
o T3 T3
8 12
= 3y+—y+4y 4 -
YRy Ay oy
16 2
—64+—+324=
+3 3243

= 44,

0

&

In this example there is no particular reason to favor one direction over the other; in some cases,
one direction might be much easier than the other, so it’s usually worth considering the two different
possibilities.

Frequently we will be interested in a region that is not simply a rectangle. Let’s compute the volume
under the surface x + 2y? above the region described by 0 < x < 1 and 0 < y < x?, shown in Figure 14.4.
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0
0 1

Figure 14.4: A parabolic region of integration.

In principle there is nothing more difficult about this problem. If we imagine the three-dimensional
region under the surface and above the parabolic region as an oddly shaped loaf of bread, we can still
slice it up, approximate the volume of each slice, and add these volumes up. For example, if we slice
perpendicular to the x-axis at x;, the thickness of a slice will be Ax and the area of the slice will be

2

/ i Xi —|—2y2dy.
0

When we add these up and take the limit as Ax goes to 0, we get the double integral

1 px? 1 2
// x—|—2y2dydx:/ xy—l——y3
0 Jo 0 3

1

2
= ©+ §x6 dx

dx

2
0

We could just as well slice the solid perpendicular to the y-axis, in which case we get
1l 142 !
/ / x-|-2y2dxdy:/ —+2y2x dy
0o Jyy 0 2 5
0o 2 2
1

v, 25 Y 4ap
23 TP,
1 2 1 4 29
:—+ ————— = —
273 4 7 84

What is the average height of the surface over this region? As before, it is the volume divided by the
area of the base, but now we need to use integration to compute the area of the base, since it is not a simple

rectangle. The area is
1 1
2
dx = =,
/0 ¥dx=z

so the average height is 29/28.
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Example 14.3: Volume of Region

Find the volume under the surface z = \/1 — x? and above the triangle formed by y = x, x = 1, and
the x-axis.

Solution. Let’s consider the two possible ways to set this up:

1 px 1,1
/ / V1 —x*dydx or / / V1 —x%dxdy.
0 Jo 0 Jy

Which appears easier? In the first, the first (inner) integral is easy, because we need an anti-derivative with

respect to y, and the entire integrand 1/ 1 — x2 is constant with respect to y. Of course, the second integral
may be more difficult. In the second, the first integral is mildly unpleasant—a trig substitution. So let’s
try the first one, since the first step is easy, and see where that leaves us.

1 px 1 X 1
/ / \/1—x2dydx:/ y 1—x20dx:/ xV 1 —x%dx.
0 JO 0 0

This is quite easy, since the substitution u = 1 — x> works:

/ 1 1 1
/x 1 —x?dx = ——/\/ﬁdu: —§u3/2 _ _5(1_x2)3/2.

2
Then
! 1 "
/ xV1=x2dx=—=(1-x*)3?| =_.
0 3 o 3

This is a good example of how the order of integration can affect the complexity of the problem. In this
case it is possible to do the other order, but it is a bit messier. In some cases one order may lead to a very
difficult or impossible integral; it’s usually worth considering both possibilities before going very far. &

Exercises for 14.1

2 4
Exercise 14.1.1 Compute / / 1 +xdydx.
0 Jo
1 2
Exercise 14.1.2 Compute / / x+ydydx.
-1Jo
2 ry
Exercise 14.1.3 Compute / / xydxdy.
1 Jo

Loy
Exercise 14.1.4 Compute / / dxdy.
0 Jy2/2

2 rx
Exercise 14.1.5 Compute / / dydx.
1)1

X2
y2
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1 px2 y
Exercise 14.1.6 Compute / / —dydx.
0oJo e
NI
Exercise 14.1.7 Compute / / xcosydydx.
0 0
/2 prcosO
Exercise 14.1.8 Compute / / 2 (cos 6 — r) drd6.
0 0
1 1
Exercise 14.1.9 Compute: / / VX3 + 1dxdy.
0 Jyy

1,1
Exercise 14.1.10 Compute: / / ) ysin(x?) dxdy.
0 Jy

1l
Exercise 14.1.11 Compute: / / XV I y2dydx.
0 Jx

1 ry 2
Exercise 14.1.12 Compute: / / dxdy.
P 0 Jo v1—x2 Y

1 r3
Exercise 14.1.13 Compute: / / & dxdy.
0 J3y

1 pl—x?
Exercise 14.1.14 Compute / / X — Vydydx.
-1J0

V2/2 /1-2x2
Exercise 14.1.15 Compute / xdydx.
0 —V1-2x2

Exercise 14.1.16 Evaluate / / x> dA over the region in the first quadrant bounded by the hyperbola xy =
16 and the lines y = x, y =0, and x = 8.

Exercise 14.1.17 Find the volume below z =1 —y above the region —1 <x<1,0<y <1 — X2
Exercise 14.1.18 Find the volume bounded by 7 = x*> +y* and z = 4.

Exercise 14.1.19 Find the volume in the first octant bounded by y* =4 —x and y = 2z.

Exercise 14.1.20 Find the volume in the first octant bounded by y* = 4x, 2x+y =4, z=1y, and y = 0.
Exercise 14.1.21 Find the volume in the first octant bounded by x+y-+z =9, 2x+3y =18, and x+3y =09.

Exercise 14.1.22 Find the volume in the first octant bounded by x* +y* = a* and z = x +y.
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Exercise 14.1.23 Find the volume bounded by 4x* +y* = 4z and z = 2.
Exercise 14.1.24 Find the volume bounded by 7 = x* +y* and z = .

Exercise 14.1.25 Find the volume under the surface 7 = xy above the triangle with vertices (1,1,0),
(4,1,0), (1,2,0).

Exercise 14.1.26 Find the volume enclosed by y = X2, y=4,z= X2, 7=0.

Exercise 14.1.27 A swimming pool is circular with a 40 meter diameter. The depth is constant along
east-west lines and increases linearly from 2 meters at the south end to 7 meters at the north end. Find the
volume of the pool.

Exercise 14.1.28 Find the average value of f(x,y) = e’\/x + € on the rectangle with vertices (0,0), (4,0),
(4,1) and (0,1).

Exercise 14.1.29 Figure 14.5 shows a temperature map of Colorado. Use the data to estimate the average
temperature in the state using 4, 16 and 25 subdivisions. Give both an upper and lower estimate. Why do
we like Colorado for this problem? What other state(s) might we like?

Current Temperatures Air Sports Net Weather
50 40 30 20 ‘W D 10 20 30 40 sn
60 50 40 -30 -20 10 _ﬂ 40 S0 60 70 B0

Created: Mon Mar, 24 2008 12:58 PM EDST

Figure 14.5: Colorado temperatures.

Exercise 14.1.30 Three cylinders of radius 1 intersect at right angles at the origin, as shown in Fig-
ure 14.6. Find the volume contained inside all three cylinders.
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Figure 14.6: Intersection of three cylinders.

Xy
Exercise 14.1.31 Prove that if f(x,y) is integrable and if g(x,y) = / / f(s,t) dt ds then gy, = gyx =
a Jb
fxy).

Exercise 14.1.32 Reverse the order of integration on each of the following integrals

w [ [ 7 ) drdy
o | i / ™ fley) dy dx

(c) /O 1 / " fey) drdy

rcsiny

@ [ 1 / jf(x,y) dy dx

3 /9?2
@ [ " f(ey) dxdy

Exercise 14.1.33 What are the parallels between Fubini’s Theorem and Clairaut’s Theorem?

14.2 Double Integrals in Polar Coordinates

Suppose we have a surface given in polar coordinates as z = f(r,0) and we wish to find the integral over
some region. We could attempt to translate into rectangular coordinates and do the integration there, but it
is often easier to stay in polar coordinates.

How might we approximate the volume under such a surface in a way that uses polar coordinates
directly? The basic idea is the same as before: we divide the region into many small regions, multiply
the area of each small region by the height of the surface somewhere in that little region, and add them
up. What changes is the shape of the small regions; in order to have a nice representation in terms of r



14.2. Double Integrals in Polar Coordinates = 495

and 0, we use small pieces of ring-shaped areas, as shown in Figure 14.7. Each small region is roughly
rectangular, except that two sides are segments of a circle and the other two sides are not quite parallel.
Near a point (r, 0), the length of either circular arc is about rAf and the length of each straight side is
simply Ar. When Ar and A0 are very small, the region is nearly a rectangle with area rArA@, and the
volume under the surface is approximately

Y'Y f(ri,6))riArAb.

In the limit, this turns into a double integral

0 rr
/ / F(r,0)rdrdo.
6y Jro

rAO

Ar

Figure 14.7: A polar coordinates “grid”.

Example 14.4: Volume of One-Eighth of a Sphere

Find the volume under z7 = v/4 — r? above the quarter circle bounded by the two axes and the circle
x? +y% = 4 in the first quadrant.

Solution. In terms of r and 6, this region is described by the restrictions 0 <r <2 and 0 < 0 < /2, so
we have

2
/2 3 ” 76

0

/7:/2/ \/jrdrde /

m/2 8
— / ° a0
= 3 )
The surface is a portion of the sphere of radius 2 centered at the origin, in fact exactly one-eighth of the
sphere. We know the formula for volume of a sphere is (4/3)7r3, so the volume we have computed is
(1/8)(4/3)m23 = (4/3)x, in agreement with our answer. s
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This example is much like a simple one in rectangular coordinates: the region of interest may be
described exactly by a constant range for each of the variables. As with rectangular coordinates, we can
adapt the method to deal with more complicated regions.

Example 14.5: Integration in Polar Coordinates

Find the volume under 7 = /4 — r? above the region enclosed by the curve r = 2cos 0, —7m/2 <
0 < 1/2; see Figure 14.8.

Solution. The region is described in polar coordinates by the inequalities —7/2 < 6 < 7m/2and 0 < r <
2cos 0, so the double integral is

2cos 6 /2 r2cosO
/ Va—r? rdrd6:2/ / V4—r2rdrdé.
0 0 0

We can rewrite the integral as shown because of the symmetry of the volume; this avoids a complication
during the evaluation. Proceeding:

/2 [2cosO /2
g/ /' \/4—r2nhde::g/ —5 @-rp|
0 0 0

/2 8 8
:2/‘ 30+ Sde
0

/2

—7/2

2cos 6
de

3 3
8 /cos’ 0 8 %/2
S N _ °
( 3( 3 cosG)+39>0
_8 32
3 9"

Figure 14.8: Volume over a region with non-constant limits.

You might have learned a formula for computing areas in polar coordinates. It is possible to compute
areas as volumes, so that you need only remember one technique. Consider the surface z = 1, a horizontal
plane. The volume under this surface and above a region in the xy-plane is simply 1 - (area of the region),
so computing the volume really just computes the area of the region.
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Example 14.6

Find the area outside the circle r = 2 and inside r = 4 sin 0; see Figure 14.9.

Solution. The region is described by 7/6 < 0 < 57/6 and 2 < r < 4sin6, so the integral is

5m/6 4sin@ 51/6 4sin 6
/ lrdrdf = —r? do
r/6  J2 n/6 2 |,
5m/6
= 8sin’ 6 —2d6
/6
4

Figure 14.9: Finding area by computing volume.

Exercises for 14.2

Exercise 14.2.1 Find the volume above the xy-plane, under the surface r* = 2z, and inside r = 2.
Exercise 14.2.2 Find the volume inside both r = 1 and r* + 7> = 4.

Exercise 14.2.3 Find the volume below z = \/1 — r2 and above the top half of the cone z = r.
Exercise 14.2.4 Find the volume below 7 = r, above the xy-plane, and inside r = cos 0.

Exercise 14.2.5 Find the volume below z = r, above the xy-plane, and inside r = 1 4 cos 6.
Exercise 14.2.6 Find the volume between x*> +y* = 7> and x> +y* = z.

Exercise 14.2.7 Find the area inside r = 1 +sin 0 and outside r = 2sin 0.

Exercise 14.2.8 Find the area inside both r =2sin 0 and r = 2cos 0.

Exercise 14.2.9 Find the area inside the four-leaf rose r = cos(20) and outside r = 1/2.
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Exercise 14.2.10 Find the area inside the cardioid r = 2(1 + cos 0) and outside r = 2.

Exercise 14.2.11 Find the area of one loop of the three-leaf rose r = cos(30).

3 V9—x2
Exercise 14.2.12 Compute / / sin(x2 + y2) dydx by converting to polar coordinates.
-3J0

0

a
Exercise 14.2.13 Compute / / x2ydydx by converting to polar coordinates.
P 0 )y yay y glop

Exercise 14.2.14 Find the volume under z = y* +x+ 2 above the region x* +y* < 4.
Exercise 14.2.15 Find the volume between z = x>y’ and z = 1 above the region x> +y> < 1.
Exercise 14.2.16 Find the volume inside x> +y* = 1 and x> + 7> = 1.

Exercise 14.2.17 Find the volume under 7 = r above r = 3 4 cos 6.

Exercise 14.2.18 Figure 14.10 shows the plot of r = 1 +4sin(56).

Figure 14.10: r = 1 +4s5in(56).

(a) Describe the behavior of the graph in terms of the given equation. Specifically, explain maximum

and minimum values, number of leaves, and the ’leaves within leaves’.

(b) Give an integral or integrals to determine the area outside a smaller leaf but inside a larger leaf.

(c) How would changing the value of a in the equation r = 1 4+ acos(560) change the relative sizes of
the inner and outer leaves? Focus on values a > 1. (Hint: How would we change the maximum and

minimum values?)

Exercise 14.2.19 Consider the integral / /
D

1
N

(a) Why might this integral be considered improper?

dA, where D is the unit disk centered at the origin.

(b) Calculate the value of the integral of the same function 1/+/x*+y?* over the annulus with outer

radius 1 and inner radius 6.
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(c) Obtain a value for the integral on the whole disk by letting & approach O.

(d) For which values A can we replace the denominator with (x2 + yz))‘ in the original integral?

14.3 Moment and Center of Mass

Using a single integral we were able to compute the center of mass for a one-dimensional object with
variable density, and a two dimensional object with constant density. With a double integral we can handle
two dimensions and variable density.

Just as before, the coordinates of the center of mass are

_ M, _ M,
X = — y = -,

M M
where M is the total mass, M, is the moment around the y-axis, and M, is the moment around the x-axis.
(You may want to review the concepts in Section 8.6.)

The key to the computation, just as before, is the approximation of mass. In the two-dimensional case,
we treat density o as mass per square area, so when density is constant, mass is (density)(area). If we
have a two-dimensional region with varying density given by o (x,y), and we divide the region into small
subregions with area AA, then the mass of one subregion is approximately o (x;,y;)AA, the total mass is
approximately the sum of many of these, and as usual the sum turns into an integral in the limit:

X1 Y1
M= / o(x,y)dydx,
Y0

X0

and similarly for computations in cylindrical coordinates. Then as before

Mx—//ycxydydx
%0 o

/ xo (x,y)dydx.
Y0

Example 14.7: Center of Mass of Uniform Plate

Find the center of mass of a thin, uniform plate whose shape is the region between y = cosx and the
x-axis between x = —m /2 and x = 1w /2.

Solution. Since the density is constant, we may take o (x,y) = 1.

It is clear that X = 0, but for practice let’s compute it anyway. First we compute the mass:

/2 pcosx /2 /2
M= / / ldydx = / cosxdx = sinx|_ﬂ/2 =2.
n/2J0 —n/2

/2 pcosx /2 1 T
M, —/ / vdydx = / —cos’xdx ==
n/2.J0 —m/22 4

Next,
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Finally,

T/2  pcosx /2
M, = / / xdydx = / xcosxdx = 0.
/2 J0 —m/2

So ¥ = 0 as expected, and y = w/4/2 = /8. This is the same problem as in Example 8.21; it may be
helpful to compare the two solutions. L)

Example 14.8: Center of Mass of 2-D Plate

Find the center of mass of a two-dimensional plate that occupies the quarter circle x> +y* < 1 in
the first quadrant and has density k(x> +y?).

Solution. It seems clear that because of the symmetry of both the region and the density function (both
are important!), X = y. We’ll do both to check our work.

Jumping right in:
2y3/2

1 \/l—x2 1_
M:// 2y dydx—k/ 2 1o =
0 JO

This integral is something we can do, but it’s a bit unpleasant. Since everything in sight is related to a
circle, let’s back up and try polar coordinates. Then x4+ y?> = r? and

/2 n24 m/2 1
M= / / %) rdrd@ = k/ ARCE k/ 140 = k—.

Much better. Next, since y = rsin 8,

/2 pl m/2 1 T2k
Mx:k/ / r4sinedrde:k/ —sin9d9:k<——>cos9 _
0 0 o 5 5 0 5
Similarly,
/2 pl m/2 1 1 T2k
My:k/ / r4cosedrd9:k/ —cosBdf =k _sin@| = .
o Jo o 5 5 0 5
. 8
Finally, x =y = —. )

5w

Exercises for 14.3

Exercise 14.3.1 Find the center of mass of a two-dimensional plate that occupies the square [0, 1] x [0,1]
and has density function xy.

Exercise 14.3.2 Find the center of mass of a two-dimensional plate that occupies the triangle 0 < x < 1,
0 <y < x, and has density function xy.

Exercise 14.3.3 Find the center of mass of a two-dimensional plate that occupies the upper unit semicircle
centered at (0,0) and has density function y.
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Exercise 14.3.4 Find the center of mass of a two-dimensional plate that occupies the upper unit semicircle

centered at (0,0) and has density function x°.

Exercise 14.3.5 Find the center of mass of a two-dimensional plate that occupies the triangle formed by
x =2, y=2x, and y = 2x and has density function 2x.

Exercise 14.3.6 Find the center of mass of a two-dimensional plate that occupies the triangle formed by
x =0, y=x, and 2x+y = 6 and has density function X2,

Exercise 14.3.7 Find the center of mass of a two-dimensional plate that occupies the region enclosed by
the parabolas x = y*, y = x> and has density function v/x.

Exercise 14.3.8 Find the centroid of the area in the first quadrant bounded by x* — 8y +4 = 0, x*> = 4y,
and x = 0. (Recall that the centroid is the center of mass when the density is 1 everywhere.)

Exercise 14.3.9 Find the centroid of one loop of the three-leaf rose r = cos(30). (Recall that the centroid
is the center of mass when the density is 1 everywhere, and that the mass in this case is the same as the
area, which was the subject of Exercise 14.2.11 in Section 14.2.) The computations of the integrals for the
moments My and M, are elementary but quite long; Sage can help.

Exercise 14.3.10 Find the center of mass of a two dimensional object that occupies the region 0 < x < T,
0 <y <sinx, with density c = 1.

Exercise 14.3.11 A two-dimensional object has shape given by r = 1+ cos 0 and density 6(r,0) =2+
cos 0. Set up the three integrals required to compute the center of mass.

Exercise 14.3.12 A two-dimensional object has shape given by r = cos 0 and density 6(r,0) =r+ 1. Set
up the three integrals required to compute the center of mass.

Exercise 14.3.13 A two-dimensional object sits inside r = 1+ cos 0 and outside r = cos 0, and has density
1 everywhere. Set up the integrals required to compute the center of mass.

14.4 Surface Area

We next seek to compute the area of a surface above (or below) a region in the xy-plane. How might we
approximate this? We start, as usual, by dividing the region into a grid of small rectangles. We want to
approximate the area of the surface above one of these small rectangles. The area is very close to the
area of the tangent plane above the small rectangle. If the tangent plane just happened to be horizontal,
of course the area would simply be the area of the rectangle. For a typical plane, however, the area is the
area of a parallelogram, as indicated in Figure 14.11. Note that the area of the parallelogram is obviously
larger the more “tilted” the tangent plane.
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Figure 14.11: Small parallelograms at points of tangency.

Now recall a curious fact: the area of a parallelogram can be computed as the cross product of two
vectors. We simply need to acquire two vectors, parallel to the sides of the parallelogram and with lengths
to match. But this is easy: in the x-direction we use the tangent vector we already know, namely (1,0, f)
and multiply by Ax to shrink it to the right size: (Ax,0, fyAx). In the y-direction we do the same thing and
get (0,Ay, fyAy). The cross product of these vectors is (f, fy, —1) AxAy with length |/ f2 + f7 + 1 AxAy,
the area of the parallelogram. Now we add these up and take the limit, to produce the integral

X1 Y1
/x /y S+ 2+ dya.

0 0

As before, the limits need not be constant.

Example 14.9: Surface Area of a Hemisphere

Find the area of the hemisphere z = \/1 — x? — y2.

Solution. We compute the derivatives

e e
e e T e

1 V1—x2 .X'Z y2
ldydx.
/1/@ 1—x2_y2+1_x2_y2+ yax

This is a bit on the messy side, but we can use polar coordinates:

2n 1 1 drd0
/O/O,/_l_rzrr .

This integral is improper, since the function is undefined at the limit 1. We therefore compute

a 1
lim/ \/ 5 rdr = lim —V1-a2+1=1,
a—1=J0 1—r a—1—

and then the area is
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using the substitution # = 1 — r?. Then the area is

2
/ 1dO6 =2x.
0
You may recall that the surface area of a sphere of radius r is 4772, so half the area of a unit sphere is
(1/2)4m = 2m, in agreement with our answer. &

Exercises for 14.4

Exercise 14.4.1 Find the area of the surface of a right circular cone of height h and base radius a.

Exercise 14.4.2 Find the area of the portion of the plane z = mx inside the cylinder x> +y* = a°.

Exercise 14.4.3 Find the area of the portion of the plane x+y+ z = 1 in the first octant.

Exercise 14.4.4 Find the surface area of the upper half of the cone x> +y* = z* inside the cylinder
2 2
x“+y" —2x=0.

Exercise 14.4.5 Find the surface area of the upper half of the cone x> +y* = z* above the interior of one
loop of r = cos(20).

Exercise 14.4.6 Find the surface area of the upper hemisphere of x> +y* +z> = 1 above the interior of
one loop of r = cos(20).

Exercise 14.4.7 The plane ax+ by + cz = d cuts a triangle in the first octant provided that a,b,c and d
are all positive. Find the area of this triangle.

Exercise 14.4.8 Find the surface area of the portion of the cone x> +y* = 3z* lying above the xy-plane
and inside the cylinder x* +y> = 4y.

14.5 Triple Integrals

It will come as no surprise that we can also do triple integrals—integrals over a three-dimensional region.
The simplest application allows us to compute volumes in an alternate way.

To approximate a volume in three dimensions, we can divide the three-dimensional region into small
rectangular boxes, each Ax x Ay x Az with volume AxAyAz. Then we add them all up and take the limit,

to get an integral:
X1 V1 21
/ / dzdydx.
X0 Jyo Y20

Of course, if the limits are constant, we are simply computing the volume of a rectangular box.
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Example 14.10: Volume of a Box

Compute the volume of the box with opposite corners at (0,0,0) and (1,2,3).

Solution. We use an integral to compute the volume of the box:

///dzdydx—/ / z|0dydx—/ / 3dydx—/0 3y|0dx—/ 6dx=06

Of course, this is more interesting and useful when the limits are not constant.

Example 14.11: Volume of a Tetrahedron

Find the volume of the tetrahedron with corners at (0,0,0), (0,3,0), (2,3,0), and (2,3,5).

Solution. The whole problem comes down to correctly describing the region by inequalities: 0 < x < 2,
3x/2 <y <3,0<z<5x/2. The lower y limit comes from the equation of the line y = 3x/2 that forms one
edge of the tetrahedron in the xy-plane; the upper z limit comes from the equation of the plane z = 5x/2
that forms the “upper” side of the tetrahedron; see Figure 14.12. Now the volume is

5x/2
/ / / dzdydx—/ / 5x/2 dydx
3x/2J0
= —dyd
u/n jéx/Z 2 yax
/2 5x

= 2

3x/2
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Figure 14.12: A tetrahedron.

Pretty much just the way we did for two dimensions we can use triple integration to compute mass,
center of mass, and various average quantities.

Example 14.12: Average Temperature in a Cube

Suppose the temperature at a point is given by T = xyz. Find the average temperature in the cube
with opposite corners at (0,0,0) and (2,2,2).

Solution. In two dimensions we add up the temperature at “each” point and divide by the area; here we
add up the temperatures and divide by the volume, 8:
dydx = / / xydydx

8///xyzdza’ya’x—g//xyZ
X
4/ dx 2/xdx—§? =1.

Example 14.13: Mass & Center of Mass of Tetrahedron

Suppose the density of an object is given by xz, and the object occupies the tetrahedron with corners
(0,0,0), (0,1,0), (1,1,0), and (0,1,1). Find the mass and center of mass of the object.

Solution. As usual, the mass is the integral of density over the region:

1 1 py—x 1 r1 — )2 1 rlx(1=x)3
M:/ / / xzdzdydx=/ / Mdydx: —/ udx
0 Jx Jo 0 Jx 2 2 Jo 3
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1 /! 1
:8/0 x—3x2+3x3—x4dx:m.

We compute moments as before, except now there is a third moment:

1 prl py—x ) 1
My, = dzdydx = —,
y/o//o T 360
1 pl py—x 1
M = = —
Xz /0 /XV /0 )CyZdZdydx 144,

1 pl py—x 1
M :/ / / x’zdzdydx = —
“Jo Jx Jo 360°

Finally, the coordinates of the center of mass are X = M,,/M =1/3,5=M;/M =5/6, and Z = M,,,/M =

1/3.
Exercises for 14.5
1 px pxty
Exercise 14.5.1 Evaluate / / / 2x+y—1dzdydnx.
0o Jo Jo
2 2 gy
Exercise 14.5.2 Evaluate / / / xyzdzdydx.
o J-1/1
1 px plny
Exercise 14.5.3 Evaluate / / / & dzdydx.
0 Jo Jo
w/2 psin@ prcos@
Exercise 14.5.4 Evaluate / / / r?dzdrd®.
0 0 0

T psin@ prsinf
Exercise 14.5.5 Evaluate / / / rcos’ 0dzdrd®.
0 JO 0
1 pxty
Exercise 14.5.6 Evaluate / / / xdzdxdy.
0 JO 0
2y ln(y+z)
Exercise 14.5.7 Evaluate / / / e dxdzdy.
1 Jy 0

T /2 ol
Exercise 14.5.8 Compute / / / zsinx+ zcosydzdydx.
0o Jo 0

&

Exercise 14.5.9 For each of the integrals in the previous exercises, give a description of the volume (both

algebraic and geometric) that is the domain of integration.

Exercise 14.5.10 Compute / / / x+y+zdV over the region inside x*> +y> +z> < 1 in the first octant.
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Exercise 14.5.11 Find the mass of a cube with edge length 2 and density equal to the square of the
distance from one corner.

Exercise 14.5.12 Find the mass of a cube with edge length 2 and density equal to the square of the
distance from one edge.

Exercise 14.5.13 An object occupies the volume of the upper hemisphere of x> + y* +z> = 4 and has
density z at (x,y,z). Find the center of mass.

Exercise 14.5.14 An object occupies the volume of the pyramid with corners at (1,1,0), (1,—1,0),
(—1,—1,0), (—1,1,0), and (0,0,2) and has density x* +y* at (x,y,z). Find the center of mass.

Exercise 14.5.15 Verify the moments My, M,,, and My, of Example 14.13 by evaluating the integrals.

Exercise 14.5.16 Find the region E for which / / / (1—x>—y* —2%) dV is a maximum.
E

14.6 Cylindrical and Spherical Coordinates

We have seen that sometimes double integrals are simplified by doing them in polar coordinates; not
surprisingly, triple integrals are sometimes simpler in cylindrical coordinates or spherical coordinates. To
set up integrals in polar coordinates, we had to understand the shape and area of a typical small region into
which the region of integration was divided. We need to do the same thing here, for three dimensional
regions.

The cylindrical coordinate system is the simplest, since it is just the polar coordinate system plus a

z coordinate. A typical small unit of volume is the shape shown in Figure 14.7 “fattened up” in the z
direction, so its volume is rArABAz, or in the limit, rdrd0 dz.

Example 14.14: Finding Volume

Find the volume under z = \/4 — r2 above the quarter circle inside x> + y* = 4 in the first quadrant.

Solution. We could of course do this with a double integral, but we’ll use a triple integral:

n)2 2 AP 12 2 4
/ / / rdzdrd@:/ / Va4—rirdrd = ;
0 0 JO 0 0

Compare this to Example 14.5. L)

Example 14.15: Mass using Cylindrical Coordinates

An object occupies the space inside both the cylinder x> +y* = 1 and the sphere x> +y?> + 7> = 4,
and has density x> at (x,y,z). Find the total mass.
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Solution. We set this up in cylindrical coordinates, recalling that x = rcos 0:

2 2
/ // P cos?(8) dzdrd6 — / /2 4— 12 Pos’(0)drdo
ViR
2 (128
_/ (——— 3)c052(9)d9

15 5
&

Spherical coordinates are somewhat more difficult to understand. The small volume we want will be
defined by Ap, A¢@, and A0, as pictured in Figure 14.13. The small volume is nearly box shaped, with 4
flat sides and two sides formed from bits of concentric spheres. When Ap, A¢, and A6 are all very small,
the volume of this little region will be nearly the volume we get by treating it as a box. One dimension of
the box is simply Ap, the change in distance from the origin. The other two dimensions are the lengths of
small circular arcs, so they are rAo for some suitable » and o, just as in the polar coordinates case.

Figure 14.13: A small unit of volume for spherical coordinates.

The easiest of these to understand is the arc corresponding to a change in ¢, which is nearly identical
to the derivation for polar coordinates, as shown in the left graph in Figure 14.14. In that graph we are
looking “face on” at the side of the box we are interested in, so the small angle pictured is precisely A¢,
the vertical axis really is the z-axis, but the horizontal axis is not a real axis—it is just some line in the
xy-plane. Because the other arc is governed by 0, we need to imagine looking straight down the z-axis, so
that the apparent angle we see is Af. In this view, the axes really are the x- and y-axes. In this graph, the
apparent distance from the origin is not p but p sin@, as indicated in the left graph.
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pA? psinpAO

Ap,
¢ | Ag
|

«——— psing ———

Figure 14.14: Setting up integration in spherical coordinates.

The upshot is that the volume of the little box is approximately Ap (0A¢)(p sin 9AB) = p? sin pAPpAPAB,
or in the limit p2sing dp d¢ d6.

Example 14.16: Average Temperature in a Unit Sphere

Suppose the temperature at (x,y,z) is T = 1/(14x? +y* +z?). Find the average temperature in the
unit sphere centered at the origin.

Solution. In two dimensions we add up the temperature at “each” point and divide by the area; here we
add up the temperatures and divide by the volume, (4/3)7x:

1 x2 y2 1
dzd dx
47r/ /\/1 212 1+ x2+y2+ 72 Y

This looks quite messy; since everything in the problem is closely related to a sphere, we’ll convert to
spherical coordinates.

3 2n mol 1 2 3 371'
R 1 = — (41 — -
/0 /0 /0 1 2p s1n¢dpd¢d9 ( T—T ) 3

Exercises for 14.6

x2+y +y2)3/2
Exercise 14.6.1 Evaluate / / / 7dzdydx.
X2y 422

\/2—x2—y?2

/2 1212
e x*+y*+z=dzdydx.

Exercise 14.6.2 Evaluate / /

Exercise 14.6.3 Evaluate / / / x*dV over the interior of the cylinder x*> +y* = 1 between z = 0 and

z=>5.
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Exercise 14.6.4 Evaluate / / / xydV over the interior of the cylinder x*> +y* = 1 between z =0 and

z=>5.

Exercise 14.6.5 Evaluate / / / zdV over the region above the xy-plane, inside x* +y*> —2x = 0 and
under x* +y* + 72 = 4.

Exercise 14.6.6 Evaluate / / / yzdV over the region in the first octant, inside x* +y* —2x = 0 and
under x> +y* + 72 = 4.

Exercise 14.6.7 Evaluate ///x2 —l—y2 dV over the interior ofx2 —l—yz +72=4

Exercise 14.6.8 Evaluate / / / Vx2+y2dV over the interior of x4 y2 +72 =4

Exercise 14.6.9 Compute / / / x+y+zdV over the region inside x*> +y> +z> = 1 in the first octant.

Exercise 14.6.10 Find the mass of a right circular cone of height h and base radius a if the density is
proportional to the distance from the base.

Exercise 14.6.11 Find the mass of a right circular cone of height h and base radius a if the density is
proportional to the distance from its axis of symmetry.

Exercise 14.6.12 An object occupies the region inside the unit sphere at the origin, and has density equal
to the distance from the x-axis. Find the mass.

Exercise 14.6.13 An object occupies the region inside the unit sphere at the origin, and has density equal
to the square of the distance from the origin. Find the mass.

Exercise 14.6.14 An object occupies the region between the unit sphere at the origin and a sphere of
radius 2 with center at the origin, and has density equal to the distance from the origin. Find the mass.

Exercise 14.6.15 An object occupies the region in the first octant bounded by the cones ¢ = /4 and
¢ = arctan2, and the sphere p = /6, and has density proportional to the distance from the origin. Find
the mass.

14.7 Change of Variables

One of the most useful techniques for evaluating integrals is substitution, both “u-substitution” and trigono-
metric substitution, in which we change the variable to something more convenient. As we have seen,
sometimes changing from rectangular coordinates to another coordinate system is helpful, and this too
changes the variables. This is certainly a more complicated change, since instead of changing one variable
for another we change an entire suite of variables, but as it turns out it is really very similar to the kinds of
change of variables we already know as substitution.
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0.5 0.5
04 0.4
0.3 0.3
0.2 0.2
0.1 0.1
04 : X 0 : : : u
0 0.5 1 0 0.5 1 1.5

Figure 14.15: Single change of variable.

Let’s examine the single variable case again, from a slightly different perspective than we have previ-
ously used. Suppose we start with the problem

1
/ x? 1 —x2dx;
0

this computes the area in the left graph of Figure 14.15. We use the substitution x = sinu to transform the

function from x2v/1 — x2 to sin? uyv 1— sin? u, and we also convert dx to cosudu. Finally, we convert the
limits 0 and 1 to 0 and 7 /2. This transforms the integral:

1 /2
/ xzvl—xzdx:/ sinuV/ 1 —sinucosudu.
0 0

We want to notice that there are three different conversions: the main function, the differential dx, and the
interval of integration. The function is converted to sin®u+/ 1 — sin® u, shown in the right-hand graph of
Figure 14.15. It is evident that the two curves pictured there have the same y-values in the same order, but
the horizontal scale has been changed. Even though the heights are the same, the two integrals

1 /2
/ /1 —x2dx and / sinuV/ 1 —sinZucosudu
0 0

are not the same; clearly the right hand area is larger. One way to understand the problem is to note that
if both areas are approximated using, say, ten subintervals, that the approximating rectangles on the right
are wider than their counterparts on the left, as indicated. In the picture, the width of the rectangle on the
left is Ax = 0.1, between 0.7 and 0.8. The rectangle on the right is situated between the corresponding
values arcsin(0.7) and arcsin(0.8) so that Au = arcsin(0.8) — arcsin(0.7). To make the widths match, and
the areas therefore the same, we can multiply Au by a correction factor; in this case the correction factor
is approximately cosu = cos(arcsin(0.7)), which we compute when we convert dx to cosudu.

Now let’s move to functions of two variables. Suppose we want to convert an integral

X1 Y1
[ rey)aya
X0 Yo

to use new variables u and v. In the single variable case, there’s typically just one reason to want to change
the variable: to make the function “nicer” so that we can find an antiderivative. In the two variable case,
there is a second potential reason: the two-dimensional region over which we need to integrate is somehow
unpleasant, and we want the region in terms of « and v to be nicer—to be a rectangle, for example. Ideally,
of course, the new function and the new region will be no worse than the originals, and at least one of
them will be better; this doesn’t always pan out.
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As before, there are three parts to the conversion: the function itself must be rewritten in terms of u
and v, dydx must be converted to dvdu, and the old region must be converted to the new region. We will
develop the necessary techniques by considering a particular example, and we will use an example we
already know how to do by other means.

Consider
1 V1—x2
/ / VX2 +y*dydx.
~1.Jo

The limits correspond to integrating over the top half of a circular disk, and we recognize that the function
will simplify in polar coordinates, so we would normally convert to polar coordinates:

1
/ﬂ/ V2 rdrde =",
0 Jo 3

But let’s instead approach this as a substitution problem, starting with x = rcos 0, y = rsin 6. This pair of
equations describes a function from “r@-space” to “xy-space”, and because it involves familiar concepts,
it is not too hard to understand what it does. In Figure 14.16 we have indicated geometrically a bit about
how this function behaves. The four dots labeled a—d in the r8-plane correspond to the three dots in the
xy-plane; dots a and b both go to the origin because » = 0. The horizontal arrow in the »8-plane has r = 1
everywhere and 6 ranges from 0 to 7, so the corresponding points x = rcos 0, y = rsin 0 start at (1,0) and
follow the unit circle counter-clockwise. Finally, the vertical arrow has 6 = 7 /4 and r ranges from 0O to
1, so it maps to the straight arrow in the xy-plane. Extrapolating from these few examples, it’s not hard to
see that every vertical line in the r@-plane is transformed to a line through the origin in the xy-plane, and
every horizontal line in the r@-plane is transformed to a circle with center at the origin in the xy-plane.
Since we are interested in integrating over the half-disk in the xy-plane, we will integrate over the rectangle
[0, 7] x [0,1] in the r@-plane, because we now see that the points in this rectangle are sent precisely to the
upper half disk by x =rcos 0 and y = rsin 6.

r y
1-o¢
N d
d
a,b
Oa o |9 T ¢ Cx
b 7 ~1 0 1

Figure 14.16: Double change of variable.

At this point we are two-thirds done with the task: we know the r0-limits of integration, and we can
easily convert the function to the new variables:

Vxt+yr= Vr2cos2 0 + r2sin® 0 = v/ cos2 6 +sin2 6 = r. (14.1)

The final, and most difficult, task is to figure out what replaces dxdy. (Of course, we actually know the
answer, because we are in effect converting to polar coordinates. What we really want is a series of steps
that gets to that right answer but that will also work for other substitutions that are not so familiar.)

Let’s take a step back and remember how integration arises from approximation. When we approxi-
mate the integral in the xy-plane, we are computing the volumes of tall thin boxes, in this case boxes that
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are Ax X Ay x \/x2 +y2. We are aiming to come up with an integral in the r0-plane that looks like this:

/0”/01 r(?)drdé. (14.2)

What we’re missing is exactly the right quantity to replace the “?” so that we get the correct answer. Of
course, this integral is also the result of an approximation, in which we add up volumes of boxes that are
Ar x A8 x height; the problem is that the height that will give us the correct answer is not simply r. Or put
another way, we can think of the correct height as r, but the area of the base ArA8 as being wrong. The
height » comes from Equation 14.1, which is to say, it is precisely the same as the corresponding height in
the xy-version of the integral. The problem is that the area of the base Ax x Ay is not the same as the area
of the base Ar x AB. We can think of the “?” in the integral as a correction factor that is needed so that
7drd0 = dxdy.

So let’s think about what that little base Ar x A8 corresponds to. We know that each bit of horizontal
line in the r@-plane corresponds to a bit of circular arc in the xy-plane, and each bit of vertical line in the
r@-plane corresponds to a bit of “radial line” in the xy-plane. In Figure 14.17 we show a typical rectangle
in the r@-plane and its corresponding area in the xy-plane.

r y

Ar%:] O

0 r 0 I | X
T —1 0 1

1

Figure 14.17: Corresponding areas.

In this case, the region in the xy-plane is approximately a rectangle with dimensions Ar x rA8, but in
general the corner angles will not be right angles, so the region will typically be (almost) a parallelogram.
We need to compute the area of this parallelogram. We know a neat way to do this: compute the length of
a certain cross product. If we can determine an appropriate two vectors we’ll be nearly done.

Fortunately, we’ve really done this before. The sides of the region in the xy-plane are formed by tem-
porarily fixing either r or 6 and letting the other variable range over a small interval. In Figure 14.17, for
example, the upper right edge of the region is formed by fixing 6 =27 /3 and letting r run from 0.5 to 0.75.
In other words, we have a vector function v(r) = (rcos 6y, rsin 6y,0), and we are interested in a restricted
set of values for r. A vector tangent to this path is given by the derivative v'(r) = (cos 6y, sin 6y,0), and
a small tangent vector, with length approximately equal to the side of the region, is (cos 6y, sin 6y,0) dr.
Likewise, if we fix r = rop = 0.5, we get the vector function w(6) = (rgcos 0, rgsin6,0) with derivative
w(6) = (—rgsin6,rycos 0,0) and a small tangent vector (—rysin 6y, rycos 6y,0) d0 when 6 = 6, (at the
corner we’re focusing on). These vectors are shown in Figure 14.18, with the actual region outlined by a
dotted boundary. Of course, since both Ar and A6 are quite large, the parallelogram is not a particularly
good approximation to the true area.
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T —X
—1 0 1

Figure 14.18: The approximating parallelogram.

The area of this parallelogram is the length of the cross product:

i j k
(—rpsin By, rocos By, 0) dO x (cos 6y, sin 6y,0)dr = |—rosinBy rocos6y 0| dOdr
cos 6y sinfp O

= (0,0, —rgsin’ 6y — rocos® 6) dO dr
=(0,0,—ro)dOdr.

The length of this vector is rodrd@. So in general, for any values of r and 6, the area in the xy-plane
corresponding to a small rectangle anchored at (6,r) in the r6-plane is approximately rdrd6. In other
words, “r” replaces the “r(?)” in Equation 14.2.

In general, a substitution will start with equations x = f(u,v) and y = g(u,v). Again, it will be straight-
forward to convert the function being integrated. Converting the limits will require, as above, an under-
standing of just how the functions f and g transform the uv-plane into the xy-plane. Finally, the small
vectors we need to approximate an area will be (f,,g,,0) du and (f,,g,,0) dv. The cross product of these
is (0,0, fugy — gufy) dudv with length |f,g, — g, f»| dudv. The quantity |f,g, — g.f»| is usually denoted

d(x,y)
a(u’ V) - |fugv - gufvl
and called the Jacobian. Note that this is the absolute value of the two by two determinant
Ju 8u
Hosl’

which may be easier to remember. (Confusingly, the matrix, the determinant of the matrix, and the absolute
value of the determinant are all called the Jacobian by various authors.)

Because there are two things to worry about, namely, the form of the function and the region of
integration, transformations in two (or more) variables are quite tricky to discover.

Example 14.17: Integral of an Ellipse

Integrate x*> — xy + y* over the region x> —xy +y> < 2.

Solution. The equation x> — xy + y? = 2 describes an ellipse as in Figure 14.19; the region of integration
is the interior of the ellipse. We will use the transformation x = v/2u — /2/3v, y = v2u + 1/2/3v.
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Substituting into the function itself we get
x° —xy—l—y2 =2’ + 207,

The boundary of the ellipse is x> —xy+y? = 2, so the boundary of the corresponding region in the uv-plane
is 2u® +2v? =2 or u? +v? = 1, the unit circle, so this substitution makes the region of integration simpler.

Next, we compute the Jacobian, using f = v/2u — /2/3v and g = V2u + 2/3v

Fuo—gufo = V2273 +V2/2)3 = %

Hence the new integral is
/ 2u + 2v du dv,

where R is the interior of the unit circle. This is still not an easy integral, but it is easily transformed to
polar coordinates, and then integrated. )

Figure 14.19: x> — xy+y* = 2.

There is a similar change of variables formula for triple integrals, though it is a bit more difficult to
derive. Suppose we use three substitution functions, x = f(u,v,w), y = g(u,v,w), and z = h(u,v,w). The
Jacobian determinant is now

Oxy) _ [T 8w
W =fH & h.
” Sw &w hw

Then the integral is transformed in a similar fashion:

///ny, dv = ///F flu,v,w), (uvw)h(uvw))'g((;‘}w))

where of course the region S in uvw-space corresponds to the region R in xyz-space.

dudvdw,

Exercises for 14.7

Exercise 14.7.1 Complete Example 14.17 by converting to polar coordinates and evaluating the integral.
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Exercise 14.7.2 Evaluate //xydxdy over the square with corners (0,0), (1,1), (2,0), and (1,—1) in two
ways: directly, and using x = (u+v)/2, y=(u—v)/2.

Exercise 14.7.3 Evaluate //x2 +y? dxdy over the square with corners (—1,0), (0,1), (1,0), and (0,—1)
in two ways: directly, and using x = (u+v)/2, y= (u—v)/2.

Exercise 14.7.4 Evaluate //(x—i—y)ex_y dxdy over the triangle with corners (0,0), (—=1,1), and (1,1) in
two ways: directly, and using x = (u+v)/2, y=(u—v)/2.

Exercise 14.7.5 Evaluate //y(x—y) dxdy over the parallelogram with corners (0,0), (3,3), (7,3), and
(4,0) in two ways: directly, and using x =u~+v, y = u.

Exercise 14.7.6 Evaluate / / V/x2 +y2dxdy over the triangle with corners (0,0), (4,4), and (4,0) using

X=1u,y=uw.

Exercise 14.7.7 Evaluate / / ysin(xy) dxdy over the region bounded by xy =1, xy =4, y=1,andy =4

usingx =u/v, y =v.

Exercise 14.7.8 Evaluate / / sin(9x2 + 4y2)dA, over the region in the first quadrant bounded by the
ellipse 9x* +4y* = 1.

Exercise 14.7.9 Compute the Jacobian for the substitutions x = p sin@ cos 0, y = p sin@ sin 0, z = p cos ¢.

Exercise 14.7.10 Evaluate / / dV where E is the solid enclosed by the ellipsoid
E

)C2 y2 Z2

2Tpta=t

using the transformation x = au, y = bv, and z = cw.



Vector Functions

15.1 Curves of Vector Functions

We have already seen that a convenient way to describe a line in three dimensions is to provide a vector
that “points to” every point on the line as a parameter ¢ varies, like

(1,2,3)+1(1,-2,2) = (1 41,2 — 21,3+ 21).

Except that this gives a particularly simple geometric object, there is nothing special about the indi-
vidual functions of 7 that make up the coordinates of this vector—any vector with a parameter, like
(f(t),g(t),h(z)), will describe some curve in three dimensions as ¢ varies through all possible values.

Example 15.1: Describing Curves

Describe the curves (cost,sint,0), (cost,sint,t), and {cost,sint,2t).

Solution. As ¢ varies, the first two coordinates in all three functions trace out the points on the unit circle,
starting with (1,0) when r = 0 and proceeding counter-clockwise around the circle as ¢ increases. In the
first case, the z-coordinate is always 0, so this describes precisely the unit circle in the xy-plane. In the
second case, the x- and y-coordinates still describe a circle, but now the z-coordinate varies, so that the
height of the curve matches the value of r. When ¢ = 7, for example, the resulting vector is (—1,0, 7).
A bit of thought should convince you that the result is a helix. In the third vector, the z-coordinate varies
twice as fast as the parameter ¢, so we get a stretched out helix. Both are shown in Figure 15.1. On the left
is the first helix, shown for ¢ between 0 and 47; on the right is the second helix, shown for t between 0 and
2m. Both start and end at the same point, but the first helix takes two full “turns” to get there, because its
z-coordinate grows more slowly. &

Figure 15.1: Two helixes.

A vector expression of the form r(r) = (f(r),g(¢),h(z)) is called a vector function; it is a function
from the real numbers R to the set of all three-dimensional vectors. We can alternately think of it as three

517
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separate functions, x = f(t), y = g(t), and z = h(t), that describe points in space. In this case we usually
refer to the set of equations as parametric equations for the curve, just as for a line. While the parameter
t in a vector function might represent any one of a number of physical quantities, or be simply a “pure
number”, it is often convenient and useful to think of ¢ as representing time. The vector function then tells
you where in space a particular object is at any time.

Vector functions can be difficult to understand, that is, difficult to picture. When available, computer
software can be very helpful. When working by hand, one useful approach is to consider the “projections”
of the curve onto the three standard coordinate planes. We have already done this in part: in Example 15.1
we noted that all three curves project to a circle in the xy-plane, since (cost,sin?) is a two dimensional
vector function for the unit circle.

Example 15.2: Projections onto a Plane

Graph the projections of (cost,sint,2t) onto the xz-plane and the yz-plane.

Solution. The two dimensional vector function for the projection onto the xz-plane is (cosz,2f), or in
parametric form, x = cost, z = 2¢. By eliminating ¢ we get the equation x = cos(z/2), the familiar curve
shown on the left in Figure 15.2. For the projection onto the yz-plane, we start with the vector function
(sint,2t), which is the same as y = sint, z = 2¢. Eliminating 7 gives y = sin(z/2), as shown on the right in
Figure 15.2. &

471'/ 4

2T 1 27

IRV

1 0 1 1 0 1

Figure 15.2: The projections of (cosz,sint,2¢t) onto the xz- and yz-planes.

Exercises for 15.1

Exercise 15.1.1 Investigate the curve r(t) = (sint,cost,cos8t).
Exercise 15.1.2 Investigate the curve r(t) = (t cost,tsint,t).

Exercise 15.1.3 Investigate the curve r(t) = (t,t%,cost).
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Exercise 15.1.4 Investigate the curve r(t) = (cos(20t)v'1 —t2,sin(20¢) V1 — t2,¢).
Exercise 15.1.5 Find a vector function for the curve of intersection of x> +y*> =9 and y +z = 2.

Exercise 15.1.6 A bug is crawling outward along the spoke of a wheel that lies along a radius of the
wheel. The bug is crawling at 1 unit per second and the wheel is rotating at 1 radian per second. Suppose
the wheel lies in the yz-plane with center at the origin, and at time t = 0 the spoke lies along the positive
y-axis and the bug is at the origin. Find a vector function r(t) for the position of the bug at time t.

Exercise 15.1.7 What is the difference between the parametric curves f(t) = (t,1,t%), g(t) = (t*,12,1*),
and h(t) = (sin(t),sin(t),sin*(¢)) as t runs over all real numbers?

Exercise 15.1.8 Plot each of the curves below in 2 dimensions, projected onto each of the three standard
planes (the xy-, xz-, and yz-planes).

(a) f(t) = (t,£3,1?), t ranges over all real numbers.

(b) f(t)= (>t —1,t245) for0 <t < 3.

Exercise 15.1.9 Given points A = (ay,a3,a3) and B = (by,by,b3), give parametric equations for the line
segment connecting A and B. Be sure to give appropriate t values.

Exercise 15.1.10 With a parametric plot and a set of t values, we can associate a ‘direction’. For exam-
ple, the curve (cost,sint) is the unit circle traced counterclockwise. How can we amend a set of given
parametric equations and t values to get the same curve, only traced backwards?

15.2 Calculus with Vector Functions

A vector function r(¢) = (f(t),g(t),h(t)) is a function of one variable—that is, there is only one “input”
value. What makes vector functions more complicated than the functions y = f(x) that we studied in the
first part of this book is of course that the “output” values are now three-dimensional vectors instead of
simply numbers. It is natural to wonder if there is a corresponding notion of derivative for vector functions.
In the simpler case of a function y = s(¢), in which 7 represents time and s(¢) is position on a line, we have
seen that the derivative s'(¢) represents velocity; we might hope that in a similar way the derivative of a
vector function would tell us something about the velocity of an object moving in three dimensions.

One way to approach the question of the derivative for vector functions is to write down an expression
that is analogous to the derivative we already understand, and see if we can make sense of it. If we say
that what we mean by the limit of a vector is the vector of the individual coordinate limits, this gives us

r(r+At)—r(t)

r'(t) = lim

At—0 At
— lim (f(t+Ar)— f(1),g(t+Ar) —g(t),h(t+ At) — h(2))
Ar—0 At

_ lim<f(t-|—At)—f(t) g(t+Ar)—g(t) h(t+At)—h(t)
At—0 At ’ At ’ At

)
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= (f(t).8'(1). K (1)),

Starting with a familiar expression for what appears to be a derivative, we find that we can make good
computational sense out of it—but what does it actually mean?

We know how to interpret r(f + At) and r(z)—they are vectors that point to locations in space; if ¢ is
time, we can think of these points as positions of a moving object at times that are Ar apart. We also know
what Ar = r(z + Ar) — r(¢) means—it is a vector that points from the head of r(7) to the head of r(¢ + Ar),
assuming both have their tails at the origin. So when At is small, Ar is a tiny vector pointing from one
point on the path of the object to a nearby point. As At gets close to 0, this vector points in a direction that
is closer and closer to the direction in which the object is moving; geometrically, it approaches a vector
tangent to the path of the object at a particular point.

Figure 15.3: Approximating the derivative.

Unfortunately, the vector Ar approaches 0 in length; the vector (0,0,0) is not very informative. By
dividing by Az, when it is small, we effectively keep magnifying the length of Ar so that in the limit it
doesn’t disappear. Thus the limiting vector {f'(¢),g'(¢t),h'(¢)) will (usually) be a good, non-zero vector
that is tangent to the curve.

What about the length of this vector? It’s nice that we’ve kept it away from zero, but what does it
measure, if anything? Consider the length of one of the vectors that approaches the tangent vector:

r(t+At)—r(t)
At

I (t + A1) —x(1)]
|At|

The numerator is the length of the vector that points from one position of the object to a “nearby” position;
this length is approximately the distance travelled by the object between times ¢ and ¢ 4+ A¢. Dividing this
distance by the length of time it takes to travel that distance gives the average speed. As Ar approaches
zero, this average speed approaches the actual, instantaneous speed of the object at time 7.

By performing an “obvious” calculation to get something that looks like the derivative of r(t), we get
precisely what we would want from such a derivative: the vector r/(¢) points in the direction of travel of
the object and its length tells us the speed of travel. In the case that ¢ is time, then, we call v(z) = r/(¢) the
velocity vector. Even if 7 is not time, ¥’(¢) is useful—it is a vector tangent to the curve.

We have seen that r = (cost,sint,t) is a helix. Compute r’ and |r’|.

Solution. We compute r’ = (—sint,cost, 1), and |r| = V/sin?¢ +cos2t + 1 = /2. Thinking of this as a
description of a moving object, its speed is always v/2; see Figure 15.4. s
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Figure 15.4: A tangent vector on the helix.

Example 15.4

The velocity vector for (cost,sint,cost) is (—sint,cost, —sint). As before, the first two coordinates
mean that from above this curve looks like a circle. The z-coordinate is now also periodic, so that
as the object moves around the curve its height oscillates up and down. In fact it turns out that the
curve is a tilted ellipse, as shown in Figure 15.5.

Figure 15.5: The ellipse r = (cos?,sint,cos?).

The velocity vector for (cost,sint,cos?2t) is (—sint,cost, —2sin2t). The z-coordinate is now oscil-
lating twice as fast as in the previous example, so the graph is not surprising; see Figure 15.6.




522 m Vector Functions

Figure 15.6: (cost,sint,cos2t).

Example 15.6

Find the angle between the curves {t +1,t —2,t> —4) and (t +2,—t +3,t> + 1) where they meet.

Solution. The angle between two curves at a point is the angle between their tangent vectors—any tangent
vectors will do, so we can use the derivatives. We need to find the point of intersection, evaluate the two
derivatives there, and finally find the angle between them.

To find the point of intersection, we need to solve the equations

t+1=u+2
t—2=—-u+3
P —4=u’+1

Solving either of the first two equations for u and substituting in the third gives + = 3. This together with
u = 2 satisfies all three equations. Thus the two curves meet at (4,1,5), the first curve when ¢ = 3 and the
second curve when t = 2.

The derivatives are (1,1,2¢) and (1,—1,2¢); at the intersection point these are (1,1,6) and (1,—1,4).
The cosine of the angle between them is then

COS6_1—1—1—24_ 4
CV38VIS V1Y
s0 8 = arccos(4/+/19) ~ 0.41. &

The derivatives of vector functions obey some familiar looking rules, which we will occasionally need.
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Theorem 15.7: Vector Derivative Properties

Suppose r(t) and s(t) are differentiable vector functions, f(t) is a differentiable function, and a is a
real number.
d

1. Ear(t) =ar (1)

d
2. E(r(t) +5(t)) =r(t)+5 ()

3. 20K = FOF @) + £ Or)

4 %(r(t) s(1)) = (1) - s(8) +1{t) - ¢)

5 %(r(t) X S(0)) = {8) X ) r() X S0)
d /

6. El‘(f(f))zlj(f(f))f (1)

Note that because the cross product is not commutative you must remember to do the three cross
products in formula (5.) in the correct order.

When the derivative of a function f(z) is zero, we know that the function has a horizontal tangent
line, and may have a local maximum or minimum point. If r/(¢) = 0, the geometric interpretation is quite
different, though the interpretation in terms of motion is similar. Certainly we know that the object has
speed zero at such a point, and it may thus be abruptly changing direction. In three dimensions there are
many ways to change direction; geometrically this often means the curve has a cusp or a point, as in the
path of a ball that bounces off the floor or a wall.

Example 15.8

Suppose that r(t) = (1413,¢2,1), so ¥'(t) = (3t%,2¢,0). Thisis 0 att = 0, and there is indeed a cusp
at the point (1,0, 1), as shown in Figure 15.7.
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Figure 15.7: (1 +13,12, 1) has a cusp at (1,0,1).

Sometimes we will be interested in the direction of r’ but not its length. In some cases, we can still
work with r/, as when we find the angle between two curves. On other occasions it will be useful to work
with a unit vector in the same direction as r’; of course, we can compute such a vector by dividing r’ by
its own length. This standard unit tangent vector is usually denoted by T:

In a sense, when we computed the angle between two tangent vectors we have already made use of the
unit tangent, since

s ] |8

Now that we know how to make sense of r’, we immediately know what an antiderivative must be,

namely
/ r(r)dt = ( / F()dr, / et dr, / h(r)dr),

ifr=(f(r),g(t),h(r)). What about definite integrals? Suppose that v(¢) gives the velocity of an object at
time 7. Then v(¢)At is a vector that approximates the displacement of the object over the time At: v(t)At
points in the direction of travel, and |v(¢)Ar| = |v(¢)||At| is the speed of the object times Az, which is
approximately the distance travelled. Thus, if we sum many such tiny vectors:

n—1

Z V(l‘,’)Ati

i=0

we get an approximation to the displacement vector over the time interval [y, ?,]. If we take the limit we
get the exact value of the displacement vector:

n—1 tn
lim Y v(t)Ar = / V(1) dt = r(tx) —r(t0).
i=0 1

0

Thus, given the velocity vector we can compute the vector function r giving the location of the object:

r(t)=ro+ /Otv(u)du.
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Example 15.9

An object moves with velocity vector (cost,sint,cost), starting at (1,1,1). Find the function r
giving its location.

Solution.
r(t)=(1,1,1) —|—/ cosu,sinu,cosu) du
= (1,1,1) + (sinu, — cos u, sinu)|;,
= (1,1,1) + (sint, — cost,sint) — (0,—1,0)
= (1 +sinz,2 —cost, 1 +sint)
See Figure 15.8. s

2.5

2.0

0.5

L0

Figure 15.8: Path of the object with its initial velocity vector.

Exercises for 15.2

Exercise 15.2.1 Findr' and T forr = (t%,1,t).

Exercise 15.2.2 Findr' and T for r = (cost,sin2t,t%).

Exercise 15.2.3 Findr' and T for r = (cos(€'),sin(e"),sint).

Exercise 15.2.4 Find a vector function for the line tangent to the helix (cost,sint,t) when t = /4.
Exercise 15.2.5 Find a vector function for the line tangent to (cost,sint,cos4t) whent = 1t /3.

Exercise 15.2.6 Find the cosine of the angle between the curves (0,t%,t) and {cos(xt/2),sin(7t/2),t)
where they intersect.
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Exercise 15.2.7 Find the cosine of the angle between the curves (cost,—sin(t) /4,sint) and (cost,sint,sin(2t))
where they intersect.

Exercise 15.2.8 Suppose that |r(t)| = k, for some constant k. This means that r describes some path on
the sphere of radius k with center at the origin. Show that r is perpendicular to r' at every point. Hint:
Use Theorem 15.7, part (4).

Exercise 15.2.9 A bug is crawling along the spoke of a wheel that lies along a radius of the wheel. The
bug is crawling at 1 unit per second and the wheel is rotating at 1 radian per second. Suppose the wheel
lies in the yz-plane with center at the origin, and at time t = 0 the spoke lies along the positive y-axis and
the bug is at the origin. Find a vector function r(t) for the position of the bug at time t, the velocity vector
r'(t), the unit tangent T(t), and the speed of the bug | (t)|.

Exercise 15.2.10 An object moves with velocity vector (cost,sint,t), starting at (0,0,0) when t = 0. Find
the function r giving its location.

Exercise 15.2.11 The position function of a particle is given by r(t) = (t%,5t,t> — 16t), t > 0. When is the
speed of the particle a minimum?

Exercise 15.2.12 A particle moves so that its position is given by (cost,sint,cos(6t)). Find the maximum
and minimum speeds of the particle.

Exercise 15.2.13 An object moves with velocity vector (t,tz,cost), starting at (0,0,0) when t = 0. Find
the function r giving its location.

Exercise 15.2.14 What is the physical interpretation of the dot product of two vector valued functions?
What is the physical interpretation of the cross product of two vector valued functions?

Exercise 15.2.15 Show, using the rules of cross products and differentiation, that

d / /!
S @) xr(e)) =r(t) xr'(r)

Exercise 15.2.16 Determine the point at which f(t) = (t,t>,t3) and g(t) = (cos(t),cos(2t),t + 1) intersect,
and find the angle between the curves at that point. (Hint: You’ll need to set this one up like a line
intersection problem, writing one in s and one in t.) If these two functions were the trajectories of two
airplanes on the same scale of time, would the planes collide at their point of intersection? Explain.

Exercise 15.2.17 Find the equation of the plane perpendicular to the curve r(t) = (2sin(3t),t,2cos(3t))
at the point (0,7, —2).

Exercise 15.2.18 Find the equation of the plane perpendicular to (cost,sint,cos(6t)) when t = 1 /4.

Exercise 15.2.19 At what point on the curve r(t) = (t3,3t,t%) is the plane perpendicular to the curve also
parallel to the plane 6x+ 6y —8z =17

Exercise 15.2.20 Find the equation of the line tangent to (cost,sint,cos(6t)) when t = 1 /4.
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15.3 Arc Length

Sometimes it is useful to compute the length of a curve in space; for example, if the curve represents the
path of a moving object, the length of the curve between two points may be the distance travelled by the
object between two times.

Recall that if the curve is given by the vector function r then the vector Ar = r(t + At) —r(¢) points
from one position on the curve to another, as depicted in Figure 15.3. If the points are close together,
the length of Ar is close to the length of the curve between the two points. If we add up the lengths of
many such tiny vectors, placed head to tail along a segment of the curve, we get an approximation to the
length of the curve over that segment. In the limit, as usual, this sum turns into an integral that computes
precisely the length of the curve. First, note that

|Ar| ,
Ar| = — Ar = |r'(1)| At,
ar) = s (1)
when Az is small. Then the length of the curve between r(a) and r(b) is

n

n—1 —1 |AI‘| n—1 . b /
lim ) |Ar|=lim } “— A= lim }_ |r'(; At:/ (O
§)| | ;O Ali ! n—)ooi_zo| ( )| i g | ()|

n—oo n—oo ;

It is worth stating that this works if between a and b the segment of curve is traced out exactly once.

Recall from Figure 15.1 that the function r = (cost,sint,¢) is a helix.

Example 15.10

Find the length of one turn of the helix r = (cost,sint,t) for 5 <1 < 57”

Solution. We compute ' = (—sinz,cost, 1) and |r'| = \/ sin?t 4 cos2t + 1 = /2, so the length is

Example 15.11: Length of a Curve

Suppose y = Inx; what is the length of this curve between x = 1 and x = v/3?

Solution. Although this problem does not appear to involve vectors or three dimensions, we can interpret
it in those terms: let r(¢) = (¢,Inz,0). This vector function traces out precisely y = Inx in the xy-plane.

Then r/(t) = (1,1/t,0) and |r'(t)| = 1/ 1+ 1/¢? and the desired length is

V3 1 1
/ V13 di =2 = V24 In(V241) = SIn3,
1
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(This integral is a bit tricky, but requires only methods we have learned.) s

Notice that there is nothing special about y = Inx, except that the resulting integral can be computed.
In general, given any y = f(x), we can think of this as the vector function r(¢) = (z, f(¢),0). Then r'(r) =

(1,£'(1),0) and |r'(¢)| = 1/ 1+ (f’)2. The length of the curve y = f(x) between a and b is thus

[ e

Unfortunately, such integrals are often impossible to do exactly and must be approximated.

One useful application of arc length is the arc length parameterization. A vector function r(z) gives
the position of a point in terms of the parameter #, which is often time, but need not be. Suppose s is
the distance along the curve from some fixed starting point; if we use s for the variable, we get r(s), the
position in space in terms of distance along the curve. We might still imagine that the curve represents the
position of a moving object; now we get the position of the object as a function of how far the object has
travelled.

Suppose r(t) = (cost,sint,0). We know that this curve is a circle of radius 1. While t might
represent time, it can also in this case represent the usual angle between the positive x-axis and r(t).
The distance along the circle from (1,0,0) to (cost,sint,0) is also t—this is the definition of radian
measure. Thus, in this case s =t and r(s) = (coss, sins, 0).

Suppose r(t) = (cost,sint,t). We know that this curve is a helix. Find the distance along the helix
from (1,0,0) to (cost,sint,t) and use this to write the arc length parameterization i-(s) of r(t).

Solution. The distance along the helix from (1,0,0) to (cost,sint,t) is

t t "
s:/ |r’(u)|du:/ \/C082u+sin2u+1du:/ V2du =2t
0 0 0

Thus, the value of # that gets us distance s along the helix is t = s/ /2, and so the same curve is given by

#(s) = (cos(s/v/2),sin(s/v/2),s/V/2). L

In general, if we have a vector function r(z), to convert it to a vector function in terms of arc length we
compute

s= [ W @ldu= )

solve s = f(t) for ¢, getting t = g(s), and substitute this back into r(z) to get #(s) = r(g(s)).
Suppose that 7 is time. By the Fundamental Theorem of Calculus, if we start with arc length

s(t) = /at I ()| du
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and take the derivative, we get
/ /
s(1) = [ (7).
Here s'(¢) is the rate at which the arc length is changing, and we have seen that |r/(¢)] is the speed of a
moving object; these are of course the same.

Suppose that r(s) is given in terms of arc length; what is [r/(s)|? It is the rate at which arc length is
changing relative to arc length; it must be 1! In the case of the helix, for example, the arc length param-
eterization is (cos(s/v/2),sin(s/v/2),s/v/2), the derivative is (—sin(s/v/2)/v/2,cos(s/v/2)/v/2,1/3/2),

and the length of this is

sin?(s/v2) cos?(s/v2) 1 B
\/ A T R TR S

So in general, r’ is a unit tangent vector.

Exercises for 15.3

Exercise 15.3.1 Find the length of (3cost,2t,3sint), t € [0,27].
Exercise 15.3.2 Find the length of (t>,2,13), t € [0,1].

Exercise 15.3.3 Find the length of (t?,sint,cost), t € [0,1].
Exercise 15.3.4 Find the length of the curve y = x*/%, x € [1,9].

Exercise 15.3.5 Set up an integral to compute the length of (cost,sint,e'), t € [0,5]. (It is tedious but not
too difficult to compute this integral.)

15.4 Curvature

Given a curve r(¢), we would like to be able to measure, at various points, how sharply curved it is. Clearly
this is related to how “fast” a tangent vector is changing direction, so a first guess might be that we can
measure curvature with [r’(¢)]. A little thought shows that this is flawed; if we think of ¢ as time, for
example, we could be tracing out the curve more or less quickly as time passes. The second derivative
|r”’(#)| incorporates this notion of time, so it depends not simply on the geometric properties of the curve
but on how quickly we move along the curve.

Example 15.14

Consider r(t) = (cost,sint,0) and s(t) = (cos2t,sin2¢,0). Both of these vector functions represent
the unit circle in the xy-plane, but if t is interpreted as time, the second describes an object moving
twice as fast as the first. Computing the second derivatives, we find [ (¢)| = 1, |§'(¢)| = 4.
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To remove the dependence on time, we use the arc length parameterization. If a curve is given by r(s),
then the first derivative r’(s) is a unit vector, that is, r’(s) = T(s). We now compute the second derivative
r’’(s) = T'(s) and use |T'(s)| as the “official” measure of curvature, usually denoted k.

Example 15.15

We have seen that the arc length parameterization of a particular helix is
r(s) = (cos(s/V2),sin(s/V2),s/V2)

Computing the second derivative gives I’ (s) = (—cos(s/v/2) /2, —sin(s/+/2)/2,0) with length 1/2.

What if we are given a curve as a vector function r(z), where 7 is not arc length? We have seen that arc
length can be difficult to compute; fortunately, we do not need to convert to the arc length parameterization
to compute curvature. Instead, let us imagine that we have done this, so we have found ¢ = g(s) and then
formed £(s) = r(g(s)). The first derivative &'(s) is a unit tangent vector, so it is the same as the unit tangent
vector T(¢) = T(g(s)). Taking the derivative of this we get

d

7 T(8(9)) = T(g(5))8'(s) = T'(1)

The curvature is the length of this vector:

dt
ds’

di,_ [T0 ()
ds' |ds/dt| |¥(1)|

K=|T'()]]

(Recall that we have seen that ds/dt = |r/(¢)|.) Thus we can compute the curvature by computing only
derivatives with respect to #; we do not need to do the conversion to arc length.

Example 15.16

Returning to the helix, suppose we start with the parameterization r(t) = (cost,sint,t). Calculate
the curvature K.

Solution. First r'(¢) = (—sint,cost, 1), |r'(t)| = v/2, and T(r) = (—sint,cost,1) /v/2. Then
T'(¢) = (—cost, —sinz,0) /v/2

T'(1)| =1/v2
Finally, ¥ = 1/1/2/+/2 = 1/2, as before. &

Consider this circle of radius a: r(t) = (acost,asint, 1). Find the curvature, K.

Solution. First r'() = (—asint,acost,0). Then |r(t)| = v/a2sin?t + a2 cos?t = a, and
T(t) = (—asint,acost,0) /a. Now

T'(t) = (—acost, —asint,0) /a



15.4. Curvature = 531

and |T’(¢)| = 1. Finally,
Kk=1/a

the curvature of a circle is everywhere the inverse of the radius. It is sometimes useful to think of curvature
as describing what circle a curve most resembles at a point. The curvature of the helix in the previous
example is 1/2; this means that a small piece of the helix looks very much like a circle of radius 2, as
shown in Figure 15.9. L )

Figure 15.9: A circle with the same curvature as the helix.

Example 15.18

Consider r(t) = (cost,sint,cos2t), as shown in Figure 15.6. Compute the curvature, K.

Solution. First r’'(¢) = (—sint,cost, —2sin(2¢)) and |r/(¢)| = 4/ 1+ 4sin?(2¢), so

—sint cost —2sin2t
T(t): D ) .
\/1 + 4sin®(2¢) \/1 + 4sin®(2¢) \/1 + 4sin?(2¢)

Computing the derivative of this and then the length of the resulting vector is possible but unpleasant.

Fortunately, there is an alternate formula for the curvature that is often simpler than the one we have:

[¥'(2) xx" (1))
@

We compute the second derivative r”’ () = (— cost, —sinz, —4 cos(2t)). Then the cross product r'(z) x
r’(r) is
(—4costcos2t —2sintsin2¢t,2cost sin2t — 4sint cos?2t,1).

Computing the length of this vector and dividing by |r/(¢)|? is still a bt tedious. With the aid of a computer
we get

V/48cos*t —48cos2r+ 17
(—16cos*t +16cos?t +1)3/2°
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Graphing this we get

T

Compare this to Figure 15.6. The highest curvature occurs where the curve has its highest and lowest
points, and indeed in the picture these appear to be the most sharply curved portions of the curve, while
the curve is almost a straight line midway between those points. )

Let’s see why this alternate formula is correct. Starting with the definition of T, r' = |r/|T so by the
product rule r’ = |r/|'T + |r/|T’. Then by Theorem 12.7 the cross product is
v’ xr’ = |¢|Tx|r'|'T+|¢|T x [¢'|T
= ['[[[ (T x T) + ¢’ (T x T
= 'A(TxT)
because T x T = 0, since T is parallel to itself. Then
I’ xr”| = |r'|?|Tx T'|
= |r/|*|T||T’| sin O
= |r'[*IT'
using Exercise 15.2.8 in Section 15.2 to see that & = 7/2. Dividing both sides by |r/|?
desired formula.

then gives the

We used the fact here that T’ is perpendicular to T; the vector N = T’ /|T'| is thus a unit vector perpen-
dicular to T, called the unit normal to the curve. Occasionally of use is the unit binormal B=T x N, a
unit vector perpendicular to both T and N.

Exercises for 15.4

Exercise 15.4.1 Find the curvature of (t,tz,t).
Exercise 15.4.2 Find the curvature of {t,t*,1%).
Exercise 15.4.3 Find the curvature of {t,t3,1°).

Exercise 15.4.4 Find the curvature of y = x* at (1,1).
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15.5 Acceleration Vectors

We have already seen that if 7 is time and an object’s location is given by r(¢), then the derivative r/(¢) is
the velocity vector v(z). Just as v(z) is a vector describing how r(7) changes, so is v/(¢) a vector describing
how v(r) changes, namely, a(t) = v/(t) = r’/(¢) is the acceleration vector.

Example 15.19

Suppose r(t) = (cost,sint,1).  Then r'(t) = v(t) = (—sint,cost,0) and V() = a(r) =
(—cost,—sint,0). This describes the motion of an object traveling on a circle of radius 1, with
constant z-coordinate 1. The velocity vector is of course tangent to the curve; note that a- v= 0, so
v and a are perpendicular. In fact, it is not hard to see that a points from the location of the object
to the center of the circular path at (0,0,1).

Recall that the unit tangent vector is given by T = v/|v|, so v = |v|T. If we take the derivative of both
sides of this equation we get

a=|v|T+|v|T. (15.1)

Also recall the definition of the curvature, k¥ = |T'|/|v], or |[T’| = k|v|. Finally, recall that we defined
the unit normal vector as N = T'/|T’[, so T' = |T'|N = k|v|N. Substituting into Equation 15.1 we get

a=|v|'T+ «|v|>N. (15.2)

The quantity |v(z)| is the speed of the object, often written as v(¢); |v(z)| is the rate at which the speed
is changing, or the scalar acceleration of the object, a(t). Rewriting Equation 15.2 with these gives us

a=aT+xN= arT + anN;

ar is the tangential component of acceleration and ay is the normal component of acceleration. We
have already seen that ar measures how the speed is changing; if you are riding in a vehicle with large
ar you will feel a force pulling you into your seat. The other component, ay, measures how sharply your
direction is changing with respect to time. So it naturally is related to how sharply the path is curved,
measured by k, and also to how fast you are going. Because ay includes v, note that the effect of speed
is magnified; doubling your speed around a curve quadruples the value of ay. You feel the effect of this as
a force pushing you toward the outside of the curve, the “centrifugal force.”

In practice, if we want ay we would use the formula for x:

¥ xr
PP

//|

|2: I’ xr'| _|vxal

[’ =
id vl

ay = K'|V|2 =

To compute ar we can project a onto v:

v.a r-r
ar = —— = .
T
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Example 15.20

Suppose r = (t,tz,t3>. Compute v, a, ar, and ay.

Solution. Taking derivatives we get v = (1,2¢,3¢%) and a = (0,2,6¢). Then

4t + 1813 V4 + 3612 + 3614
ar=—— and ay= .
V14412 +9¢4 V14412 +9¢4

Exercises for 15.5

Exercise 15.5.1 Let r = <t5 ,2t2,t>. Compute v, a, ar, and ay.
Exercise 15.5.2 Let r = (cost,sint,t?). Compute v, a, ar, and ay.
Exercise 15.5.3 Let r = (cost,sint,e'). Compute v, a, ar, and ay.
Exercise 15.5.4 Letr = (¢,sint,e'). Compute v, a, ar, and ay.

Exercise 15.5.5 Suppose an object moves so that its acceleration is given by a = (—3 cost,—2sint,0). At
time t = 0 the object is at (3,0,0) and its velocity vector is (0,2,0). Find v(t) and r(t) for the object.

Exercise 15.5.6 Suppose an object moves so that its acceleration is given by a = (—3 cost,—2sint,0). At
time t = 0 the object is at (3,0,0) and its velocity vector is (0,2.1,0). Find v(t) and r(t) for the object.

Exercise 15.5.7 Suppose an object moves so that its acceleration is given by a = (=3 cost,—2sint,0). At
time t = 0 the object is at (3,0,0) and its velocity vector is (0,2,1). Find v(t) and r(t) for the object.

Exercise 15.5.8 Suppose an object moves so that its acceleration is given by a = (=3 cost,—2sint,0). At
time t = 0 the object is at (3,0,0) and its velocity vector is (0,2.1,1). Find v(t) and r(t) for the object.

Exercise 15.5.9 Describe a situation in which the normal component of acceleration is 0 and the tan-
gential component of acceleration is non-zero. Is it possible for the tangential component of acceleration
to be 0 while the normal component of acceleration is non-zero? Explain. Finally, is it possible for an
object to move (not be stationary) so that both the tangential and normal components of acceleration are
0? Explain.



Vector Calculus

16.1 Vector Fields

This chapter is concerned with applying calculus in the context of vector fields. A two-dimensional vector
field is a function f that maps each point (x,y) in R? to a two-dimensional vector (u,v), and similarly
a three-dimensional vector field maps (x,y,z) to (u,v,w). Since a vector has no position, we typically
indicate a vector field in graphical form by placing the vector f(x,y) with its tail at (x,y). Figure 16.1
shows a representation of the vector field f(x,y) = (x/+/x* +y?+4,—y/\/x*+y?+4). For such a graph
to be readable, the vectors must be fairly short, which is accomplished by using a different scale for the
vectors than for the axes. Such graphs are thus useful for understanding the sizes of the vectors relative to
each other but not their absolute size.
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Figure 16.1: A vector field.

Vector fields have many important applications, as they can be used to represent many physical quan-
tities: the vector at a point may represent the strength of some force (gravity, electricity, magnetism) or a
velocity (wind speed or the velocity of some other fluid).

We have already seen a particularly important kind of vector field—the gradient. Given a function
f(x,y), recall that the gradient is f = Vf = (f(x,y), fy(x,y)), a vector that depends on (is a function of) x
and y. We usually picture the gradient vector with its tail at (x,y), pointing in the direction of maximum
increase. Vector fields that are gradients have some particularly nice properties, as we will see. An
important example is

f: ) s ’
<(X2 _|_y2 +Z2)3/2 (X2 _|_y2 +Z2)3/2 (X2 _|_y2 +Z2)3/2>
which points from the point (x,y,z) toward the origin and has length
VX2 4y + 22 _ 1
R+ (Vi L)

535
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which is the reciprocal of the square of the distance from (x,y,z) to the origin—in other words, f is an

“inverse square law”. The vector f is a gradient:
1
f=V—— (16.1)

VXY 422

which turns out to be extremely useful.
Exercises for 16.1

Exercise 16.1.1 Investigate the vector field (x,y).
Exercise 16.1.2 Investigate the vector field (—x,—y).
Exercise 16.1.3 Investigate the vector field (x,—y).
Exercise 16.1.4 Investigate the vector field (sinx,cosy).
Exercise 16.1.5 Investigate the vector field (x+ 1,x+ 3).

Exercise 16.1.6 Verify Equation 16.1.

16.2 Divergence and Curl

Divergence and curl are two measurements of vector fields that are very useful in a variety of applications.
Both are most easily understood by thinking of the vector field as representing a flow of a liquid or gas; that
is, each vector in the vector field should be interpreted as a velocity vector. Roughly speaking, divergence
measures the tendency of the fluid to collect or disperse at a point, and curl measures the tendency of the
fluid to swirl around the point. Divergence is a scalar, that is, a single number, while curl is itself a vector.
The magnitude of the curl measures how much the fluid is swirling, the direction indicates the axis around
which it tends to swirl. These ideas are somewhat subtle in practice, and are beyond the scope of this
course.

Recall that if f is a function, the gradient of f is given by

_/af df df
Vf‘<$’a—y’a—z>'

A useful mnemonic for this (and for the divergence and curl, as it turns out) is to let

d d d
V - N ° 1 /o
< dx’ dy 0z >
that is, we pretend that V is a vector with rather odd looking entries. Recalling that (u,v,w)a = (ua,va,wa),
we can then think of the gradient as

/9 a aN\, /af df of
=iy a) = (v ar)
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that is, we simply multiply the f into the vector.

The divergence and curl can now be defined in terms of this same vector V by using the cross product
and dot product.

Divergence

The divergence of a vector field f = (f1, f>, f3) is

(900N L on ok on
vr= <8x’8y’(9z> o2 f3) = 9x dy T

The curl of £ is

_/dfs dfdfi dfs dfr dfi
\dy 9z’dz Ix'dx dy/’

> Sl
> 8o =

Here are two simple but useful facts about divergence and curl.

Theorem 16.1: Divergence of Curl is Zero

V- (Vxf=0.

In words, this says that the divergence of the curl is zero.

Theorem 16.2: Curl of Gradient is Zero
Vx(Vf)=0.

That is, the curl of a gradient is the zero vector. Recalling that gradients are conservative vector fields,
this says that the curl of a conservative vector field is the zero vector. Under suitable conditions, it is also
true that if the curl of f is 0 then f is conservative.

Example 16.3

Let f= (2¢* —y,—x,e%). Show that f is conservative and find the function f such that f= (f, fy, fz).

Solution. If f = (2¢* —y, —x,¢%) then V x £ = (0,0,(—1) — (—1)) = 0. Thus, f is conservative, and we can
exhibit this directly by finding the corresponding f.
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Since f; = 2¢* —y, f = 2¢* —xy+g(y,z). Since f, = —x, it must be that g, = 0, so g(y,z) = C+h(z).
Thus f = 2e¢* —xy+C +h(z) and
f=H(@)=¢,
so h(z) = €°. This leaves f = 2¢* —xy+e*+C. &

Exercises for 16.2

Exercise 16.2.1 Let f = (xy,—xy) and let D be given by 0 < x < 1, 0 <y < 1. Compute /a f-dr and
D

/an~Nds.

Exercise 16.2.2 Let f = (ax?,by?) and let D be given by 0 < x < 1, 0 <y < 1. Compute /a f-dr and
D

-Nds.
8Df

Exercise 16.2.3 Let f = (ay?,bx?) and let D be given by 0 < x < 1, 0 <y < x. Compute /a f-dr and
D

-Nds.
8Df

Exercise 16.2.4 Let f = (sinxcosy,cosxsiny) and let D be given by 0 < x < /2, 0 <y < x. Compute
/ f~drand/ f-Nds.
oD oD

Exercise 16.2.5 Let f= (y,—x) and let D be given by x*> +y* < 1. Compute /a f-dr and/a f-Nds.
D D

Exercise 16.2.6 Let f= (x,y) and let D be given by x> +y> < 1. Compute /a f-dr and/a f-Nds.
D D
Exercise 16.2.7 Prove Theorem 16.1.

Exercise 16.2.8 Prove Theorem 16.2.

Exercise 16.2.9 If V-f =0, f is said to be incompressible. Show that any vector field of the form
fey,2) = (f(0,2),8(x,2),h(x,y)) is incompressible. Give a non-trivial example.

16.3 Line Integrals

We have so far integrated “over” intervals, areas, and volumes with single, double, and triple integrals. We
now investigate integration over or “along” a curve—*line integrals” are really “curve integrals”.
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16.3.1 Line Integrals of a Function

As with other integrals, a geometric example may be easiest to understand. Consider the function f =x+Yy
and the parabola y = x? in the xy-plane, for 0 < x < 2. Imagine that we extend the parabola up to the surface
f, to form a curved wall or curtain, as in Figure 16.2. What is the area of the surface thus formed? We
already know one way to compute surface area, but here we take a different approach that is more useful
for the problems to come.

7
O o £ s
= i
B o . o o A
-'-'-‘-'-'-'-'-'—"--'
o o i =t et g
AT AT FA T T AT
i e
7

1 e P
i

e -
L

Figure 16.2: Approximating the area under a curve.

As usual, we start by thinking about how to approximate the area. We pick some points along the part
of the parabola we’re interested in, and connect adjacent points by straight lines; when the points are close
together, the length of each line segment will be close to the length along the parabola. Using each line
segment as the base of a rectangle, we choose the height to be the height of the surface f above the line
segment. If we add up the areas of these rectangles, we get an approximation to the desired area, and in
the limit this sum turns into an integral.

Typically the curve is in vector form, or can easily be put in vector form. Then as we have seen in
Section 15.3, the length of one of the straight line segments in the approximation is close to ds = |V/| dr.

In this example we have v(t) = (¢,#%), and ds = |V'|dt = \/1 + 42 dt. Therefore the integral is

2 2 167 11
/f(t,tz)\/l—i—4t2dt:/ (t+1%) 1+4t2dt:K\/1 —E—aln(4+\/17).
0 0

This integral of a function along a curve C is often written in abbreviated form as

/Cf(x,y) ds.
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Definition 16.4: Line Integral of a Function

Let f(x,y,z) be a function defined along a curve C. If the curve C is parametrized by r(t) with
t € [a,b], then the integral of f along C is given by

dr

— | dt
dt

[rtnas= [ roo)

Example 16.5: Compute Integral Over Line Segment

Compute / ye* ds where C is the line segment from (1,2) to (4,7).
c

Solution. We write the line segment as a vector function: v = (1,2) +¢(3,5),0 <¢ < 1, or in parametric
formx=143t,y =24 5t. Then

1 16 1
/ ye*ds = / (2+5r)e1+3f\/32+52dz:3\/34e4—§\/34e.
C 0

All of these ideas extend to three dimensions in the obvious way.

Example 16.6: Compute Integral Over Line Segment

Compute / x*zds where C is the line segment from (0,6, —1) to (4,1,5).
C

Solution. We write the line segment as a vector function: v = (0,6,—1) +¢(4,-5,6), 0 <t <1, or in
parametric form x = 4¢,y =6 —5¢t, z = —1 + 6¢. Then

1 1 56
/xzzds:/ (412(—1+60)v16+25 +36di — 16\/77/ P67t = VT
C 0 0

16.3.2 Line Integrals of a Vector Field

Now we turn to a perhaps more interesting example. Recall that in the simplest case, the work done by a
force on an object is equal to the magnitude of the force times the distance the object moves; this assumes
that the force is constant and in the direction of motion. We have already dealt with examples in which the
force is not constant; now we are prepared to examine what happens when the force is not parallel to the
direction of motion.

We have already examined the idea of components of force, in Example 12.5: the component of a

force F in the direction of a vector v is
F-v
—V
v[2
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the projection of F onto v. The length of this vector, that is, the magnitude of the force in the direction of
v, 1S
F-v
v

b

the scalar projection of F onto v. If an object moves subject to this (constant) force, in the direction of v,
over a distance equal to the length of v, the work done is

Thus, work in the vector setting is still “force times distance”, except that “times” means “dot product”.

If the force varies from point to point, it is represented by a vector field F (note we use a capital F here
to denote force). The displacement vector v may also change, as an object may follow a curving path in
two or three dimensions. Suppose that the path of an object is given by a vector function r(¢); at any point
along the path, the (small) tangent vector 1’ Az gives an approximation to its motion over a short time A,
so the work done during that time is approximately F - r’ Az; the total work over some time period is then

1
F-r'dt.

To

It is useful to rewrite this in various ways at different times. We start with
F r'dt = / F- dr,
lo

abbreviating r’ dr by dr. Or we can write
151 11
F.-r'di — ldi = / F-T|r|di — /F Tds,

To | /|

using the unit tangent vector T, abbreviating |r’|dr as ds, and indicating the path of the object by C. In
other words, work is computed using a particular line integral of the form we have considered. Alternately,
we sometimes write

/F r'dr = /fl fa.f3) - (XY 2) ar /(fl +f2 +f3 )

:/Cfldx+f2dy+f3dz:/Cfldx+/cfzdy+/cf3dz,

and similarly for two dimensions, leaving out references to z.
We define this formally.

Let F be a vector field and C a curve with parametrization r(t). Then the integral of F over C is
given by

1]
/F-dr:/F-Tds= F-rdt
C C o
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Example 16.8: Work Done

Suppose an object moves from (—1,1) to (2,4) along the path r(t) = (t,t?), subject to the force
F = (xsiny,y). Find the work done.

Solution. We can write the force in terms of ¢ as (tsin(¢?),¢?), and compute r'(¢) = (1,2¢), and then the
work is

2 2 1) —cos(4) 15
/ (tsin(tz),t2>-<1,2t)dt:/ tsin(r?) + 203 dt = cos( )ZCOS( )+7,
Alternately, we might write
2 4 4 1) 16 1
/xsinydx—l-/ydy:/ xsin(xz)dx+/ ydy:_COS( )+Cos( )+___
c C ~1 1 2 2 2 2

getting the same answer. &
Exercises for 16.3.2

Exercise 16.3.1 Compute / xy?ds along the line segment from (1,2,0) to (2,1,3).
C

Exercise 16.3.2 Compute / sinxds along the line segment from (—1,2,1) to (1,2,5).
c

Exercise 16.3.3 Compute / zcos(xy) ds along the line segment from (1,0,1) to (2,2,3).
C

Exercise 16.3.4 Compute / xe¥ dx+ / xzydy along the line segment y =3, 0 < x < 2.
c c

Exercise 16.3.5 Compute / xe” dx + / x*ydy along the line segment x =4, 0 < y < 4.
C C

Exercise 16.3.6 Compute /

xe¥ dx+ / xzydy along the curve x=3t,y=1>,0<t < 1.
c c

Exercise 16.3.7 Compute /

xeydx+/x2ydy along the curve (¢',e'), —1 <r < 1.
C C

Exercise 16.3.8 Compute / (cosx,siny) - dr along the curve (t,t),0 <t < 1.
c

Exercise 16.3.9 Compute / (1/xy,1/(x+y))-dr along the path from (1,1) to (3,1) to (3,6) using straight
C

line segments.

Exercise 16.3.10 Compute / (1/xy,1/(x+y))-dr along the curve (2t,5¢t), 1 <t <4.
c
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Exercise 16.3.11 Compute / (1/xy,1/(x+y)) - dr along the curve (t,t*), 1 <t < 4.
c
Exercise 16.3.12 Compute /yzdx-i—/xzdy—i—/xydz along the curve {t,t>,13), 0 <t < 1.
C C C

Exercise 16.3.13 Compute /yzdx—l—/xzdy+ / xydz along the curve (cost,sint,tant), 0 <t < 7.
c c c

Exercise 16.3.14 An object moves from (1,1) to (4,8) along the path r(t) = (t*,13), subject to the force
F = (x?,siny). Find the work done.

Exercise 16.3.15 An object moves along the line segment from (1,1) to (2,5), subject to the force F =
(x/(x* +¥%),y/ (x> +y?)). Find the work done.

Exercise 16.3.16 An object moves along the parabola r(t) = (t,t*), 0 < t < 1, subject to the force F =
(1/(y+1),—1/(x+1)). Find the work done.

Exercise 16.3.17 An object moves along the line segment from (0,0,0) to (3,6,10), subject to the force
F = (x?,y?,7%). Find the work done.

Exercise 16.3.18 An object moves along the curve r(t) = (\/t,1//t,t) 1 <t < 4, subject to the force
F = (y,z,x). Find the work done.

Exercise 16.3.19 An object moves from (1,1,1) to (2,4,8) along the path r(t) = (t,t>,t3), subject to the
force F = (sinx,siny,sinz). Find the work done.

Exercise 16.3.20 An object moves from (1,0,0) to (—1,0, 1) along the path r(t) = (cost,sint,t), subject
to the force F = (y*,y?,xz). Find the work done.

Exercise 16.3.21 Give an example of a non-trivial force field F and non-trivial path r(t) for which the
total work done moving along the path is zero.

16.3.3 The Fundamental Theorem of Line Integrals
One way to write the Fundamental Theorem of Calculus (Theorem 6.13) is:
b
| £wds=re) - s@.

That is, to compute the integral of a derivative f’ we need only compute the values of f at the endpoints.
Something similar is true for line integrals of a certain form.

Theorem 16.9: Fundamental Theorem of Line Integrals

Suppose a curve C is given by the vector function r(t), with a= r(a) and b= r(b). Then

Lvs-dr=rv) - s(a).

provided that r is sufficiently nice.
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Proof. We write r = (x(¢),y(t),z(t)), so that ¥’ = (x/(¢),y'(r),Z/(¢)). Also, we know that Vf = (fy, fy, f2)-
Then . b
LVredr= [ afifd- O 0200 = [+ fy + £ ar
a a
By the chain rule (see Section 13.4) fx’ + f,y' + f:2 = d f /dt, where f in this context means f(x(¢),y(1),z(1)),
a function of 7. In other words, all we have is

[ £ 0ai=10) - ra)

In this context, f(a) = f(x(a),y(a),z(a)). Since a =r(a) = (x(a),y(a),z(a)), we can write f(a) =
f(a)—this is a bit of a cheat, since we are simultaneously using f to mean f(z) and f(x,y,z), and since
f(x(a),y(a),z(a)) is not technically the same as f({x(a),y(a),z(a))), but the concepts are clear and the
different uses are compatible. Doing the same for b, we get

[9r-dr= [ f0de = 16)~ f(a) = 10~ fla).
C a
&

This theorem, like the Fundamental Theorem of Calculus, says roughly that if we integrate a “derivative-
like function” (f or V f) the result depends only on the values of the original function (f) at the endpoints.

If a vector field f is the gradient of a function, f = V f, we say that f is a conservative vector field. If F
is a conservative force field, then the integral for work, fC F-dr, is in the form required by the Fundamental
Theorem of Line Integrals. This means that in a conservative force field, the amount of work required to
move an object from point a to point b depends only on those points, not on the path taken between them.

Example 16.10: Work Done

An object moves in the force field

F= - — =
(x2+y2+Z2)3/2’(x2+y2+Z2)3/2’(x2+y2+Z2)3/2 >

along the curve r = (1+t,13,tcos(xt)) as t ranges from 0 to 1. Find the work done by the force on
the object.

Solution. The straightforward way to do this involves substituting the components of r into F, forming
the dot product F -1/, and then trying to compute the integral, but this integral is extraordinarily messy,
perhaps impossible to compute. From Equation 16.1 we know that F = V(1/1/x% 4+ y? +z2) so we need

only substitute:
(2,1,-1)

1 1
Fdr= —— -1
/C x2+y2+ 72 (1.00) V6
)

Another immediate consequence of the Fundamental Theorem involves closed paths. A path C is
closed if it forms a loop, so that travelling over the C curve brings you back to the starting point. If C is a
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closed path, we can integrate around it starting at any point a; since the starting and ending points are the
same,

[Vrdr=f@ - @) =o.
C

For example, in a gravitational field (an inverse square law field) the amount of work required to move an
object around a closed path is zero. Of course, it’s only the net amount of work that is zero. It may well
take a great deal of work to get from point a to point b, but then the return trip will “produce” work. For
example, it takes work to pump water from a lower to a higher elevation, but if you then let gravity pull
the water back down, you can recover work by running a water wheel or generator. (In the real world you
won’t recover all the work because of various losses along the way.)

To make use of the Fundamental Theorem of Line Integrals, we need to be able to spot conservative
vector fields f and to compute f so that f = Vf. Suppose that f = (f1,f2) = Vf. Then f; = f, and
f2 = f, and provided that f is sufficiently nice, we know from Clairaut’s Theorem (13.23) that a% f1=

So=fx= % f2. If we compute a% f1 and % /> and find that they are not equal, then f is not conservative.

If a% fi= % f>, then, again provided that f is sufficiently nice, we can be assured that f is conservative.
Ultimately, what’s important is that we be able to find f; as this amounts to finding anti-derivatives, we
may not always succeed.

Example 16.11

Find an f so that (4x> —y?,4 — 2xy) = V.

Solution. First, note that

0 43 _ 2y _ J _
B_y(4x —y)=-2y and a(4—2xy) = -2y,

so the desired f does exist. This means that f; = 4x> —y?, so that f = x* — xy> 4 g(y); the first two terms
are needed to get 4x> —y2, and the g(y) could be any function of y, as it would disappear upon taking a
derivative with respect to x. Likewise, since f, =4 —2xy, f = 4y —xy? 4+ h(x). The question now becomes,
is it possible to find g(y) and A(x) so that

2 —xy? +g(y) = 4y — 07 +h(x),
and of course the answer is yes: g(y) = 4y, h(x) = x*. Thus, f = 4y +x* — xy°. &

We can test a vector field f = (fi, f2, f3) in a similar way. Suppose that (fi, f2, f3) = (fw. fy. fz). If
we temporarily hold z constant, then f(x,y,z) is a function of x and y, and by Clairaut’s Theorem a% f1=
fo=fax= % f>. Likewise, holding y constant implies a% f1=fu=fx= % f3, and with x constant we

d d : d d d d d d
get - fr=fyz=foy = a—yf3. Conversely, if we find that a_yfl =5/ h =303 and - fo = a—yfg, then
f is conservative.

Exercises for 16.3.3

Exercise 16.3.22 Find an f so that V f = (2x+y?,2y+x?), or explain why there is no such f.
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Exercise 16.3.23 Find an f so that Vf = (x>,—y*), or explain why there is no such f.

Exercise 16.3.24 Find an f so that Vf = (xe’,ye"), or explain why there is no such f.

Exercise 16.3.25 Find an f so that V f = (ycosx,ysinx), or explain why there is no such f.

Exercise 16.3.26 Find an f so that V f = (ycosx,sinx), or explain why there is no such f.

Exercise 16.3.27 Find an f so that Vf = (x*y3,xy*), or explain why there is no such f.

Exercise 16.3.28 Find an f so that Vf = (yz,xz,xy), or explain why there is no such f.

Exercise 16.3.29 Evaluate / (10x4 — 2xy3) dx — / 3x2y2 dy where C is the part of the curve xr — S)CZy2 —
7x* = 0 from (0,0) to (3,2). ‘ ‘

Exercise 16.3.30 Let F = (yz,xz,xy). Find the work done by this force field on an object that moves from
(1,0,2) r0 (1,2,3).

Exercise 16.3.31 Let F = (¢”,xe” +sinz,ycosz). Find the work done by this force field on an object that
moves from (0,0,0) to (1,—1,3).

Exercise 16.3.32 Let

—x —y —2Z
F: b b
<(X2 +y2 +Z2>3/2 (x2 +y2 +Z2>3/2 (x2 +y2 +Z2>3/2>
Find the work done by this force field on an object that moves from (1,1,1) to (4,5,6).

16.4 Green's Theorem

We now come to the first of three important theorems that extend the Fundamental Theorem of Calculus
to higher dimensions. (The Fundamental Theorem of Line Integrals has already done this in one way, but
in that case we were still dealing with an essentially one-dimensional integral.) They all share with the
Fundamental Theorem the following rather vague description: To compute a certain sort of integral over
a region, we may do a computation on the boundary of the region that involves one less integration.

Note that this does indeed describe the Fundamental Theorem of Calculus and the Fundamental Theo-
rem of Line Integrals: to compute a single integral over an interval, we do a computation on the boundary
(the endpoints) that involves one less integration, namely, no integrations at all.

Theorem 16.12: Green’s Theorem

If the vector field f = (f1, f>) and the region D are sufficiently nice, and if C is the boundary of D

(C is a closed curve), then
0 0
// ﬁ — idA :/fldx+f2dy,
p dx  dy C

provided the integration on the right is done counter-clockwise around C.
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The proof of Green’s Theorem will follow a discussion and several examples.

To indicate that an integral / is being done over a closed curve in the counter-clockwise direction, we
C
usually write 74 . We also use the notation d D to mean the boundary of D oriented in the counterclockwise

direction. With this notation, 7{ = / .
c

We already know one case, not particularly interesting, in which this theorem is true: If f is conser-
vative, we know that the integral 7{ f-dr = 0, because any integral of a conservative vector field around

c
a closed curve is zero. We also know in this case that df;/dy = df»/dx, so the double integral in the
theorem is simply the integral of the zero function, namely, 0. So in the case that f is conservative, the
theorem says simply that 0 = 0.

Example 16.13

We illustrate the theorem by computing both sides of

/ x3dx+xy2dy://y—0dA,
JD D

where D is the triangular region with corners (0,0), (1,0), (0,—1).

Solution. Starting with the double integral:

1 p—14x 1(_1+x)3 (_1+x)4 1 1
2 2
—0dA = = > 7 = 7| =_——,
//Dy 0 /0/0 Yy /0 3 @ 2 |, 12

There is no single formula to describe the boundary of D, so to compute the left side directly we
need to compute three separate integrals corresponding to the three sides of the triangle, and each of these
integrals we break into two integrals, the “dx” part and the “dy” part. The three sides are described by
y=0,y=—1+x, and x = 0. The integrals are then

1 0 0 -1 0 -1
/ x3dx+xy2dy:/ x3dx+/ Ody+/ x3dx+/ (y+1)y2dy+/ 0dx+/ 0dy
oD 0 0 1 0 0 0
1 1 1 1

:Z+0_Z+_E+O+O__E

Alternately, we could describe the three sides in vector form as (z,0) for # from 0 to 1, (¢ + 1,7) for ¢
from 0 to —1, and (0,—1+7) for ¢ from O to 1. Note that in each case, as 7 ranges from lower to upper
bound, we follow the corresponding side in the correct direction. Now

1
/a 3 dx+xy*dy = / +1- Ozdt-i—/ (t41)° +(t+1)t2dt+/ 040(—141)dr
D 0 0

1
= 3 di 1 tll‘dt
=P [ e b=
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In this case, none of the integrations are difficult, but the second approach is somewhat tedious because
of the necessity to set up three different integrals. In different circumstances, either of the integrals, the
single or the double, might be easier to compute. Sometimes it is worthwhile to turn a single integral into
the corresponding double integral, sometimes exactly the opposite approach is best.

Here is a clever use of Green’s Theorem: We know that areas can be computed using double integrals,

namely,
1dA
/

computes the area of region D. If we can find f; and f, so that d f,/dx — dfi /dy = 1, then the area is also

/ fidx+ frdy.
oD

It is quite easy to do this: fi =0, f, = x works, as do fj = —y, f, =0and f; = —y/2, fo = x/2.

Example 16.14

An ellipse centered at the origin, with its two principal axes aligned with the x and y axes, is given
by

Find the area of the interior of the ellipse.

Solution. We find the area of the interior of the ellipse via Green’s theorem. To do this we need a vector
equation for the boundary; one such equation is (acost,bsint), as ¢ ranges from 0 to 2. We can easily

verify this by substitution:
x? n y? B a?cos’t  bZsin’t
a2 p?2 a2 b?

Let’s consider the three possibilities for f] and f, above: Using 0 and x gives

— cos?t +sin’t = 1.

21 2r
dex—f—xdy :/ acos(t)bcos(t)dt :/ abcos®(t) dt.
C 0 0

Using —y and 0 gives

2 2
74 —ydx+0dy = / —bsin(r)(—asin(t))dt = / absin’(1)dt.
c 0 0
Finally, using —y/2 and x/2 gives
acos(t)

f%—%dﬁ%dy: /Ozn‘bSig(t)Fasin(t))dH (beos(t))dt

_/2”absin2t abcos?t
—Jo 2 2

21
dt:/ D 1t — mab,
o 2

The first two integrals are not particularly difficult, but the third is very easy, though the choice of f; and
/> seems more complicated. s
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(0,b)

Figure 16.3: A “standard” ellipse, = = —|— ly)—z =1.
Now we look at the proof of Green’s Theorem.

Proof. We cannot here prove Green’s Theorem in general, but we can do a special case. We seek to prove
that for a vector field f = (f1, f>)

_ ([ 9f2 3f1
jéfldx-l-fzd)’—/ E—a—y

It is sufficient to show that

]ffldx—// —@dA and ?{fzdy // 2 A,

which we can do if we can compute the double integral in both possible ways, that is, using dA = dydx
and dA = dxdy.

For the first equation, we start with

// aa //:2 %d dx—/bfl(x,gz(x))—fl(x,gl(x))dx.

Here we have simply used the ordinary Fundamental Theorem of Calculus, since for the inner integral
we are integrating a derivative with respect to y: an antiderivative of d f /dy with respect to y is simply
f1(x,y), and then we substitute g; and g, for y and subtract.

Now we need to manipulate ¢ fjdx. The boundary of region D consists of 4 parts, given by the
equations y = gi(x), x = b, y = g2(x), and x = a. On the portions x = b and x = a, dx = 0dt, so the
corresponding integrals are zero. For the other two portions, we use the parametric forms x =¢,y = g;(¢),
a<t<b,and x =1,y = g(t), letting ¢ range from b to a, since we are integrating counter-clockwise
around the boundary. The resulting integrals give us

frac= [ nwa@at [ neema= [Ciea@a [ neeo)a
b
:/a fi(t.g1(2)) — fi(t.g2(¢))dt

which is the result of the double integral times —1, as desired.
The equation involving f> is essentially the same, and left as an exercise. &
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We can now rewrite Green’s Theorem using the concepts of divergence and curl; these rewritten ver-
sions in turn are closer to some later theorems we will see.

Suppose we write a two dimensional vector field in the form f = (fi, f»,0), where f] and f> are func-

tions of x and y. Then
i j k

2 2 9 dfr dh
Vxf= I B_y oz :<0,0,a—x_a—y>,
fir 2 0
and so (fo)-k:<0,0,%—%) (0,0, 1)—8—{3—% So Green’s Theorem says
d )
/ fdr—/ fidx+ frdy — //ﬁ—idfx // (V xf) - kdA. (16.2)

Roughly speaking, the right-most integral adds up the curl (tendency to swirl) at each point in the region;
the left-most integral adds up the tangential components of the vector field around the entire boundary.
Green’s Theorem says these are equal, or roughly, that the sum of the “microscopic” swirls over the region
is the same as the “macroscopic” swirl around the boundary.

Next, suppose that the boundary dD has a vector form r(z), so that r'(¢) is tangent to the boundary,
and T =1r/(¢)/|r/(¢)| is the usual unit tangent vector. Writing r = (x(),y(¢)) we get

T =

v’ (2)]

and then
_ V=)

[v'(1)]
is a unit vector perpendicular to T, that is, a unit normal to the boundary. Now
<y/’ —X/> |r/(

v’ (2)]
— [ hdy=prdx= [ - fadx+ fidy.
aD aD

an~NdS: /8D<f1,f2>- t)|dl‘: /anly dt — frx dt

So far, we’ve just rewritten the original integral using alternate notation. The last integral looks just
like the left side of Green’s Theorem (16.12) except that f; and f, have traded places and f, has acquired
a negative sign. Then applying Green’s Theorem we get

—frdx+ fidy = %+%CM V-fdA.
fo I3 /),

Summarizing the long string of equalities,
f-Nds:/ V-fdA. (16.3)
oD D

Roughly speaking, the first integral adds up the flow across the boundary of the region, from inside to out,
and the second sums the divergence (tendency to spread) at each point in the interior. The theorem roughly
says that the sum of the “microscopic” spreads is the same as the total spread across the boundary and out
of the region.
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Exercises for 16.4

Exercise 16.4.1 Compute /80 2ydx+ 3xdy, where D is described by 0 < x<1,0<y< 1.
Exercise 16.4.2 Compute /anydx—f—xydy, where D is described by 0 < x <1,0<y< 1.

Exercise 16.4.3 Compute /8D P dx 4 e dy, where D is described by —2 <x <2, —1 <y < 1.
Exercise 16.4.4 Compute /aDycosxdx—l—ysinxdy, where D is described by 0 < x <m/2, 1 <y <2.
Exercise 16.4.5 Compute /anzydx—f—xy2 dy, where D is described by 0 < x<1,0<y<x.
Exercise 16.4.6 Compute /a Dxﬁdx—i— Vx+ydy, where D is described by 1 <x <2, 2x <y <4
Exercise 16.4.7 Compute /aD (x/y)dx + (2+3x)dy, where D is described by 1 <x <2, 1 <y < x.
Exercise 16.4.8 Compute /8D sinydx + sinxdy, where D is described by 0 <x < mw/2, x <y < m/2.
Exercise 16.4.9 Compute /a Dxlnydx, where D is described by 1 <x <2, ¢* <y < &

Exercise 16.4.10 Compute /aD \/1—}—7(@, where D is described by —1 < x < 1, @< y<l1.
Exercise 16.4.11 Compute /8 szydx —xy2 dy, where D is described by x* +y*> < 1.

Exercise 16.4.12 Compute /a . y3 dx+2x° dy, where D is described by x* +y* < 4.

Exercise 16.4.13 Evaluate % (y —sin(x)) dx + cos(x) dy, where C is the boundary of the triangle with
c
vertices (0,0), (1,0), and (1,2) oriented counter-clockwise.

d
Exercise 16.4.14 Finish our proof of Green’s Theorem by showing that % frdy = / / 8—f2 dA.
C D 0X
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16.5 The Divergence Theorem
The third version of Green’s Theorem (Equation 16.3) we saw was:
£-Nds = / V-fdA.
oD D

With minor changes this turns into another equation, the Divergence Theorem:

Theorem 16.15: Divergence Theorem

Under suitable conditions, if E is a region of three dimensional space and D is its boundary surface,

oriented outward, then
// t’~NdS:///V~de.
D E

Proof. Again this theorem is too difficult to prove here, but a special case is easier. In the proof of a
special case of Green’s Theorem, we needed to know that we could describe the region of integration in
both possible orders, so that we could set up one double integral using dxdy and another using dydx.
Similarly here, we need to be able to describe the three-dimensional region E in different ways.

We start by rewriting the triple integral:

5 L B ] B [ s f] L

The double integral may be rewritten:

//Df-NdS://1)(f1i+fzj+f3k)-NdS://Dfli~NdS+//Df2j~NdS+//Df3k-NdS.
To prove that these give the same value it is sufficient to prove that
// fli'NdSZ///%dV, (16.4)
// f2j-NdS = ///%dv (16.5)
// f3k-NdS = ///—dV (16.6)

Not surprisingly, these are all pretty much the same; we’ll do the first one.

We set the triple integral up with dx innermost:

/// v - ///;yyz)z U ean - //fl 82(3,2).y.2) — f1(81(v:2).y.2) dA,

where B is the region in the yz-plane over which we integrate. The boundary surface of E consists of a
“top” x = g2(,2), a “bottom” x = g1(y,z), and a “wrap-around side” that is vertical to the yz-plane. To
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integrate over the entire boundary surface, we can integrate over each of these (top, bottom, side) and add
the results. Over the side surface, the vector N is perpendicular to the vector i, so

/ fli-NdSz/ 0dS =0.
side side

Thus, we are left with just the surface integral over the top plus the surface integral over the bottom. For
the top, we use the vector function r = (g>(y,z),y,z) which gives ry xr, = (1, —g2y, —g2;); the dot product
of this with i = (1,0,0) is 1. Then

/A,pfli-NdS: //Bfl(gz(y,z),y,z)dA.

In almost identical fashion we get

/bommfli'NdS: _//Bfl(gl(y,Z),y,z) dA,

where the negative sign is needed to make N point in the negative x direction. Now

//Dfli-NdSz//Bfl(gz(y,z),y,z)dA—//Bfl(gl(y,z),y,z)dA’

which is the same as the value of the triple integral above. )

It is worth noting that this theorem is also referred to as Gauss’ Theorem. We now compute an example.

Example 16.16

Let f= (2x, 3y,z2>, and consider the three-dimensional volume inside the cube with faces parallel
to the principal planes and opposite corners at (0,0,0) and (1,1,1). Compute the two integrals of
the divergence theorem.

Solution. The triple integral is the easier of the two:

1 1 1
///2+3+2zdxdydz:6.
0 JOo JO

The surface integral must be separated into six parts, one for each face of the cube. One face is z =0 or
r = (,v,0), 0 <u,v < 1. Then r, = (1,0,0), r, = (0,1,0), and r, x r, = (0,0,1). We need this to be
oriented downward (out of the cube), so we use (0,0, —1) and the corresponding integral is

1 1 1 1
//—szudv:/ / Odudy = 0.
0 JO 0 JO

Another face is y=1orr = (u,1,v). Then r, = (1,0,0), r, = (0,0,1), and r, xr, = (0,—1,0). We
need a normal in the positive y direction, so we convert this to (0, 1,0), and the corresponding integral is

1 1 1 1
//Sydudv:/ / Sdudv =3,
0 JO 0 JO
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The remaining four integrals have values 0, 0, 2, and 1, and the sum of these is 6, in agreement with
the triple integral. &

Example 16.17

Letf— <x3, y3,12), and consider the cylindrical volume x> +y2 <9, 0 < z< 2. Compute the two
integrals of the divergence theorem.

Solution. The triple integral (using cylindrical coordinates) is

2 3 2
/ / / (3r* +22)rdzdrd® = 279r.
0 0 JO

For the surface we need three integrals. The top of the cylinder can be represented by r = (vcosu, vsinu,2);
r, X r, = (0,0, —v), which points down into the cylinder, so we convert it to (0,0, v). Then

2r 3 2 3
/ / (3 cos® u, v sin® u,4) - (0,0,v) dvdu = / / 4ydvdu = 36m.
o Jo o Jo
The bottom is r = (vcosu,vsinu,0); r, X r, = (0,0, —v) and

2 3 2 3
/ / (v? cos® u, v sin® u,0) - (0,0, —v) dvdu = / / Odvdu = 0.
0 0 0 0

The side of the cylinder is r = (3cosu,3sinu,v); r, X r, = (3cosu,3sinu,0) which does point outward,
SO

2n 2
/ /(27cos3u,27sin3u,v2>-<3cosu,3sinu,0)dvdu
o Jo
2 2
:/ /81cos4u+815in4udvdu:2437r.
o Jo

The total surface integral is thus 367 + 0+ 24371 = 2797. &

Exercises for 16.5

Exercise 16.5.1 Using f= (3x,y’, —2z%) and the region bounded by x* +y* =9, z =0, and z = 5, compute
both integrals from the Divergence Theorem.

Exercise 16.5.2 Let E be the volume described by 0 < x <a, 0 <y <b, 0<z<c, and f= (x*,y*,2%).
Compute // f-NdS.
JE

Exercise 16.5.3 Let E be the volume described by 0 <x<1,0<y<1,0<z<1, andf= (2xy,3xy,ze" ™).
Compute // f-NdS.
oE
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Exercise 16.5.4 Let E be the volume described by 0 <x<1,0<y<x, 0<z<x+y, andf= (x,2y,3z).
Compute // f-NdS.
JE

Exercise 16.5.5 Let E be the volume described by x* +y* +7> < 4, and f = (x*,y?,7%). Compute / /8 f
E
NdS.

Exercise 16.5.6 Let E be the hemisphere described by 0 < z < /1 — x> —y%, and
f=(/x2+y24+22, \/x2+y2+22,\/x2+y2 +22). Compute //a f-NdS.
E

Exercise 16.5.7 Let E be the volume described by x* +y* < 1,0 <z < 4, and f = <xy2, yz,x2z>. Compute
/ / f-NdS.
JE

Exercise 16.5.8 Let E be the solid cone above the xy-plane and inside z = 1 — \/x*>+y?, and f =
(xcos? z,ysin? z, /x2 +y2z). Compute //a f-NdS.
E

Exercise 16.5.9 Prove the other two equations in the display 16.4.
Exercise 16.5.10 Suppose D is a closed surface, and that D and F are sufficiently nice. Show that
// (V xf)-NdS =0
D
where N is the outward pointing unit normal.
Exercise 16.5.11 Suppose D is a closed surface, D is sufficiently nice, and F = {a,b,c) is a constant

vector field. Show that
/ / f-NdS=0
D

where N is the outward pointing unit normal.

Exercise 16.5.12 We know that the volume of a region E may often be computed as / / dxdydz. Show
E

1
that this volume may also be computed as 3 / /a (x,y,z) -NdS where N is the outward pointing unit normal
E
to JE.

16.6 Vector Functions for Surfaces

We have dealt extensively with vector equations for curves, r(z) = (x(¢),y(t),z()). A similar technique
can be used to represent surfaces in a way that is more general than the equations for surfaces we have
used so far. Recall that when we use r(¢) to represent a curve, we imagine the vector r(z) with its tail at
the origin, and then we follow the head of the arrow as ¢ changes. The vector “draws” the curve through
space as t varies.
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Suppose we instead have a vector function of two variables,

r(u,v) = (x(u,v),y(u,v),z(u,v)).

As both u and v vary, we again imagine the vector r(u,v) with its tail at the origin, and its head sweeps
out a surface in space. A useful analogy is the technology of CRT video screens, in which an electron
gun fires electrons in the direction of the screen. The gun’s direction sweeps horizontally and vertically
to “paint” the screen with the desired image. In practice, the gun moves horizontally through an entire
line, then moves vertically to the next line and repeats the operation. In the same way, it can be useful to
imagine fixing a value of v and letting r(u,v) sweep out a curve as u changes. Then v can change a bit, and
r(u,v) sweeps out a new curve very close to the first. Put enough of these curves together and they form a
surface.

Example 16.18

Consider the function r(u,v) = (vcosu,vsinu,v). For a fixed value of v, as u varies from 0 to 27,
this traces a circle of radius v at height v above the xy-plane. Put lots and lots of these together, and
they form a cone, as in Figure 16.4.

Figure 16.4: Tracing a surface.

Recall that from the vector equation of the curve we can compute the unit tangent T, the unit normal N,
and the binormal vector B = T x N; you may want to review Section 15.3. The binormal is perpendicular
to both T and N; one way to interpret this is that N and B define a plane perpendicular to T, that is,
perpendicular to the curve; since N and B are perpendicular to each other, they can function just as i and j
do for the xy-plane.
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Example 16.19

The curve given by
r=((2+cos(3u/2))cosu, (2 +cos(3u/2))sinu,sin(3u/2))

is called a trefoil knot. Then ¢(v) = Ncosv+ Bsinv is a vector equation for a unit circle in a plane
perpendicular to the curve described by r, except that the usual interpretation of ¢ would put its
center at the origin. We can fix that simply by adding c to the original r: let f= r(u) + ¢(v). For
a fixed u this draws a circle around the point r(u); as u varies we get a sequence of such circles
around the curve r, that is, a tube of radius 1 with r at its center. We can easily change the radius;
for example r(u) + ac(v) gives the tube radius a; we can make the radius vary as we move along the
curve with r(u) + g(u)c(v), where g(u) is a function of u.

As shown in Figure 16.5, it is hard to see that the plain knot is knotted; the tube makes the structure
apparent. Of course, there is nothing special about the trefoil knot in this example; we can put a tube
around (almost) any curve in the same way.

Figure 16.5: Tubes around a trefoil knot, with radius 1/2 and 3 cos(u) /4.

We have previously examined surfaces given in the form f(x,y). It is sometimes useful to represent
such surfaces in the more general vector form, which is quite easy: r(u,v) = (u,v, f(u,v)). The names of
the variables are not important of course; instead of disguising x and y, we could simply write r(x,y) =

(o, f(x.y))-

We have also previously dealt with surfaces that are not functions of x and y; many of these are easy
to represent in vector form. One common type of surface that cannot be represented as z = f(x,y) is a
surface given by an equation involving only x and y. For example, x +y = 1 and y = x> are “vertical”
surfaces. For every point (x,y) in the plane that satisfies the equation, the point (x,y,z) is on the surface,
for every value of z. Thus, a corresponding vector form for the surface is something like (f(u),g(u),v);
for example, x+y = 1 becomes (u,1 —u,v) and y = x% becomes <u,u2,v>.

Yet another sort of example is the sphere, say x> 4 y? +z> = 1. This cannot be written in the form
z = f(x,y), but it is easy to write in vector form; indeed this particular surface is much like the cone,
since it has circular cross-sections, or we can think of it as a tube around a portion of the z-axis, with
a radius that varies depending on where along the axis we are. One vector expression for the sphere is
(V1 —v2cosu,v/'1—vZsinu,v)—this emphasizes the tube structure, as it is naturally viewed as drawing a
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circle of radius v/1 — v2 around the z-axis at height v. We could also take a cue from spherical coordinates,
and write (sinucosv,sinusinv,cosu), where in effect u and v are ¢ and 0 in disguise.

It is quite simple to use a computer program to plot any surface for which you have a vector represen-
tation. Using different vector functions sometimes gives different looking plots, because the computer in
effect draws the surface by holding one variable constant and then the other.

Here’s a simple but striking example: the plane x +y+z = 1 can be represented quite naturally as
(u,v,1 —u—v). However we could also think of painting the same plane by choosing a particular point
on the plane, say (1,0,0), and then drawing circles or ellipses (or any of a number of other curves) as if
that point were the origin in the plane. For example, (1 — vcosu — vsinu,vsinu,vcosu) is one such vector
function. Note that while it may not be obvious where this came from, it is quite easy to see that the sum
of the x, y, and z components of the vector is always 1. Computer renderings of the plane using these two
functions are shown in Figure 16.6.

Figure 16.6: Two representations of the same plane.

Suppose we know that a plane contains a particular point (xg, yo,zo) and that two vectors u = {(ug, uy,uy)
and v = (vg,vy,v;) are parallel to the plane but not to each other. We know how to get an equation for the
plane in the form ax + by + cz = d, by first computing u x v. It’s even easier to get a vector equation:

r(u,v) = (x0,¥0,20) + uu+vv.

The first vector gets to the point (xg,y0,z0) and then by varying u and v, uu 4 vv gets to every point in the
plane.

Returning to x+y+z = 1, the points (1,0,0), (0,1,0), and (0,0, 1) are all on the plane. By subtracting
coordinates we see that (—1,0,1) and (—1,1,0) are parallel to the plane, so a third vector form for this
plane is

(1,0,0) + u(—1,0,1) + v(—1,1,0) = (1 —u—v,v,u).

This is clearly quite similar to the first form we found.

We have already seen (Section 14.4) how to find the area of a surface when it is defined in the form
f(x,y). Finding the area when the surface is given as a vector function is very similar. Looking at the plots
of surfaces we have just seen, it is evident that the two sets of curves that fill out the surface divide it into
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a grid, and that the spaces in the grid are approximately parallelograms. As before this is the key: we can
write down the area of a typical small parallelogram and add them all up with an integral.

Suppose we want to approximate the area of the surface r(u,v) near r(up,vg). The functions r(u,vo)
and r(uo,v) define two curves that intersect at r(ug,vp). The derivatives of r give us vectors tangent to
these two curves: r,(ug,vo) and r,(ug,vp), and then r,(ug,vo) du and r,(up,vp) dv are two small tangent
vectors, whose lengths can be used as the lengths of the sides of an approximating parallelogram. Finally,
the area of this parallelogram is |r, X r,|dudv and so the total surface area is

b pd
/ / |r, X r,|dudv (16.7)
a c

Example 16.20

Find the area of the surface (vcosu,vsinu,v) for0 <u <2mwand0 <v < %

Solution. We compute r, = (—vsinu,vcosu,0) and r, = (cosu,sinu, 1). The cross product of these two
vectors is (vcosu, vsinu, —v) with length v 2v2 = +/2v, and the surface area is

2 i 0
/ /2 V2vdvdu = Q
o Jo 4

Exercises for 16.6

Exercise 16.6.1 Describe or sketch the surface with the given vector function.

Exercise 16.6.2 Find the area of the portion of x+ 2y + 4z = 10 in the first octant.
Exercise 16.6.3 Find the area of the portion of 2x+4y +z = 0 inside x* +y> = 1.
Exercise 16.6.4 Find the area of z = x> +y* that lies below 7 = 1.

Exercise 16.6.5 Find the area of z = \/)ﬁy2 that lies below 7 = 2.

Exercise 16.6.6 Find the area of the portion of x> +y* + 72 = a? that lies in the first octant.
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Exercise 16.6.7 Find the area of the portion of x> +y* + 72 = a? that lies above x> +y* < b*.
Exercise 16.6.8 Find the area of z = x* — y? that lies inside x* +y* = a*.

Exercise 16.6.9 Find the area of x> +y*> + 72> = a?® that lies above the interior of the circle given in polar
coordinates by r = acos 6.

Exercise 16.6.10 Find the area of the cone 7 = k+/x* +y? that lies above the interior of the circle given
in polar coordinates by r = acos 6.

Exercise 16.6.11 Find the area of the plane 7 = ax+ by + c that lies over a region D with area A.
Exercise 16.6.12 Find the area of the cone 7 = kr/x* +y? that lies over a region D with area A.
Exercise 16.6.13 Find the area of the cylinder x> +z> = a? that lies inside the cylinder x> +y* = a*.

Exercise 16.6.14 The surface f(x,y) can be represented with the vector function (x,y, f(x,y)). Set up the
surface area integral using this vector function and compare to the integral of Section 14.4.

16.7 Surface Integrals

In the integral for surface area, from Equation 16.7,

b rd
/ / |r, x ry|dudv,
a c

the integrand |r, X r,|dudbv is the area of a tiny parallelogram, that is, a very small surface area, so it is
reasonable to abbreviate it dS; then a shortened version of the integral is

//01-015.

We have already seen that if D is a region in the plane, the area of D may be computed with

//Dl~dA,

so this is really quite familiar, but the d$ hides a little more detail than does dA.

Just as we can integrate functions f(x,y) over regions in the plane, using

/ /D f(x,y)dA,

so we can compute integrals over surfaces in space, using

//Df(x,y,z)dS.
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In practice this means that we have a vector function r(u,v) = (x(u,v),y(u,v),z(u,v)) for the surface, and
the integral we compute is

/ab /cdf(x(u,v),y(u,v),z(u, V)|t X 1| dudv.

That is, we express everything in terms of # and v, and then we can do an ordinary double integral.

Example 16.21: Mass and Center of Mass

Suppose a thin object occupies the upper hemisphere of x*> 4+y* +z> = 1 and has density 6 (x,y,z) =
z. Find the mass and center of mass of the object. (Note that the object is just a thin shell; it does
not occupy the interior of the hemisphere.)

Solution. We write the hemisphere as r(¢,0) = (cos8sin@,sin0sin@,cos¢),0< ¢ <nw/2and 0 < 6 <
21. Sorg = (—sin@sing,cos Bsin¢,0) and ry = (cos O cos @,sin @ cos ¢, —sin¢). Then

rg XTIy = (—cos Osin® ¢, —sin Bsin® ¢, — cos P sin )
and
Irg X1ry| = [sing| =sing,

since we are interested only in 0 < ¢ < 7/2. Finally, the density is z = cos ¢ and the integral for mass is

2r rm/2
/ / cosPsingdopdo = .
0o Jo

By symmetry, the center of mass is clearly on the z-axis, so we only need to find the z-coordinate of
the center of mass. The moment around the xy-plane is

2r rm/2 2r rm/2 o
/ / zcostpsind)d(pdez/ / coszd)sind)d(pdez?,
o Jo o Jo

so the center of mass is at (0,0,2/3). &

Now suppose that f is a vector field; imagine that it represents the velocity of some fluid at each point
in space. We would like to measure how much fluid is passing through a surface D, the flux across D. As
usual, we imagine computing the flux across a very small section of the surface, with area dS, and then
adding up all such small fluxes over D with an integral. Suppose that vector N is a unit normal to the
surface at a point; f- N is the scalar projection of f onto the direction of N, so it measures how fast the fluid
is moving across the surface. In one unit of time the fluid moving across the surface will fill a volume of
f-NdS, which is therefore the rate at which the fluid is moving across a small patch of the surface. Thus,

the total flux across D is
// f-NdS:// f- ds,
D D
defining dS = NdS.
As usual, certain conditions must be met for this to work out; chief among them is the nature of the

surface. As we integrate over the surface, we must choose the normal vectors N in such a way that they
point “the same way” through the surface. For example, if the surface is roughly horizontal in orientation,
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we might want to measure the flux in the “upwards” direction, or if the surface is closed, like a sphere,
we might want to measure the flux “outwards” across the surface. In the first case we would choose N
to have positive z component, in the second we would make sure that N points away from the origin.
Unfortunately, there are surfaces that are not orientable: they have only one side, so that it is not possible
to choose the normal vectors to point in the “same way” through the surface. The most famous such
surface is the Mobius strip shown in Figure 16.7. It is quite easy to make such a strip with a piece of paper
and some tape. If you have never done this, it is quite instructive; in particular, you should draw a line
down the center of the strip until you return to your starting point. No matter how unit normal vectors are
assigned to the points of the Mobius strip, there will be normal vectors very close to each other pointing
in opposite directions.

Figure 16.7: A Mobius strip.

Assuming that the quantities involved are well behaved, however, the flux of the vector field across the

surface r(u,v) is
//f-NdS://f-M|ru><rv|dA://f-(ruxrv)dA.
D D |ruxr D

In practice, we may have to use r, X r, or even something a bit more complicated to make sure that the
normal vector points in the desired direction.

Example 16.22: Flux

Compute the flux of f= (x, y,zz) across the cone z = \/x* +y?,0 < z <2, in the downward direction.

Solution. We write the cone as a vector function: r = (vcosu,vsinu,v), 0 <u <2m and 0 <v < 2. Then
r, = (—vsinu,vcosu,0) and r, = (cosu,sinu, 1) and r, X r, = (vcosu,vsinu, —v). The third coordinate
—v is negative, which is exactly what we desire, that is, the normal vector points down through the surface.
Then

2w 2 2 2
/ / <x,y,z2> -(vcosu,vsinu, —v) dvdu:/ / xveosu + yvsinu — z22vdvdu
o Jo o Jo
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0 0

2r 2
/ /v —v3dvdu:—8?n.

2n 2
/ / v2cos?u+visinfu—v> dvdu
2

(e}
(e}

Exercises for 16.7
Exercise 16.7.1 Find the center of mass of an object that occupies the upper hemisphere of x> +y* +z> = 1

and has density x> +y*.

Exercise 16.7.2 Find the center of mass of an object that occupies the surface z=xy, 0 <x<1,0<y<1

and has density /1 +x* +y2.

Exercise 16.7.3 Find the center of mass of an object that occupies the surface 7 = \/x>+y%, 1 <z <4
and has density x*z.

Exercise 16.7.4 Find the centroid of the surface of a right circular cone of height h and base radius r, not
including the base.

Exercise 16.7.5 Evaluate // (2,—3,4) -NdS, where D is given by 7 = x> +y*, -1 <x<1, -1 <y <1,
D

oriented up.

Exercise 16.7.6 Evaluate // (x,y,3) - NdS, where D is given by z=3x—5y, | <x <2, 0<y<2,
D

oriented up.

Exercise 16.7.7 Evaluate // (x,y,—2) -NdS, where D is given by z = 1 —x*> —y?, x> +y* < 1, oriented
D
up.

Exercise 16.7.8 Evaluate // (e*,€”,7) -NdS, where D is given by z =xy, 0 < x < 1, —x <y <, oriented
D
up.

Exercise 16.7.9 Evaluate // (x2,vz,Z) - NdS, where D is given by 7 = a> —x*> —y?, x> +y? < b?, oriented
D
up.

Exercise 16.7.10 A fluid has density 870 kg/m> and flows with velocity v = <z,y2,x2>, where distances are
in meters and the components of v are in meters per second. Find the rate of flow outward through the
portion of the cylinder x> +y*> =4, 0 < z < 1 for which y > 0.

Exercise 16.7.11 Gauss’s Law says that the net charge, Q, enclosed by a closed surface, S, is

sto/ e-NdS
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where e is an electric field and €y (the permittivity of free space) is a known constant; N is oriented
outward. Use Gauss’s Law to find the charge contained in the cube with vertices (£1,£1,%1) if the
electric field is e = (x,y,z).

16.8 Stokes’ Theorem
Recall that one version of Green’s Theorem (see Equation 16.2) is
f-dr:/ (V % £) - kdA.
oD D

Here D is a region in the xy-plane and k is a unit normal to D at every point. If D is instead an orientable
surface in space, there is an obvious way to alter this equation, and it turns out still to be true:

Theorem 16.23: Stokes’ Theorem

Provided that the quantities involved are sufficiently nice, and in particular if D is orientable,
f-dr:/ (V x ) - NdS,
oD D

if dD is oriented counter-clockwise relative to N.

The proof of Stokes’ Theorem will follow a discussion and several examples of the Theorem in use.

Note how little has changed: k becomes N, a unit normal to the surface, and dA becomes dS, since this
is now a general surface integral. The phrase “counter-clockwise relative to N’ means that if we take the
direction of N to be “up”, then we go around the boundary counter-clockwise when viewed from “above”.

Example 16.24

Letf= (yzz,xzz,xy2> and the surface D be x = \/1 — y? — 72, oriented in the positive x direction. It
quickly becomes apparent that the surface integral in Stokes’ Theorem is intractable, so compute
the line integral.

Solution. The boundary of D is the unit circle in the yz-plane, r = (0,cosu,sinu), 0 < u < 27. The integral
15 2 2r
/ (y?2,x%2,xy%) - (0, — sinu, cos u) du = 0du =0,
0 0

because x = 0. &

An interesting consequence of Stokes” Theorem is that if D and E are two orientable surfaces with the
same boundary, then

/ (Vxf)-Nas= [ f.dr= f-dr:/ (V x £) - NdS.
JE E

Sometimes both of the integrals

//(fo)-NdS and f-dr
D oD



16.8. Stokes’ Theorem = 565

are difficult, but you may be able to find a second surface E so that
/ (V xf)-NdS
E

has the same value but is easier to compute.

In the previous example, the line integral was easy to compute. But we might also notice that another
surface E with the same boundary is the flat disk y* +z> < 1.

Example 16.25

Let f= (y?z,x%z,xy*) and the surface E be y* +z> < 1. Compute the surface integral.

Solution. The unit normal N for this surface is simply i = (1,0,0). We compute the curl:
V xf=(2xy —x2,0,2x7 — 2yz).
Since x = 0 everywhere on the surface,

(V x£)-N=(0,0,—2yz) - (1,0,0) = 0,

/ 0dS =0,
E

as before. In this case, of course, it is still somewhat easier to compute the line integral, avoiding V x f
entirely. &

so the surface integral is

Now let’s look at the proof of Stokes’ Theorem.

Proof. We can prove here a special case of Stokes” Theorem, which perhaps not too surprisingly uses
Green’s Theorem.

Suppose the surface D of interest can be expressed in the form z = g(x,y), and let f = (f1, f2, f3). Using
the vector function r = (x,y,g(x,y)) for the surface we get the surface integral

af3 3f2 dfi dfs dfr 9dfi
//VdeS // "0z ox ox &y>-<—gx,—gy,1>dA

_ dfa dfi df3 dfr 9dfi
_//E_ 3xgx+ 9z 5~ 3Zgy+ 8xgy+ dx dy dA

Here E is the region in the xy-plane directly below the surface D.

For the line integral, we need a vector function for dD. If (x(¢),y(¢)) is a vector function for dE then
we may use r(z) = (x(t),y(t),g(x(¢),y(z))) to represent dD. Then

dzdx dzdy
dx dt dt) dr.

/fdl‘—/fl +f2 +f3 /f1 + fr— +f2(__+8__

using the chain rule for dz/dt. Now we continue to manipulate this:

dzdx 0dz dy) &

b
Afl + L +f3<£5+8_5



566 = Vector Calculus

b
=/a Kf1+fsa)dx <f2+f3 )flﬂdr
=/8E <f1+f3a—i) dx+ <fz+f3a—y) dy,

which now looks just like the line integral of Green’s Theorem, except that the functions f; and f, of
Green’s Theorem have been replaced by the more complicated f; + f3(dz/dx) and f> + f3(dz/dy). We
can apply Green’s Theorem to get

dz dz d dz d dz
/8E (fl +f3$) dx+ <f2+f3(9_y) dy = //Ea <f2+f3a_y) _8_y <f1+f3$) dA

Now we can use the chain rule again to evaluate the derivatives inside this integral, and it becomes

ofr 9 ofs 0 Ifs, 9
S5+ Gt G a5t ot - ( a];l o af oot Gt 3g’“y) “
_// afZ 8f2 Lo, df _df, dfs

- - - xdA,
8x & dy 0z &y dy &

which is the same as the expression we obtained for the surface integral. &

Exercises for 16.8

Exercise 16.8.1 Let f = (z,x,y). The plane 7 = 2x+2y — 1 and the paraboloid 7 = x* +y* intersect in a
closed curve. Stokes’ Theorem implies that

//Dl(va)-Ndszyéf.dr://l)z(wf).zvds

where the line integral is computed over the intersection C of the plane and the paraboloid, and the two
surface integrals are computed over the portions of the two surfaces that have boundary C (provided, of
course, that the orientations all match). Compute all three integrals.

Exercise 16.8.2 Let D be the portion of 7z = 1 — x> — y? above the xy-plane, oriented up, and let f =
(xy?, —x%y,xyz). Compute // (Vxf)-NdS.
D

Exercise 16.8.3 Let D be the portion of 7 = 2x+ Sy inside x* +y> = 1, oriented up, and let f = (y,z,—x).
Compute / f-dr.
aD

Exercise 16.8.4 Compute 7{ xX’zdx+ 3xdy— y3 dz, where C is the unit circle x* + y2 = 1 oriented counter-
C

clockwise.

Exercise 16.8.5 Let D be the portion of z = px+ qy+ r over a region in the xy-plane that has area A,
oriented up, and let f = (ax+ by + cz,ax + by + cz,ax+ by + cz). Compute /a f-dr.
D
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Exercise 16.8.6 Let D be any surface and let f = (f1(x), f2(y), f3(2)) (f1 depends only on x, f only ony,
and f3 only on z). Show that /a f-dr=0.
D

Exercise 16.8.7 Show that / fVg+gVf-dr =0, where r describes a closed curve C to which Stokes’
C

Theorem applies.
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. 3.0
288 f1(x)=f(x) —ln< " 1> and its domain is (0, o) 4. o
e
5. -5
289 1. 2-In3 6 13
2. 1,3 7 0
3. (e2—1)?
43 361 L5
2. 7/2
2.8.10 —7 3. 3/4
2.8.11 21/5 4.1
5. —V2/2
2812 1
3.62 7
331 1.8 5. -1 9.3
2. 6 6. 8 10. —3/2 3.6.3 2
3. dne 7.7 11. 6 3.6.5 3
4. 2 8. 6 12. 2
4.1.1 —5, —2.47106145, —2.4067927, —2.400676, —2.4
341 17 8. 172
) s 9. 0 4.12 —4/3,-24/7,7/24,3 /4
3.0 102 413 —0.107526881, —0.11074197, —0.1110741,
4. undefined 11. does not exist —1 N __1
33+Ar) 9
5.1/6 12. V2 ( )
2 2
6. 0 13. 3a g FP3ATEA?
7.3 14. 512 1+Ax
2
342 L—0and M — 1. No. 4.1.5 3.31,3.003001, 3.0000, 3 + 3Ax+ Ax® — 3
351 L1 8. 2/7 15. 22 4.1.6 m
21 9.2 419 10,25/2,20, 15,25, 35
3 e 10, —oo 16. 32
4. 1/3 11 oo 4.1.10 5,4.1,4.01,4.001,4+Ar — 4
17. o
. 12.
50 0 4.1.11 —10.29, —9.849, —9.8049, —9.8 — 4.9Ar — —9.8
6. o0 13.1/2 18. does not
7. oo 14. 5 exist 421 1. —x/\/169— 2
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—9.8¢
2x+1/x°
2ax+b

3x°
—2/(2x+1)3/?
5/(t+2)?

A G o

424 y=—13x+17

4.3.16 y=17x/4—41/4
43.17 y=11x/16—15/16

4.3.18 13/18

44.2 w/6+2nm, 57m/6+ 2nm, any integer n

451 4 - 9% +x+7

452 3x° —4x+2/x

4.2.5 8
453 6(x* +1)%x
4.3.1 1. 8. —20x*+ 5x+10) +
100x” 6x+10/x° P32 =5) 454 169 —x2—x*/1/169 —x2
2. —100x 1 9. —30x+25 47,2
o B2+ 455 (v a)v/25—2-
3. —5x 10. 3246 30x—15)
3 - X7+ 6x— (x* —4x+5)x/V/25 — x2
4. mx™ ! 1
: 14.
- -2
5. (3/4x Ciriis 3 Ox+ 6 —x/\/r2— 22
6. _ Mt
—(9/7)x16/7 (x2+2x—3)? 15. 3./
(2/ ).X ) B 3x(5x+ .7 2x/ 1+X4
7. 15x~424x 12. 3x°(x” — (5x3 + 12x2 — 15)2 |
458 ==
432 y—13x/4+5 4V/x(5 = V)
X 4.5.9 6+18x
433 y=24x—48—1
2x+1 2+4x+1
434 —491/5+5,—49/5 4510 T Ty
436 ikakx"*‘ 4511 —1/\/25—-x2— /25— x2/x*
k=1
169 169
\ 4512 ( )/M——x
4.3.7 /16 —3x/4+4
2 2
4310 f =4(2x—3),y=4x—7 4503 v —2xtl/x
24/x3 —x2—(1/x)
3x? ¥ (3x2 - 5)
4.3.12 - 300x
_ 3 _ 2 _dWx
5x+10 (3 —5x+10) 4.5.14 (1007
4.3.13 )
2X+5 _ (x2+5x—3)(5x4— 18x2+6x—7) 4.5.15 1+3'x
6 32— Tx+ 1 (5 —6+ 32— Tx+1)? 3(x+x3)2/3
B 4.5.16
4304 21250

2(x—625)3/2

200 —39x

4315 ———
2x21\/x =5

dx(F 1)+ il _ rdr /2\/
2¢/T+ (2 +1)?2 x2+1

4517 5(x+8)*

1

+ (x2

+1)2



4.5.18

4.5.19

4.5.20

4.5.21

4.5.22

4.5.23

4.5.24

4.5.25

4.5.26

4.5.27

4.5.28

4.5.29

4.5.30

4.5.31

4.5.32

4.5.33

4.5.34

4.5.35

4.5.36

4.5.37

4.5.38

4.5.39

4.5.40

4.5.41

4.5.42

—3(4—x)?

6x(x> +5)>

—12x(6 — 2x%)?

24x%(1 —4x) 73

545/x%

—8(4x—1)(2x* —x+3)73
1/(x+1)?
3(8x—2)/(4x* — 2x+1)?
32 +5x—1

6x(2x —4)% +6(3x% + 1) (2x — 4)?
—2/(x—1)?

dx/(x* +1)?

(¥ —6x+7)/(x—3)?
—5/(3x—4)?

60x* +72x* + 18x* +18x— 6
(5—4x)/((2x+1)*(x—3)?)
1/(2(2+3x)%)

56x5 +72x° + 110x* 4 100x> + 60x” + 28x + 6
y =23x/96 —29/96
y=3-2x/3
y=13x/2—-23/2
y=2x—11

yo 2042v5 L 3V5
5V4+V5  5vV4+5

(f(g(1)))" =20

g'(x) = 2x(f (%) + 22 (x?))

4.6.1

4.6.2

4.6.3

4.6.4

4.6.5

4.6.6

4.6.7

4.6.8

4.6.9

4.6.10

4.6.11

4.6.12

4.6.13

4.6.14

4.6.15

4.6.19

4.7.1

® NN A v

4.7.2

4.7.3

4.74

573

21n(3)x3%

cosx — sinx
ex

262)6
e*cos(e’)
sinx

cos(x)e

. sinx
P (cosxlnx + —>
X

3x%e +xe
1+21n(2)
—2xIn(3)(1/3)"
M (4x—1)/x%
(3x2+3) /(x> +3x)

—tan(x)

(1-In(x*))/(*\/In(x?))
sec(x)

X% (cos(x) /x — cos(x) In(x))

1. x/y

—(2x+y)/(x+2y)
(2xy =32 =)/ (229 =3y =)
sin(x) sin(y)/(cos(x) cos(y))
—VY/Vx
(ysec (x/y) —y*)/ (xsec*(x/y) + %)
(y—cos(x+y))/(cos(x+y) —x)
-/

1

y=2x+6

y=x/2+3
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475 (V3.2V3), (—V3.-2/3), (2V3,V/3), (—2v/3,—V/3)

477 y=1x/V/3-8/V3

1/3

478 y=(—-y 173

1/3 1/3
x—|—y1/ X1 —|—x1/ YI)/XI

47.9
(y—y1)/(x—x1) = (2x] +2x1y7 —x1)/(2y} + 2127 +y1)

48.1 1
491 1. 4(2x+3)
2. %xl/z
49.2 3
4.9.3 1 28x3—#
o ’ 3mxt/3
) 1
C V(L4 vx)?
-2 ifx< -2
3. f/f(x)=¢ 0 if-2<x<1
2 ifx>1

4. 2xsinxcosx + x2cos?x — x%sin® x

(sinx 4 xcosx)(1 + sinx) — xsinxcosx
(1+sinx)?

3 3 —1/2
- S
° 4x3/2( +ﬁ)

7. 3 a2+ 1)723(4x> 4+ 2x) —

5(3x*—1)
(x3 —x+4)°
8. 3sin®xcosx — 3x?cos(x)

9. 4sec*xtanx + 4tan® xsec’x

4 1—x\ . 1—x
10. cos sin
(14x)? 1+x 1+x

11. (2x+ 2sec® xtanx)sec?(sin(x? 4 sec® x)) cos(x* +

sec?x)
mcos
2 - Znrmie
x*(2+sin %)
494 1. 3e3 —e*

2. 2¢*cos3x— 3e*sin3x
3. (1+e")sec?(x+¢€)
4. 26/ (e* +2)?

cos(2 + Inx)
" 2+sinx x

COsSx

6. ¢ X" 4w 4 1€ Ing- e

7. log, b+ (log, b)x(ogab)~1

3
8. (x2+1)x3+1 (3x21n(x2+1)+w)

x2+1
0 (x2+ex)1/lnx 2x + & _x2+ex
' (Inx)? X2+ ex
10.
xVat+x+1 1 2x+1  4dcosx 21
(2+sinx)*(3x+5)7 \x  2(x*+x+1) 2+sinx 3x+5
4.9.5 1. —(2x+y)/(x+2y)
) x— (202 +2y* —x)(4x— 1)
T dy(2x242y2—x)—y
sinx + 2xsiny
3. ———
x2cosy + 3y?
4 2x+ey—‘ex
2 — xeY
4.9.6 1. sin x4 x/v1—x2
5 cos 'x+sin"'x

(cos~1x)2v/1 —x2
3. a/(x* +d?)

4. tan~'x
5.1.2 1/(167) em/s
5.1.3 3/(10007) meters/second
5.1.4 1/4m/s
5.1.5 —6/25m/s
5.1.6 807 mi/min
5.1.7 3V/5 fus
5.1.8 20/(37) cm/s
5.1.9 13/20ft/s
5.1.10 5V10/2 m/s
5.1.11 75/64 m/min
5.1.12 tip: 6 ft/s, length: 5/2 ft/s
5.1.13 tip: 20/11 m/s, length: 9/11 m/s

5.1.14 380/+/3 — 150 ~ 69.4 mph

)



5.1.15 500//3 — 200 ~ 88.7 km/hr
5.1.16 4000/49 m/s

5.2.1 minatx=1/2

5.2.2 minatx=—1,maxatx=1
5.2.3 maxatx =2, minatx =4
5.2.4 minatx==+1, max at x =0.
5.2.5 minatx=1

5.2.6 none

5.2.7 none

5.2.8 minatx=7n/12+ kn, max atx = —7/12 + kn, for
integer k.

5.2.9 local min at x = 49

5.2.12 one

5.2.16 Absolute maximum (3,7); Absolute minimum (0, 1).

5.2.17 Absolute minimum (77/2,1); No absolute maximum.

5.2.18 Absolute minimum (1,0); Absolute maximum

(61/2, i)

5.2.19 Absolute minimum (1,0); Absolute maximum

(el/z,i).

5.2.20 Absolute minimum (0,0); Absolute maximum
(2,2¢'/3).

5.2.21 Absolute minimum (1/2, ZTT"); Absolute maximum
(2,2 —tan~'(4)).

5.2.22 Absolute maximum (1,1/2); Absolute minimum

(—1,—1/2).
531 c=1/2
532 c=V18-2

53.6 x°/3+47x%/2 —5x+k

975

5.3.7 arctanx+k

53.8 x*/4—Inx+k

53.9 —cos(2x)/2+k

54.1 L(x) =x, £(0.1) ~ L(0.1) = 0.1

5.4.2 Choose f(x) = x> and a = 2, the closest integer to 1.9.
The linearization of f at a is L(x) = 12(x —2) + 8, and
(1.9 = f(1.9) =~ L(1.9) = 12(1.9-2) + 8 =6.8.

5.4.4 Choose a =7 since f(7) = v/7+1=+/8=2isan
integer close to v/9. The linearization of f ata = 7 is
L(x) = £5(x—7) +2. Then
f(8)=B8+1=v9~L(8)

= 5(8—7)+2=2.083. We are
over-estimating v/9 since L(x) >

f(x) for all x around a = 7.

54.5 Ay=065/16,dy =2

V11/10—1,dy = 0.05

54.7 Ay=sin(m/50), dy = 1/50

54.6 Ay=

5.4.8 dV =8n/25

549 T5(x)=x—5+5
1. sin(0.1) ~ 75(0.1) ~ 0.10016675
2. sin(0.1) = 0.0998334... using a calculator. Our

approximation is accurate to

0.10016675 — 0.0998334... = 0.0003.

5.4.11 T3(x) =x+x*+x>. The point x = 5 is not close to
x =0, and f is not continuous at x = 1.

5412 1. fW(x)= M
n (EO7DG-y
2. Tn = Z 1.7”(x_ 1)1 _

i!
( i )')(x—l) since In(1) = 0 and

™=

1

=

5.4.13 Notice that f(—2) =19, f(0) = —11, and f(5) =19
and f is a continuous function. By the Intermediate Value
Theorem there exists a root in [—2,0] and [0, 5]. Choose

Xxo = 0, then x4 = —0.93242. Choose xo = 5, then

x4 /= 3.93242.

54.14 1. x4 = 1.00022...

2. x=11is the root of f. Our approximation in part (a)
was correct to 3 decimal places.
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3. x; = 1. The root is found in one iteration of Newton’s  5.5.24 —1/2

Method.

5.5.25 2
5.4.15 cos(m/2) =0, so xj is undefined

5.5.26 0
5510

5.5.27 oo
552 oo

5.5.28 0
5530

5.5.29 5
554 0

5530 —1/2
555 1/6

5.6.1 minatx=1/2
5.5.6 1/16

5.6.2 minatx=—1, maxatx =1
5.5.7 3/2

5.6.3 maxatx=2, minatx =4
558 —1/4

5.6.4 minatx==+1, maxatx=0
559 -3

5.6.5 minatx =1
5.5.10 1/2

5.6.6 none
5,511 0

5.6.7 none
5512 -1

5.6.8 minatx="7m/12+ kn, max atx = —n/12 + kmx, for
5513 —1/2 integer k
5.5.14 5 5.6.9 none
5515 1 5.6.10 max atx =0, minatx = =£11
5.5.16 1 5.6.11 min atx = —3/2, neither atx =0
5.5.17 2 5.6.12 min at n, max at 7/2 + nxw
5518 1 5.6.13 min at 2n7, max at 2n+ 1)
5519 0 5.6.14 min at 7/2+ 2nm, max at 37w/2 + 2n7w
5520 1/2 5.6.17 minatx=1/2
5.5.21 2 5.6.18 minatx=—1, maxatx =1
5522 0 5.6.19 maxatx=2, minatx =4

5523 1/2 5.6.20 minatx =41, maxatx=0



5.6.21 minatx =1
5.6.22 none
5.6.23 none

5.6.24 minatx=7n/12+ nn, max atx = —x/12 + nx, for
integer n

5.6.25 max atx =63/64

5.6.26 maxatx=7

5.6.27 max at —571/4, min at 5~ /4

5.6.28 none

5.6.29 max at —1, min at 1

5.6.30 minat2~!/3

5.6.31 none

5.6.32 min at n7

5.6.33 max at nmw, min at ©/2 + nxw

5.6.34 max at ©/2 + 2nm, min at 37/2 + 2nw

5.6.35 concave up everywhere

5.6.36 concave up when x < 0, concave down when x > 0
5.6.37 concave down when x < 3, concave up when x > 3

5.6.38 concave up when x < —1/v/3 or x > 1//3, concave
down when —1/v3 <x < 1/V/3

5.6.39 concave up when x < 0 or x > 2/3, concave down
when 0 <x <2/3

5.6.40 concave up when x < 0, concave down when x > 0

5.6.41 concave up when x < —1 orx > 1, concave down
when —1 <x<0or0<x<1

5.6.42 concave downon ((8n— 1) /4,(8n+3)xm/4),
concave up on ((8n+3)x/4,(8n+7)m/4), for integer n

5.6.43 concave down everywhere

577

5.6.44 concave up on (—oo, (21 —1/497)/4) and
(21+/497) /4,00)

5.6.45 concave up on (0,0)

5.6.46 concave down on (2n7/3,(2n+1)7/3)
5.6.47 concave up on (0, )

5.6.48 concave up on (—oo,—1) and (0, )
5.6.49 concave down everywhere

5.6.50 concave up everywhere

5.6.51 concave up on (n/4+nm,37/4+nn)
5.6.52 inflection points at nm, +arcsin(+/2/3) +nx

5.6.53 upf/incr: (3,00), up/decr: (—e0,0), (2,3), down/decr:
(0.2)

5.7.1 25x25

5.7.2 P/4x P/4

573 w=1=2-5"3hn=53 h/w=1/2

5.7.4 /100 x v/100 x 2v/100, /s = 2

575 w=1=2'"3v3 h=v'3/223 ph/w=1/2
5.7.6 1250 square feet

5.7.7 I?/8 square feet

5.7.8 $5000
5.7.9 100
5.7.10 -
5711 h/r=2
5712 h/r=2

573 r=5h=40/m h/r=8/n
57.14 8/

5.7.15 4/27
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5.7.16 (a)2, (b)7/2

V3 V3 1o
5.7.17 ?X?—’—EXZ_

V3
12

5.7.18 (a) a/6, (b) (a+b—\/a? —ab+b?)/6

5.7.19 1.5 meters wide by 1.25 meters tall

5.7.20 If k <2/m the ratio is (2 — kx)/4; if k > 2 /&, the ratio
is zero: the window should be semicircular with no

rectangular part.
5.7.21 a/b

5.7.22 1/V3~58%
5.7.23 18 x 18 x36

5.7.24 r=5/(2n)"3 ~2.7 cm,
h=5-283/1'3 = 4r~10.8 cm

5725 5o 10 (21 (750 1
e nE T\ T 2w

5726 h/r=2
5.7.27 1/2
5.7.28 $7000
6.1.1 10

6.1.2 35/3
6.1.3 x*

6.1.4 2x*

6.1.5 2x* -8

6.1.6 2b> — 24>

6.1.7 4 rectangles: 41/4 = 10.25, 8 rectangles:

183/16 = 11.4375
6.1.8 23/4

6.2.1 87/2

6.2.3 In(10)
624 & —1

6.2.5 3*/4

6.2.6 2°/6—1/6
6.2.7 x> —3x
6.2.8 2x(x* —3x%)
6.2.9 ¢

6.2.10 2xe"
6.2.11 tan(x?)
6.2.12 2xtan(x*) — 10tan(100x?)
6.2.13 31,14
6.2.14 5

6.2.15 1. 2/3
2. 24/5

6.3.1 (16/3)x*>+C

632 P +1+C

6.3.3 8/x+C

634 —2/7+C

6.3.5 7lns+C

6.3.6 (5x+1)°/15+C

63.7 (x—6)°/3+C

6.3.8 2x°/%/5+C

639 —4/\/x+C

6310 4t —12+C,r <22 —4+8+C,t>2

711 —(1-0)'%/10+C



712 /5423 /3+x+C
713 (P +1)1202+C

714 —3(1-51)23/10+C
7.1.5 (sin*x)/4+C

7.1.6 —(100—x%)*?/3+C
717 —2V1-23/3+C

7.1.8 sin(sinzt)/w+C

7.1.9 1/(2cos’x) = (1/2)sec’x+C
7.1.10 —In|cosx|+C

7.1.11 0

7.1.12 tan®(x)/2+C

7.1.13 1/4

7.1.14 —cos(tanx) +C

7.1.15 1/10

7.1.16 V3/4

7.1.17 (27/8)(x*—7)%°

7.118 —(37+1)/14

7.1.19 0

7.1.20 f(x)?/2

7.2.1 x/2—sin(2x)/4+C

7.2.2 —cosx+ (cos’x)/3+C
7.2.3 3x/8 — (sin2x)/4 4+ (sindx)/32+C
7.2.4 (cos’x)/5 — (cos’x)/3+C
7.2.5 sinx— (sin’x)/3+C

7.2.6 (sin’x)/3 — (sin’x)/5+C

579

7.2.7 —2(cosx)’?/5+C

7.2.8 tanx —cotx+C

7.2.9 (sec®x)/3 —secx+C

7.2.10

7.2.11

7.2.12

7.2.13

7.2.14

7.2.15

7.2.16

7.2.17

7.2.18

7.2.19

7.2.20

7.2.21

7.2.22

7.2.23

7.2.24

7.2.25

7.2.26

7.2.27

7.2.28

7.2.29

7.2.30

—cosx+sinx+C
3 1
5 In|secx + tanx| + tanx + 5 secxtanx +C

tan’ (x?)
10

+C
—1lcos’(x)+C
Isin*(x)+C

| oS 1

5C08°x — jcos3x+C

%cos6x— %cos‘*x—l—C

lisin“x— %sin9x+%sin7x+c

1 3sin’ (x) . 3sind(x) |, sin’

— 4 sin’ (x) + 2% 5 T 3(x>—|—C

2 — Lsin(4x) +C

(—4 cos(8x) — $ cos(2x)) +C

=

1 (=1 cos(3x) +cos(—x)) +C

(1 sin(4x) — Lsin(10x)) +C

N—

(L sin(7mx) — 5= sin(37x)) + C

T

=

1 (sin(x) + L sin(3x)) +C
L sin(Zx) + 4= sin(7x) + C

tan’ (x)

3 +C
%tan5x+ %tan3x+C

tan®(x) | tan*(x)

) ey e

tan® (x)

wic

sec®(x)  sec3(x)

= ——5—+C
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9 2 7 5
7.231 el Zeello) 4 el 4o

7.2.32 % tan3x — tanx+x+C

7.2.33 % tanxsec® x + % (secxtanx + In|secx + tanx|) +C

7.2.34 1 (secxtanx —In|secx+tanx|) +C

7.2.35 tanxsec®x — & (secxtanx +In|secx+ tanx|) +C

731 xV/2—1/2—Injx+ V2 —1]/2+C

7.32 xV/9+4x2/2 4 (9/4)In|2x + VO + 42| + C
733 —(1-x%)2/3+cC

7.3.4 arcsin(x)/8 — sin(4arcsinx) /32 +C

735 Injx+V1+22|+C

73.6 (x+ 1)Va2+2x/2—Injx+ 1+ Va2 + 24| /2 +C
7.3.7 —arctanx—1/x+C

7.3.8 2arcsin(x/2) xm/Z—l-C

7.3.9 arcsin(/x) — vxv1—x+C

7.3.10 (2% +1)\/4x2 —1/24+C

7.3.11 % (x\/x2+ I+In|Va2+1 —|—x|) +C
7.3.12 2 (i;f\/xz—+4+1n|@+ §|) +C
7.3.13 % (sinflx—l-x\/W) +C

7.3.14 1 (9 sin~! (x/3) +x\/9——x2) +C

7.315 Jxvx?—1—flnx+ Va2 —1|+C

7.3.16 Lxy/x?— 16— 81n|¥ + Y210

+C

7.3.17 x\/x2+1/4+1In[2\/x2 + 1/44+2x|+C =
VA2 4+ 1+ 1In|Vax2 + 1+ 2x| +C

7.3.18

Lsin™'(3x)+321/1/9—x2+C=Lsin ' 3x) + V1 -92+C

7.3.19 4( L/ —1/16— 11n|4x+4\/x2—1/16|)+C=
Ixv16x2 —1—Linjdx+ V1622 — 1|+ C

\/x2+2 X
7.3.20 SIH' NI +C

7.3.21 3sin”! (%) + C (Trig. Subst. is not needed)

X XZ*S
7322 5in| 2+ Y C

7.4.1 cosx+xsinx+C

7.4.2 x*sinx—2sinx+2xcosx+C

743 (x—1)+C

744 (1/2)¢" +C

7.4.5 (x/2)—sin(2x)/4+C = (x/2) — (sinxcosx)/2+C
74.6 xInx—x+C

7.4.7 (x*arctanx + arctanx — x) /2 4+ C

7.4.8 —x° cosx+ 3x%sinx+ 6xcosx — 6sinx+ C
7.4.9 x*sinx+3x%cosx — 6xsinx — 6cosx+C
7.410 x*/4 — (cos®x)/4 — (xsinxcosx)/2+C
7.4.11 x/4 — (xcos’x)/2 + (cosxsinx)/4+C
7.4.12 xarctan(y/x) + arctan(y/x) — /x+C
7.4.13 2sin(y/x) —2y/xcos(y/x) +C

7.4.14 secxcscx—2cotx+C

7.4.15 sinx—xcosx+C

7416 —e *—xe*+C

7.4.17 —x*cosx+ 2xsinx +2cosx+C

7.418 —x3cosx+ 3x2sinx + 6xcosx — 6sinx + C



7.4.19 1/2¢° +C
7.420 3¢ —3x2e" + 6xe* — 6 +C

eflx

7421 —ixe ¥ -4 +C

7.4.22 1/2¢*(sinx —cosx) +C

7.4.23 1/5¢%(sinx+2cosx) +C

7.4.24 1/13¢*(2sin(3x) —3cos(3x)) +C
7.4.25 1/10e%(sin(5x) + cos(5x)) +C
7.426 —1/2cos’x+C

7.4.27 /1 —x24xsin" ! (x)+C

7.4.28 xtan~!(2x) — {In]4x* + 1| +C
7429 Ix*tan~!(x) —$+4tan~!(x)+C
7.4.30 /1 —x24xsin 'x4C

7431 12|y — £ +C

7.4.32 —“Z—z + 2x%In |x| + 2x — 2xIn|x| + C
7433 —% +12nx—1]-%—Iinjk—1]+C
7434 12 () -2 4C

7435 Léiny -5 +C

7.4.36 2x+x(In|x|)* — 2xIn|x|+C

7.4.37 2x+x(In|x+ 1))+ (In|x+1))* -
2xIn|x+ 1| —2In|x+1]+2+C

7.4.38 xtan(x)+In|cos(x)|+C
7.4.39 In|sin(x)| —xcot(x) +C
7440 2(x—2)2+3(x-2)32+C
7.4.41 xsecx—In|secx+ tanx|+C

7.4.42 —xcscx—In|cscx+ cotx|+C

981

7.4.43 1/2x(sin(Inx) — cos(Inx)) +C
7.4.44 2sin(\/x) — 2y/xcos (y/x) +C
7.4.45 Lxln|x|—%+C

7.4.46 2\/xeV* — 2V 4 C

7447 1/2x*+C

7448 ©

7449 —2/e

7.4.50 0

7.4.51 32 12

7.4.52 1/2

7.4.53 6—2¢

74.54 3, -3

7455 1+ <

7.4.56 1/5("+e %)

7.51 —In|jx—2|/4+Inx+2|/4+C
752 —x’/3 —4x—4In|x—2|+4In|x+2|+C
753 —1/(x+5)+C

754 —x—In|x—2|+In|x+2|+C
7.5.5 —4x+x>/3 + 8arctan(x/2) +C
7.5.6 (1/2)arctan(x/2+5/2)+C

757 x*/2—2In(4+x>)+C

7.5.8 (1/4)In|x+3|—(1/4)In|x+7|+C
7.5.9 (1/5)In|2x—3|—(1/5)In|1+x|+C
7.5.10 (1/3)In|x|—(1/3)In|x+3|+C
7.5.11 3Injx—2|+4Injx+5|+C

7.512 9ln|x+ 1| —2In[x[+C
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7.5.13 I(lnjx+2|—In[x—2|)+C
7.514 In|x+5|- 2 +C
7515 — 5 —3Injx+8[+C

7.516 25 +7In|x|+2Injx+1|+C

7.517 —In|2x—3|+5Injx—1|+2Injx+3|+C

7.518 —Ln|Sx—1|+3In[3x—1|+2In|7x+3|+C

7519 x+Injx— 1| —Injx+2|+C

7520 5 +x+ 2 nlx—5|+ 8 mlx+4|-F +C

7.5.21 2x+C

7522 L (10|22 +2x+3]+21nj - 2uan!

2

7.5.23 —iln‘x2+4x+10‘+x+$
523 -3 G

I

7.5.24 In|3x?+5x—1|+2In|x+1|+C

Lic

)

7.5.25 2In|x—3|+2In[x* + 6x+ 10| —4tan ! (x+3) +C

7526 SIn|x® +9|+ Linjx+ 1| - Ltan~! (3) +C

7.527 L (3In|x*+2x+17|—4In|x—7|+tan"" (

7.5.28

) +C

3(ln‘x2—2x+11‘+1n|x_9|)+3\/gtan—l (“\7—1—(1)) +C

7.5.29
1In|x® +10x4 27|+ SIn|x+2| — 6v2tan"! (

7.5.30 1n(2000/243) ~2.108

7.5.31 5In(9/4) — 1n(17/2) ~ 3.3413
7.532 —m/4+tan" '3 —1In(11/9) ~ 0.263
7.5.33 1/8

7.6.1 T.S:440

7.6.2 T:9.28125+£0.281125;S: 9£0

x5

V2

)+c

7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.6.9
7.6.10
7.7.1
7.7.2
7.7.3
7.7.4
7.7.7
2.
3
4,
5
7.7.9
7.7.11
7.7.12
7.7.13
7.7.14
7.7.15
7.7.16
7.7.17
7.7.18

7.7.19

T:60.75+£1;S: 60£0

T: 1.1167 £0.0833; S: 1.1000+0.0167

T:0.3235£0.0026; S: 0.3217 £ 0.000065

T: 0.6478 £0.0052; S: 0.6438 = 0.000033

T: 2.8833 £0.0834; S: 2.9000 +0.0167

T: 1.1170£0.0077; S: 1.1114 +0.0002

T: 1.097 +£0.0147; S: 1.089 £ 0.0003
T:3.63+0.087; S: 3.62+£0.032

Converges to 1

Diverges

1/3

Divergent

1. n/2

divergent (to o)

.1

divergent (to oo)

) %(43/5)

O<p<l1
/2
1/2
1/3
/3
1/1n2
diverges
diverges
/2

1



7.7.20

7.7.21

7.7.22

7.7.23

7.7.24

7.7.25

7.7.26

7.7.27

7.7.28

7.7.29

7.7.30

7.7.31

7.7.32

7.7.33

7.7.34

7.7.35

7.7.36

7.7.37

7.8.1

7.8.2

7.8.3

2
7.8.4 cost — 3 cos’t+C

7.8.5

(t+4)*
4

diverges
diverges
diverges
diverges
diverges
diverges

24+2V2

1/2

/2
—-1/4
diverges

-1

diverges
1/2

1/2

(tz _ 9)5/2

5

(etz +16)?

4

tan¢

+C

+C

583

7.8.6 In|> +1+3|+C
1 2
787 Sin|l -4/ +C

t

1
7.8.8 —tan(arcsin(¢/5))+C= ———=+C

7.8.9 % vVsin3t+C

7.8.10 ttant+1In|cost|+C

7.811 2ve' +1+4+C

3t sin2t sindt

7812 3+ 2 c
mle| 1
7.8.13 %—@Jrc

—1
7814 ——— +C=—V1+2/t+C
sinarctant

-1
7815 —— 5 +C
2(1 +tanr)? +

(P12 (F+1)2

7.8.16
5 3

+C

7.8.17 é sint;e’ cost LC

(32 +47)*

7.8.1
8.18 G

+C

2 _ 1
3(2—t2)3/2 (2—t2)1/2

7.8.19 +C

7.8.20
In|sin(arctan(2¢/3))]

9

+C = (In(4r*) —In(9 +41%)) /18 +-C

(arctan(2t))?

7.8.21
8 4

+C

3Injt+3]  Injt—1]
+ +

7.8.22
8 4 4

c

COS7 t COS5 t

7.8.23
7 5

7.8.24 _—1+c
t—3
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-1
7825 —+C 8.3.5 87/3
Int
8.3.6 1/30
2(Int)?>  *Inr  1?
7826 N7t
2 2 4 83.7 n(m/2—1)
7.827 (' =32 +61—6)e' +C 838 1. 114n/5 3. 207
2. 74m/5 4. 41
5+5 5-5
7.8.28 +\/_ln(2t+1—\/§)—|— \/_ln(2t+1—|—\/§)+C
10 10 8.3.9 167,241

8.1.1 Itrises until 7 = 100/49, then falls. The position of the
object at time  is s(t) = —4.9¢> 4 20t + k. The net distance
traveled is —45/2, that is, it ends up 45,/2 meters below where
it started. The total distance traveled is 6205/98 meters.

8.3.11 nh’(3r—h)/3
8.3.13 2n

o 84.1 2/m;2/m;0
8.1.2 / sintdr = 0
JO

8.4.2 4/3
8.1.3 net: 27, total: 27/3 +4+/3 843 1/A
8.14 8 8.4.4 1/4
8.1.5 17/3 84.5 —1/3,1
8.1.6 A=18,B=44/3,C=10/3 8.4.6 —4\/1224 ft/s; —8+/1224 ft/s
8.2.1 8\/5/15 8.5.1 ~5,305,028,516 N-m
822 1/12 8.5.2 ~ 4,457,854,041 N-m
8.5.3 367,5007 N-
8.2.3 9/2 R
8.5.4 490007 + 196000/3 N-m
8.2.4 4/3
8.5.5 24507 N-m
8.2.5 2/3-2/xn
8.5.6 0.05N-m
8.2.6 3/7—3V3/(2m)—1/8
8.5.7 6/5N-m
8.2.7 1/3
8.5.8 3920 N-m

8.2.8 10v5/3—-6
vs/ 8.5.9 23520 N-m

8.2.9 500/3 8.5.10 12740 N-m
8.2.10 2 8.6.1 15/2
8.2.11 1/5 8.62 5

8.2.12 1/6 8.6.3 16/5



8.6.5 & =45/28,7=93/70
8.6.6 x=0,5=4/(37)
8.6.7 x=1/2,5=2/5
8.6.8 x=0,7=28/5

8.6.9 1=4/7,5=2/5
8.6.10 t=5=1/5

8.6.11 £=0,y=28/(97)
8.6.12 =75 =128/(97)
8.6.13 £=0, 7 =244/(277) ~ 2.88
8.7.1 (22v22-8)/27
8.7.2 In(2)+3/8

8.7.3 a+d’/3

8.7.4 In((vV2+1)/v3)
8.7.6 3/4

8.7.7 ~3.82

8.7.8 =~ 1.01

1 V1ider—1
879 V1+e2—V2+-In| ———
2 \WVi+e2+1

8.7.10 /2
8.7.11 6
8.7.12 4/3
8.7.13 6
8.7.14 109/2
8.7.15 3/2

8.7.16 12/5

) + %ln(3—|—2\/§)

8.7.17

8.7.18

8.7.19

8.7.20

8.7.21

8.7.22

8.7.23

8.7.24

8.7.25

8.7.26

8.8.1 873 —

8.8.

1
8.8.4 1+ 2me+ —me® —

79953333/400000 ~ 199.883
—In(2 —+/3) ~ 1.31696
sinh~!1

fol V1 +4x2 dx

Jo VT4 100x18 dx

fol 1—|—$dx

I 1+x% dx

JRVARE

2
X
T dx

3 2
\[73 1+ 81f9x2 dx

JEA 1+ dx

167V2
3

3 7307730  107/10

27 27

T 27
4 42 e

8.8.6 872

82

88.7 2+ —

888 a>b

a<b

9.1.1

9.1.3

9.14

9.1.5

9.1.6

9.2.1

0

3V3

Va5

27h* +
VbZ— a2

a

lim n®/(2n* +1) = 1/2

n—yoo

271a%b
2mh* 4 Lbz arcsin(v/ a2 — b2 /a),
21a2h (b V=&
|+ —=

585
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922 lim5/(2'/"+14)=1/3 9.4.5 0.90
A

© 1 9.4.6 0.95
923 Y. 4 % diverges, so Z 3— diverges
n=1 " 9.5.1 converges

924 -3/2 9.5.2 converges
9.2.5 11 9.5.3 converges
9.2.6 20 9.5.4 diverges
9.2.7 3/4 9.5.5 diverges
9.2.8 3/2 9.5.6 diverges

9.5.7 converges
9.2.9 3/10

9.5.8 diverges
9.3.1 diverges

9.5.9 converges
9.3.2 diverges
9.5.10 diverges

9.3.3 converges
9.6.1 converges absolutely

9.3.4 converges .
9.6.2 diverges

9.3.5 converges 9.6.3 converges conditionally

9.3.6 converges 9.6.4 converges absolutely
9.3.7 diverges 9.6.5 converges conditionally
9.3.8 converges 9.6.6 converges absolutely
939 N—=5 9.6.7 diverges

9.3.10 N — 10 9.6.8 converges conditionally

9.7.5 1. converges
9.3.11 N =1687

2. converges

9.3.12 any integer greater than 2% 3. converges

4. diverges
9.4.1 converges

981 1. R=1,1=(-1,1)

9.4.2 converges 2. R=o0,] = (—o0,)

3. R=e,I=(2—¢,2
9.4.3 diverges ¢ (2-e2+e)

4. R =0, converges only when x =2
9.4.4 converges 5. R=1,1=[-6,—4]



982 R=c¢

9.9.1 the alternating harmonic series

=

992 Y (n+1)x"
n=0

=)

9.9.3 Y (n+1)(n+2)x"
n=0

= (n+1)(n+2)

9.9.4 ) L R=1
n=0
-1
995 C S ——
+Z it D(nt2)

n=0
S (x—5)"

1:3-5---(2n—1)
11+Z —on Xt =

> (2n—1)! B
Y sty R

8. x+x°/3

=

9. Y (=1 /(2n)!

9.11.1 1—3+ﬂ—m+ +ﬁ

9.11.2 1000; 8

3 5

2
9.113 x+ 2 4+ 25,

3 5 error +£1.27

10.1.2 y = arctant +C

t”+1

10.13 y= +1

n+1

10.14 y=tInt—t+C
10.1.5 y = nm, for any integer n
10.1.6 none

10.1.7 y=+12+C

10.1.8 y=+1,y=(1+Ae”)/(1 —Ae*)

10.1.9 y*/4—5y=1*/2+C
10.1.10 y = (21/3)%?
10.1.11 y=M+Ae ¥

101n(15/2)

10.1.12
In5

M

10.1.13 y= m

10.1.14 y=2¢"/?

In2
10.1.15 t = ——
k

10.1.16 600 °"2/5 ~ 261 m

10.1.17 100e—200M2/191 48 11

10.1.18 y = yoetlnz

10.1.19 500e °""2/4 ~210¢g
10.2.1 y=Ae ™

10.2.2 y=Ae*

10.2.3 y = A arctan

1024 y= Ae /3

10.2.5 y=4e '

10.2.6 y= —2¢%3

~~ 2.52 minutes

5 In300
In2

57301n50

In2

587

~ 41 days

~2 32339 years
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10.2.7 y=e!teost 10.4.3 y(1) ~ 1.05

10.2.8 y=¢?e 10.4.4 y(1)~2.30

10.2.9 y=0 1051 2o 271w
2m 20

10.2.10 y =0 10.5.2 2cos(3t) + 5sin(31)

10211 y = 4r° 1053 —(1/4)e 5 + (5/4)e ™"

_ _n,(1/)-1
10.2.12 y= 2e 10.5.4 _26731_’_264[

10213 y=¢'""" 10.5.5 Se~% +207¢ O

10.2.14 y=0 10.5.6 (161 —3)e"

10.2.15 k=1In5, y = 100¢ /1" 10.5.7 —2cos(v/51) +/5sin(v/51)
10.2.16 k=—12/13,y = exp(—13:/%) 10.5.8 —v/2cos + v2sint
10.2.17 y=10%/"G/2) 10.5.9 ¢ (4cost +24sins)
10.2.18 y = 10e"(2)/6 10.5.10 2¢ ¥ sin(3t)

1031 y=Ae ¥ 42 10.5.11 2cos(2t — 1 /6)

1032 y=Ae* -3 10.5.12 5v/2cos(10f — 1w /4)
1033 y=Ae (/27 15 10.5.13 v2e % cos(3t — m/4)
1034 y=Ae ™ —2 10.5.14 5¢* cos(3r + arcsin(4/5))
103.5 y—Ael —2—2—2 10.5.15 (2cos(5¢) +sin(5t))e
103.6 y=Ae 2 +1-2 10.5.16 —(1/2)e *sin(2¢)

1 10.6.1 Ae> +Bte> + (6/169) cost — (5/338) sint
1037 y=Ar — = (6/169) (5/338)

10.6.2 Ae vV 4 Bre vV 45

1038 y= S4 2
to3 10.6.3 Acos(dr) + Bsin(4r) + (1/2)+ (3/16)r —5/16

10.3.9 y = Acost +sint
Y 10.6.4 Acos(V2r) + Bsin(v/2r) — (cos(5t) + sin(51)) /23

A t
310 y= - - 2

10.3.10 y sect+tant+1 — 10.6.5 €' (Acost + Bsint) + e /2

10.4.1 y(1)~ 1.355 10.6.6 AcVS +Be Vo 12— 1/3—¢7/5

10.4.2 y(1) ~40.31 10.6.7 Ae 3 4+ Be* — (1/5)te™



10.6.8 Ac' + Be* 4 (1/2)te

10.6.9 Acos(4t) + Bsin(4t) 4 (1/8)tsin(4t)
10.6.10 Acos(3t)+ Bsin(3t) — (1/2)tcos(3t)
10.6.11 Ae % + Bre ' 4 31%

10.6.12 Ae* + Bre* — 12

10.6.13 Ae™" +Be > +(4/5)

10.6.14 Ae" +Be ™ +(1/144) — (t/12)
10.6.15 Acos(v/5t) + Bsin(v/5t) + 8sin(2t)
10.6.16 Ae* + Be  +te*

10.6.17 4¢' +e ' —31—5

10.6.18 —(4/27)sin(3) + (4/9)t

10.6.19 ¢ %(2cost +20sint) +2¢ ¥

10.6.20

2 cos(3t) + 292 sin(3¢t) | + 2 cost L
325 975 325 325

10.6.21 ¢ % (Asin(5¢) 4+ Bcos(5t)) + 8sin(2t) + 25 cos(21)

10.6.22

e 2 (Asin(21) 4+ Bcos(2t)) + (14/195)sint — (8/195) cost

10.7.1 Asin(¢) + Bcos(t) —costIn|sect + tant|

1
10.7.2 Asin(r) + Bcos(t) + §e2t

10.7.3 Asin(2r) 4+ Bcos(2¢) 4 cost — sinf cost In | sect + tant|

1
10.7.4 Asin(2r) 4+ Bcos(2f) + 5 sin(2¢) sin? (1) +

1 t 1
3 sin(2¢)In|cost| — 2 cos(2t) + 1 sin(2¢) cos(2t)

3 2 2 2
10.7.5 Ae? +Be '+ —¥ — | — — = 4+ =
0.7.5 Ae”+Be "+ 3¢ — | 5725 T 125

10.7.6 Aé'sint + Be' cost — ¢’ costIn|sect + tant|

sint

eZt

5

589

1
10.7.7 Aé'sint + Be' cost — 10 cost(cos t 4+ 3sindr —

2cost —sint) + 10 sint(sin®r — 3cos®t — 2sinz + cost) =

1 1.
M cos(2t) — 70 sin(2¢)

11.1.2 1. 6=
arctan(3)

2. r=
—4cscO

3. r=
sec @csc’

1114 1. (P +y)2=

4%y — (x* +3%)y
9. (XZ +y2)3/2 :y2

7.

r=+>5 2/(sin@ —
2 5cos0)
sin O sec’ @ 8. r=2secH
rsinf = 9 0=
sin(rcos 0) ' 2 cos? 6 —
- rsin0 + 1

3. 2 —l—y2 = )czy2

4. x4 a2yt =y?

11.2.1 1. (BcosB+sin6)/(—0sin6 +cosH),
(6% +2)/(—0sin6+cos )’

cos 0 +2sinBcos O

3(1+sin6)

cos2 0 —sin’> 6 —sin@ (cos? O — sin® O —sin O)3

3. (sin?@ —cos>0)/(2sinBcosB), —1/(4sin> O cos® 0)

2sin 6 cos O 2
4. e ]
cos? 0 —sin“ 0 (cos? 6 —sin“0)3
5. undefined
6 2sin@ —3sin’ 0  3cos*O —3cos? O +2
" 3c0s?0 —2co0s0’ 2cos3 0(3cos? 0 —2)3
1131 1.1 4. m/12+/3/16
2. 97/2 5. ma*/4
3. V3/3 6. 417/2

1132 2—7/2
11.3.3 7/12

11.3.4 37/16
11.3.5 7/4—33/8
11.3.6 7/2+3/3/8
113.7 1

11.3.8 3/2— /4
11.3.9 ©/34+/3/2
11.3.10 /3 —/3/4

11.3.11 473/3
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11.3.12 7? 12.32 0
11.3.13 57/24 —\/3/4 12.33 2
11.3.14 77/12 -3 12.34 —6
11.3.15 47 —+/15/2 — Tarccos(1/4) 12.3.5 42
11.3.16 373 12.3.6 V6/V42=1/V7,~1.18
sin(7) cos(t) 1237 —11/V14v29 = —11/1/406, ~ 2.15

1146 x=¢— 2, O
. 2 2

12.3.8 0, /2
11.5.1 There is a horizontal tangent at all multiples of 7.
12.39 1/2,7/3
11.5.2 97 /4
12.3.10 —1/4/3,~2.19

27 ]
11.5.3 /0 2 5 —dcostdt 12.3.11 arccos(1/+/3) ~ 0.96

12.1.6 3,/26,/29 12.3.12 /5, (1,2,0)

12.1.7 V14,214,314 12.3.13 1//6, (3/6,3/6,1/6)

121.8 (x— 1>+ (y—1)2+(z—1)>=4 12.3.14 (0,5), (5/3,0)

129 (x—2)2+ (y+1)2+(z—3)2 =25 12.3.15 (0,15/2/2),(15v/2/2,0)

12111 (x—2)2+(y— 12+ (z+1)2 = 16, 12.3.16 Any vector of the form (a,—7a/2,—2a)

=12+ (z+1)?=12
12.3.17 (1/+/3,—1/v/3,1//3)

12.2.6 V10, (0,-2), (2,8) 2,2V/17, (—2,—6)

12.3.18 Yes.
12.2.7 V14, (0,4,0), (2,0,6) 4,210, (—2,—4,—6) 12.3.19 No.
12.2.8 V2, (0,-2,3), (2,2, —1) V13, 3, (—2,0,—2) 124.1 (1,-2,1)
12.2.9 V3, (1,—1,4), (1,—1,-2) 3v/2, V6, (—2,2,-2) 1242 (4,—6,—2)
12.2.10 V14, (2,1,0), (4,3,2) V/5, /29, (—6,—4,-2) 1243 (—7,13,-9)

12211 (-3,-3,—11), (-3/4/139,-3/4/139,—11/4/139)  12.4.4 (0,—1,0)
(—=12//139,—12//139, —44//139)

12.4.5 3
12.2.12 (0,0,0)

12.4.6 21V2/2
12.2.13 0; (—r/3/2,7/2); (0, —12r); where r is the radius of
the clock 124.7 1

12.3.1 3 1251 (x—6)+(y—2)+(z—1)=0



1252 4(x+1)+5(y—2)— (z+3)=0

1253 (x—1)—(y—2)=0

1254 2(x—1)—3y+2z=0

1255 4(x—1)—6y=0

12.5.6 x+3y=0

12.5.7 (1,0,3)+1(0,2,1)

12.5.8 (1,0,3)+1(1,2,—1)

12.5.9 (1,1,—1)

12.5.10
12.5.12
12.5.13
12.5.14
12.5.15
12.5.19
12.5.20
12.5.21
12.5.22
12.5.23
12.5.24

12.6.1

2.
3,
4.

-2/5,13/5
neither
parallel
intersect at (3,6,5)
same line
7/\/3
4/\/14
VI31/V14
V68/3
6/V42
7/\/84

1. (V2,m/4,1), (V3,1 /4,arccos(1/V/3))
(7V2,77/4,5), (V123,77 /4, arccos(5/v/123)
(1,1,1), (V2,1,7/4)
(0,0,—m), (m,0,7)

1262 2+72=4

12.6.3 rcos6 =0

12.6.4 2 +2724+2z—5=0

12.6.5

12.6.6

12.6.7

12.6.8

12.6.9

991

z=e"
z=r
sinf =0
1=pcos¢

p =2sinOsin¢g

12.6.10 cos¢ =1/+/2

12.6.12 z=mr;cotd =mitm#0,¢ =0if m=0

12.6.13 x*+ (y— 1)?+ 2% = 1; a sphere with radius 1/2,
center at (0,1/2,0).

12614 0< 0 <7/2,r>0,2>0,0< 0 <7/2,
0<op<m/2,p>0;

13.11

13.1.2

13.1.3
circles

13.1.4

13.1.5

13.1.6
2.
3.

13.2.1

13.2.2

13.2.3

13.2.4

13.2.5

13.2.6

13.2.7

13.2.8

z=y% z=x%z=0, lines of slope 1
z=|y|, z=|x|, z=2|x|, diamonds

2= sin(y?), z = e sin(x?), z = e sin(2x?),

z = —sin(y), z =sin(x), z =0, lines of slope 1
A4 4
z=y",z=x",z7=0, hyperbolas

L. {(xy)||x| <3and [y >2}
{(x,y) |1 <2 +)y* <3}
{(xy) | ¥*+4y* <16}

No limit; usex=0andy =0
No limit; usex=0and x =y
No limit; usex=0and x =y
Limit is zero

Limit is 1

Limit is zero

Limit is —1

Limit is zero



592 = Selected Exercise Answers

13.2.9 No limit;usex=0andy=0
13.2.10 Limit is zero

13.2.11 Limitis —1

13.2.12 Limit is zero

13.3.1 —2xysin(x?y), —x%sin(x?y) + 3y?
1332 (2 —x%y) /(2 +y)% 2/ (x* +y)?
13.3.3 2xe” 1, 2ye” 1

13.3.4 yln(xy) +y, xIn(xy) +x

1335 —x/\/1—x2—y2, —y/y/1—x2—y2
13.3.6 tany, xsec’y

13.3.7 —1/(x%), —1/(xy?)

1338 z=-2(x—1)-3(y-1)—1

1339 z=1

13310 z=6(x—3)+3(y—1)+10
13.3.11 z=(x—2)+4(y—1/2)

13312 r(t) = (2,1,4) +1(2,4,—1)
13.3.16 height

13.4.1 4xtcos(x* +y?) + 6yt*cos(x* +y?)
13.4.2 2xycost +2x%t

13.4.3 2xytcos(st) + 2x%s, 2xyscos(st) 4+ 2x*t
13.4.4 2xy*t — 4dyx>s, 2xy%s + 4yx’t

13.4.5 x/z,3y/(22)

13.4.6 —2x/z, —y/z

13.4.7 1. V/'=mR-0.2V)/P
2. P'=(nR+0.6P)/2V
3. T"=(3P—-0.4V)/(nR)

13.5.1 9v/5/5

13.5.2 /2cos3

1353 eV2(v/3-1)/4

13.54 /345

1355 —V/6(2++/3)/72
13.5.6 —1/5.0

13.5.7 4(x—2)+8(y—1)=0

13.5.8 2(x—3)+3(y—2)=0

13.59 (—1,—1—cosl,—cos1), —v2+2cos1+2cos? |

13.5.10 Any direction perpendicular to VT = (1,1, 1), for

example, (—1,1,0)

13.5.11 2(x—1)—6(y—1)+6(z—3)=0
13512 6(x—1)+3(y—2)+2(z—3)=0
13.5.13 (2+4r,—3—12t,—1—8¢)
13.5.14 (4+ 81,2+ 4¢,—2 —36¢)

13.5.15 (4+8r,2+420¢,6 —121)

13.5.16 (0,1), (4/5,-3/5)

13518 1. (4,9)
2. (—81,2) or (81,—2)

13.5.19 in the direction of (8, 1)
13.5.20 Vg(—1,3) = (2,1)

13.6.1 fo = (2%y—6xy°) /(> +)%)°,
fry = 2xy* —6x7y) /(2 + %)

13.6.2 f. =3x%7?, H= 23y + 594, foe = 692,
foy =223 +20)°, fiy = 637y

13.6.3 f, = 12x2 +y2, f, = 2xy, fur = 24%, fyy = 2%, fry =2y

13.6.4 f, =siny, f, = xcosy, fix =0, f,, = —xsiny,

Sy = cosy



13.6.5 f. =3cos(3x)cos(2y), f, = —2sin(3x)sin(2y),
Sy = —6c0s(3x)sin(2y), fyy, = —4sin(3x)cos(2y),
Srr = —9sin(3x) cos(2y)

13.6.6 fo =, fy= 2 fo = &,
fry = 4y et fo= ZyeHy2

3x2 2y3
13.6.7 fr,=—+—~. 1=+,
I 203 +y4) b B4y
Fom 3x ox* Fo = 6y? 8y°
ST 2@ T R T e
f B _6x2y3
Xy (x3 +y4)2
—x —y 162% + x?
1368 7, = —.,7y= 2,74 = ————,
R T A 16223
B o
YT T e T T 64
y+z xX+2z y+z
13.6.9 z, = — yly = — y Iy = 27—,
TR YT Ty T Ty
X+2z 2z

o2 R
13.7.1 minimumat (1,—1)
13.7.2 none

13.7.3 none

13.7.4 maximum at (1,—1/6)
13.7.5 none

13.7.6 minimum at (2,—1)
13.7.7 £(2,2) = -2, f(2,0) =4

13.7.8 acube 1/v/2 on a side

13.7.9 65/3 % 65/3 x 130/3

13.7.10 It has a square base, and is one and one half times as

tall as wide. If the volume is V the dimensions are

Y2V /3% 3/2V /3 x 3/9V /4.

13.7.11 /100/3

13.7.12 |axo+ byo+ cz0 — d|/Va* + b* + 2

993

13.7.13 The sides and bottom should all be 2/3 meter, and

the sides should be bent up at angle 7 /3.
13.7.14 (3,4/3)

13.7.16 |b|if b < 1/2, otherwise \/b—1/4
13.7.17 |b|if b < 1/2, otherwise \/b—1/4
13.7.19 1024/V/3

13.8.1 acube, {/1/2x /1/2x /1/2

13.8.2 65/3-65/3-130/3=2-65%/27

13.8.3 It has a square base, and is one and one half times as

tall as wide. If the volume is V the dimensions are

Y2V /3% 3/2V /3 x 3/9V /4.

13.8.4 |axo+ byy+czo —d|/Va® + b* +c?
13.8.5 (0,0,1), (0,0,—1)
13.8.6 V4V x V4V x {/V/16

13.8.7 Farthest: (—\/Z V2,2 + 2\/5); closest: (2,0,0),
(0,—2,0)

1388 x=y=z=16

13.8.9 (1,2,2)

13.8.10 (+/5,0,0), (—V/5,0,0)
13.8.11 standard $65, deluxe $75
13812 x=9, ¢ = /3

13.8.13 35, -35

4

13.8.14 maximum ¢”, no minimum

13.8.15 5,-9/2

13.8.16 3,3,3

13.8.17 a cube of side length 2/v/3
14.1.1 16

14.1.2 4
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14.1.3 15/8

14.14 1/2

14.1.5 5/6

14.1.6 12 —65/(2¢)
14.1.7 1/2

14.1.8 7/64

14.1.9 (2/9)23/2—(2/9)
14.1.10 (1 —cos(1))/4
14.1.11 (2v/2-1)/6
14112 72

14.1.13 (¢ —1)/6
14.1.14 — -~

14.1.15 1/3
14.1.16 448
14.1.17 4/5
14.1.18 87
14.1.19 2
14.1.20 5/3
14.1.21 81/2
14.1.22 243/3
14.1.23 47
14.1.24 7/32
14.1.25 31/8
14.1.26 128/15

14.1.27 18007 m?

2
1
14.1.28 W’@—F _ ¥ _ el—S

14.1.30 16 —812
14.2.1 4zn

14.2.2 327/3 —4\/3x
1423 (2—+2)n/3
14.2.4 4/9

14.2.5 57/3

14.2.6 7/6

14.2.7 /2

1428 7/2—1

14.2.9 3/4+1/6
14.2.10 8+ 17

14.2.11 7/12

14.2.12 (1 —cos(9))m/2
14.2.13 —d’/15

14.2.14 127

14215 ©

14.2.16 16/3

14.2.17 2ix

14.2.19 (c)2rx

1431 x=3=2/3
1432 §=4/5,5=8/15
1433 ©=0,57=37/16
1434 ©=0,5=16/(157)

14.3.5 =3/2,7=9/4



143.6 =6/5,5=12/5
1437 x=14/27,5 = 28/55

14.3.8 (3/4,2/5)

813
ws (3520)

143.10 T=7/2,5=1/8
21w rl4cosO
14311 M= / / (2+cos 6)rdrd6
JO JO

2n  rl4cos@
M, :/ / sin0(2+cos0)r’ drd6
o Jo

21 pl4cosO
My:/ / cos (2 +cosB)r’drd6
0o Jo

/2  prcosB
14312 M= / / (r+1)rdrdo
/2.0
/2  pcosB
Mx_/ / sin@(r+1)r*drd6
n/2.J0
/2  prcosO
My_/ / cosO(r+1)r’drd6
n/2.J0
w/2  pl-+cos@ 37m/2
143.13 M= / / rdrd6 +
/2 JcosO /2

~1+cos O
/ rdrd@
0

7r/2 1+cos @ 3w/2 pl4cosf
| Psingdrag+ [ [ Psingarde
0

/2 JcosO /2

My =
/2  pl4cosB 3w/2 pl4cosO

/ / r’cosOdrd6 + / r?cosOdrdo
7/2 JcosO /2 0

1441 navh?+a?
1442 na®>Vm? +1
14.4.3 /3/2
14.4.4 12
14.4.5 7/2/8

14.4.6 /21

d’Va? + b + 2

14.4.7
2abc

14.4.8 8v31/3

14.5.1 11/24

14.5.2 623/60

14.53 —3¢2/4+2¢—3/4
14.5.4 1/20

14.5.5 /48

14.5.6 11/84

14.5.7 151/60

1458 &

37
14.5.10 —
16

14.5.11 32
14.5.12 64/3

14513 i=35=0,7=16/15
14514 i=5=0,7=1/3
14.6.1 7/12

14.6.2 7(1—+/2/2)

14.6.3 5m/4

14.6.4 0

14.6.5 5m/4

14.6.6 4/5

14.6.7 2567/15

14.6.8 47°

3
14.6.9 —
16

14.6.10 mkh’a®/12
14.6.11 mkha®/6

14.6.12 7%/4

995
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14.6.13 47/5

14.6.14 157

14.6.15 9k (5v2 —2+/5)/20
14.7.1 47\/3/3

1472 0

14.7.3 2/3

-1

14.7.4
2¢2

14.7.5 36

14.7.6 32(vV2+1In(14++/2))/3
14.7.7 3cos(1) —3cos(4)
14.7.8 m(1—cos(1))/24
14.7.10 (4/3)mabe

15.1.5 (3cost,3sint,2 —3sint)
15.1.6 (0,7cost,tsint)

15.2.1 (21,0,1), /1 + 412

15.2.2 (—sin#,2cos2t,2¢), v/ \/sin2 t+4cos2(2t) + 442

15.2.3 (—é'sin(¢'), e cos(e'),cost), ¥ /v/e¥ +cos’t
1524 (v/2/2,v/2/2,1/4) +1{(—v2/2,v/2/2,1)
15.2.5 (1/2,7/3/2,—1/2) +1(—/3/2,1/2,21/3)
15.2.6 2/\/5/V4+n?

15.2.7 7v/5V17/85, —9v/5v/17/85

15.2.9 (0,7cost,tsint), (0,cost —fsint,sint + ¢ cost),

/1412, V1412
15.2.10 (sint, 1 —cost,?/2)

15.2.11 1 =4

15.2.12 37,1
15.2.13 (12/2,13/3,sint)

15.2.16 (1,1,1) whent=1ands=0; 0 = arccos(3/\/ﬁ);
no

15217 —6x+(y—7m)=0

15.2.18 —x/V2+4y/V2+6z=0
15.2.19 (—1,-3,1)

15.2.20 (1/v/2,1/3/2,0) +1(—1,1,61/2)
15.3.1 27\/13

153.2 (—8+13V13)/27

1533 V5/2+In(vV/5+2)/4

15.3.4 (85v/85—131/13)/27

1535 [5V/1+e¥dt

15.4.1 21/2/(2+41%)3/?

15.4.2 2v/2/(1 +82)3/2

15.4.3 V/3600¢10+ 40016+ 362 /(1 + 9% +25¢8)3/2
15.4.4 121/17/289
15.5.1 (5¢%,4¢,1), (2013,4,0),

ar = 100t7 + 16t //25t8 + 1612,
ay = v/3600¢8 + 400¢° — 16/+/25¢% + 1612

15.5.2 (—sint,cost,2t), (—cost,—sint,2), 4t /42 + 1,
VA +5/V4r2 4+ 1

15.5.3 (—sint,cost,e'), (—cost, —sint,e'), ¥ /v/e2 +1,
V2er +1/ve +1

15.5.4 (¢',cost,e'), (¢',—sint,é'),

(2¢* — costsint) //2e¥ + cost,
V/2é'|cost + sint| /v/2e2 + cos?t

15.5.5 (—3sinz,2cost,0), (3cost,2sint,0)

15.5.6 (—3sint,2cost+0.1,0), (3cost,2sint +¢/10,0)

15.5.7 (—3sint,2cost, 1), (3cost,2sint,1)



15.5.8

16.2.1

16.2.2

16.2.3

16.2.4

16.2.5

16.2.6

16.3.1

16.3.2

16.3.3

16.3.4

16.3.5

16.3.6

16.3.7

16.3.8

16.3.9

16.3.10

16.3.11

16.3.12

16.3.13

16.3.14

16.3.15

16.3.16

16.3.17

16.3.18

(—3sint,2cosr+1/10,1), (3cost,2sint +1/10,1)
-1,0

0,a+b

(2b—a)/3,0

0,1

—2m, 0

0,27

13V11/4

0

3sin(4)/2

2¢3

128

(9e—3)/2

et — g — pl/e-1 —|—el/e+€4/4—€74/4

1+sin(1) —cos(1)

3In3 —-2In2
3/20+101In(2)/7
2In5—-2In2+15/32
1

0

21 +cos(1) —cos(8)
(In29 —1n2)/2
2In2+7/4—2
1243/3

In2+11/3

16.3.19

16.3.20

16.3.22

16.3.23

16.3.24

16.3.25

16.3.26

16.3.27

16.3.28

16.3.29

16.3.30

16.3.31

16.3.32

16.4.1

16.4.2

16.4.3

16.4.4

16.4.5

16.4.6

16.4.7

16.4.8

16.4.9

16.4.10

16.4.11

16.4.12

16.4.13

997

3cos(1) — cos(2) — cos(4) — cos(8)
-10/3

no f

x*/4—y/5

no f

no f

ysinx

no f

Xyz

414

1/e —sin3

1/V17T-1/V3
1
0
1/(2e)—1/(2e") +e/2—€"/2
1/2
~1/6
(2v/3-10V5+8v6)/3 -2v2/5+1/5
11/2—1n(2)
2-m/2
~17/12

0

—r/2

127

2cos(1)—2sin(1) — 1
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16.5.1 both are —457 /4
16.5.2 a*bc + ab?c + abc?
16.5.3 ¢ —2¢+7/2
16.5.4 3

16.5.5 384m/5

16.5.6 /3

16.5.7 107

16.5.8 /2

16.6.2 25\/21/4

16.6.3 721

16.6.4 n(5v/5-1)/6
16.6.5 47\/2

16.6.6 ma*/2

16.6.7 2xa(a — Va? — b?)
16.6.8 m((1+4a>)3?-1)/6
16.6.9 ma*—24®

16.6.10 7a>\/1+k2/4
16.6.11 AV1+d2+1?
16.6.12 AVKZ+1

16.6.13 8a?

16.7.1

16.7.2

16.7.3

16.7.4

16.7.5

16.7.6

16.7.7

16.7.8

16.7.9

(0,0,3/8)

(11/20,11/20,3/10)
(0,0,1364/425)

on center axis, /3 above the base

16

—2/e

nb*(—4b* — 3b* + 6a*b* + 6a*) /6

16.7.10 9280 kg/s

16.7.11 24g,

16.8.1

16.8.2

16.8.3

16.8.4

-3

0

—4r

3r

16.8.5 A(p(c—b)+qla—c)+a—Db)



absolute extrema, 172, 206
absolute maximum, 172
absolute minimum, 172
multivariate, 477

absolute value, 14
properties, 14

acceleration vector, 533
normal component, 533
tangential component, 533

antiderivative, 233

arc length parameterization, 528

asymptote
horizontal, 202
vertical, 202

Cartesian coordinates, 401, 444
center of mass, 499
central angle, 33
centroid, 501
chain rule, 137
multivariate, 465
characteristic polynomial, 390
Clairaut’s theorem, 473
comparison theorem, 357
completing the square, 6
conic section, 415
conics
circle, 26
ellipse, 26
horizontal hyperbola, 27
horizontal parabola, 25
standard form, 25
vertical hyperbola, 27
vertical parabola, 25
critical point, 169
cross product, 434
properties, 436
curl, 537
curvature, 530, 531
cylindrical coordinates, 445
convert to rectangular, 446
triple integral, 507

definite integral, 236

properties, 238

del (V), 468
derivative, 117, 121, 130

acceleration, 128

chain rule, 137

differentiable, 125

exponential function, 143, 145
implicit differentiation, 147
intervals of increase and decrease, 197
leibniz notation, 121
logarithmic differentiation, 151
logarithmic function, 145

nth derivative, 127

of the inverse, 154

rate of change, 161

rules, 130

second derivative, 127
trigonometric functions, 136
velocity, 119, 128

difference quotient, 115
differentiable, 463
differential equation, 246, 375

Euler’s method, 386

first order, 375

general solution, 378

initial value problem, 246, 376, 381, 383
integrating factor, 384

method of undetermined coefficients, 393
particular solution, 378

second order, 389

second order linear, 393

separable, 377

separation of variables, 378

variation of parameters, 383

differentials, 184
direction vector, 440
directional derivative, 469
discriminant, 474
distance formula, 24, 420
divergence, 537
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dot product, 428
properties, 432
double integral, 486

elementary function, 48
Euler’s method, 386
extreme value theorem, 172

factorial notation, 186
Fermat’s theorem, 168
first order differential equation, 375
first order homogeneous linear equation, 380
first order initial value problem, 376
first order linear differential equation, 383
flux, 561
function, 45
composition, 51
continuous, 102, 289
dependent variable, 46
discontinuous, 104
domain, 45
elementary, 48
exponential function, 53
independent variable, 46
infinite discontinuity, 105
inverse, 57
jump discontinuity, 105
left continuous, 107
linear, 45
logarithmic function, 59
natural logarithm, 60
of two variables, 457
one-to-one, 57
removable discontinuity, 105
right continuous, 107
same derivative, 180
symmetry, 203
transcendental, 48
fundamental theorem of calculus, 233, 289
and chain rule, 241

Gauss’ Theorem, 553
global extrema, 172, 206
gradient, 468, 535, 544
greatest integer, 171
Green’s theorem, 546

horizontal asymptote, 90

hyperbolic cosine, 68
hyperbolic sine, 68

implicit differentiation, 147, 466
improper integral, 290, 291
comparison test, 296
converges, 290
diverges, 290
indefinite integral, 236
indeterminate form, 192
inequality notation, 8
inflection points, 201
integral sign, 233
integral test, 350
integrating factor, 384
integration, 243
antiderivative, 233
area, 217
by parts, 274
change of variables, 510
common mistakes, 244
definite
Riemann Sums, 231
displacement, 215
error for trapezoid approximation, 285
over a curve, 538
products of secant and tangent, 262
products of sine and cosine, 256
rules, 244
substitution rule, 249, 250, 254
trapezoid approximation, 284
trigonometric substitution, 269
intermediate value theorem, 111, 187
intersection, 3
interval, 8
closed interval, 9
open interval, 8
interval of convergence, 363
irrational, 4

Jacobian, 514

L’Hopital’s rule, 192
Lagrange multipliers, 479
Left Hand Rule, 219, 223
level curve, 453

limit, 75, 77



at infinity, 87
indeterminate form, 192
infinite, 88
left-hand, 76
multivariate function, 456
one-sided, 76, 79
right-hand, 76
line, 19
direction vector, 440
general form, 20
parametric equations, 440
point-slope form, 20
slope, 19
slope-intercept form, 20
vector equation, 440
y-intercept, 20
line integral, 538
closed paths, 544
fundamental theorem, 543
linear approximation, 182
local extrema, 167
multivariate, 474
local maximum, 167, 196, 198
local minimum, 167, 196, 198
logarithmic differentation, 151

Maclaurin series, 367

mean value theorem, 176, 178

method of undetermined coefficients, 393
midpoint, 24

Midpoint Rule, 219, 223

mixed partials, 473

moment, 499

Newton’s method, 187, 191

normal vector, 437

number systems, 3
complex numbers, 3
integers, 3
natural numbers, 3
rational numbers, 3
real numbers, 3

orientable surface, 562

p-series, 350
parameter, 411

INDEX

parametric equations, 411, 440, 518
partial fraction decomposition, 281
plane

normal vector, 437

standard form, 438
polar coordinates, 401, 444

conic section, 415

convert to rectangular, 402, 444

double integral, 494

parametric equations, 411
polynomial

of two variables, 457
power series, 363, 365

centered at c, 364

quadratic formula, 7, 280

radians, 32

radius of convergence, 363
rational function, 279
rationalizing, 85

rectangular coordinates, 401
Riemann Sum, 218, 222, 225, 231
Right Hand Rule, 219, 223

rolle’s theorem, 177

second derivative
concavity, 200
inflection points, 201
second derivative test, 198
second order differential equation, 389
second order homogeneous equation, 389
solutions, 390
second order linear equation, 393, 397
steady state solution, 395
transient solution, 395
variation of parameters, 398
sequence, 337
bounded, 343
converves, 338
decreasing, 342
diverges, 338
geometric sequence, 342
increasing, 342
limit, 339
monotonic, 342
non-decreasing, 342
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non-increasing, 342
properties, 340
sequence of partial sums, 344
series, 337
absolute convergence, 358
alternating harmonic, 353

conditional convergence, 358

convergent, 344
divergent, 344
geometric, 345
harmonic, 347
ratio test, 360
root test, 361
set, 3
sigma notation, 221, 232
Simpson’s rule, 287
slant asymptote, 91
slope field, 387
spherical coordinates, 446
convert to rectangular, 447
triple integral, 507
squeeze theorem, 98
Stokes’ theorem, 564
subset, 4
summation
notation, 221
properties, 222

tangent line, 115
tangent plane, 463
Taylor polynomials, 186
Taylor series, 369, 370
transcendental function, 48
transformations, 49
triangle inequality, 14
trigonometry
arccosine, 64
arcsine, 63
arctangent, 65
CAST rule, 36, 37
cosecant, 33
cosine, 33
cotangent, 34
identities, 40
secant, 34
sine, 33

special triangles, 36
tangent, 33
triple integral, 503

union, 3
unit circle, 35
unit vector, 430

variation of parameters, 383

vector, 423
angle between, 427
anti-parallel, 429
parallel, 429
perpendicular, 429
projection, 429
scalar multiplication, 424
scalar projection, 430
sum, 423

vector field, 535
conservative, 544
curl, 537
divergence, 537

vector function, 517, 519
curvature, 530, 531
derivative, 520
derivative properties, 523

standard unit tangent vector, 524

unit binormal, 532
unit normal, 532
vertical asymptote, 89

work, 319
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