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Outline
•The Map Method
•Technology Mapping
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The Map Method
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Map Representation
•A function’s truth-table representation is unique, 

while its algebraic expression is not unique.
•Complexity of digital circuit (gate count)    

complexity of algebraic expression (literal 
count)
– F2=x’y’z+x’yz+xy’ (3 AND, 1 OR term, 8 literals)
– F2=x’z+xy’ (2 AND terms, 1 OR terms, 4 literals)

•The simplest algebraic expression is one that 
has minimum number of terms with the 
smallest possible number of literals in each 
term
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Karnaugh Map (K-map)

•An array of squares each representing one 
minterm to be minimized

•Each K-map defines a unique Boolean function
– A Boolean function can be represented by a truth table, a 

Boolean expression, or a map

•K-map is a visual diagram of all possible ways a 
function may be expressed
– Provide visual aid to identify PIs and EPIs
– For manual minimization of Boolean functions
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Merging Minterms

•In function F2, m1 and m3 in the truth            
table differ only in one position

– X: matches either 0 or 1

•The minterms in a function can be merged to 
form a larger (or simpler) product term
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001
011 0X1

f0X1 = x’y’z+x’yz = x’z(y’+y) = x’z
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Two-Variable Map
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x y f
0 0 m0

0 1 m1

1 0 m2

1 1 m3

m3 (m1+m2+m3)
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Three-Variable Map (1/5)
•Minterms are arranged in the Gray-code sequence
•Any 2 (horizontally or vertically) adjacent squares 

differ by exactly 1 variable, which is complemented in 
one square and uncomplemented in the other.

•Any 2 minterms in adjacent squares that are ORed 
together will cause a removal of the different variable
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Three-Variable Map (2/5)
•Example (adjacent squares)

– m5 OR m7 can be simplified
•m5+m7=xy’z+xyz=xz(y+y’)=xz

– m0 OR m2 can be simplified
•m0+m2=x’y’z’+x’yz’=x’z’(y+y’)=x’z’

– m1 OR m3 OR m5 OR m7 can be simplified
•m1+m3+m5+m7=x’y’z+x’yz+xy’z+xyz=x’z(y+y’)+xz(y+y’)=x’z+xz=z
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Three-Variable Map (3/5)

•Example

10

F (x, y, z) =
�

(2, 3, 4, 5) = x�y + xy�

F (x, y, z) =
�

(3, 4, 6, 7) = yz + xz�
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Three-Variable Map (4/5)

•Example
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F (x, y, z) =
�

(0, 2, 4, 5, 6) = z� + xy�
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Three-Variable Map (5/5)

•Example
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F = A�C + A�B + AB�C + BC

F (A,B, C) =
�

(1, 2, 3, 5, 7) = C + A�B
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Four-Variable Map (1/3)

13

Number of 
adjacent 
squares

Number of 
minterms

Number of 
literals example

1 1 4 wxyz
2 2 3 wxy
4 4 2 wx

8 8 1 w

16 16 constant ‘1’ 1
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Four-Variable Map (2/3)
•Example

14

F (w, x, y, z) =
�

(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y� + w�z� + xz�

★Minimize the number of groups
★Maximize the group size
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Four-Variable Group (3/3)

•Example
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F = A�B�C � + B�CD� + A�BCD� + AB�C � = B�D� + B�C � + A�CD�

★Minimize the number of groups
★Maximize the group size
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Implicants

•Implicant of a function: any product term that 
implies the function
– A product term that is only true when a function is true

•Example: in F2 function
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minterm implicant

m1 v v

m2 v x

0X1 x v

1-minterm

0-minterm
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Prime and Essential Prime Implicants

•Prime implicant (PI)
– The implicant that cannot be merged into a larger one

•Essential prime implicant (EPI)
– The one and only one prime implicant that contains a 

particular minterm of a function
– The EPI cannot be removed from a description of a 

function
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★Minimize the number of groups
★Maximize the group size
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Covering a Function (1/3)

•Procedure to select an inexpensive set of 
implicants 
– Start with an empty cover
– Add all essential prime implicants to the cover
– For each remaining uncovered minterm, add the largest 

implicant that covers that minterm to the cover

•The procedure will always result in a good 
cover, but no guarantee the lowest-cost cover. 
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Covering a Function (2/3)
•Example
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F (A,B, C, D) =
�

(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

C

1 1 1

1 1

1 1

1 1 1 1

AB
00

01

11

10

00 01 11 10
CD

}}
}
}A

B

D

B’D’

BD

Find EPI first
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Covering a Function (3/3)
•Example

20

F (A,B, C, D) =
�

(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

F = BD + B�D� + CD + AD
= BD + B�D� + CD + AB�

= BD + B�D� + B�C + AD
= BD + B�D� + B�C + AB�

Find other PI
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Non-unique Minimum Cover

•No essential prime implicants
•Two or more possible covers exist: not unique
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Five-Variable Map
•Imagine that the 2 maps are superimposed on one 

another.
– It is possible to construct a 6-variable map with 4-variable 

maps by similar procedure.
– Maps of 6 or more variables are hard to read=> impractical 
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Five-Variable Map

•Example

23

F =
�

(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)

F = A�B�E� + BD�E + ACE
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Five-Variable Map
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K-map Summary

•Any 2k adjacent squares, k=0,1,...,n, in an n-
variable map represent an area that gives a 
product term of n-k literals
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K # of adjacent squares
# of literals in a term in an n-variable map

n=2 n=3 n=4 n=5
0 1 2 3 4 5
1 2 1 2 3 4
2 4 0 1 2 3
3 8 0 1 2
4 16 0 1
5 32 0
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Product-of-Sums Simplification

•Based on the generalized DeMorgan’s Theorem
– (0’s in the K-map): Simplified F’ in the form of sum of 

products
– (1’s in the K-map): Apply Demorgan’s Theorem F=(F’)’

•F’: sum of products => F: product of sums
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Product-of-Sums Simplification
•Example: Simplify F in sum-of-product and 

product-of-sum forms

27

F (A,B, C, D) =
�

(0, 1, 2, 5, 8, 9, 10)

F = B�D� + B�C � + A�C �D

★sum-of-product (minterm approach)

★product-of-sum (DeMorgan’s Theorem)

F � = AB + CD + BD�

(specify 1’s)

(specify 0’s)

F = (A� + B�)(C � + D�)(B� + D)

Apply DeMorgan’s Theorem
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Example 1

28

f(d, c, b, a) = ⇧(13, 15)

(f(d, c, b, a))0 = acd f(d, c, b, a) = a0 + c0 + d0
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Example 2
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f(d, c, b, a) = ⇧(9, 13, 15)

(f(d, c, b, a))0 = db0a+ dca

f(d, c, b, a) = (d0 + b+ a0)(d0 + c0 + a0)
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Example 3

•Find a minimal product-of-sums expression

30

f(c, b, a) =
X

m(1, 7)

(f(c, b, a))0 = c0b+ cb0 + a0 f(c, b, a) = (c+ b0)(c0 + b)a
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Don’t-Care Conditions

•Incompletely specified functions
– Functions that have unspecified outputs for some input 

combinations
•output are unspecified for 1010 to 1111 in 4-bit BCD code

•Don’t-care conditions
– Unspecified minterms of a function, don’t-cares, Xs
– Can be used on a map to provide further simplifications 

of the Boolean expression
– Each X can be assigned an arbitrary value, 0 or 1, to help 

simplification procedure
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Example 3.8

•Example
– Boolean function:
– Don’t-care conditions:  
– both (a) an (b) are acceptable

32

F (w, x, y, z) =
�

(1, 3, 7, 11, 15)
D(w, x, y, z) =

X
(0, 2, 5)
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Technology Mapping

33
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NAND and NOR Implementation
•Digital circuits are more frequently constructed with 

NAND/NOR gates than with AND/OR/NOT gates 
due to ease of fabrication.
– In gate arrays, only NAND (or NOR) gates are used.

•NAND gate is a universal gate because any operation 
can be implemented by it.

34
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MOS Switches
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NAND vs. AND
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NAND-NAND Implementation (1/6)
•AND-invert and Invert-OR are equivalent. 

(Equivalent NAND gates)

•Procedure
– Simplify the function in the form of sum-of-products.
– Transfer it to 2-level NAND-NAND expression 

(DeMorgan’s Theorem).
– Draw the corresponding NAND gate implementation. A 

1-input NAND gate can be replaced by an inverter.

37
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•Example

NAND-NAND Implementation (2/6)

38

F (A,B, C, D) = AB + CD
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NAND-NAND Implementation (3/6)
•Example

39

F (A,B, C, D, E) = AB + CD + E = ((AB)�(CD)�E�)�
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NAND-NAND Implementation (4/6)

•Example

40

F (x, y, z) =
�

(1, 2, 3, 4, 5, 7)
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NAND-NAND Implementation (5/6)

•Multilevel-NAND circuits conversion 
procedure
– Convert all AND gates to NAND gates with AND-Invert 

graphic symbols
– Convert all OR gates to NAND gates with Invert-OR 

graphic symbols
– Check all the bubbles (inverter) in the diagram and insert 

possible inverter to keep the original function

41
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NAND-NAND Implementation (6/6)
•Multilevel NAND example

– F(A,B,C,D)=A(CD+B)+BC’
– AND-OR logic -> NAND-NAND logic

42

★AND->NAND + inverter
★inverter + OR ->NAND

C
D
B
A
B
C’

C
D
B’
A
B
C’
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NOR-NOR Implementation (1/2)
•NOR-NOR is the dual of the NAND-NAND 

implementation
– AND-OR => NAND-NAND
– OR-AND => NOR-NOR

43

NOR equivalent gates
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•Example

NOR-NOR Implementation (2/2)

44

F (A,B, C, D, E) = (AB + E)(C + D)
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Two-level Forms (1/2)

•AND/NAND/OR/NOR have 16 possible 
combinations of two-level forms

•Eight of them degenerate to a single operation
– AND-AND => AND
– OR-OR => OR
– AND-NAND => NAND
– OR-NOR => NOR
– NAND-NOR =>AND
– NOR-NAND => OR
– NAND-OR => NAND
– NOR-AND => NOR

45
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Two-level Forms (2/2)

•Eight are non-degenerate forms
– AND-OR => standard sum-of-products
– NAND-NAND => standard sum-of-products
– OR-AND => standard product-of-sums
– NOR-NOR => standard product-of-sums
– NAND-AND/AND-NOR => AND-OR-INVERT (AOI)

•complement of sum-of-products
– OR-NAND/NOR-OR => OR-AND-INVERT (OAI)

•complement of product-of-sums

46
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AND-OR-INVERT Circuits

•NAND-AND = AND-NOR = AOI
•F(A,B,C,D,E)=(AB+CD+E)’
•F’(A,B,C,D,E)=AB+CD+E

47

=

Combine 0’s in K-map to simplify F’ in sum-of-products
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OR-AND-INVERT Circuits

•OR-NAND = NOR-OR = OAI
•F(A,B,C,D,E)=((A+B)(C+D)E)’

48

=

Combine 1’s in K-map to simplify F’ in product-of-sums 
and then invert the results



Hsi-Pin Ma

AOI & OAI Implementation (1/2)

•Example
– AOI implementation

•F’=x’y+xy’+z (F’: sop of 0’s)  =>  F=(x’y+xy’+z)’ 
– OAI implementation

•F=x’y’z’+xyz’ (F: sop of 1’s) => F’=(x+y+z)(x’+y’+z) => 
F=((x+y+z)(x’+y’+z’))’
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AOI & OAI Implementation (2/2)
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Technology Mapping (1/2)

•The conversion process from an expression/
schematic with AND, OR, and NOT gates to 
one with only NAND or NOR gates
– Rule 1: xy = ((xy)’)’  (NAND-Invert)
– Rule 2: x+y = ((x+y)’)’ = (x’y’)’ (Invert-NAND)
– Rule 3: xy = ((xy)’)’ = (x’+y’)’ (Invert-NOR)
– Rule 4: x+y = ((x+y)’)’ (NOR-Invert)
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Technology Mapping (2/2)
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4. Simplification of Boolean Functions 4-26

*Technology Mapping

☞ A gate array is a 2-dimensional array of cells within which each cell contains

a single NAND (NOR) gate that has a fixed number (usually 3) of inputs.

☞ The conversion process from an expression/schematic with AND, OR, and

NOT gates to one with only NAND or NOR gates is an example of technol-

ogy mapping.

Rule 1

Rule 2

Rule 3

Rule 4

Standard
   form

       NOR
implementation

      NAND
implementation

sum−of−products

product−of−sums

Figure 22: Conversion standard forms to NAND and NOR implementations [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2005


