

#### **Gate-Level Minimization**

#### Hsi-Pin Ma 馬席彬

<u>https://eeclass.nthu.edu.tw/course/3452</u> Department of Electrical Engineering National Tsing Hua University



#### Outline

- The Map Method
- Technology Mapping



#### The Map Method



#### Map Representation

- A function's truth-table representation is <u>unique</u>, while its algebraic expression is <u>not unique</u>.
- Complexity of digital circuit (gate count) complexity of algebraic expression (literal count)
  - F<sub>2</sub>=x'y'z+x'yz+xy' (3 AND, 1 OR term, 8 literals)
  - -F<sub>2</sub>=x'z+xy' (2 AND terms, 1 OR terms, 4 literals)
- The simplest algebraic expression is one that has minimum number of terms with the smallest possible number of literals in each term



## Karnaugh Map (K-map)

- An array of squares each representing one minterm to be minimized
- Each K-map defines a unique Boolean function
  - A Boolean function can be represented by a truth table, a Boolean expression, or a map
- K-map is a visual diagram of all possible ways a function may be expressed
  - Provide visual aid to identify PIs and EPIs
  - For manual minimization of Boolean functions



#### **Merging Minterms**

• In function F<sub>2</sub>, m<sub>1</sub> and m<sub>3</sub> in the truth table differ only in one position



– X: matches either 0 or 1

• The minterms in a function can be merged to form a larger (or simpler) product term

$$f_{0X1} = x'y'z + x'yz = x'z(y'+y) = x'z$$

 $F_2$ 

0

0

Ζ

0

()

0

1

0

У

0

()

X

0



#### **Two-Variable Map**

| X | у | f     |
|---|---|-------|
| 0 | 0 | $m_0$ |
| 0 | 1 | $m_1$ |
| 1 | 0 | $m_2$ |
| 1 | 1 | $m_3$ |











 $\mathbf{m}_3$ 



(b) x + y(m<sub>1</sub>+m<sub>2</sub>+m<sub>3</sub>)



#### Three-Variable Map (1/5)

- Minterms are arranged in the Gray-code sequence
- Any 2 (*horizontally* or *vertically*) adjacent squares differ by exactly 1 variable, which is complemented in one square and uncomplemented in the other.
- Any 2 minterms in adjacent squares that are ORed together will cause a removal of the different variable

х

| $m_0$ | <i>m</i> <sub>1</sub> | <i>m</i> <sub>3</sub> | <i>m</i> <sub>2</sub> |
|-------|-----------------------|-----------------------|-----------------------|
| $m_4$ | $m_5$                 | $m_7$                 | <i>m</i> <sub>6</sub> |

| <b>、</b> | <b>N</b> 77 |       | Ŷ    |       |  |
|----------|-------------|-------|------|-------|--|
| x        | yz<br>00    | 01    | 11   | 10    |  |
| 0        | x'y'z'      | x'y'z | x'yz | x'yz' |  |
| {<br>1   | xy'z'       | xy'z  | xyz  | xyz'  |  |



#### Three-Variable Map (2/5)

#### • Example (adjacent squares)

- m<sub>5</sub> OR m<sub>7</sub> can be simplified
• m<sub>5</sub>+m<sub>7</sub>=xy'z+xyz=xz(y+y')=xz

 $-m_0 OR m_2$  can be simplified

• $m_0+m_2=x'y'z'+x'yz'=x'z'(y+y')=x'z'$ 

 $-m_1 OR m_3 OR m_5 OR m_7 can be simplified$ 

•  $m_1+m_3+m_5+m_7=x'y'z+x'yz+xy'z+xyz=x'z(y+y')+xz(y+y')=x'z+xz=z$ 

|       |                       |                       |                       |   | x | yz<br>00 | 01    | 11   | 10    |
|-------|-----------------------|-----------------------|-----------------------|---|---|----------|-------|------|-------|
| $m_0$ | <i>m</i> <sub>1</sub> | <i>m</i> <sub>3</sub> | <i>m</i> <sub>2</sub> |   | 0 | x'y'z'   | x'y'z | x'yz | x'yz' |
| $m_4$ | $m_5$                 | $m_7$                 | <i>m</i> <sub>6</sub> | x | 1 | xy'z'    | xy'z  | xyz  | xyz'  |

y



#### Three-Variable Map (3/5)





#### Three-Variable Map (4/5)

• Example 
$$F(x, y, z) = \sum (0, 2, 4, 5, 6) = z' + xy'$$



11



#### Three-Variable Map (5/5)

• Example F = A'C + A'B + AB'C + BC



 $F(A, B, C) = \sum (1, 2, 3, 5, 7) = C + A'B$ 



#### Four-Variable Map (1/3)

| Number of<br>adjacent<br>squares | Number of<br>minterms | Number of<br>literals | example |          |        |    |   |
|----------------------------------|-----------------------|-----------------------|---------|----------|--------|----|---|
| 1                                | 1                     | 4                     | wxyz    |          |        |    |   |
| 2                                | 2                     | 3                     | wxy     |          |        |    |   |
| 4                                | 4                     | 2                     | WX      |          |        |    |   |
| 8                                | 8                     | 1                     | W       |          |        |    | Ţ |
| 16                               | 16                    | constant '1'          | 1       | wx       | yz 0 0 | 01 | y |
|                                  |                       |                       |         | - ,,,,,, |        |    |   |

| $m_0$                  | $m_1$                  | <i>m</i> <sub>3</sub>  | $m_2$                  |
|------------------------|------------------------|------------------------|------------------------|
| $m_4$                  | $m_5$                  | $m_7$                  | $m_6$                  |
| <i>m</i> <sub>12</sub> | <i>m</i> <sub>13</sub> | <i>m</i> <sub>15</sub> | <i>m</i> <sub>14</sub> |
| $m_8$                  | $m_9$                  | <i>m</i> <sub>11</sub> | $m_{10}$               |

|    | `   | <i>y  ∠</i> . |         | -      |         |   |  |
|----|-----|---------------|---------|--------|---------|---|--|
| 1  | vx\ | 0 0           | 01      | 11     | 10      |   |  |
|    | 00  | w'x'y'z'      | w'x'y'z | w'x'yz | w'x'yz' |   |  |
|    | 01  | w'xy'z'       | w'xy'z  | w'xyz  | w'xyz'  |   |  |
|    | 11  | wxy'z'        | wxy'z   | wxyz   | wxyz'   |   |  |
| W  | 10  | wx'y'z'       | wx'y'z  | wx'yz  | wx'yz'  | , |  |
| Z. |     |               |         |        |         |   |  |

13



#### Four-Variable Map (2/3)

#### • Example

 $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$ 



★Minimize the number of groups★Maximize the group size



#### Four-Variable Group (3/3)

#### • Example

F = A'B'C' + B'CD' + A'BCD' + AB'C' = B'D' + B'C' + A'CD'



★Minimize the number of groups★Maximize the group size



#### Implicants

- *Implicant* of a function: any product term that *implies* the function
  - A product term that is only true when a function is true
- Example: in F<sub>2</sub> function

|           | implicant | minterm |                |
|-----------|-----------|---------|----------------|
| 1-minterm | V         | V       | m <sub>1</sub> |
| 0-minterm | Х         | V       | m <sub>2</sub> |
|           | V         | Х       | OX1            |





#### **Prime and Essential Prime Implicants**

#### • Prime implicant (PI)

– The implicant that cannot be merged into a larger one

#### • Essential prime implicant (EPI)

- The one and only one prime implicant that contains a particular minterm of a function
- The EPI cannot be removed from a description of a function

★Minimize the number of groups★Maximize the group size



#### Covering a Function (1/3)

# Procedure to select an inexpensive set of implicants

- -Start with an empty cover
- Add all essential prime implicants to the cover
- For each remaining uncovered minterm, add the largest implicant that covers that minterm to the cover

• The procedure will always result in a *good* cover, but no guarantee the lowest-cost cover.



#### Covering a Function (2/3) • **Example** $F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$ C CD 00 11 01 10 AB B'D 1 1 1 01 B **Find EPI first** 1 11 1 Α BD 1 1 1 1 10 D



#### Covering a Function (3/3)

• **Example**  $F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$ 



Find other PI

```
= BD + B'D' + CD + AD
= BD + B'D' + CD + AB'
= BD + B'D' + B'C + AD
= BD + B'D' + B'C + AB'
```



#### Non-unique Minimum Cover

- No essential prime implicants
- Two or more possible covers exist: not unique





#### **Five-Variable Map**

#### Imagine that the 2 maps are superimposed on one another.

- It is possible to construct a 6-variable map with 4-variable maps by similar procedure.
- Maps of 6 or more variables are hard to read=> impractical A = 0A = 1



E

C



#### **Five-Variable Map**

• **Example** 
$$F = \sum (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$$

F = A'B'E' + BD'E + ACE







#### **Five-Variable Map**





#### K-map Summary

Any 2<sup>k</sup> adjacent squares, k=0,1,...,n, in an n-variable map represent an area that gives a product term of n-k literals

| K | # of adjacent squares | # of literals in a term in an n-variable map |     |     |     |  |
|---|-----------------------|----------------------------------------------|-----|-----|-----|--|
|   |                       | n=2                                          | n=3 | n=4 | n=5 |  |
| 0 | 1                     | 2                                            | 3   | 4   | 5   |  |
| 1 | 2                     | 1                                            | 2   | 3   | 4   |  |
| 2 | 4                     | 0                                            | 1   | 2   | 3   |  |
| 3 | 8                     |                                              | 0   | 1   | 2   |  |
| 4 | 16                    |                                              |     | 0   | 1   |  |
| 5 | 32                    |                                              |     |     | 0   |  |



#### **Product-of-Sums Simplification**

- Based on the generalized DeMorgan's Theorem
  - (0's in the K-map): Simplified F' in the form of sum of products
  - -(1's in the K-map): Apply Demorgan's Theorem F=(F')'

• F': sum of products => F: product of sums



#### 



★ sum-of-product (minterm approach) F = B'D' + B'C' + A'C'D (specify 1's) ★ product-of-sum (DeMorgan's Theorem) F' = AB + CD + BD' (specify 0's) B

Apply DeMorgan's Theorem

$$F = (A' + B')(C' + D')(B' + D)$$



Example 1





#### Example 2

$$f(d, c, b, a) = \Pi(9, 13, 15)$$



(f(d, c, b, a))' = db'a + dca



Hsi-Pin Ma



#### Example 3

Find a minimal product-of-sums expression

$$f(c,b,a) = \sum m(1,7)$$





#### **Don't-Care Conditions**

#### Incompletely specified functions

- -Functions that have unspecified outputs for some input combinations
  - output are unspecified for 1010 to 1111 in 4-bit BCD code

#### Don't-care conditions

- Unspecified minterms of a function, don't-cares, Xs
- Can be used on a map to provide further simplifications of the Boolean expression
- Each X can be assigned an arbitrary value, 0 or 1, to help simplification procedure



#### Example 3.8

#### • Example

- -Boolean function:  $F(w, x, y, z) = \sum (1, 3, 7, 11, 15)$
- -Don't-care conditions:  $D(w, x, y, z) = \sum (0, 2, 5)$
- -both (a) an (b) are acceptable







## **Technology Mapping**



#### NAND and NOR Implementation

• Digital circuits are more frequently constructed with NAND/NOR gates than with AND/OR/NOT gates due to ease of fabrication.

– In gate arrays, only NAND (or NOR) gates are used.

• NAND gate is a universal gate because any operation can be implemented by it.









#### **MOS Switches**





#### NAND vs. AND











## • AND-invert and Invert-OR are equivalent. • Equivalent NAND gates) • x' + y' + z' = (xyz)'

(a) AND-invert (b) Invert-OR • Procedure

- Simplify the function in the form of sum-of-products.
- Transfer it to 2-level NAND-NAND expression (DeMorgan's Theorem).
- Draw the corresponding NAND gate implementation. A
   1-input NAND gate can be replaced by an inverter.



#### NAND-NAND Implementation (2/6)

• Example

F(A, B, C, D) = AB + CD







(b)



![](_page_37_Picture_10.jpeg)

![](_page_38_Picture_0.jpeg)

#### NAND-NAND Implementation (3/6)

• Example

F(A, B, C, D, E) = AB + CD + E = ((AB)'(CD)'E')'

![](_page_38_Picture_4.jpeg)

(a) AND-OR

![](_page_38_Figure_6.jpeg)

![](_page_39_Picture_0.jpeg)

#### NAND-NAND Implementation (4/6)

![](_page_39_Figure_2.jpeg)

![](_page_39_Figure_3.jpeg)

![](_page_39_Figure_4.jpeg)

![](_page_40_Picture_0.jpeg)

### NAND-NAND Implementation (5/6)

#### Multilevel-NAND circuits conversion procedure

- Convert all AND gates to NAND gates with AND-Invert graphic symbols
- Convert all OR gates to NAND gates with Invert-OR graphic symbols
- Check all the bubbles (inverter) in the diagram and insert possible inverter to keep the original function

![](_page_41_Picture_0.jpeg)

## NAND-NAND Implementation (6/6) Multilevel NAND example

-F(A,B,C,D)=A(CD+B)+BC'

-AND-OR logic -> NAND-NAND logic

![](_page_41_Figure_4.jpeg)

(a) AND-OR gates

★AND->NAND + inverter ★inverter + OR ->NAND

![](_page_41_Figure_7.jpeg)

![](_page_42_Picture_0.jpeg)

# NOR-NOR Implementation (1/2) NOR-NOR is the dual of the NAND-NAND implementation

- -AND-OR => NAND-NAND
- -OR-AND => NOR-NOR

![](_page_42_Figure_4.jpeg)

![](_page_42_Figure_5.jpeg)

(a) Invert-AND

![](_page_43_Picture_0.jpeg)

#### NOR-NOR Implementation (2/2)

• Example

F(A, B, C, D, E) = (AB + E)(C + D)

![](_page_43_Picture_4.jpeg)

![](_page_43_Figure_5.jpeg)

![](_page_43_Figure_6.jpeg)

![](_page_44_Picture_0.jpeg)

#### Two-level Forms (1/2)

- AND/NAND/OR/NOR have 16 possible combinations of two-level forms
- Eight of them degenerate to a single operation
  - -AND-AND =>AND
  - -OR-OR =>OR
  - -AND-NAND => NAND
  - -OR-NOR => NOR
  - -NAND-NOR =>AND
  - -NOR-NAND => OR
  - -NAND-OR => NAND
  - -NOR-AND => NOR

![](_page_45_Picture_0.jpeg)

#### Two-level Forms (2/2)

- Eight are non-degenerate forms
  - -AND-OR => standard sum-of-products
  - -NAND-NAND => standard sum-of-products
  - -OR-AND => standard product-of-sums
  - -NOR-NOR => standard product-of-sums
  - -NAND-AND/AND-NOR => AND-OR-INVERT (AOI)

• complement of sum-of-products

-OR-NAND/NOR-OR => OR-AND-INVERT (OAI)

complement of product-of-sums

![](_page_46_Picture_0.jpeg)

#### **AND-OR-INVERT Circuits**

- NAND-AND = AND-NOR = AOI
- F(A,B,C,D,E)=(AB+CD+E)'
- F'(A,B,C,D,E)=AB+CD+E

![](_page_46_Figure_5.jpeg)

![](_page_46_Figure_6.jpeg)

Combine 0's in K-map to simplify F' in sum-of-products

Hsi-Pin Ma

![](_page_47_Picture_0.jpeg)

#### **OR-AND-INVERT Circuits**

## $\bullet \mathbf{OR}\text{-}\mathbf{NAND} = \mathbf{NOR}\text{-}\mathbf{OR} = \mathbf{OAI}$

• F(A,B,C,D,E)=((A+B)(C+D)E)'

![](_page_47_Figure_4.jpeg)

![](_page_47_Figure_5.jpeg)

Combine 1's in K-map to simplify F' in product-of-sums and then invert the results

![](_page_48_Picture_0.jpeg)

#### AOI & OAI Implementation (1/2)

#### • Example

- AOI implementation
  - F' = x'y + xy' + z (F': sop of 0's) => F = (x'y + xy' + z)'
- -OAI implementation

• F=x'y'z'+xyz' (F: sop of 1's) => F'=(x+y+z)(x'+y'+z) =>F=((x+y+z)(x'+y'+z'))'

F = x'y'z' + xyz'

F' = x'y + xy' + z

![](_page_48_Figure_7.jpeg)

![](_page_49_Picture_0.jpeg)

#### AOI & OAI Implementation (2/2)

![](_page_49_Figure_2.jpeg)

AND-NOR

NAND-AND

(b) 
$$F = (x'y + xy' + z)^{2}$$

![](_page_49_Figure_7.jpeg)

**OR-NAND** 

NOR-OR

(c) F = [(x + y + z) (x' + y' + z)]'

Hsi-Pin Ma

![](_page_50_Picture_0.jpeg)

## Technology Mapping (1/2)

- The conversion process from an expression/ schematic with AND, OR, and NOT gates to one with only NAND or NOR gates
  - -Rule 1: xy = ((xy)')' (NAND-Invert)
  - -Rule 2: x+y = ((x+y)')' = (x'y')' (Invert-NAND)
  - -Rule 3: xy = ((xy)')' = (x'+y')' (Invert-NOR)
  - -Rule 4: x+y = ((x+y)')' (NOR-Invert)

![](_page_51_Picture_0.jpeg)

### Technology Mapping (2/2)

![](_page_51_Figure_2.jpeg)