EECS 2060 Discrete Mathematics Spring 2021

Homework Assignment No. 2 Due 10:10am, April 7, 2021

Reading: Grimaldi: Sections 5.1 Cartesian Products and Relations, 7.1 Relations Revisited: Properties of Relations, 7.3 Partial Orders: Hasse Diagrams, 7.4 Equivalence Relations and Partitions, 1.1 The Rules of Sum and Product, 1.2 Permutations, 1.3 Combinations: The Binomial Theorem, 1.4 Combinations with Repetition, 8.1 The Principle of Inclusion and Exclusion, 8.3 Derangements: Nothing Is in Its Right Place.

Problems for Solution:

- 1. Let $A = \{a, b, c, d\}$. Determine if each of the following relations on A is an equivalence relation. If it is, find the corresponding equivalence classes.
 - (a) $R_1 = \{(a, a), (a, b), (a, c), (b, b), (c, b), (c, c), (d, b), (d, c), (d, d)\}.$
 - (b) $R_2 = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d)\}.$
 - (c) $R_3 = \{(a, a), (b, b), (c, c), (d, d)\}.$
- 2. Determine if each of the relations in Problem 1 is a partial order. If it is, draw the corresponding Hasse diagram.
- 3. Let $A = \{a, b, c, d\}$.
 - (a) How many different relations are there on A?
 - (b) How many relations on A are equivalence relations?
- 4. For $A = \{a, b, c, d, e\}$, **M** is the zero-one matrix for a partial order R on A:

$$oldsymbol{M} = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 1 & 1 & 1 & 1 & 0 \ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Here the rows (from top to bottom) and the columns (for left to right) are indexed in the order a, b, c, d, e.

- (a) Find the maximal elements.
- (b) Find a greatest element, if it exists.
- (c) Find a least element, if it exists.
- (d) Find all upper bounds of $\{d, e\}$.
- (e) Find the greatest lower bound of $\{a, b, c\}$, if it exists.

- 5. (a) In how many ways can eight policemen be divided into four teams of two and sent to patrol areas A, B, C, D?
 - (b) Find the number of nonnegative integer solutions to the pair of equations:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 15$$
$$x_2 + x_4 + x_6 = 5.$$

6. (a) Show that

$$n(1+x)^{n-1} = \sum_{k=1}^{n} \binom{n}{k} k x^{k-1}.$$

(*Hint:* Expand $(1 + x)^n$ by Binomial Theorem and then take derivative.)

(b) Use (a) to show that

$$n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k}.$$

(c) Give a combinatorial proof that

$$n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k}.$$

(*Hint:* Count in two ways the number of ways to select a committee and to then select a leader of the committee.)

- 7. Recall that Euler's phi function (or called Euler's totient function) $\phi(n)$ is defined as the number of integers m in the range $1 \leq m \leq n$ such that m and n are relatively prime, i.e., gcd(m, n) = 1. Find a formula for $\phi(n)$, $n \geq 2$. (*Hint:* Factor n as the product of prime powers, i.e., $n = \prod_{i=1}^{t} p_i^{e_i}$, where p_i 's are distinct primes and $e_i \geq 1$, $i = 1, 2, \ldots, t$.)
- 8. Recall that a permutation of $\mathcal{N}_n = \{1, 2, ..., n\}$ is a bijection from \mathcal{N}_n to \mathcal{N}_n . For example, a permutation of \mathcal{N}_3 can be given by the function π defined as:

$$\pi(1) = 2, \quad \pi(2) = 3, \quad \pi(3) = 1.$$

A derangement of \mathcal{N}_n is a permutation π with the extra property that $\pi(i) \neq i$ for all $i \in \mathcal{N}_n$. For instance, the above example of a permutation of \mathcal{N}_3 is a derangement. Denote as d_n the total number of derangements of \mathcal{N}_n . Find a formula for d_n . (*Hint:* Let S_n denote the set of all permutations of \mathcal{N}_n . Define $A_i = \{\pi \in S_n : \pi(i) = i\}$, for $i = 1, 2, \ldots, n$. Express the set of all derangements of \mathcal{N}_n in terms of $A_i, i = 1, 2, \ldots, n$.)

Homework Collaboration Policy: I allow and encourage discussion or collaboration on the homework. However, you are expected to write up your own solution and understand what you turn in. Late homework is subject to a penalty of 5% to 40% of your total points.