
1

CS542200 Parallel Programming
Homework 3: Fully Distributed Shortest Path

Algorithms

Revision 10
Due: Sun December 2, 23:59PM, 2018

1 GOAL
This assignment helps you learning the differences between synchronous
and asynchronous computing by implementing fully distributed parallel
algorithms for shortest path problem. In this assignment, you need to
implement the two fully distributed shortest path algorithms and a graph
partition algorithm:

1. Moore’s asynchronous single source shortest path algorithm
using MPI+Pthread.

2. Floyd-Warshall’s synchronous all pair shortest path algorithms
using MPI+OpenMP.

3. Graph partition algorithm for performance optimization

2 PROBLEM DESCRIPTION

2.1 MOORE’S SINGLE SOURCE SHORTEST PATH ALGORITHM
 In this version, you are asked to implement the Moore’s single source

shortest path algorithm explained in the lecture slides of Chap5 p36.

 Your implementation must use MPI and Pthread to parallelize the
algorithm across multiple compute nodes. Only one MPI process is
allowed to be launched on a compute node, so you must use threads to
utilize all the CPU cores on a node.

 Your implementation must be fully distributed which means the
graph topology must be partitioned and stored independently on
nodes, no master process or single task queue is allowed for
centralized task dispatching.

2

 Each thread is allowed to handle the computations of a group of
vertices. In other words, it is not necessary to create one thread per
vertices. However, only Moore’s algorithm is allowed to be used
throughout the whole computations even for the vertices within the
same group.

 Collective MPI call is not allowed except for file input/output.

 You may implement any asynchronous termination detection
algorithm for ensuring correct result.

 Single ring termination detection is recommended because dual ring
algorithm may cause too much performance overhead, so it is not
required in this assignment.

2.2 FLOYD-WARSHALL’S ALL PAIR SHORTEST PATH ALGORITHM
 In this version, you are asked to implement the Floyd-Warshall‘s all

pair shortest path algorithm explained in the lecture slides of Chap7
p38.

 Your implementation must use MPI and OpenMP to parallelize the
algorithm across multiple compute nodes. Only one MPI process is
allowed to be launched on a compute node. All computations should
be done by the threads created by OpenMP.

 MPI processes are only for communications among compute nodes.
There is no restriction to the communication methods among MPI
processes.

2.3 GRAPH PARTITIONS
 Implement a graph partition algorithm for improving your

performance.

 Hint: a better graph partition strategy can minimize communication
overhead and balance load (i.e., the number of vertices per process can
be different).

 The graph partition time will not be counted into the execution time.

3

3 INPUT/OUTPUT

3.1 INPUT PARAMETERS
Your programs for 2.1 and 2.2 should accept 2 or 3 parameters.
Command line arguments with 2 parameters:

Command line arguments with 3 parameters:
(You only need to support this format if you implement 2.3)

 ${in}: the input graph file name [string]
 ${out}: the output distance file name [string]
 ${par}: the partition file name [string]

For 2.3, you need to implement an additional partition program to pre-
partition your graph:

 ${in}: the input file name [string]
 ${par}: the output partition file name [string]
 ${#processes}: the number of processes [integer]

$./executable ${in} ${out}

$./executable ${in} ${out} ${par}

$./partition ${in} ${par} ${#processes}

4

3.2 INPUT FILE FORMAT
 The input is a binary file containing a connected directed graph with

non-negative edge weight.

Here is an example:

 The first two integers mean {number of vertices} {number of edges}
 After vertices and edges is a list of {source vertex id} {destination vertex

id} {edge weight}
 The edge weights are non-negative integers. The values of vertex id

start from 0.

Notice that:
 1 ≤ V ≤ 2000000000
 V ≤ E ≤ 2000000000
 0 ≤ i,j ≤ V
 0 ≤ W ≤ 10000
 All vertices are connected
 No need to consider the condition of signed integer overflow

[offset] [type] [decimal value] [description]
0000 32 bit integer 3 # vertices
0004 32 bit integer 6 # edges
0008 32 bit integer 0 Src id for edge 0
0012 32 bit integer 1 Dst id for edge 0
0016 32 bit integer 3 Weight on edge 0
0020 32 bit integer Src id for edge 1

… … … …
0076 32 bit integer Weight on edge 5

5

3.3 PARTITION FILE FORMAT
 Given a graph with N vertices, your partition program should output a

partition file that contains N lines, each line containing an integer
which represented the id of each vertex’s group

 The number of line is equal to vertex id
 Here is an example

3.4 OUTPUT FORMAT
 The output file contains the shortest path distance from your

algorithms.

 The output file is also binary format, and the details are listed below.

 For the first problem (Moore’s algorithm), you should output N
integers which are the shortest path distances from vertex 0.

[offset] [type] [decimal value] [description]
0000 32 bit integer 0 min Dist(0, 0)
0004 32 bit integer Do it yourself min Dist(0, 1)
0008 32 bit integer Do it yourself min Dist(0, 2)

… … … …
xxxx 32 bit integer Do it yourself min Dist(0, N-1)

Vertex 0

Vertex 1

Vertex 2

[Output file from partition program]

6

 For the second problem (Floyd-Warshall’s algorithm), you should
output N2 integers which are the shortest path distances between
each pair of vertices.

[offset] [type] [decimal value] [description]
0000 32 bit integer 0 min Dist(0, 0)
0004 32 bit integer Do it yourself min Dist(0, 1)
0008 32 bit integer Do it yourself min Dist(0, 2)

… … … …
xxxx-4 32 bit integer Do it yourself min Dist(N-1, N-2)

xxxx 32 bit integer 0 min Dist(N-1, N-1)

 The output records must be sorted by vertex id

 Distance (i, j) = 0, where i = j ;

7

4 GRADING
This homework will be graded by the correctness, report, demonstration,
and performance as described below:

4.1 CORRECTNESS (40%)
TAs will use different graph to test your program, and check whether your
output can pass our judge script.

The detail score distribution of each part is:

 Moore’s single source shortest path algorithm (20%)

 Floyd-Warshall’s all pair shortest path algorithm (20%)

4.2 REPORT (25%)
A. Title, name, student ID

B. Implementation

Explain the details of your implementations in diagrams, figures,
sentences. You also need to answer the questions below:

 Why graph partition can have significant performance impact to
your implementation? (You still need to discuss this question, even
if you don’t implement any optimized graph partition strategy.)

 What are the pros and cons of synchronous and asynchronous
versions?

 Other efforts you’ve made in your program

C. Experiment & Analysis

Explain how and why you do these experiments? Explain how you collect
those measurements? Show the results of your experiments in plots, and
explain your observations.

i. Methodology:

 System Spec (If you run your experiments on your own
machine)
Please specify the system spec by providing the CPU, RAM,
disk and network (Ethernet / Infiniband) information of the
system.

8

 Performance Metrics: How do you measure computing time
of your program? How do you compute the values in the plots?

ii. Plots:

(a). Strong scalability chart for both of your implementations:
Conduct strong scalability experiments, and plot the
speedup. The plot must contain at least 4 settings (e.g., scales),
and include both single node and multi-node environment.

(b). Load balancing chart for your Moore’s algorithm
implementation: Evaluate the workload distribution by
plotting the number of computing tasks (i.e., vertex update
operations) per process. This only needs to be reported from
one chosen scale setting.

Both scalability and load balancing experiments must be
conducted on the 3 evaluation test datasets released by the
TA.

 rand_graph: a graph whose edges are randomly
generated between vertices.

 dense_graph: a graph with higher #edge/#vertex ratio.

 skew_graph: a graph whose number of edges per vertex
is generated by a powerlaw instead of a uniform
probability distribution.

Based on your experimental results, discuss the performance
comparison between asynchronous algorithm (Moore’s algo)
and synchronous algorithm (Floyd-Warshall).

(c). Conduct experiments to explain why your graph partition
algorithm can improve performance.

(d). Any other experiments you think meaningful to compare
and analyze the differences between implementation
versions.

D. Experience and conclusion

 What have you learned and observed from this assignment?

9

 What difficulty did you encounter when implementing this
assignment?

 If you have any feedback, please write it here.

4.3 DEMO (15%)
 Test the correctness of your codes.

 Go through your codes. Make sure your implementation follows the
requirements.

 We will ask some questions about your codes and report.

4.4 PERFORMANCE (20%)
 Floyd-Warshall’s all pair shortest path algorithm with graph

partition

5 Submission
Upload these files to apollo31, and place them under ~/homework/hw3/:

 sssp.c

 apsp.c

 partition.c

 Makefile

Upload this file to iLMS and do not compress these into a compressed file:

 report.pdf

 sssp.c

 apsp.c

 partition.c

Note:

1. You can also write your code in C++ by submitting *.cc files.

2. Your Makefile must be able to build the corresponding targets of the
implementations: sssp, apsp, partition. If you’re unsure how to write a
Makefile, you can use the provided example Makefile as-is. (or ask for
assistance)

http://curricul.web.nthu.edu.tw/files/13-1073-11965.php
http://curricul.web.nthu.edu.tw/files/13-1073-11965.php

10

3. Your submission time for your source code will be based on the time on
apollo31 and your submission time for your report will be based on iLMS.

4. Late submission policy:

score *= 1 Before deadline

score *= 0.95 After deadline Before deadline+3days

score *= 0.9 After deadline+3days Before deadline+7days

score *= 0 After deadline+7days

6 Reminder
1. Refer to iLMS for the location of the Makefile and test cases.

2. Since we have limited resources, please start your SSSP and APSP ASAP.
Do not leave it until the last day!

3. 0 will be given to cheaters (even copying code from the Internet), but
discussion on code is encouraged.

4. Asking questions through iLMS is welcomed!

