
EE 2030 Linear Algebra Spring 2013

Solution to Midterm Examination No. 2

1. (a) We can obtain the RRE form of A as

A =









1 0 0 0
0 1 1 1
0 0 1 1
1 1 2 2









=⇒ R =









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0









.

Since the pivot rows are the first, second, and third rows, these three rows
constitute a basis for C(AT ). Let

Â =





1 0 0 0
0 1 0 0
0 0 1 1



 .

Then we can obtain the projection matrix P onto C(AT ) as

P = Â
T
(

ÂÂ
T
)

−1

Â =









1 0 0 0
0 1 0 0
0 0 1/2 1/2
0 0 1/2 1/2









.

To find the projection matrix Q onto N (A), we first find a basis for N (A).
Since the free column of R is the fourth column, we can find the special
solution by letting x4 = 1, and then x1 = 0, x2 = 0, x3 = −1. Hence a

basis for N (A) is























0
0
−1
1























. Let Ã =









0
0
−1
1









. Then we can obtain the

projection matrix Q onto N (A) as

Q = Ã
(

Ã
T

Ã
)

−1

Ã
T

=









0 0 0 0
0 0 0 0
0 0 1/2 −1/2
0 0 −1/2 1/2









.

(b) From (a), we can have

P +Q =









1 0 0 0
0 1 0 0
0 0 1/2 1/2
0 0 1/2 1/2









+









0 0 0 0
0 0 0 0
0 0 1/2 −1/2
0 0 −1/2 1/2









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









which is exactly the identity matrix. The reason is as follows. For any x ∈ R4,
we can decompose it into

x = xr + xn
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where xr ∈ C(AT ) and xn ∈ N (A). Since C(AT ) and N (A) are orthogonal,
we can have

Pxn = 0 and Qxr = 0.

Hence, we can have

(P +Q)x = (P +Q)xr + (P +Q)xn = Pxr +Qxn = xr + xn = x

which means

P +Q = I.

(c) We can have

PQ =









1 0 0 0
0 1 0 0
0 0 1/2 1/2
0 0 1/2 1/2

















0 0 0 0
0 0 0 0
0 0 1/2 −1/2
0 0 −1/2 1/2









=









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Since C(AT ) and N (A) are orthogonal, we can have

PQx = PQ(xr + xn) = P (Qxr +Qxn) = Pxn = 0

for any x ∈ R4. Hence we can obtain PQ = O, the zero matrix.

(d) We can have

P −Q =









1 0 0 0
0 1 0 0
0 0 1/2 1/2
0 0 1/2 1/2









−









0 0 0 0
0 0 0 0
0 0 1/2 −1/2
0 0 −1/2 1/2









=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









which is a row-exchanging matrix (exchanging rows 3 and 4) and is its own
inverse. In general, we can have

(P −Q)(P −Q)

= P 2 − PQ−QP +Q2

= P 2 −O −O +Q2 ( since PQ = QP = O )

= P +Q ( since P and Q are projection matrices

and hence P 2 = P and Q2 = Q )

= I.

Therefore, P −Q is its own inverse.

2. (a) Let A =
[

a1 a2

]

, where

a1 =













1
3
4
5
7













, a2 =













−6
6
8
0
8













.
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By Gram-Schmidt process, we can have

A1 = a1 =













1
3
4
5
7













=⇒ q1 =
A1

‖A1‖
=

1

10













1
3
4
5
7













A2 = a2 −
(

qT

1
a2

)

q
1
=













−7
3
4
−5
1













=⇒ q
2
=

A2

‖A2‖
=

1

10













−7
3
4
−5
1













.

Hence, {q1, q2} is an orthonormal basis for the column space of A.

(b) From (a), we can have

A =
[

a1 a2

]

=
[

q
1

q
2

]

[

qT

1
a1 qT

1
a2

0 qT

2
a2

]

= QR

where

Q =
[

q
1

q
2

]

=













1/10 −7/10
3/10 3/10
2/5 2/5
1/2 −1/2
7/10 1/10













, R =

[

10 10
0 10

]

.

(c) The least squares solution x̂ is given by

ATAx̂ = ATb.

Since A = QR, we can then have

Rx̂ = QTb

which gives
[

10 10
0 10

]

x̂ =

[

5
5

]

.

Therefore,

x̂ =

[

0
1/2

]

.

3. (a) The inner product 〈u1(x), u2(x)〉 is given by

∫

1

0

u1 (x) u2 (x) dx =

∫

1

0

1 · (2x− 1) dx =

∫

1

0

(2x− 1) dx = 0.

Hence, u1(x) and u2(x) are orthogonal.
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(b) We can have

‖u1 (x) ‖2 =
∫

1

0

1 · 1dx =

∫

1

0

1dx = 1

‖u2 (x) ‖2 =
∫

1

0

(2x− 1) · (2x− 1) dx =

∫

1

0

(

4x2 − 4x+ 1
)

dx =
1

3
.

Therefore, ‖u1 (x) ‖ = 1 and ‖u2 (x) ‖ = 1/
√
3.

(c) Let q1(x) = u1(x)/‖u1(x)‖ = 1 and q2(x) = u2(x)/‖u2(x)‖ =
√
3(2x − 1);

then q1(x) and q2(x) are orthonormal. The best least squares approximation
to h(x) by a linear function is hence given by

ĥ (x) = 〈q1(x), h(x)〉 q1(x) + 〈q2(x), h(x)〉 q2(x)
=

2

3
· 1 + 2

15

√
3 ·

√
3(2x− 1)

=
4

5
x+

4

15
since

〈q1(x), h(x)〉 =
∫

1

0

√
xdx =

2

3

and

〈q2(x), h(x)〉 =
∫

1

0

√
x
√
3(2x− 1)dx =

2

15

√
3.

4. (a) We can have
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 2 5 9
0 3 9 19

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 3 10

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1 · 1 · 1 · 1 = 1.

(b) For n = 1, we have det(A) = |2| = 2. For n = 2, we have det(A) =

∣

∣

∣

∣

2 3
3 4

∣

∣

∣

∣

=

−1. For n ≥ 3, consider any three consecutive rows in A:

row i
row i+ 1
row i+ 2















...
i+ 1 i+ 2 · · · i+ n

(i+ 1) + 1 (i+ 1) + 2 · · · (i+ 1) + n
(i+ 2) + 1 (i+ 2) + 2 · · · (i+ 2) + n

...















.
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Since 2× (row i+ 1) = (row i) + (row i + 2), the rows of A are dependent.
Therefore, A is singular and det(A) = 0.

(c) Let An be the n by n tridiagonal −1, 2, 2 matrix and Bn = det(An). We can
then have

Bn = Bn−1 + 2Bn−2.

Since B1 = 1 and B2 =

∣

∣

∣

∣

1 −1
2 1

∣

∣

∣

∣

= 3, we can obtain B3 = B2+2B1 = 5 and

B4 = B3+2B2 = 11. Finally, the desired determinant is B5 = B4+2B3 = 21.

(d) Since

























1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

















































1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

























T

=

























8 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 4 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

























the rows of this matrix are mutually orthogonal. It is a hypercube and the
absolute value of the volume is the product of the lengths of the row vectors.
Since the determinant is known to be positive, it is hence given by

√
8 ·

√
8 ·

√
4 ·

√
4 ·

√
2 ·

√
2 ·

√
2 ·

√
2 = 128.

5. (a) False. Let A =

[

1 0
0 1

]

. We can have det(I + A) = det

[

2 0
0 2

]

= 4,

which is not equal to 1 + det(A) = 1 + 1 = 2.

(b) True. We can have

Ax = Ay

=⇒ Ax− Ay = 0

=⇒ A(x− y) = 0.

Since x − y 6= 0, A is singular, which gives det(A) = 0.
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(c) True. We multiply S on both sides of the equality, which gives

SB = AS

=⇒ det(SB) = det(AS)

=⇒ det(S) det(B) = det(A) det(S)

=⇒ det(B) = det(A)

because S is nonsingular and det(S) 6= 0.

(d) True. Since A is nonsingular and det(A) 6= 0, we can have

A−1 =
CT

det (A)

=⇒ CT = det(A) ·A−1

=⇒ det
(

CT
)

= (det(A))n (detA)−1

=⇒ det (C) = (det(A))n−1 .

6. The big formula states that the determinant of A is the sum of n! simple determi-
nants, times 1 or −1, and every simple determinant chooses one entry from each
row and column. Since A is a nonsingular matrix, det(A) 6= 0. It follows that
there exists at least one simple determinant of A avoiding all the zero entries in A.
Therefore, we can find a corresponding permutation matrix P for which the main
diagonal of PA is composed of all the nonzero entries in that simple determinant.

6


