Midterm Examination No. 2

7:00pm to 10:00pm, May 3, 2013

Problems for Solution:

1. (20%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 2 & 2
\end{array}\right]
$$

(a) Find the projection matrix \boldsymbol{P} onto the row space of \boldsymbol{A} and the projection matrix \boldsymbol{Q} onto the nullspace of \boldsymbol{A}.
(b) Find $\boldsymbol{P}+\boldsymbol{Q}$. Explain your result.
(c) Find $\boldsymbol{P Q}$. Explain your result.
(d) Show that $\boldsymbol{P}-\boldsymbol{Q}$ is its own inverse. Why?
2. (15%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & -6 \\
3 & 6 \\
4 & 8 \\
5 & 0 \\
7 & 8
\end{array}\right]
$$

(a) Find an orthonormal basis for the column space of \boldsymbol{A}.
(b) Write \boldsymbol{A} as $\boldsymbol{Q} \boldsymbol{R}$, where \boldsymbol{Q} has orthonormal columns and \boldsymbol{R} is upper triangular.
(c) Find the least squares solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ if

$$
\boldsymbol{b}=\left[\begin{array}{c}
-3 \\
7 \\
1 \\
0 \\
4
\end{array}\right]
$$

3. (15%) Consider the vector space $C[0,1]$, the space of all real-valued continuous functions on $[0,1]$, with inner product defined by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

(a) Show that $u_{1}(x)=1$ and $u_{2}(x)=2 x-1$ are orthogonal.
(b) Determine $\left\|u_{1}(x)\right\|$ and $\left\|u_{2}(x)\right\|$.
(c) Find the best least squares approximation to $h(x)=\sqrt{x}$ by a linear function.
4. (20\%) Find the determinants of
(a) the 4 by 4 symmetric Pascal matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right]
$$

(b) the n by n matrix \boldsymbol{A} with entries $a_{i j}=i+j$, for $1 \leq i, j \leq n$;
(c) the 5 by 5 tridiagonal $-1,1,2$ matrix

$$
\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
2 & 1 & -1 & 0 & 0 \\
0 & 2 & 1 & -1 & 0 \\
0 & 0 & 2 & 1 & -1 \\
0 & 0 & 0 & 2 & 1
\end{array}\right] ;
$$

(d) the 8 by 8 Haar matrix

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right] .
$$

(You can use the fact that its determinant is positive.)
5. (20\%) True or false. If it is true, prove it. Otherwise, find a counterexample. Assume that all the given matrices are n by n.
(a) $\operatorname{det}(\boldsymbol{I}+\boldsymbol{A})=1+\operatorname{det} \boldsymbol{A}$, where \boldsymbol{I} is the identity matrix.
(b) If \boldsymbol{x} and \boldsymbol{y} are distinct vectors in \mathcal{R}^{n}, i.e., $\boldsymbol{x} \neq \boldsymbol{y}$, and \boldsymbol{A} is a matrix with the property that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{A} \boldsymbol{y}$, then $\operatorname{det} \boldsymbol{A}=0$.
(c) If $\boldsymbol{B}=\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}$ for some nonsingular matrix \boldsymbol{S}, then $\operatorname{det} \boldsymbol{A}=\operatorname{det} \boldsymbol{B}$.
(d) If \boldsymbol{C} is the cofactor matrix of a nonsingular matrix \boldsymbol{A}, then $\operatorname{det} \boldsymbol{C}=(\operatorname{det} \boldsymbol{A})^{n-1}$.
6. (10\%) If \boldsymbol{A} is a nonsingular n by n matrix, show that there must be some permutation matrix \boldsymbol{P} for which $\boldsymbol{P} \boldsymbol{A}$ has no zeros on its main diagonal. It is not the \boldsymbol{P} from elimination. (Hint: Consider the big formula for the determinant.)

