Chi-chao Chao

EE 2030 Linear Algebra Spring 2013

Midterm Examination No. 2

7:00pm to 10:00pm, May 3, 2013

Problems for Solution:

1. (20%) Consider

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}.$$

- (a) Find the projection matrix P onto the row space of A and the projection matrix Q onto the nullspace of A.
- (b) Find $\boldsymbol{P} + \boldsymbol{Q}$. Explain your result.
- (c) Find PQ. Explain your result.
- (d) Show that $\boldsymbol{P} \boldsymbol{Q}$ is its own inverse. Why?
- 2. (15%) Consider

$$\boldsymbol{A} = \begin{bmatrix} 1 & -6 \\ 3 & 6 \\ 4 & 8 \\ 5 & 0 \\ 7 & 8 \end{bmatrix}$$

- (a) Find an orthonormal basis for the column space of A.
- (b) Write \boldsymbol{A} as $\boldsymbol{Q}\boldsymbol{R}$, where \boldsymbol{Q} has orthonormal columns and \boldsymbol{R} is upper triangular.
- (c) Find the least squares solution to Ax = b if

$$oldsymbol{b} = \left[egin{array}{c} -3 \ 7 \ 1 \ 0 \ 4 \end{array}
ight].$$

3. (15%) Consider the vector space C[0, 1], the space of all real-valued continuous functions on [0, 1], with inner product defined by

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,dx.$$

(a) Show that $u_1(x) = 1$ and $u_2(x) = 2x - 1$ are orthogonal.

- (b) Determine $||u_1(x)||$ and $||u_2(x)||$.
- (c) Find the best least squares approximation to $h(x) = \sqrt{x}$ by a linear function.
- 4. (20%) Find the determinants of
 - (a) the 4 by 4 symmetric Pascal matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix};$$

- (b) the *n* by *n* matrix **A** with entries $a_{ij} = i + j$, for $1 \le i, j \le n$;
- (c) the 5 by 5 tridiagonal -1, 1, 2 matrix

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 2 & 1 & -1 & 0 & 0 \\ 0 & 2 & 1 & -1 & 0 \\ 0 & 0 & 2 & 1 & -1 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix};$$

(d) the 8 by 8 Haar matrix

[1]	1	1	1	1	1	1	1 -]
1	1	1	1	-1	-1	-1	-1	
1	1	-1	-1	0	0	0	0	
0	0	0	0	1	1	-1	-1	
1	-1	0	0	0	0	0	0	
0	0	1	-1	0	0	0	0	
0	0	0	0	1	-1	0	0	
0	0	0	0	0	0	1	-1	

(You can use the fact that its determinant is positive.)

- 5. (20%) True or false. If it is true, prove it. Otherwise, find a counterexample. Assume that all the given matrices are n by n.
 - (a) $\det(\mathbf{I} + \mathbf{A}) = 1 + \det \mathbf{A}$, where \mathbf{I} is the identity matrix.
 - (b) If \boldsymbol{x} and \boldsymbol{y} are distinct vectors in \mathcal{R}^n , i.e., $\boldsymbol{x} \neq \boldsymbol{y}$, and \boldsymbol{A} is a matrix with the property that $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}\boldsymbol{y}$, then det $\boldsymbol{A} = 0$.
 - (c) If $B = S^{-1}AS$ for some nonsingular matrix S, then det $A = \det B$.
 - (d) If C is the cofactor matrix of a nonsingular matrix A, then det $C = (\det A)^{n-1}$.
- 6. (10%) If \boldsymbol{A} is a nonsingular n by n matrix, show that there must be some permutation matrix \boldsymbol{P} for which $\boldsymbol{P}\boldsymbol{A}$ has no zeros on its main diagonal. It is *not* the \boldsymbol{P} from elimination. (*Hint:* Consider the big formula for the determinant.)