Solution to Midterm Examination No. 1

1. (a) First, we solve \boldsymbol{c} from $\boldsymbol{L} \boldsymbol{c}=\boldsymbol{b}$:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Next, we solve \boldsymbol{x} from $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$:

$$
\left[\begin{array}{lll}
2 & 2 & 4 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right]
$$

(b) Yes, \boldsymbol{A} is invertible because it has a full set of pivots. Let the third column of \boldsymbol{A}^{-1} be $\hat{\boldsymbol{x}}$. Since $\boldsymbol{A} \hat{\boldsymbol{x}}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ which is the same system as that in (a), we can have $\hat{\boldsymbol{x}}=\boldsymbol{x}=\left[\begin{array}{c}1 \\ -3 \\ 1\end{array}\right]$.
2. First do row exchange as

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
2 & -3 & 2 & -2 \\
-1 & 2 & -2 & 1
\end{array}\right] \xrightarrow{\boldsymbol{P}_{32}}\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
2 & -3 & 2 & -2 \\
0 & 0 & 1 & -1 \\
-1 & 2 & -2 & 1
\end{array}\right]=\boldsymbol{P} \boldsymbol{A}
$$

and then perform elimination as

$$
\begin{gathered}
{\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
2 & -3 & 2 & -2 \\
0 & 0 & 1 & -1 \\
-1 & 2 & -2 & 1
\end{array}\right] \stackrel{\boldsymbol{E}_{41} \boldsymbol{E}_{21}}{\Longrightarrow}\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 2 & -2 \\
0 & 0 & 1 & -1 \\
0 & 1 & -2 & 1
\end{array}\right]} \\
\xlongequal{\boldsymbol{E}_{42}}\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & -1 & 2 & -2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -2 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{D} \boldsymbol{U} .
\end{gathered}
$$

Then we have

$$
\boldsymbol{E}_{42} \boldsymbol{E}_{41} \boldsymbol{E}_{21}(\boldsymbol{P} \boldsymbol{A})=\boldsymbol{U}
$$

where

$$
\begin{gathered}
\boldsymbol{P}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\boldsymbol{E}_{21}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \boldsymbol{E}_{41}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right], \quad \text { and } \boldsymbol{E}_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

We can have

$$
\boldsymbol{L}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{41}^{-1} \boldsymbol{E}_{42}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right]
$$

The factorization $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}$ is hence given by

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
2 & -3 & 2 & -2 \\
-1 & 2 & -2 & 1
\end{array}\right]} \\
=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -2 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

3. (a) False. Let $\boldsymbol{C}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then

$$
(\boldsymbol{I}+\boldsymbol{C})\left(\boldsymbol{I}-\boldsymbol{C}^{T}\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right]
$$

is not a symmetric matrix.
(b) True. Take $\boldsymbol{x}, \boldsymbol{y} \in S \cap T$ and hence $\boldsymbol{x}, \boldsymbol{y} \in S, \boldsymbol{x}, \boldsymbol{y} \in T$. We check the following two cases:
(i) Consider $\boldsymbol{x}+\boldsymbol{y}$. Since $\boldsymbol{x} \in S$ and $\boldsymbol{y} \in S$, we have $\boldsymbol{x}+\boldsymbol{y} \in S$. Similarly, we can obtain $\boldsymbol{x}+\boldsymbol{y} \in T$. Hence $\boldsymbol{x}+\boldsymbol{y} \in S \cap T$.
(ii) Consider $c \boldsymbol{x}$. Since $\boldsymbol{x} \in S$, we have $c \boldsymbol{x} \in S$. Similarly, we can have $c \boldsymbol{x} \in T$. Hence $c \boldsymbol{x} \in S \cap T$.

As a result, $S \cap T$ is a subspace of V.
(c) True. Consider $a \boldsymbol{y}_{1}+b \boldsymbol{y}_{2}+c \boldsymbol{y}_{3}=\mathbf{0}$. We can have

$$
a \boldsymbol{y}_{1}+b \boldsymbol{y}_{2}+c \boldsymbol{y}_{3}=a \boldsymbol{A} \boldsymbol{x}_{1}+b \boldsymbol{A} \boldsymbol{x}_{2}+c \boldsymbol{A} \boldsymbol{x}_{3}=\boldsymbol{A}\left(a \boldsymbol{x}_{1}+b \boldsymbol{x}_{2}+c \boldsymbol{x}_{3}\right)=\mathbf{0}
$$

Since \boldsymbol{A} is nonsingular, the only solution to the above system is

$$
a \boldsymbol{x}_{1}+b \boldsymbol{x}_{2}+c \boldsymbol{x}_{3}=\mathbf{0} .
$$

As $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ are linearly independent, $a \boldsymbol{x}_{1}+b \boldsymbol{x}_{2}+c \boldsymbol{x}_{3}=\mathbf{0}$ only if $a=b=$ $c=0$. Hence $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}$ are linearly independent.
4. (a) No. Let $V=\{3$ by 2 matrices with full column rank $\}$. Consider

$$
\boldsymbol{w}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad \boldsymbol{w}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] \in V .
$$

Since

$$
\boldsymbol{w}_{1}+\boldsymbol{w}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right] \notin V
$$

V is not a subspace of M.
(b) Yes. Let

$$
W=\left\{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]: a_{11}+a_{12}+a_{21}+a_{22}+a_{31}+a_{32}=0\right\} .
$$

Suppose

$$
\boldsymbol{w}_{1}=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right], \quad \boldsymbol{w}_{2}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right] \in W .
$$

(i) Consider

$$
\boldsymbol{w}_{1}+\boldsymbol{w}_{2}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22} \\
a_{31}+b_{31} & a_{32}+b_{32}
\end{array}\right] .
$$

Since

$$
\begin{aligned}
& \left(a_{11}+b_{11}\right)+\left(a_{12}+b_{12}\right)+\left(a_{21}+b_{21}\right)+\left(a_{22}+b_{22}\right)+\left(a_{31}+b_{31}\right)+\left(a_{32}+b_{32}\right) \\
& =\left(a_{11}+a_{12}+a_{21}+a_{22}+a_{31}+a_{32}\right)+\left(b_{11}+b_{12}+b_{21}+b_{22}+b_{31}+b_{32}\right)=0
\end{aligned}
$$

we have $\boldsymbol{w}_{1}+\boldsymbol{w}_{2} \in W$.
(ii) Consider

$$
c \boldsymbol{w}_{1}=\left[\begin{array}{ll}
c a_{11} & c a_{12} \\
c a_{21} & c a_{22} \\
c a_{31} & c a_{32}
\end{array}\right]
$$

Since

$$
\begin{aligned}
& c a_{11}+c a_{12}+c a_{21}+c a_{22}+c a_{31}+c a_{32} \\
= & c\left(a_{11}+a_{12}+a_{21}+a_{22}+a_{31}+a_{32}\right)=0
\end{aligned}
$$

we have $c \boldsymbol{w}_{1} \in W$.
Hence M is a subspace of M. Since $a_{32}=-a_{11}-a_{12}-a_{21}-a_{22}-a_{31}$ we can have

$$
\begin{gathered}
\boldsymbol{w}_{1}=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & -a_{11}-a_{12}-a_{21}-a_{22}-a_{31}
\end{array}\right] \\
=a_{11}\left[\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right]+a_{12}\left[\begin{array}{cc}
0 & 1 \\
0 & 0 \\
0 & -1
\end{array}\right]+a_{21}\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & -1
\end{array}\right]+a_{22}\left[\begin{array}{cc}
0 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]+a_{31}\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & -1
\end{array}\right] .
\end{gathered}
$$

One can check that

$$
\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
0 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & -1
\end{array}\right]\right\}
$$

is a basis for W, and hence the dimension of W is 5 .
5. (a) We can know that \boldsymbol{A} must be 2 by 3. Since $\boldsymbol{x}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is the only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$, the nullspace of \boldsymbol{A} must contain the zero vector only. Hence the rank of \boldsymbol{A} should be 3 . Yet as the number of rows of \boldsymbol{A} is only 2, the rank of \boldsymbol{A} cannot be 3. Therefore, \boldsymbol{A} does not exist.
(b) Since $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ has exactly one solution, the nullspace of \boldsymbol{A} must contain the zero vector only. Hence \boldsymbol{A} is a matrix with full column rank. And since $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ has no solution, the third equation corresponding to the RRE form of $\left[\begin{array}{l|l}\boldsymbol{A} & 1 \\ 2 \\ 1\end{array}\right]$ should be inconsistent. One example of \boldsymbol{A} is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$.
6. (a) No. Since there are 4 vectors in \mathcal{R}^{3}, they must be linearly dependent.
(b) No. Consider solving
$a \boldsymbol{x}_{1}+b \boldsymbol{x}_{2}+c \boldsymbol{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \Longrightarrow\left[\begin{array}{lll|l}1 & 1 & 1 & 0 \\ 2 & 3 & 5 & 0 \\ 2 & 3 & 5 & 1\end{array}\right] \Longrightarrow\left[\begin{array}{ccc|c}1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
Since the 3rd equation is inconsistent, this system is not solvable. Hence \boldsymbol{x}_{1}, $\boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ do not span \mathcal{R}^{3}.
(c) Yes. Consider $\boldsymbol{A}=\left[\begin{array}{lll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{4}\end{array}\right]$. Since the RRE form of \boldsymbol{A} is an identity matrix, \boldsymbol{A} has a full set of pivots and $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{4}$ are linearly independent. Hence $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{4}$ form a basis for \mathcal{R}^{3}.
7. (a) We can obtain

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -4 & 2 & 5 \\
3 & -12 & 6 & 15 \\
-2 & 8 & -4 & -10
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]\left[\begin{array}{llll}
1 & -4 & 2 & 5
\end{array}\right]=\boldsymbol{u} \boldsymbol{v}^{T} .
$$

(b) The matrix \boldsymbol{A} is a rank-one matrix with pivot row $(1,-4,2,5)$. Therefore, a basis for the row space of \boldsymbol{A} is $(1,-4,2,5)$.
(c) Since $(1,3,-2)^{T}$ is the pivot column of \boldsymbol{A}, for the left nullspace, we have

$$
\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]=\mathbf{0}^{T} .
$$

Therefore, a basis for the left nullspace of \boldsymbol{A} can be given by

$$
(-3,1,0),(2,0,1) .
$$

8. (a) Since the permutation matrix \boldsymbol{P} does not change the order of the columns of \boldsymbol{A}, from \boldsymbol{U} we can find that the pivot columns of \boldsymbol{A} are the 1st, 3rd, and 5th columns. Hence a basis for the column space of \boldsymbol{A} can be given by

$$
\left[\begin{array}{l}
0 \\
2 \\
4 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
9 \\
5
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
4 \\
5
\end{array}\right] .
$$

(b) False. Form the 1st, 2nd, and 4th rows of \boldsymbol{L}, we can find that the 1st, 2nd, and 4th rows of $\boldsymbol{P} \boldsymbol{A}$ are linearly dependent. Form \boldsymbol{P}, we also know that the 1 st, 2 nd, and 4 th rows of $\boldsymbol{P} \boldsymbol{A}$ are equal to the 2 nd, 1st, and 3rd rows of \boldsymbol{A}, respectively. Therefore, rows $1,2,3$ of \boldsymbol{A} are linearly dependent.
(c) The nullspace of \boldsymbol{A} is equal to the nullspace of $\boldsymbol{P} \boldsymbol{A}$. From \boldsymbol{U}, we know that x_{1}, x_{3}, and x_{5} are pivot variables and x_{2} and x_{4} are free variables. Therefore, the general solution to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ can be given by

$$
x_{2}\left[\begin{array}{c}
1 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-7 \\
0 \\
3 \\
1 \\
0
\end{array}\right] .
$$

