Chi-chao Chao

EE 2030 Linear Algebra Spring 2013

> Midterm Examination No. 1 7:00pm to 10:00pm, March 29, 2013

Problems for Solution:

1. (a) (5%) Solve Ax = b by solving two triangular systems Lc = b and Ux = c:

$$\boldsymbol{A} = \boldsymbol{L}\boldsymbol{U} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

(b) (5%) Is **A** in (a) invertible? If yes, find the third column of its inverse.

2. (10%) Find the PA = LDU factorization for

$$\boldsymbol{A} = \begin{bmatrix} -1 & 1 & 0 & 0\\ 0 & 0 & 1 & -1\\ 2 & -3 & 2 & -2\\ -1 & 2 & -2 & 1 \end{bmatrix}$$

where P is a permutation matrix, L is a lower triangular matrix with unit diagonal, D is a diagonal matrix, and U is an upper triangular matrix with unit diagonal.

- 3. (15%) True or false. (If it is true, prove it. Otherwise, find a counterexample.)
 - (a) (5%) Let C be an n by n matrix. Then $(I + C)(I C^T)$ is a symmetric matrix, where I is the identity matrix.
 - (b) (5%) Let S and T be subspaces of a vector space V. Then $S \cap T$ is a subspace of V.
 - (c) (5%) Let $\boldsymbol{x}_1, \, \boldsymbol{x}_2$, and \boldsymbol{x}_3 be linearly independent vectors in \mathcal{R}^4 , where \mathcal{R} is the set of real numbers, and let \boldsymbol{A} be a nonsingular 4 by 4 matrix. If $\boldsymbol{y}_1 = \boldsymbol{A}\boldsymbol{x}_1$, $\boldsymbol{y}_2 = \boldsymbol{A}\boldsymbol{x}_2$, and $\boldsymbol{y}_3 = \boldsymbol{A}\boldsymbol{x}_3$, then $\boldsymbol{y}_1, \, \boldsymbol{y}_2$, and \boldsymbol{y}_3 are linearly independent.
- 4. (10%) Let M denote the vector space of all 3 by 2 real matrices. Is each of the following subsets of M actually a subspace? If yes, prove it and *find the dimension*. Otherwise, find a counterexample.
 - (a) (5%) All 3 by 2 matrices with full column rank.
 - (b) (5%) All 3 by 2 matrices with the sum of all 6 components in the matrix equal to zero.
- 5. (10%) Write down a matrix \boldsymbol{A} with the required property or explain why no such matrix exists.

(a) (5%) The only solution to $\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

(b) (5%) A 3 by 2 matrix \boldsymbol{A} for which $\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$ has no solution and $\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$ has exactly one solution.

6. (15%) Given the vectors

$$oldsymbol{x}_1 = egin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad oldsymbol{x}_2 = egin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$$
 $oldsymbol{x}_3 = egin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}, \quad oldsymbol{x}_4 = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$

- (a) (5%) Are $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3, \boldsymbol{x}_4$ linearly independent in \mathcal{R}^3 ? Explain.
- (b) (5%) Do $\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3$ span \mathcal{R}^3 ? Explain.
- (c) (5%) Do $\boldsymbol{x}_1, \, \boldsymbol{x}_2, \, \boldsymbol{x}_4$ form a basis for \mathcal{R}^3 ? Explain.
- 7. (a) (5%) Find column vectors \boldsymbol{u} and \boldsymbol{v} so that $\boldsymbol{A} = \boldsymbol{u}\boldsymbol{v}^T$:

$$\boldsymbol{A} = \begin{bmatrix} 1 & -4 & 2 & 5 \\ 3 & -12 & 6 & 15 \\ -2 & 8 & -4 & -10 \end{bmatrix}.$$

- (b) (5%) Find a basis for the row space of A.
- (c) (5%) Find a basis for the left nullspace of A.
- 8. (15%) Suppose the matrices in PA = LU are

[0]	1	0	0 -] [0	0	1	-3	2]	[1]	0	0	0	$\overline{2}$	-1	4	2	1]
1	0	0	0		2	-1	4	2	1		0	1	0	0	0	0	1	-3	2	
0	0	0	1		4	-2	9	1	4	=	1	1	1	0	0	0	0	0	2	
$\left[\begin{array}{c}0\\1\\0\\0\end{array}\right]$	0	1	0		2	-1	5	-1	5		$\lfloor 2$	1	0	1	0	0	0	0	0	

- (a) (5%) Find a basis for the column space of A.
- (b) (5%) *True or false:* Rows 1, 2, 3 of **A** are linearly independent. (You need to explain your result.)
- (c) (5%) Find the general solution to Ax = 0.