Midterm Examination No. 1

7:00pm to $10: 00 \mathrm{pm}$, March 29, 2013

Problems for Solution:

1. (a) (5\%) Solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ by solving two triangular systems $\boldsymbol{L} \boldsymbol{c}=\boldsymbol{b}$ and $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$:

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 4 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(b) (5%) Is \boldsymbol{A} in (a) invertible? If yes, find the third column of its inverse.
2. (10%) Find the $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}$ factorization for

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
2 & -3 & 2 & -2 \\
-1 & 2 & -2 & 1
\end{array}\right]
$$

where \boldsymbol{P} is a permutation matrix, \boldsymbol{L} is a lower triangular matrix with unit diagonal, \boldsymbol{D} is a diagonal matrix, and \boldsymbol{U} is an upper triangular matrix with unit diagonal.
3. (15\%) True or false. (If it is true, prove it. Otherwise, find a counterexample.)
(a) (5\%) Let \boldsymbol{C} be an n by n matrix. Then $(\boldsymbol{I}+\boldsymbol{C})\left(\boldsymbol{I}-\boldsymbol{C}^{T}\right)$ is a symmetric matrix, where \boldsymbol{I} is the identity matrix.
(b) (5\%) Let S and T be subspaces of a vector space V. Then $S \cap T$ is a subspace of V.
(c) (5\%) Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$, and \boldsymbol{x}_{3} be linearly independent vectors in \mathcal{R}^{4}, where \mathcal{R} is the set of real numbers, and let \boldsymbol{A} be a nonsingular 4 by 4 matrix. If $\boldsymbol{y}_{1}=\boldsymbol{A} \boldsymbol{x}_{1}$, $\boldsymbol{y}_{2}=\boldsymbol{A} \boldsymbol{x}_{2}$, and $\boldsymbol{y}_{3}=\boldsymbol{A} \boldsymbol{x}_{3}$, then $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$, and \boldsymbol{y}_{3} are linearly independent.
4. (10%) Let M denote the vector space of all 3 by 2 real matrices. Is each of the following subsets of M actually a subspace? If yes, prove it and find the dimension. Otherwise, find a counterexample.
(a) (5\%) All 3 by 2 matrices with full column rank.
(b) (5%) All 3 by 2 matrices with the sum of all 6 components in the matrix equal to zero.
5. (10\%) Write down a matrix \boldsymbol{A} with the required property or explain why no such matrix exists.
(a) (5%) The only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
(b) (5%) A 3 by 2 matrix \boldsymbol{A} for which $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ has no solution and $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ has exactly one solution.
6. (15\%) Given the vectors

$$
\begin{aligned}
& \boldsymbol{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \quad \boldsymbol{x}_{2}=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right] \\
& \boldsymbol{x}_{3}=\left[\begin{array}{l}
1 \\
5 \\
5
\end{array}\right], \quad \boldsymbol{x}_{4}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
\end{aligned}
$$

(a) (5%) Are $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}$ linearly independent in \mathcal{R}^{3} ? Explain.
(b) (5%) Do $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}$ span \mathcal{R}^{3} ? Explain.
(c) (5%) Do $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{4}$ form a basis for \mathcal{R}^{3} ? Explain.
7. (a) (5\%) Find column vectors \boldsymbol{u} and \boldsymbol{v} so that $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}$:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -4 & 2 & 5 \\
3 & -12 & 6 & 15 \\
-2 & 8 & -4 & -10
\end{array}\right]
$$

(b) (5%) Find a basis for the row space of \boldsymbol{A}.
(c) (5%) Find a basis for the left nullspace of \boldsymbol{A}.
8. (15\%) Suppose the matrices in $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ are

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & 1 & -3 & 2 \\
2 & -1 & 4 & 2 & 1 \\
4 & -2 & 9 & 1 & 4 \\
2 & -1 & 5 & -1 & 5
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
2 & -1 & 4 & 2 & 1 \\
0 & 0 & 1 & -3 & 2 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) (5\%) Find a basis for the column space of \boldsymbol{A}.
(b) (5\%) True or false: Rows 1, 2, 3 of \boldsymbol{A} are linearly independent. (You need to explain your result.)
(c) $\mathbf{(5 \%)}$ Find the general solution to $\boldsymbol{A x}=\mathbf{0}$.

