Solution to Final Examination

1. (a) False. Let $\boldsymbol{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2\end{array}\right]$. Consider

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=(1-\lambda)^{2}(2-\lambda)=0
$$

We can then obtain that the eigenvalues of \boldsymbol{A} are 1,1 , and 2 . For $\lambda=1$, its AM is 2. Since

$$
\boldsymbol{A}-1 \cdot \boldsymbol{I}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

the GM of eigenvalue 1 is 1 , which is smaller than its AM. Therefore, \boldsymbol{A} is not diagonalizable.
(b) Let

$$
\boldsymbol{B}=\frac{1}{2}\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right)=\left[\begin{array}{ccc}
-4 & -2 & 2 \\
-2 & -10 & -2 \\
2 & -2 & -5
\end{array}\right]
$$

which is a symmetric matrix. Then we can obtain $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{x}$. Hence $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{x}<0$ for every nonzero vector \boldsymbol{x} if and only if \boldsymbol{B} is negative definite, or equivalently,

$$
-\boldsymbol{B}=\left[\begin{array}{ccc}
4 & 2 & -2 \\
2 & 10 & 2 \\
-2 & 2 & 5
\end{array}\right]
$$

is positive definite. Since the upper left determinants of $-\boldsymbol{B}$ are $4,36,108$, which are all positive, $-\boldsymbol{B}$ is positive definite. As a result, $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}<0$ for every nonzero vector \boldsymbol{x}.
(c) True. Since

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{-1}} \\
& {\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right] \text { is similar to }\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right] .}
\end{aligned}
$$

(d) False. Let $p(x)=1$. Since

$$
\begin{aligned}
& T(c p(x))=T(c)=x^{2}+c \\
& c T(p(x))=c T(1)=c\left(x^{2}+1\right)=c x^{2}+c
\end{aligned}
$$

we have $T(c p(x)) \neq c T(p(x))$ as long as $c \neq 1$. Therefore, T is not linear.
(e) True. For every $\boldsymbol{b} \in \mathbb{R}^{m}$, we can have

$$
b=p+e
$$

where $\boldsymbol{p} \in \mathcal{C}(\boldsymbol{A})$ and $\boldsymbol{e} \in \mathcal{N}\left(\boldsymbol{A}^{T}\right)$. We can then have, for all $\boldsymbol{b} \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+} b & =\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+}(p+e) \\
& =\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{p}+\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+} e \\
& =\boldsymbol{A}^{+}(\boldsymbol{p})+\boldsymbol{A}^{+} \boldsymbol{A 0} \\
& =\boldsymbol{A}^{+} \boldsymbol{p} \\
& =A^{+}(p+e) \\
& =A^{+} b
\end{aligned}
$$

since $\boldsymbol{A} \boldsymbol{A}^{+}$is the projection matrix onto $\mathcal{C}(\boldsymbol{A})$ and $\boldsymbol{A}^{+} \boldsymbol{e}=\mathbf{0}$. Therefore, $\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{A}^{+}$.
2. (a) Consider

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\left|\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right|=\lambda^{2}+1=0
$$

Hence, the eigenvalues of \boldsymbol{A} are i and $-i$.
(b) Let λ be an eigenvalue of \boldsymbol{A} and \boldsymbol{x} be the corresponding unit eigenvector. Since \boldsymbol{A} is real, we can have

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & =\lambda \boldsymbol{x} \\
\Longrightarrow \quad \overline{\boldsymbol{A}} \overline{\boldsymbol{x}} & =\bar{\lambda} \overline{\boldsymbol{x}} \\
\Longrightarrow \quad \boldsymbol{A} \overline{\boldsymbol{x}} & =\bar{\lambda} \overline{\boldsymbol{x}} .
\end{aligned}
$$

Consider $\overline{\boldsymbol{x}}^{T} \boldsymbol{A} \boldsymbol{x}$. We can then have:
(i) $\overline{\boldsymbol{x}}^{T} \boldsymbol{A} \boldsymbol{x}=\overline{\boldsymbol{x}}^{T}(\lambda \boldsymbol{x})=\lambda \overline{\boldsymbol{x}}^{T} \boldsymbol{x}=\lambda\|\boldsymbol{x}\|^{2}=\lambda$
(ii) $\overline{\boldsymbol{x}}^{T} \boldsymbol{A} \boldsymbol{x}=\left(\boldsymbol{A}^{T} \overline{\boldsymbol{x}}\right)^{T} \boldsymbol{x}=(-\boldsymbol{A} \overline{\boldsymbol{x}})^{T} \boldsymbol{x}=(-\bar{\lambda} \overline{\boldsymbol{x}})^{T} \boldsymbol{x}=-\bar{\lambda} \overline{\boldsymbol{x}}^{T} \boldsymbol{x}=-\bar{\lambda}\|\boldsymbol{x}\|^{2}$

$$
=-\bar{\lambda}
$$

Hence, we can obtain $\lambda=-\bar{\lambda}$, which means that λ is pure imaginary.
(c) We can have

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right)^{T}=\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{x}=\boldsymbol{x}^{T}(-\boldsymbol{A}) \boldsymbol{x}=-\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} .
$$

Hence, $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=0$ for every real vector \boldsymbol{x}.
3. Let $\boldsymbol{A}=\left[\begin{array}{ll}0.4 & 0.2 \\ 0.6 & 0.8\end{array}\right]$. Since the eigenvalues of \boldsymbol{A} are 1, 0.2 , and $\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are their corresponding eigenvectors, respectively, we can have

$$
\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}
$$

where

$$
\boldsymbol{S}=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Lambda}=\left[\begin{array}{cc}
1 & 0 \\
0 & 0.2
\end{array}\right] .
$$

Hence, we can have

$$
\begin{aligned}
& \boldsymbol{A}^{k}=\boldsymbol{S} \boldsymbol{\Lambda}^{k} \boldsymbol{S}^{-1}=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
1^{k} & 0 \\
0 & 0.2^{k}
\end{array}\right]\left[\begin{array}{cc}
1 / 4 & 1 / 4 \\
3 / 4 & -1 / 4
\end{array}\right] \\
\Longrightarrow & \lim _{k \rightarrow \infty} \boldsymbol{A}^{k}=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / 4 & 1 / 4 \\
3 / 4 & -1 / 4
\end{array}\right]=\left[\begin{array}{ll}
1 / 4 & 1 / 4 \\
3 / 4 & 3 / 4
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \boldsymbol{A}^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / 4 \\
3 / 4
\end{array}\right] \\
& \lim _{k \rightarrow \infty} \boldsymbol{A}^{k}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 4 \\
3 / 4
\end{array}\right] .
\end{aligned}
$$

4. Let

$$
\boldsymbol{B}=\frac{1}{2}\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right)=\frac{1}{2}\left(\left[\begin{array}{cc}
2 & 5 \\
-7 & 2
\end{array}\right]+\left[\begin{array}{cc}
2 & -7 \\
5 & 2
\end{array}\right]\right)=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

which is a symmetric matrix, and $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{x}$. The eigenvalues of \boldsymbol{B} can be found as:

$$
\begin{aligned}
& \operatorname{det}(\boldsymbol{B}-\lambda \boldsymbol{I})=\left|\begin{array}{cc}
2-\lambda & -1 \\
-1 & 2-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+3=0 \\
\Longrightarrow & \lambda=1 \text { or } 3 .
\end{aligned}
$$

From class, we can have

$$
\lambda_{\min } \leq R(\boldsymbol{x})=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}=\frac{\boldsymbol{x}^{T} \boldsymbol{B} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}} \leq \lambda_{\max }
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are the minimum and maximum eigenvalues of \boldsymbol{B}, respectively. Since $\lambda_{\text {mmin }}=1$, we have

$$
\min _{\boldsymbol{x} \neq \mathbf{0}} R(\boldsymbol{x})=1 .
$$

Besides, \boldsymbol{x} achieves $\min _{\boldsymbol{x} \neq \mathbf{0}} R(\boldsymbol{x})$ if \boldsymbol{x} belongs to the eigenspace corresponding to $\lambda_{\text {min }}$. Since

$$
\boldsymbol{B}-\lambda_{\min } \boldsymbol{I}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

we can choose $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ or any nonzero scalar multiple of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
5. (a) We have $\gamma=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$, where

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Let $\beta=\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}, \boldsymbol{V}_{4}\right\}$, where

$$
\boldsymbol{V}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad \boldsymbol{V}_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Since

$$
\begin{aligned}
& T\left(\boldsymbol{V}_{1}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1 \cdot \boldsymbol{e}_{1}+0 \cdot \boldsymbol{e}_{2} \\
& T\left(\boldsymbol{V}_{2}\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]=3 \cdot \boldsymbol{e}_{1}+0 \cdot \boldsymbol{e}_{2} \\
& T\left(\boldsymbol{V}_{3}\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 \cdot \boldsymbol{e}_{1}+1 \cdot \boldsymbol{e}_{2} \\
& T\left(\boldsymbol{V}_{4}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]=0 \cdot \boldsymbol{e}_{1}+3 \cdot \boldsymbol{e}_{2}
\end{aligned}
$$

we can have

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

(b) From (a), we can find that $\left\{\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -3 \\ 1\end{array}\right]\right\}$ forms a basis for $\mathcal{N}\left([T]_{\beta}^{\gamma}\right)$.

Therefore, the kernel of T is given by the span of $-3 \boldsymbol{V}_{1}+\boldsymbol{V}_{2}$ and $-3 \boldsymbol{V}_{3}+\boldsymbol{V}_{4}$.
(c) Let $\omega=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$, where

$$
\boldsymbol{w}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \boldsymbol{w}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Since

$$
\begin{aligned}
& T\left(\boldsymbol{V}_{1}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2 \cdot \boldsymbol{w}_{1}+(-1) \cdot \boldsymbol{w}_{2} \\
& T\left(\boldsymbol{V}_{2}\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]=6 \cdot \boldsymbol{w}_{1}+(-3) \cdot \boldsymbol{w}_{2} \\
& T\left(\boldsymbol{V}_{3}\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=(-1) \cdot \boldsymbol{w}_{1}+1 \cdot \boldsymbol{w}_{2} \\
& T\left(\boldsymbol{V}_{4}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]=(-3) \cdot \boldsymbol{w}_{1}+3 \cdot \boldsymbol{w}_{2}
\end{aligned}
$$

we can have

$$
[T]_{\beta}^{\omega}=\left[\begin{array}{cccc}
2 & 6 & -1 & -3 \\
-1 & -3 & 1 & 3
\end{array}\right]
$$

6. (a) Perform the singular value decomposition, and we can have

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\left[\begin{array}{ccc}
-\sqrt{6} / 6 & -\sqrt{2} / 2 & \sqrt{3} / 3 \\
\sqrt{6} / 3 & 0 & \sqrt{3} / 3 \\
-\sqrt{6} / 6 & \sqrt{2} / 2 & \sqrt{3} / 3
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]
$$

(b) Since there are 2 nonzero singular values of \boldsymbol{A}, the rank of \boldsymbol{A} is 2 . The dimension of the column space of \boldsymbol{A} is 2 , and an orthonormal basis for the column space of \boldsymbol{A} can be obtained as the first two columns of \boldsymbol{U}, i.e.,

$$
\left[\begin{array}{c}
-\sqrt{6} / 6 \\
\sqrt{6} / 3 \\
-\sqrt{6} / 6
\end{array}\right],\left[\begin{array}{c}
-\sqrt{2} / 2 \\
0 \\
\sqrt{2} / 2
\end{array}\right]
$$

(c) Since \boldsymbol{A} has full column rank, there is a left inverse for \boldsymbol{A}. We can have

$$
\boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{I}
$$

and hence the pseudoinverse

$$
\begin{aligned}
\boldsymbol{A}^{+} & =\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T} \\
& =\left[\begin{array}{ccc}
-2 / 3 & 1 / 3 & 1 / 3 \\
-1 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
\end{aligned}
$$

is a left inverse for \boldsymbol{A}.
(d) The shortest least squares solution is

$$
\boldsymbol{A}^{+} \boldsymbol{b}=\left[\begin{array}{c}
1 / 3 \\
-1 / 3
\end{array}\right]
$$

(e) We can have

$$
\boldsymbol{x}_{r}=\boldsymbol{A}^{+} \boldsymbol{b}=\left[\begin{array}{c}
1 / 3 \\
-1 / 3
\end{array}\right] .
$$

