Final Examination

7:00pm to 10:00pm, June 14, 2013

Problems for Solution:

1. (25\%) True or false. (If it is true, prove it. Otherwise, show why it is not or find a counterexample.)
(a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2\end{array}\right]$ is diagonalizable.
(b) $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}<0$ for every nonzero vector \boldsymbol{x}, where $\boldsymbol{A}=\left[\begin{array}{ccc}-4 & 5 & 10 \\ -9 & -10 & -7 \\ -6 & 3 & -5\end{array}\right]$ and $\boldsymbol{x}=$ $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.
(c) $\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]$ is similar to $\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]$.
(d) The transformation $T: P_{3} \rightarrow P_{3}$ defined by $T(p(x))=x^{2}+p(x)$ is linear, where P_{3} is the vector space of all real-coefficient polynomials of degree at most 3, i.e., $P_{3}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}: a_{0}, a_{1}, a_{2}, a_{3} \in \mathcal{R}\right\}$.
(e) $\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{A}^{+}$, where \boldsymbol{A} is an m by n matrix and \boldsymbol{A}^{+}is its pseudoinverse.
2. (15%)
(a) Find the eigenvalues of $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
(b) A real matrix \boldsymbol{A} is called skew-symmetric if $\boldsymbol{A}^{T}=-\boldsymbol{A}$. Show that the eigenvalues of a skew-symmetric matrix are pure imaginary.
(c) If \boldsymbol{A} is skew-symmetric, show that the quadratic form $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=0$ for every real vector \boldsymbol{x}.
3. (10%) Find the limits as $k \rightarrow \infty$ of

$$
\left[\begin{array}{cc}
0.4 & 0.2 \\
0.6 & 0.8
\end{array}\right]^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{cc}
0.4 & 0.2 \\
0.6 & 0.8
\end{array}\right]^{k}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

4. (10%) Given

$$
\boldsymbol{A}=\left[\begin{array}{cc}
2 & 5 \\
-7 & 2
\end{array}\right]
$$

define for every nonzero vector \boldsymbol{x},

$$
R(\boldsymbol{x})=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}
$$

where

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Find the minimum of $R(\boldsymbol{x})$, i.e., $\min _{\boldsymbol{x} \neq \mathbf{0}} R(\boldsymbol{x})$, and a vector \boldsymbol{x} that achieves the minimum.
5. (15%) Let $M_{2 \times 2}$ be the vector space of of all 2 by 2 real matrices and \mathcal{R} be the set of real numbers. The linear transformation $T: M_{2 \times 2} \rightarrow \mathcal{R}^{2}$ is defined by

$$
T(\boldsymbol{A})=\boldsymbol{A} \boldsymbol{v}
$$

where $\boldsymbol{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
(a) Let $\beta=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$, which is a basis for $M_{2 \times 2}$. Also let γ be the standard basis for \mathcal{R}^{2}. Find the matrix representation $[T]_{\beta}^{\gamma}$.
(b) Find the kernel of T.
(c) Let $\omega=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$, which is a basis for \mathcal{R}^{2}. Find the matrix representation $[T]_{\beta}^{\omega}$.
6. (25\%) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{cc}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{array}\right]
$$

(a) Find the singular value decomposition of \boldsymbol{A}.
(b) Find an orthonormal basis for the column space of \boldsymbol{A}.
(c) Is there a left inverse for \boldsymbol{A} ? If yes, find one.
(d) Find the shortest leat squares solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { and } \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] .
$$

(e) Given \boldsymbol{b} in (d), there exist \boldsymbol{p} in the column space of \boldsymbol{A} and \boldsymbol{e} in the left nullspace of \boldsymbol{A} such that $\boldsymbol{b}=\boldsymbol{p}+\boldsymbol{e}$. Find the vector \boldsymbol{x}_{r} in the row space of \boldsymbol{A} such that $\boldsymbol{A} \boldsymbol{x}_{r}=\boldsymbol{p}$.

