Solution to Midterm Examination No. 2

1. (a) We have the projection matrix onto the column space of \boldsymbol{A}^{T} as

$$
\begin{aligned}
\boldsymbol{P} & =\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{-1} \boldsymbol{A} \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right] .
\end{aligned}
$$

(b) The orthogonal complement of $\mathcal{C}\left(\boldsymbol{A}^{T}\right)$ is $\mathcal{N}(\boldsymbol{A})$. Since the RRE form of \boldsymbol{A} is

$$
\boldsymbol{R}_{A}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

we can obtain that $(-1,0,1)^{T}$ is a basis for $\mathcal{N}(\boldsymbol{A})$. As a result, we can have

$$
\mathcal{N}(\boldsymbol{A})=\left\{\boldsymbol{x}: \boldsymbol{x}=x_{3}(-1,0,1)^{T}, \forall x_{3} \in \mathcal{R}\right\}
$$

(c) From the projection matrix \boldsymbol{P} derived in (a), we can have

$$
\boldsymbol{x}_{r}=\boldsymbol{P} \boldsymbol{x}=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right] .
$$

And hence

$$
\boldsymbol{x}_{n}=\boldsymbol{x}-\boldsymbol{x}_{r}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

(d) We have

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 3
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 1 & 3 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

A particular solution \boldsymbol{x}_{p} to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ can be given by

$$
\boldsymbol{x}_{p}=\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right] .
$$

Then

$$
\begin{aligned}
\boldsymbol{x}_{r} & =\boldsymbol{P} \boldsymbol{x}_{p} \\
& =\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 / 2 \\
-1 \\
3 / 2
\end{array}\right] .
\end{aligned}
$$

2. (a) Since $\boldsymbol{x} \in V \oplus W$, we can have $\boldsymbol{x}=\boldsymbol{v}_{1}+\boldsymbol{w}_{1}$ where $\boldsymbol{v}_{1} \in V$ and $\boldsymbol{w}_{1} \in W$. Suppose there also exist $\boldsymbol{v}_{2} \in V$ and $\boldsymbol{w}_{2} \in W$ such that $\boldsymbol{x}=\boldsymbol{v}_{2}+\boldsymbol{w}_{2}$. Then we can obtain

$$
\begin{aligned}
& \boldsymbol{x}=\boldsymbol{v}_{1}+\boldsymbol{w}_{1}=\boldsymbol{v}_{2}+\boldsymbol{w}_{2} \\
\Longrightarrow \quad & \boldsymbol{v}_{1}-\boldsymbol{v}_{2}=\boldsymbol{w}_{2}-\boldsymbol{w}_{1} .
\end{aligned}
$$

As $\boldsymbol{v}_{1}-\boldsymbol{v}_{2} \in V, \boldsymbol{w}_{2}-\boldsymbol{w}_{1} \in W$, and $V \cap W=\{\mathbf{0}\}$, we have $\boldsymbol{v}_{1}-\boldsymbol{v}_{2}=$ $\boldsymbol{w}_{2}-\boldsymbol{w}_{1}=\mathbf{0}$. Therefore, $\boldsymbol{v}_{1}=\boldsymbol{v}_{2}$ and $\boldsymbol{w}_{1}=\boldsymbol{w}_{2}$.
(b) Since $(1,1,1)$ and $(1,0,1)$ are linearly independent and span V, we have $\operatorname{dim}(V)=2$. Given $V \cap W=\{\mathbf{0}\}$, we have $\operatorname{dim}(V \oplus W)=\operatorname{dim}(V)+\operatorname{dim}(W)$. Hence $\operatorname{dim}(W)=\operatorname{dim}(V \oplus W)-\operatorname{dim}(V)=\operatorname{dim}\left(\mathcal{R}^{3}\right)-\operatorname{dim}(V)=3-2=1$. Let $\boldsymbol{w}=\left(w_{1}, w_{2}, w_{3}\right)$ be a basis for W, and it must be independent of $(1,0,1)$ and ($1,1,1$). Let

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 1 \\
w_{1} & w_{2} & w_{3}
\end{array}\right]
$$

Then the RRE form for \boldsymbol{A} can be found as

$$
\boldsymbol{R}_{A}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & w_{3}-w_{1}
\end{array}\right]
$$

For the three rows of \boldsymbol{A} to be independent, \boldsymbol{R}_{A} should have full rank, which implies $w_{3}-w_{1} \neq 0$. An example for \boldsymbol{w} can be given as $\boldsymbol{w}=(1,0,0)$, and W is the subspace spanned by \boldsymbol{w}.
3. (a) Let $\boldsymbol{Q}=\left[\begin{array}{lll}\boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \boldsymbol{q}_{3}\end{array}\right]$ where

$$
\boldsymbol{q}_{1}=\left[\begin{array}{l}
1 / 5 \\
2 / 5 \\
2 / 5 \\
4 / 5
\end{array}\right], \quad \boldsymbol{q}_{2}=\left[\begin{array}{c}
-2 / 5 \\
1 / 5 \\
-4 / 5 \\
2 / 5
\end{array}\right], \quad \boldsymbol{q}_{3}=\left[\begin{array}{c}
-4 / 5 \\
2 / 5 \\
2 / 5 \\
-1 / 5
\end{array}\right]
$$

Note that \boldsymbol{Q} has orthonormal columns. If $a \neq 0,\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right\}$ forms an orthonormal basis for $\mathcal{C}(\boldsymbol{A})$. If $a=0$, then $\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$ can do the job.
(b) If $a=0$, then $\mathcal{C}(\boldsymbol{A})$ is spanned by \boldsymbol{q}_{1} and \boldsymbol{q}_{2} only, i.e., rank $=2$
(c) The least squares solution satisfies $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$. We can then have

$$
\begin{aligned}
& \boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b} \\
\Rightarrow & (\boldsymbol{Q} \boldsymbol{R})^{T}(\boldsymbol{Q R}) \hat{\boldsymbol{x}}=(\boldsymbol{Q R})^{T} \boldsymbol{b} \\
\Rightarrow & \boldsymbol{R}^{T} \boldsymbol{Q}^{T} \boldsymbol{Q} \boldsymbol{R} \hat{\boldsymbol{x}}=\boldsymbol{R}^{T} \boldsymbol{Q}^{T} \boldsymbol{b} \\
\Rightarrow & \boldsymbol{R}^{T} \boldsymbol{R} \hat{\boldsymbol{x}}=\boldsymbol{R}^{T} \boldsymbol{Q}^{T} \boldsymbol{b} \\
\Rightarrow & \left(\boldsymbol{R}^{T}\right)^{-1} \boldsymbol{R}^{T} \boldsymbol{R} \hat{\boldsymbol{x}}=\left(\boldsymbol{R}^{T}\right)^{-1} \boldsymbol{R}^{T} \boldsymbol{Q}^{T} \boldsymbol{b} \\
\Rightarrow & \boldsymbol{R} \hat{\boldsymbol{x}}=\boldsymbol{Q}^{T} \boldsymbol{b} \\
\Rightarrow & \left(\because \boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}\right) \\
\Rightarrow & {\left[\begin{array}{ccc}
5 & -2 & 1 \\
0 & 4 & -1 \\
0 & 0 & 2
\end{array}\right] \hat{\boldsymbol{x}}=\left[\begin{array}{cccc}
1 / 5 & 2 / 5 & 2 / 5 & 4 / 5 \\
-2 / 5 & 1 / 5 & -4 / 5 & 2 / 5 \\
-4 / 5 & 2 / 5 & 2 / 5 & -1 / 5
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] } \\
\Rightarrow & \hat{\boldsymbol{x}}=\left[\begin{array}{c}
-2 / 5 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

4. (a) Let $f_{1}(x)=1, f_{2}(x)=x$, and $f_{3}(x)=x^{2}$. By the Gram-Schmidt process, we can have:
(i) $F_{1}(x)=f_{1}(x)=1, \quad\left\|F_{1}(x)\right\|^{2}=\left\langle F_{1}(x), F_{1}(x)\right\rangle=2$

$$
\Longrightarrow q_{1}(x)=\frac{F_{1}(x)}{\left\|F_{1}(x)\right\|}=\frac{1}{\sqrt{2}} .
$$

(ii) $F_{2}(x)=f_{2}(x)-\left\langle q_{1}(x), f_{2}(x)\right\rangle q_{1}(x)=x, \quad\left\|F_{2}(x)\right\|^{2}=\frac{2}{3}$

$$
\Longrightarrow q_{2}(x)=\frac{F_{2}(x)}{\left\|F_{2}(x)\right\|}=\sqrt{\frac{3}{2}} x .
$$

(iii) $F_{3}(x)=f_{3}(x)-\left\langle q_{1}(x), f_{3}(x)\right\rangle q_{1}(x)-\left\langle q_{2}(x), f_{3}(x)\right\rangle q_{2}(x)=x^{2}-\frac{1}{3}$

$$
\left\|F_{3}(x)\right\|^{2}=\frac{8}{45} \quad \Longrightarrow q_{3}(x)=\frac{F_{3}(x)}{\left\|F_{3}(x)\right\|}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) .
$$

Hence $\left\{q_{1}(x), q_{2}(x), q_{3}(x)\right\}$ forms an orthonormal basis for the subspace spanned by $1, x$, and x^{2}.
(b) Since

$$
\begin{aligned}
\left\langle q_{1}(x), 2 x^{2}\right\rangle & =\frac{2 \sqrt{2}}{3} \\
\left\langle q_{2}(x), 2 x^{2}\right\rangle & =0 \\
\left\langle q_{3}(x), 2 x^{2}\right\rangle & =\frac{4 \sqrt{10}}{15}
\end{aligned}
$$

we can express $2 x^{2}$ as

$$
\begin{aligned}
2 x^{2} & =\left\langle q_{1}(x), 2 x^{2}\right\rangle q_{1}(x)+\left\langle q_{2}(x), 2 x^{2}\right\rangle q_{2}(x)+\left\langle q_{3}(x), 2 x^{2}\right\rangle q_{3}(x) \\
& =\frac{2 \sqrt{2}}{3} \cdot \frac{1}{\sqrt{2}}+\frac{4 \sqrt{10}}{15} \cdot \sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) .
\end{aligned}
$$

5. (a) Let

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 3 & 1 \\
1 & 1 & 4 & 1 & 1 \\
1 & 5 & 1 & 1 & 1
\end{array}\right]
$$

Subtracting row 1 from all the other rows, we can have

$$
\begin{aligned}
\operatorname{det} \boldsymbol{A} & =\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 3 & 1 \\
1 & 1 & 4 & 1 & 1 \\
1 & 5 & 1 & 1 & 1
\end{array}\right|=\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 4 & 0 & 0 & 0
\end{array}\right| \\
& =(-1)^{2} \cdot 1 \cdot 1 \cdot 2 \cdot 3 \cdot 4=24 .
\end{aligned}
$$

(b) Let

$$
\boldsymbol{B}=\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right]
$$

Since the sum of the five rows of \boldsymbol{B} is an all-zero row, we can have $\operatorname{det} \boldsymbol{B}=0$.
(c) Let

$$
\boldsymbol{C}=\left[\begin{array}{lllll}
3 & 1 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right]
$$

By the cofactor formula, we can have

$$
\begin{aligned}
\operatorname{det} \boldsymbol{C} & =\left|\begin{array}{lllll}
3 & 1 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right|=3\left|\begin{array}{llll}
3 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 3
\end{array}\right|-1\left|\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 3
\end{array}\right| \\
& =3\left\{\left|\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right|-\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 3 & 1 \\
0 & 1 & 3
\end{array}\right|\right\}-\left|\begin{array}{ccc}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right| \\
& =8\left|\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right|-3\left|\begin{array}{ccc}
1 & 1 & 0 \\
0 & 3 & 1 \\
0 & 1 & 3
\end{array}\right| \\
& =8\left\{\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\left|-\left|\begin{array}{cc}
1 & 1 \\
0 & 3
\end{array}\right|\right\}-3 \cdot\left|\begin{array}{cc}
3 & 1 \\
1 & 3
\end{array}\right|\right. \\
& =21\left|\begin{array}{cc}
3 & 1 \\
1 & 3
\end{array}\right|-8\left|\begin{array}{cc}
1 & 1 \\
0 & 3
\end{array}\right|=21(3 \cdot 3-1 \cdot 1)-8(1 \cdot 3)=144 .
\end{aligned}
$$

6. (a) False.

Let $\boldsymbol{A}=\boldsymbol{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then $\operatorname{det} \boldsymbol{A}=\operatorname{det} \boldsymbol{B}=1$ and $\operatorname{det}(\boldsymbol{A}+\boldsymbol{B})=4$.
Therefore, $\operatorname{det}(\boldsymbol{A}+\boldsymbol{B}) \neq \operatorname{det} \boldsymbol{A}+\operatorname{det} \boldsymbol{B}$.
(b) True.

Since the entries of \boldsymbol{A} and \boldsymbol{A}^{-1} are all integers, both $\operatorname{det} \boldsymbol{A}$ and $\operatorname{det} \boldsymbol{A}^{-1}$ are integers by the big formula. Also because $\operatorname{det} \boldsymbol{A} \cdot \operatorname{det} \boldsymbol{A}^{-1}=\operatorname{det} \boldsymbol{I}=1$, both $\operatorname{det} \boldsymbol{A}$ and $\operatorname{det} \boldsymbol{A}^{-1}$ should be 1 or -1 .
(c) True.

We can have

$$
\left(\boldsymbol{A}^{-1}\right)_{i j}=\frac{C_{j i}}{\operatorname{det} \boldsymbol{A}}
$$

where $C_{i j}=(-1)^{i+j} \operatorname{det} \boldsymbol{M}_{i j}$ and $\boldsymbol{M}_{i j}$ is the $(n-1) \times(n-1)$ submatrix of \boldsymbol{A} with row i and column j removed. Since all the entries of \boldsymbol{A} are integers, $\operatorname{det} \boldsymbol{M}_{i j}$ is an integer, and so is $C_{i j}$. Now because $\operatorname{det} \boldsymbol{A}$ is 1 or $-1,\left(\boldsymbol{A}^{-1}\right)_{i j}$ is always an integer.
(d) True.

Since $\boldsymbol{A}^{k}=\boldsymbol{O}$ for some positive interger k, we have $\operatorname{det}\left(\boldsymbol{A}^{k}\right)=(\operatorname{det} \boldsymbol{A})^{k}=0$. It implies $\operatorname{det} \boldsymbol{A}=0$, and thus \boldsymbol{A} is singular.
7. (a) Applying the cofactor formula to the first row, we can have

$$
\begin{aligned}
\operatorname{det} \boldsymbol{A}_{4} & =3\left|\begin{array}{lll}
3 & 0 & 0 \\
2 & 3 & 0 \\
0 & 2 & 3
\end{array}\right|-2\left|\begin{array}{lll}
2 & 3 & 0 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right| \\
& =3^{4}-2^{4}=65 .
\end{aligned}
$$

(b) Applying the cofactor formula to the first row, we can obtain the determinant as a combination of the determinant of an $(n-1)$ by $(n-1)$ lower triangular matrix and that of an $(n-1)$ by $(n-1)$ upper triangular matrix:

$$
\begin{aligned}
\operatorname{det} \boldsymbol{A}_{n} & =\left|\begin{array}{cccccc}
3 & 0 & 0 & \cdots & 0 & 2 \\
2 & 3 & 0 & \cdots & \cdots & 0 \\
0 & 2 & 3 & \ddots & & \vdots \\
0 & 0 & 2 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 2 & 3
\end{array}\right| \\
& =3\left|\begin{array}{ccccc}
3 & 0 & 0 & \cdots & 0 \\
2 & 3 & 0 & \ddots & \vdots \\
0 & 2 & 3 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 2 & 3
\end{array}\right|+(-1)^{n+1} \cdot 2\left|\begin{array}{ccccc}
2 & 3 & 0 & \cdots & 0 \\
0 & 2 & 3 & \ddots & \vdots \\
0 & 0 & 2 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 3 \\
0 & \cdots & 0 & 0 & 2
\end{array}\right| \\
& =3^{n}+(-1)^{n+1} \cdot 2^{n} .
\end{aligned}
$$

