
EE 2030 Linear Algebra Spring 2012

Solution to Midterm Examination No. 2

1. (a) We have the projection matrix onto the column space of AT as

P = AT (AAT )−1A

=

 1 1
1 0
1 1

 [
1 1 1
1 0 1

]  1 1
1 0
1 1

 −1 [
1 1 1
1 0 1

]

=

 1/2 0 1/2
0 1 0
1/2 0 1/2

 .

(b) The orthogonal complement of C(AT ) is N (A). Since the RRE form of A is

RA =

[
1 0 1
0 1 0

]
we can obtain that (−1, 0, 1)T is a basis for N (A). As a result, we can have

N (A) = {x : x = x3(−1, 0, 1)T ,∀x3 ∈ R}.

(c) From the projection matrix P derived in (a), we can have

xr = Px =

 1/2 0 1/2
0 1 0
1/2 0 1/2

 1
2
3

 =

 2
2
2

 .

And hence

xn = x− xr =

 1
2
3

−

 2
2
2

 =

 −1
0
1

 .

(d) We have [
1 1 1 2
1 0 1 3

]
=⇒

[
1 0 1 3
0 1 0 −1

]
.

A particular solution xp to Ax = b can be given by

xp =

 3
−1
0

 .

Then

xr = Pxp

=

 1/2 0 1/2
0 1 0
1/2 0 1/2

 3
−1
0

 =

 3/2
−1
3/2

 .
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2. (a) Since x ∈ V ⊕ W , we can have x = v1 + w1 where v1 ∈ V and w1 ∈ W .
Suppose there also exist v2 ∈ V and w2 ∈ W such that x = v2 +w2. Then
we can obtain

x = v1 +w1 = v2 +w2

=⇒ v1 − v2 = w2 −w1.

As v1 − v2 ∈ V , w2 − w1 ∈ W , and V ∩ W = {0}, we have v1 − v2 =
w2 −w1 = 0. Therefore, v1 = v2 and w1 = w2.

(b) Since (1, 1, 1) and (1, 0, 1) are linearly independent and span V , we have
dim(V ) = 2. Given V ∩W = {0}, we have dim(V ⊕W ) = dim(V )+dim(W ).
Hence dim(W ) = dim(V ⊕W )− dim(V ) = dim(R3)− dim(V ) = 3− 2 = 1.
Let w = (w1, w2, w3) be a basis for W , and it must be independent of (1, 0, 1)
and (1, 1, 1). Let

A =

 1 0 1
1 1 1
w1 w2 w3

 .

Then the RRE form for A can be found as

RA =

 1 0 1
0 1 0
0 0 w3 − w1

 .

For the three rows of A to be independent, RA should have full rank, which
implies w3 −w1 ̸= 0. An example for w can be given as w = (1, 0, 0), and W
is the subspace spanned by w.

3. (a) Let Q = [q1 q2 q3] where

q1 =


1/5
2/5
2/5
4/5

 , q2 =


−2/5
1/5
−4/5
2/5

 , q3 =


−4/5
2/5
2/5
−1/5

 .

Note that Q has orthonormal columns. If a ̸= 0, {q1, q2, q3} forms an or-
thonormal basis for C (A). If a = 0, then {q1, q2} can do the job.

(b) If a = 0, then C (A) is spanned by q1 and q2 only, i.e., rank = 2
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(c) The least squares solution satisfies ATAx̂ = ATb. We can then have

ATAx̂ = ATb

⇒ (QR)T (QR)x̂ = (QR)Tb

⇒ RTQTQRx̂ = RTQTb

⇒ RTRx̂ = RTQTb (∵ QTQ = I)

⇒ (RT )−1RTRx̂ = (RT )−1RTQTb (∵ For a = 2, RT is invertible.)

⇒ Rx̂ = QTb

⇒

 5 −2 1
0 4 −1
0 0 2

 x̂ =

 1/5 2/5 2/5 4/5
−2/5 1/5 −4/5 2/5
−4/5 2/5 2/5 −1/5




−1
1
1
−2

 =

 −1
−1
2



⇒ x̂ =

 −2/5
0
1

 .

4. (a) Let f1(x) = 1, f2(x) = x, and f3(x) = x2. By the Gram-Schmidt process, we
can have:

(i) F1(x) = f1(x) = 1, ∥ F1(x) ∥2= ⟨F1(x), F1(x)⟩ = 2

=⇒ q1(x) =
F1(x)

∥ F1(x) ∥
=

1√
2
.

(ii) F2(x) = f2(x)− ⟨q1(x), f2(x)⟩q1(x) = x, ∥ F2(x) ∥2=
2

3

=⇒ q2(x) =
F2(x)

∥ F2(x) ∥
=

√
3

2
x.

(iii) F3(x) = f3(x)− ⟨q1(x), f3(x)⟩q1(x)− ⟨q2(x), f3(x)⟩q2(x) = x2 − 1

3

∥ F3(x) ∥2=
8

45
=⇒ q3(x) =

F3(x)

∥ F3(x) ∥
=

√
45

8

(
x2 − 1

3

)
.

Hence {q1(x), q2(x), q3(x)} forms an orthonormal basis for the subspace spanned
by 1, x, and x2.

(b) Since

⟨q1(x), 2x2⟩ = 2
√
2

3
⟨q2(x), 2x2⟩ = 0

⟨q3(x), 2x2⟩ = 4
√
10

15

we can express 2x2 as

2x2 = ⟨q1(x), 2x2⟩q1(x) + ⟨q2(x), 2x2⟩q2(x) + ⟨q3(x), 2x2⟩q3(x)

=
2
√
2

3
· 1√

2
+

4
√
10

15
·
√

45

8

(
x2 − 1

3

)
.

3



5. (a) Let

A =


1 1 1 1 1
1 1 1 1 2
1 1 1 3 1
1 1 4 1 1
1 5 1 1 1

 .

Subtracting row 1 from all the other rows, we can have

detA =

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
1 1 1 1 2
1 1 1 3 1
1 1 4 1 1
1 5 1 1 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 1 1 1 1
0 0 0 0 1
0 0 0 2 0
0 0 3 0 0
0 4 0 0 0

∣∣∣∣∣∣∣∣∣∣
= (−1)2 · 1 · 1 · 2 · 3 · 4 = 24.

(b) Let

B =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

 .

Since the sum of the five rows of B is an all-zero row, we can have detB = 0.

(c) Let

C =


3 1 0 0 0
1 3 1 0 0
0 1 3 1 0
0 0 1 3 1
0 0 0 1 3

 .

By the cofactor formula, we can have

detC =

∣∣∣∣∣∣∣∣∣∣
3 1 0 0 0
1 3 1 0 0
0 1 3 1 0
0 0 1 3 1
0 0 0 1 3

∣∣∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣
3 1 0 0
1 3 1 0
0 1 3 1
0 0 1 3

∣∣∣∣∣∣∣∣− 1

∣∣∣∣∣∣∣∣
1 1 0 0
0 3 1 0
0 1 3 1
0 0 1 3

∣∣∣∣∣∣∣∣
= 3

3

∣∣∣∣∣∣
3 1 0
1 3 1
0 1 3

∣∣∣∣∣∣−
∣∣∣∣∣∣
1 1 0
0 3 1
0 1 3

∣∣∣∣∣∣
−

∣∣∣∣∣∣
3 1 0
1 3 1
0 1 3

∣∣∣∣∣∣
= 8

∣∣∣∣∣∣
3 1 0
1 3 1
0 1 3

∣∣∣∣∣∣− 3

∣∣∣∣∣∣
1 1 0
0 3 1
0 1 3

∣∣∣∣∣∣
= 8

{
3

∣∣∣∣ 3 1
1 3

∣∣∣∣− ∣∣∣∣ 1 1
0 3

∣∣∣∣}− 3 ·
∣∣∣∣ 3 1
1 3

∣∣∣∣
= 21

∣∣∣∣ 3 1
1 3

∣∣∣∣− 8

∣∣∣∣ 1 1
0 3

∣∣∣∣ = 21(3 · 3− 1 · 1)− 8(1 · 3) = 144.
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6. (a) False.

Let A = B =

[
1 0
0 1

]
. Then detA = detB = 1 and det(A + B) = 4.

Therefore, det(A+B) ̸= detA+ detB.

(b) True.
Since the entries of A and A−1 are all integers, both detA and detA−1 are
integers by the big formula. Also because detA · detA−1 = det I = 1, both
detA and detA−1 should be 1 or −1.

(c) True.
We can have

(A−1)ij =
Cji

detA

where Cij = (−1)i+j detM ij and M ij is the (n − 1) × (n − 1) submatrix of
A with row i and column j removed. Since all the entries of A are integers,
detM ij is an integer, and so is Cij. Now because detA is 1 or −1, (A−1)ij
is always an integer.

(d) True.
Since Ak = O for some positive interger k, we have det(Ak) = (detA)k = 0.
It implies detA = 0, and thus A is singular.

7. (a) Applying the cofactor formula to the first row, we can have

detA4 = 3

∣∣∣∣∣∣
3 0 0
2 3 0
0 2 3

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
2 3 0
0 2 3
0 0 2

∣∣∣∣∣∣
= 34 − 24 = 65.

(b) Applying the cofactor formula to the first row, we can obtain the determinant
as a combination of the determinant of an (n− 1) by (n− 1) lower triangular
matrix and that of an (n− 1) by (n− 1) upper triangular matrix:

detAn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 0 0 · · · 0 2
2 3 0 · · · · · · 0

0 2 3
. . .

...

0 0 2
. . . . . .

...
...

...
. . . . . . . . . 0

0 0 · · · 0 2 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 3

∣∣∣∣∣∣∣∣∣∣∣∣

3 0 0 · · · 0

2 3 0
. . .

...

0 2 3
. . . 0

...
. . . . . . . . . 0

0 · · · 0 2 3

∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)n+1 · 2

∣∣∣∣∣∣∣∣∣∣∣∣

2 3 0 · · · 0

0 2 3
. . .

...

0 0 2
. . . 0

...
. . . . . . . . . 3

0 · · · 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣
= 3n + (−1)n+1 · 2n.
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