Chi-chao Chao

EE 2030 Linear Algebra Spring 2012

Midterm Examination No. 2

7:00pm to 10:00pm, May 4, 2012

Problems for Solution:

1. (20%) Consider

$$\boldsymbol{A} = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right].$$

- (a) Find the projection matrix \boldsymbol{P} onto the row space of \boldsymbol{A} .
- (b) Find the orthogonal complement of the row space of A.
- (c) Given $\boldsymbol{x} = (1, 2, 3)$, split it into $\boldsymbol{x} = \boldsymbol{x}_r + \boldsymbol{x}_n$, where \boldsymbol{x}_r is in the row space of \boldsymbol{A} and \boldsymbol{x}_n is in the nullspace of \boldsymbol{A} .
- (d) Given

$$\boldsymbol{b} = \begin{bmatrix} 2\\3 \end{bmatrix}$$

in the column space of A, find a vector x_r in the row space of A such that

$$Ax_r = b$$

2. (10%) Suppose V and W are two subspaces of a given vector space. Recall that the sum of V and W is defined as

$$V+W = \{ \boldsymbol{v} + \boldsymbol{w} : \boldsymbol{v} \in V, \ \boldsymbol{w} \in W \}.$$

If $V \cap W = \{\mathbf{0}\}$, then V + W is called the *direct sum* of V and W, with the special notation $V \oplus W$.

- (a) Show that any vector \boldsymbol{x} in the direct sum $V \oplus W$ can be written in one and only one way as $\boldsymbol{x} = \boldsymbol{v} + \boldsymbol{w}$ with $\boldsymbol{v} \in V$ and $\boldsymbol{w} \in W$.
- (b) If V is spanned by (1, 1, 1) and (1, 0, 1), find a subspace W so that $V \oplus W = \mathbb{R}^3$.

3.
$$(15\%)$$
 Let

$$\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{R} = \begin{bmatrix} 1/5 & -2/5 & -4/5 \\ 2/5 & 1/5 & 2/5 \\ 2/5 & -4/5 & 2/5 \\ 4/5 & 2/5 & -1/5 \end{bmatrix} \begin{bmatrix} 5 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & a \end{bmatrix}.$$

- (a) Give an orthonormal basis for the column space of A.
- (b) For which values of a the rank of A is 2?

(c) Let a = 2. Solve Ax = b in the least squares sense for

$$\boldsymbol{b} = \begin{bmatrix} -1\\1\\1\\-2 \end{bmatrix}$$

4. (10%) Consider the vector space C[-1, 1], the space of all real-valued continuous functions on [-1, 1], with inner product defined by

$$\langle f,g\rangle = \int_{-1}^{1} f(x)g(x) \, dx.$$

- (a) Find an orthonormal basis for the subspace spanned by 1, x, and x^2 .
- (b) Express $2x^2$ as a linear combination of those orthonormal basis functions found in (a).
- 5. (15%) Find the determinants of

[1	1	1	1	1]	2	-1	0	0	-1^{-1}		3	1	0	0	0	
1	1	1	1	2		-1	2	-1	0	0		1	3	1	0	0	
1	1	1	3	1	,	0	-1	2	-1	0	,	0	1	3	1	0	.
1	1	4	1	1		0	0	-1	2	-1		0	0	1	3	1	
$\lfloor 1$	5	1	1	1		$\lfloor -1$	0	0	-1	2		0	0	0	1	3	

- 6. (20%) Let \boldsymbol{A} and \boldsymbol{B} be n by n real matrices. Is each of the following statements true or false? If it is true, prove it. Otherwise, find a counterexample.
 - (a) $\det(\mathbf{A} + \mathbf{B}) = \det \mathbf{A} + \det \mathbf{B}$.
 - (b) If the entries of A and A^{-1} are all integers, then both determinants are 1 or -1.
 - (c) If all the entries of A are integers, and det A is 1 or -1, then all the entries of A^{-1} are integers.
 - (d) If $A \neq O$, but $A^k = O$ (where O denotes the zero matrix) for some positive integer k, then A must be singular.
- 7. (10%) Suppose the *n* by *n* matrix A_n has 3's along its main diagonal and 2's along the diagonal below and the (1, n) position:

$$\boldsymbol{A}_4 = \begin{bmatrix} 3 & 0 & 0 & 2 \\ 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix}.$$

- (a) Find the determinant of A_4 . (*Hint:* By cofactors of row 1.)
- (b) Find the determinant of A_n for n > 4.