Midterm Examination No. 2

7:00pm to 10:00pm, May 4, 2012

Problems for Solution:

1. (20%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find the projection matrix \boldsymbol{P} onto the row space of \boldsymbol{A}.
(b) Find the orthogonal complement of the row space of \boldsymbol{A}.
(c) Given $\boldsymbol{x}=(1,2,3)$, split it into $\boldsymbol{x}=\boldsymbol{x}_{r}+\boldsymbol{x}_{n}$, where \boldsymbol{x}_{r} is in the row space of \boldsymbol{A} and \boldsymbol{x}_{n} is in the nullspace of \boldsymbol{A}.
(d) Given

$$
\boldsymbol{b}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

in the column space of \boldsymbol{A}, find a vector \boldsymbol{x}_{r} in the row space of \boldsymbol{A} such that

$$
\boldsymbol{A} \boldsymbol{x}_{r}=\boldsymbol{b}
$$

2. (10\%) Suppose V and W are two subspaces of a given vector space. Recall that the sum of V and W is defined as

$$
V+W=\{\boldsymbol{v}+\boldsymbol{w}: \boldsymbol{v} \in V, \boldsymbol{w} \in W\} .
$$

If $V \cap W=\{\mathbf{0}\}$, then $V+W$ is called the direct sum of V and W, with the special notation $V \oplus W$.
(a) Show that any vector \boldsymbol{x} in the direct sum $V \oplus W$ can be written in one and only one way as $\boldsymbol{x}=\boldsymbol{v}+\boldsymbol{w}$ with $\boldsymbol{v} \in V$ and $\boldsymbol{w} \in W$.
(b) If V is spanned by $(1,1,1)$ and $(1,0,1)$, find a subspace W so that $V \oplus W=\mathcal{R}^{3}$.
3. (15\%) Let

$$
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}=\left[\begin{array}{ccc}
1 / 5 & -2 / 5 & -4 / 5 \\
2 / 5 & 1 / 5 & 2 / 5 \\
2 / 5 & -4 / 5 & 2 / 5 \\
4 / 5 & 2 / 5 & -1 / 5
\end{array}\right]\left[\begin{array}{ccc}
5 & -2 & 1 \\
0 & 4 & -1 \\
0 & 0 & a
\end{array}\right]
$$

(a) Give an orthonormal basis for the column space of \boldsymbol{A}.
(b) For which values of a the rank of \boldsymbol{A} is 2?
(c) Let $a=2$. Solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ in the least squares sense for

$$
\boldsymbol{b}=\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-2
\end{array}\right]
$$

4. (10%) Consider the vector space $C[-1,1]$, the space of all real-valued continuous functions on $[-1,1]$, with inner product defined by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Find an orthonormal basis for the subspace spanned by $1, x$, and x^{2}.
(b) Express $2 x^{2}$ as a linear combination of those orthonormal basis functions found in (a).
5. (15\%) Find the determinants of

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 3 & 1 \\
1 & 1 & 4 & 1 & 1 \\
1 & 5 & 1 & 1 & 1
\end{array}\right], \quad\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right], \quad\left[\begin{array}{lllll}
3 & 1 & 0 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right] .
$$

6. (20\%) Let \boldsymbol{A} and \boldsymbol{B} be n by n real matrices. Is each of the following statements true or false? If it is true, prove it. Otherwise, find a counterexample.
(a) $\operatorname{det}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{det} \boldsymbol{A}+\operatorname{det} \boldsymbol{B}$.
(b) If the entries of \boldsymbol{A} and \boldsymbol{A}^{-1} are all integers, then both determinants are 1 or -1 .
(c) If all the entries of \boldsymbol{A} are integers, and $\operatorname{det} \boldsymbol{A}$ is 1 or -1 , then all the entries of \boldsymbol{A}^{-1} are integers.
(d) If $\boldsymbol{A} \neq \boldsymbol{O}$, but $\boldsymbol{A}^{k}=\boldsymbol{O}$ (where \boldsymbol{O} denotes the zero matrix) for some positive integer k, then \boldsymbol{A} must be singular.
7. (10\%) Suppose the n by n matrix \boldsymbol{A}_{n} has 3's along its main diagonal and 2's along the diagonal below and the $(1, n)$ position:

$$
\boldsymbol{A}_{4}=\left[\begin{array}{llll}
3 & 0 & 0 & 2 \\
2 & 3 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 2 & 3
\end{array}\right]
$$

(a) Find the determinant of \boldsymbol{A}_{4}. (Hint: By cofactors of row 1.)
(b) Find the determinant of \boldsymbol{A}_{n} for $n>4$.

