Solution to Midterm Examination No. 1

1. (a) Performing forward elimination, we can have

$$
\begin{aligned}
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4
\end{array}\right] & \stackrel{\underline{\boldsymbol{M}_{1}}}{ } \quad\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 3
\end{array}\right] \begin{array}{l}
\text { (subtract row 1) } \\
\text { (subtract row 1) } \\
\text { (subtract row 1) }
\end{array} \\
& \stackrel{\boldsymbol{M}_{2}}{ }\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \begin{array}{|l}
\text { (subtract row 2) } \\
\text { (subtract row 2) }
\end{array} \\
& \xrightarrow{\boldsymbol{M}_{3}}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]_{\text {(subtract row 3) }}
\end{aligned}
$$

where
$\boldsymbol{M}_{1}=\boldsymbol{E}_{41} \boldsymbol{E}_{31} \boldsymbol{E}_{21}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right], \boldsymbol{M}_{2}=\boldsymbol{E}_{42} \boldsymbol{E}_{32}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$,
and

$$
\boldsymbol{M}_{3}=\boldsymbol{E}_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

Since $\boldsymbol{M}_{3} \boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{A}=\boldsymbol{U}$, we have

$$
\boldsymbol{A}=\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \boldsymbol{M}_{3}^{-1} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{U}
$$

where

$$
\boldsymbol{U}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
\begin{aligned}
\boldsymbol{L} & =\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \boldsymbol{M}_{3}^{-1} \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

(b) From (a), there are 4 nonzero pivots and hence $\operatorname{rank}(\boldsymbol{A})=4$. Therefore, \boldsymbol{A} is invertible. Also from (a),

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U} \Longrightarrow \boldsymbol{A}^{-1}=\boldsymbol{U}^{-1} \boldsymbol{L}^{-1}
$$

Since

$$
M_{3} M_{2} M_{1} A=L^{-1} A=\boldsymbol{U}
$$

we have

$$
\begin{aligned}
\boldsymbol{L}^{-1} & =\boldsymbol{M}_{3} \boldsymbol{M}_{2} \boldsymbol{M}_{1} \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

We then use the Gauss-Jordan method to find \boldsymbol{U}^{-1} :

$$
\begin{aligned}
& {\left[\begin{array}{llll|llll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] } \\
& \Longrightarrow {\left[\begin{array}{llll|llll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] } \\
& \Longrightarrow {\left[\begin{array}{llll|llll}
1 & 1 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] } \\
& \Longrightarrow {\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{array}\right] } \\
& \boldsymbol{U}^{-1}=\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Finally, we can obtain

$$
\boldsymbol{A}^{-1}=\boldsymbol{U}^{-1} \boldsymbol{L}^{-1}=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

(c) From (a), we know that $\operatorname{rank}(\boldsymbol{A})=4$. Hence $\operatorname{dim}\left(\boldsymbol{C}\left(\boldsymbol{A}^{T}\right)\right)=4$.
(d) Since \boldsymbol{A} is invertible, the system is always solvable for all $b_{1}, b_{2}, b_{3}, b_{4} \in \mathcal{R}$.
(e) Since $\operatorname{rank}(\boldsymbol{A})=4$, we have the dimension of $\mathcal{N}\left(\boldsymbol{A}^{T}\right)$ is $4-4=0$. Therefore, the only vector in $\mathcal{N}\left(\boldsymbol{A}^{T}\right)$ is $\mathbf{0}$.
2. (a) True. Since

$$
(\boldsymbol{A} \boldsymbol{B} \boldsymbol{A})^{T}=\boldsymbol{A}^{T} \boldsymbol{B}^{T} \boldsymbol{A}^{T}=(-\boldsymbol{A})(-\boldsymbol{B})(-\boldsymbol{A})=-(\boldsymbol{A} \boldsymbol{B} \boldsymbol{A})
$$

$\boldsymbol{A} \boldsymbol{B} \boldsymbol{A}$ is also skew-symmetric.
(b) True. Suppose \boldsymbol{A} is m by n. Consider that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ always has at least one solution for every $\boldsymbol{b} \in \mathcal{R}^{m}$, and we have $\operatorname{rank}(\boldsymbol{A})=r=m \leq n$. Then $\operatorname{dim}\left(\boldsymbol{N}\left(\boldsymbol{A}^{T}\right)\right)=m-r=m-m=0$, and the only solution to $\boldsymbol{A}^{T} \boldsymbol{y}=\mathbf{0}$ is $\boldsymbol{y}=0$.
(c) False. Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

They are both singular matrices in M. Since

$$
\boldsymbol{A}+\boldsymbol{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

which is nonsigular, the singular matrices in M do not form a subspace of M.
(d) False. Consider $x_{1} \cdot(2,1,-1)+x_{2} \cdot(4,1,1)+x_{3} \cdot(2,-1,5)=(0,0,0)$. We have

$$
\left[\begin{array}{ccc|c}
2 & 4 & 2 & 0 \\
1 & 1 & -1 & 0 \\
-1 & 1 & 5 & 0
\end{array}\right]
$$

which by elimination can be reduced to

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & -1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence there exist nonzero solutions $\left(x_{1}, x_{2}, x_{3}\right)$, which implies that $(2,1,-1)$, $(4,1,1)$, and $(2,-1,5)$ are not linearly independent. Therefore, they do not form a basis for \mathcal{R}^{3}.
3. (a) Let

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

We can have $S=\mathcal{N}(\boldsymbol{A})$. The RRE form of \boldsymbol{A} can be given by

$$
\boldsymbol{A}^{\prime}=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

The free variables are x_{3} and x_{4}. Letting $\left(x_{3}, x_{4}\right)=(1,0)$, we have $\left(x_{1}, x_{2}\right)=$ $(1,-1)$. Letting $\left(x_{3}, x_{4}\right)=(0,1)$, we have $\left(x_{1}, x_{2}\right)=(0,-1)$. As a result, a basis for S can be given by

$$
(1,-1,1,0),(0,-1,0,1) .
$$

(b) Let

$$
\boldsymbol{B}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

We can have $T=\mathcal{N}(\boldsymbol{B})$. The free variables are x_{2}, x_{3}, and x_{4}. Letting $\left(x_{2}, x_{3}, x_{4}\right)=(1,0,0)$, we have $x_{1}=-1$. Letting $\left(x_{2}, x_{3}, x_{4}\right)=(0,1,0)$, we have $x_{1}=-1$. Letting $\left(x_{2}, x_{3}, x_{4}\right)=(0,0,1)$, we have $x_{1}=-1$. As a result, a basis for T can be given

$$
(-1,1,0,0),(-1,0,1,0),(-1,0,0,1)
$$

(c) Let

$$
\boldsymbol{C}=\left[\begin{array}{l}
\boldsymbol{A} \\
\boldsymbol{B}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

We can have

$$
\begin{aligned}
& S \cap T \\
= & \left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2}+x_{4}=0, x_{2}+x_{3}+x_{4}=0, x_{1}+x_{2}+x_{3}+x_{4}=0\right\} \\
= & \mathcal{N}(\boldsymbol{C})
\end{aligned}
$$

Since the RRE form of \boldsymbol{C} is

$$
\boldsymbol{C}^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

the rank of \boldsymbol{C}^{\prime} is 3 . Hence $\operatorname{dim}(S \cap T)=\operatorname{dim}\left(\mathcal{N}\left(\boldsymbol{C}^{\prime}\right)\right)=4-\operatorname{rank}\left(\boldsymbol{C}^{\prime}\right)=1$.
(d) Assume $\boldsymbol{u} \in S+T$. By the definition of $S+T$, we can have $\boldsymbol{u}=\boldsymbol{s}+\boldsymbol{t}$ where $\boldsymbol{s} \in S$ and $\boldsymbol{t} \in T$. Since we have found a basis for S and T in (a) and (b), respectively, we can express \boldsymbol{u} as

$$
\begin{aligned}
\boldsymbol{u}=\boldsymbol{s}+\boldsymbol{t}= & a_{1}(1,-1,1,0)+a_{2}(0,-1,0,1) \\
& +b_{1}(-1,1,0,0)+b_{2}(-1,0,1,0)+b_{3}(-1,0,0,1)
\end{aligned}
$$

where $a_{1}, a_{2}, b_{1}, b_{2}, b_{3} \in \mathcal{R}$. Since $(1,-1,1,0)$ is not a linear combination of $\{(-1,1,0,0),(-1,0,1,0),(-1,0,0,1)\}$, and $(0,-1,0,1)=-(-1,1,0,0)+$ $(-1,0,0,1), \boldsymbol{u}$ can be rewritten as

$$
\boldsymbol{u}=a_{1}^{\prime}(1,-1,1,0)+b_{1}^{\prime}(-1,1,0,0)+b_{2}^{\prime}(-1,0,1,0)+b_{3}^{\prime}(-1,0,0,1)
$$

where $a_{1}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime} \in \mathcal{R}$. Since $(1,-1,1,0),(-1,1,0,0),(-1,0,1,0)$, and $(-1,0,0,1)$ are linearly independent, they form a basis for $S+T$. As a result, the dimension of $S+T$ is 4 .
4. (a) Finding the coefficients x_{1}, x_{2} such that $x_{1} \cdot(1,1,2)+x_{2} \cdot(1,2,1)=0$ is equivalent to finding the solutions of the system

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

After elimination we can obtain

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

And thus the only solution is $\left(x_{1}, x_{2}\right)=(0,0)$, which means that the two vectors $(1,1,2)$ and $(1,2,1)$ are linearly independent.
(b) Since $1 \cdot\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right)+1 \cdot\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{3}\right)+1 \cdot\left(\boldsymbol{v}_{3}-\boldsymbol{v}_{1}\right)=\mathbf{0}$, we know that $\boldsymbol{v}_{1}-\boldsymbol{v}_{2}$, $\boldsymbol{v}_{2}-\boldsymbol{v}_{3}$, and $\boldsymbol{v}_{3}-\boldsymbol{v}_{1}$ are linearly dependent for any $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ in \mathcal{R}^{3}.
(c) Since there are 4 vectors in \mathcal{R}^{3}, they must be linearly dependent.
5. Consider the following augmented matrix and perform elimination:

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & 3 & 3 & 2 & b_{1} \\
2 & 6 & 9 & 5 & b_{2} \\
-1 & -3 & 3 & 0 & b_{3}
\end{array}\right] } \\
& \Longrightarrow {\left[\begin{array}{cccc|c}
1 & 3 & 3 & 2 & b_{1} \\
0 & 0 & 3 & 1 & b_{2}-2 b_{1} \\
-1 & -3 & 3 & 0 & b_{3}
\end{array}\right] } \\
& \Longrightarrow {\left[\begin{array}{cccc|c}
1 & 3 & 3 & 2 & b_{1} \\
0 & 0 & 3 & 1 & b_{2}-2 b_{1} \\
0 & 0 & 6 & 2 & b_{3}+b_{1}
\end{array}\right] } \\
& \Longrightarrow {\left[\begin{array}{llll|l}
1 & 3 & 3 & 2 & b_{1} \\
0 & 0 & 3 & 1 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{3}+5 b_{1}-2 b_{2}
\end{array}\right] } \\
& \Longrightarrow {\left[\begin{array}{llll|l}
1 & 3 & 0 & 1 & 3 b_{1}-b_{2} \\
0 & 0 & 3 & 1 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{3}+5 b_{1}-2 b_{2}
\end{array}\right] } \\
& \hline\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 3 b_{1}-b_{2} \\
0 & 0 & 1 & 1 / 3 & (1 / 3) \cdot\left(b_{2}-2 b_{1}\right) \\
0 & 0 & 0 & 0 & b_{3}+5 b_{1}-2 b_{2}
\end{array}\right] .
\end{aligned}
$$

From the last row, we have that the system is solvable if $b_{3}+5 b_{1}-2 b_{2}=0$, i.e.,

$$
b_{3}=2 b_{2}-5 b_{1}
$$

When the above condition holds, we need to solve

$$
\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 3 b_{1}-b_{2} \\
0 & 0 & 1 & 1 / 3 & (1 / 3) \cdot\left(b_{2}-2 b_{1}\right) \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The pivot variables are x_{1} and x_{3}, and we can obtain a particular solution

$$
\boldsymbol{x}_{p}=\left[\begin{array}{c}
3 b_{1}-b_{2} \\
0 \\
(1 / 3) \cdot\left(b_{2}-2 b_{1}\right) \\
0
\end{array}\right]
$$

Now we turn to find the nullspace solution \boldsymbol{x}_{n}. Note that x_{2}, x_{4} are free variables. For $\left(x_{2}, x_{4}\right)=(1,0)$, we have $\left(x_{1}, x_{3}\right)=(-3,0)$. For $\left(x_{2}, x_{4}\right)=(0,1)$, we have $\left(x_{1}, x_{3}\right)=(-1,-1 / 3)$. Therefore, the nullspace solution can be given by

$$
\boldsymbol{x}_{n}=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-1 / 3 \\
1
\end{array}\right]
$$

where $x_{2}, x_{4} \in \mathcal{R}$. Finally, the complete solution is

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{c}
3 b_{1}-b_{2} \\
0 \\
(1 / 3) \cdot\left(b_{2}-2 b_{1}\right) \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
0 \\
-1 / 3 \\
1
\end{array}\right]
$$

where $x_{2}, x_{4} \in \mathcal{R}$ if $b_{3}=2 b_{2}-5 b_{1}$.
6. (a) We can know that \boldsymbol{A} must be 3 by 4 . Since $\boldsymbol{x}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ -1\end{array}\right]$ is the only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$, the nullspace of \boldsymbol{A} must contain the zero vector only. Hence, the rank of \boldsymbol{A} should be 4. Yet as the number of rows of B is only 3, the rank of \boldsymbol{A} cannot be 4. Therefore, \boldsymbol{A} does not exist.
(b) We can find a desired matrix as follows:

$$
\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

It is clear that it is in the RRE form. The pivot variables are x_{1}, x_{2}, and x_{4}, and the free variable is x_{3}. Taking $x_{3}=1$, we can obtain a special solution as

$$
(2,3,1,0) .
$$

Therefore, the vector forms a basis for the nullspace of the above matrix.

