Midterm Examination No. 1

7:00pm to 10:00pm, March 30, 2012

Problems for Solution:

1. (25%) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

(a) Find the $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ factorization, where \boldsymbol{L} is a lower triangular matrix with unit diagonal and \boldsymbol{U} is an upper triangular matrix.
(b) Is \boldsymbol{A} invertible? If yes, find its inverse.
(c) What is the dimension of the row space of \boldsymbol{A} ?
(d) Under what condition on $b_{1}, b_{2}, b_{3}, b_{4}$ is the system

$$
\boldsymbol{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

solvable?
(e) Find all vectors in the left nullspace of \boldsymbol{A}.
2. (20\%) True or false. (If it is true, prove it. Otherwise, find a counterexample.)
(a) Suppose \boldsymbol{A} and \boldsymbol{B} are both n by n skew-symmetric matrices, i.e., $\boldsymbol{A}^{T}=-\boldsymbol{A}$ and $\boldsymbol{B}^{T}=-\boldsymbol{B}$. Then $\boldsymbol{A} \boldsymbol{B} \boldsymbol{A}$ is also skew-symmetric.
(b) Suppose \boldsymbol{A} is an m by n real matrix. If $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ always has at least one solution for every $\boldsymbol{b} \in \mathcal{R}^{m}$, then the only solution to $\boldsymbol{A}^{T} \boldsymbol{y}=\mathbf{0}$ is $\boldsymbol{y}=\mathbf{0}$.
(c) The singular matrices in M form a subspace of M, where M is the vector space of all real 2 by 2 matrices.
(d) The vectors $(2,1,-1),(4,1,1),(2,-1,5)$ form a basis for \mathcal{R}^{3}.
3. (20\%) Suppose S and T are two subspaces of \mathcal{R}^{4} given by

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2}+x_{4}=0, x_{2}+x_{3}+x_{4}=0\right\}
$$

and

$$
T=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+x_{2}+x_{3}+x_{4}=0\right\} .
$$

Consider the intersection $S \cap T$ and the sum $S+T$, where

$$
S \cap T=\{\boldsymbol{v}: \boldsymbol{v} \in S \text { and } \boldsymbol{v} \in T\}
$$

and

$$
S+T=\{\boldsymbol{s}+\boldsymbol{t}: \boldsymbol{s} \in S, \boldsymbol{t} \in T\} .
$$

By Problem 1 in Homework Assignment No. 2, we know that both $S \cap T$ and $S+T$ are subspaces of \mathcal{R}^{4}.
(a) Find a basis for S.
(b) Find a basis for T.
(c) What is the dimension of $S \cap T$?
(d) What is the dimension of $S+T$?
4. (15%) Consider the vector space \mathcal{R}^{3}. Decide the linear dependence or independence of
(a) $(1,1,2),(1,2,1)$;
(b) $\boldsymbol{v}_{1}-\boldsymbol{v}_{2}, \boldsymbol{v}_{2}-\boldsymbol{v}_{3}, \boldsymbol{v}_{3}-\boldsymbol{v}_{1}$ for any $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ in \mathcal{R}^{3};
(c) $(1,1,0),(1,0,0),(0,1,1),(2,3,4)$.
5. (10%) Under what condition on b_{1}, b_{2}, b_{3} is this system solvable? Find the complete solution when that condition holds:

$$
\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 5 \\
-1 & -3 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

6. (10%) Write down a matrix with the required property or explain why no such matrix exists.
(a) The only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{c}1 \\ 0 \\ -1 \\ -1\end{array}\right]$.
(b) A 3 by 4 matrix in the reduced row echelon form which has the vector $\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0\end{array}\right]$ as a basis for its nullspace.
