Final Examination

7:00pm to 10:00pm, June 15, 2012

Problems for Solution:

- 1. (20%) True or false. (If it is true, prove it. Otherwise, explain why not or find a counterexample.)
 - (a) The eigenvalues of \boldsymbol{A} are the same as the eigenvalues of \boldsymbol{A}^{T} .
 - (b) The matrix \boldsymbol{A} is similar to the matrix \boldsymbol{B} , where

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(c) The linear transformation $T: \mathcal{R}^3 \to \mathcal{R}^2$ defined by

$$T(v_1, v_2, v_3) = (v_1 + v_2 + v_3, v_1 + 2v_2 + 3v_3)$$

has an inverse.

(d) Given the linear operator T on \mathcal{R}^3 defined by

$$T\left(\left[\begin{array}{c}v_1\\v_2\\v_3\end{array}\right]\right) = \left[\begin{array}{c}2v_1 - v_2\\-v_1 + 2v_2 - v_3\\-v_2 + 2v_3\end{array}\right]$$

there is an orthonormal basis for \mathcal{R}^3 such that the matrix representation for T in this basis is a diagonal matrix.

2. (10%) Determine if each of the following matrices is diagonalizable. If it is, find an invertible matrix S and a diagonal matrix Λ such that $S^{-1}AS = \Lambda$. If it is not, find its Jordan form.

(a)
$$\boldsymbol{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
.
(b) $\boldsymbol{A} = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$.

3. (10%) Consider a sequence in which each number is the average of two previous numbers, i.e.,

$$G_{k+2} = \frac{1}{2} \left(G_{k+1} + G_k \right), \text{ for } k \ge 0.$$

Starting from $G_0 = 0$ and $G_1 = 1/2$, find a formula for G_k and compute its limit as $k \to \infty$.

4. (15%) Consider

Let

$$\boldsymbol{A} = \begin{bmatrix} 4 & -1 \\ 5 & 4 \end{bmatrix}.$$
$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

- (a) Is $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$ always positive for every nonzero vector \boldsymbol{x} ? Why?
- (b) Define for every nonzero vector \boldsymbol{x}

$$R(\boldsymbol{x}) = \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}}.$$

Find the maximum of $R(\boldsymbol{x})$, i.e., $\max_{\boldsymbol{x}\neq\boldsymbol{0}} R(\boldsymbol{x})$.

- (c) Find a vector \boldsymbol{x} that achieves the minimum of $R(\boldsymbol{x})$ (i.e., $\min_{\boldsymbol{x}\neq\boldsymbol{0}} R(\boldsymbol{x})$).
- 5. (15%) Prove each of the following statements.
 - (a) If σ is a (nonzero) singular value of \boldsymbol{A} , then there exists a nonzero vector \boldsymbol{x} such that

$$\sigma = \frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|}.$$

- (b) If \boldsymbol{A} is an n by n symmetric matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then the singular values of \boldsymbol{A} are $|\lambda_1|, |\lambda_2|, \ldots, |\lambda_n|$.
- (c) Let A be an n by n matrix. Then $A^T A$ is similar to AA^T . (*Hint:* Consider the singular value decomposition of A.)
- 6. (10%) Consider the vector space M of all 2 by 2 real matrices. The transformation $T: M \to M$ is defined by for every $\boldsymbol{X} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \in M$ by

$$T(\boldsymbol{X}) = \boldsymbol{A}\boldsymbol{X}$$

where

$$\boldsymbol{A} = \left[egin{array}{c} a & b \\ c & d \end{array}
ight].$$

(a) Show that T is linear.

(b) In class we know that $\beta = \{ V_1, V_2, V_3, V_4 \}$ form a basis for M, where

$$\boldsymbol{V}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ \boldsymbol{V}_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \boldsymbol{V}_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ \boldsymbol{V}_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Find the matrix representation for T (which is a 4 by 4 matrix) in this basis β .

7. (20%) Consider

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & -1 \end{bmatrix}.$$

- (a) Find the pseudoinverse of \boldsymbol{A} .
- (b) Is there a left inverse for A? If yes, find one.
- (c) Find the projection matrix onto the column space of A.
- (d) Given

$$\boldsymbol{b} = \left[\begin{array}{c} 3\\5\\5 \end{array} \right]$$

there exist p in the column space of A and e in the left nullspace of A such that b = p + e. Find the vector x_r in the row space of A such that $Ax_r = p$.