Final Examination

7:00pm to $10: 00 \mathrm{pm}$, June 15, 2012

Problems for Solution:

1. (20\%) True or false. (If it is true, prove it. Otherwise, explain why not or find a counterexample.)
(a) The eigenvalues of \boldsymbol{A} are the same as the eigenvalues of \boldsymbol{A}^{T}.
(b) The matrix \boldsymbol{A} is similar to the matrix \boldsymbol{B}, where

$$
\boldsymbol{A}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(c) The linear transformation $T: \mathcal{R}^{3} \rightarrow \mathcal{R}^{2}$ defined by

$$
T\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{1}+v_{2}+v_{3}, v_{1}+2 v_{2}+3 v_{3}\right)
$$

has an inverse.
(d) Given the linear operator T on \mathcal{R}^{3} defined by

$$
T\left(\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
2 v_{1}-v_{2} \\
-v_{1}+2 v_{2}-v_{3} \\
-v_{2}+2 v_{3}
\end{array}\right]
$$

there is an orthonormal basis for \mathcal{R}^{3} such that the matrix representation for T in this basis is a diagonal matrix.
2. (10\%) Determine if each of the following matrices is diagonalizable. If it is, find an invertible matrix \boldsymbol{S} and a diagonal matrix $\boldsymbol{\Lambda}$ such that $\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{\Lambda}$. If it is not, find its Jordan form.
(a) $\boldsymbol{A}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2\end{array}\right]$.
(b) $\boldsymbol{A}=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1\end{array}\right]$.
3. (10\%) Consider a sequence in which each number is the average of two previous numbers, i.e.,

$$
G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_{k}\right), \text { for } k \geq 0
$$

Starting from $G_{0}=0$ and $G_{1}=1 / 2$, find a formula for G_{k} and compute its limit as $k \rightarrow \infty$.
4. (15%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{cc}
4 & -1 \\
5 & 4
\end{array}\right]
$$

Let

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

(a) Is $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ always positive for every nonzero vector \boldsymbol{x} ? Why?
(b) Define for every nonzero vector \boldsymbol{x}

$$
R(\boldsymbol{x})=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}} .
$$

Find the maximum of $R(\boldsymbol{x})$, i.e., $\max _{\boldsymbol{x} \neq \mathbf{0}} R(\boldsymbol{x})$.
(c) Find a vector \boldsymbol{x} that achieves the minimum of $R(\boldsymbol{x})$ (i.e., $\min _{\boldsymbol{x} \neq \mathbf{0}} R(\boldsymbol{x})$).
5. (15%) Prove each of the following statements.
(a) If σ is a (nonzero) singular value of \boldsymbol{A}, then there exists a nonzero vector \boldsymbol{x} such that

$$
\sigma=\frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|} .
$$

(b) If \boldsymbol{A} is an n by n symmetric matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the singular values of \boldsymbol{A} are $\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|$.
(c) Let \boldsymbol{A} be an n by n matrix. Then $\boldsymbol{A}^{T} \boldsymbol{A}$ is similar to $\boldsymbol{A} \boldsymbol{A}^{T}$. (Hint: Consider the singular value decomposition of \boldsymbol{A}.)
6. (10\%) Consider the vector space M of all 2 by 2 real matrices. The transformation $T: M \rightarrow M$ is defined by for every $\boldsymbol{X}=\left[\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right] \in M$ by

$$
T(\boldsymbol{X})=\boldsymbol{A} \boldsymbol{X}
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

(a) Show that T is linear.
(b) In class we know that $\beta=\left\{\boldsymbol{V}_{1}, \boldsymbol{V}_{2}, \boldsymbol{V}_{3}, \boldsymbol{V}_{4}\right\}$ form a basis for M, where

$$
\boldsymbol{V}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad \boldsymbol{V}_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Find the matrix representation for T (which is a 4 by 4 matrix) in this basis β.
7. (20%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & 1 \\
0 & 0 \\
1 & -1
\end{array}\right]
$$

(a) Find the pseudoinverse of \boldsymbol{A}.
(b) Is there a left inverse for \boldsymbol{A} ? If yes, find one.
(c) Find the projection matrix onto the column space of \boldsymbol{A}.
(d) Given

$$
\boldsymbol{b}=\left[\begin{array}{l}
3 \\
5 \\
5
\end{array}\right]
$$

there exist \boldsymbol{p} in the column space of \boldsymbol{A} and \boldsymbol{e} in the left nullspace of \boldsymbol{A} such that $\boldsymbol{b}=\boldsymbol{p}+\boldsymbol{e}$. Find the vector \boldsymbol{x}_{r} in the row space of \boldsymbol{A} such that $\boldsymbol{A} \boldsymbol{x}_{r}=\boldsymbol{p}$.

