Solution to Midterm Examination No. 2

1. (a) Consider the 3×2 matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

Then $\mathcal{C}(\boldsymbol{A})$ contains $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and $\mathcal{C}\left(\boldsymbol{A}^{T}\right)$ contains $(1,1),(1,2)$.
(b) Since the column space and nullspace both have three components, the desired matrix is 3 by 3 , say \boldsymbol{B}. We can find $\operatorname{dim}(\mathcal{N}(\boldsymbol{B}))=1 \neq 2=3-1=$ $3-\operatorname{rank}(\boldsymbol{B})$, which is not possible. Therefore, no such matrix exists.
(c) Suppose the desired matrix exists. By the required property, column rank $=$ $\operatorname{dim}\left(\mathcal{R}^{4}\right)=4 \neq 3=\operatorname{dim}\left(\mathcal{R}^{3}\right)=$ row rank, which is not possible. Therefore, no such matrix exists.
2. (a) Transform \boldsymbol{A} into the RRE form:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 1 & 2 \\
2 & 6 & 3 & 5 \\
-1 & -3 & 1 & 0
\end{array}\right] \Longrightarrow \boldsymbol{R}=\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, a basis for the row space of \boldsymbol{A} can be given by

$$
(1,3,0,1),(0,0,1,1)
$$

(b) The orthogonal complement of the column space of \boldsymbol{A} is the left nullspace of \boldsymbol{A}. We can have $\boldsymbol{R}=\boldsymbol{E} \boldsymbol{A}$ where

$$
\boldsymbol{E}=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-2 & 1 & 0 \\
5 & -2 & 1
\end{array}\right]
$$

Since the last row of \boldsymbol{R} is a zero row, a basis for the left nullspace can be given by the last row of \boldsymbol{E} :

$$
(5,-2,1)
$$

(c) From \boldsymbol{R}, we know that $(1,2,-1)^{T},(1,3,1)^{T}$ form a basis for the column space of \boldsymbol{A}. Therefore, we can obtain

$$
\begin{aligned}
\boldsymbol{P}_{c} & =\left[\begin{array}{cc}
1 & 1 \\
2 & 3 \\
-1 & 1
\end{array}\right]\left(\left[\begin{array}{cc}
1 & 1 \\
2 & 3 \\
-1 & 1
\end{array}\right]^{T}\left[\begin{array}{cc}
1 & 1 \\
2 & 3 \\
-1 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{cc}
1 & 1 \\
2 & 3 \\
-1 & 1
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
1 / 6 & 1 / 3 & -1 / 6 \\
1 / 3 & 13 / 15 & 1 / 15 \\
-1 / 6 & 1 / 15 & 29 / 30
\end{array}\right] .
\end{aligned}
$$

(d) We can project \boldsymbol{x} onto the column space of \boldsymbol{A} and obtain

$$
\boldsymbol{x}_{c}=\boldsymbol{P}_{c} \boldsymbol{x}=\left[\begin{array}{ccc}
1 / 6 & 1 / 3 & -1 / 6 \\
1 / 3 & 13 / 15 & 1 / 15 \\
-1 / 6 & 1 / 15 & 29 / 30
\end{array}\right]\left[\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] .
$$

Then we can have

$$
\boldsymbol{x}_{l n}=\boldsymbol{x}-\boldsymbol{x}_{c}=\left[\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right] .
$$

3. (a) Let

$$
\boldsymbol{A}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \hat{\boldsymbol{x}}_{1}=\left[C_{1}\right], \text { and } \boldsymbol{b}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-5
\end{array}\right]
$$

We know the choice of $\hat{\boldsymbol{x}}_{1}$ which minimizes the squared error can be obtained by solving

$$
\boldsymbol{A}_{1}^{T} \boldsymbol{A}_{1} \hat{\boldsymbol{x}}_{1}=\boldsymbol{A}_{1}^{T} \boldsymbol{b}_{1}
$$

which gives

$$
4 C_{1}=-6
$$

Hence the best least squares horizontal line fit is given by $b=C_{1}=-3 / 2$.
(b) Let

$$
\boldsymbol{A}_{2}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right], \hat{\boldsymbol{x}}_{2}=\left[\begin{array}{c}
C_{2} \\
D_{2}
\end{array}\right], \text { and } \boldsymbol{b}_{2}=\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-5
\end{array}\right]
$$

The least squares solution $\hat{\boldsymbol{x}}_{2}$ can be obtained by solving

$$
\boldsymbol{A}_{2}^{T} \boldsymbol{A}_{2} \hat{\boldsymbol{x}}_{2}=\boldsymbol{A}_{2}^{T} \boldsymbol{b}_{2}
$$

or equivalently,

$$
\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
C_{2} \\
D_{2}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
-15
\end{array}\right] .
$$

Therefore, we have

$$
\left[\begin{array}{l}
C_{2} \\
D_{2}
\end{array}\right]=\left[\begin{array}{l}
-3 / 10 \\
-12 / 5
\end{array}\right]
$$

and the best least squares straight line fit is given by $b=C_{2}+D_{2} t=-3 / 10-$ (12/5)t.
(c) Let

$$
\boldsymbol{A}_{3}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right], \hat{\boldsymbol{x}}_{3}=\left[\begin{array}{c}
C_{3} \\
D_{3} \\
E_{3}
\end{array}\right], \text { and } \boldsymbol{b}_{3}=\left[\begin{array}{c}
2 \\
0 \\
-3 \\
-5
\end{array}\right]
$$

The least squares solution $\hat{\boldsymbol{x}}_{3}$ can again be obtained by solving

$$
\boldsymbol{A}_{3}^{T} \boldsymbol{A}_{3} \hat{\boldsymbol{x}}_{3}=\boldsymbol{A}_{3}^{T} \boldsymbol{b}_{3}
$$

which is given by

$$
\left[\begin{array}{ccc}
4 & 2 & 6 \\
2 & 6 & 8 \\
6 & 8 & 18
\end{array}\right]\left[\begin{array}{l}
C_{3} \\
D_{3} \\
E_{3}
\end{array}\right]=\left[\begin{array}{c}
-6 \\
-15 \\
-21
\end{array}\right] .
$$

Finally, we obtain

$$
\left[\begin{array}{l}
C_{3} \\
D_{3} \\
E_{3}
\end{array}\right]=\left[\begin{array}{c}
-3 / 10 \\
-12 / 5 \\
0
\end{array}\right]
$$

and the best least squares parabola fit is given by $b=C_{3}+D_{3} t+E_{3} t^{2}=$ $-3 / 10-(12 / 5) t$. In this case, the best parabola fit is identical to the best straight line fit.
4. (a) Let $f_{1}(x)=1, f_{2}(x)=x$, and $f_{3}(x)=x^{2}$. By the Gram-Schmidt process, we can obtain

$$
\begin{gathered}
F_{1}(x)=f_{1}(x)=1 \\
\Longrightarrow q_{1}(x)=\frac{F_{1}(x)}{\left\|F_{1}\right\|}=\frac{1}{\sqrt{\int_{-2}^{2} 1^{2} d x}}=\frac{1}{2} . \\
F_{2}(x)=f_{2}(x)-\left\langle q_{1}, f_{2}\right\rangle q_{1}(x)=x-\int_{-2}^{2} \frac{1}{2} x d x \cdot \frac{1}{2}=x \\
\Longrightarrow q_{2}(x)=\frac{F_{2}(x)}{\left\|F_{2}\right\|}=\frac{x}{\sqrt{\int_{-2}^{2} x^{2} d x}}=\frac{\sqrt{3}}{4} x . \\
F_{3}(x)=f_{3}(x)-\left\langle q_{1}, f_{3}\right\rangle q_{1}(x)-\left\langle q_{2}, f_{3}\right\rangle q_{2}(x) \\
=x^{2}-\int_{-2}^{2} \frac{1}{2} x^{2} d x \cdot \frac{1}{2}-\int_{-2}^{2} \frac{\sqrt{3}}{4} x^{3} d x \cdot \frac{\sqrt{3}}{4} x=x^{2}-\frac{4}{3} \\
\Longrightarrow q_{3}(x)=\frac{F_{3}(x)}{\left\|F_{3}\right\|}=\frac{x^{2}-4 / 3}{\sqrt{\int_{-2}^{2}\left(x^{2}-4 / 3\right)^{2} d x}}=\frac{3 \sqrt{5}}{16} x^{2}-\frac{\sqrt{5}}{4} .
\end{gathered}
$$

Therefore,

$$
q_{1}(x)=\frac{1}{2}, q_{2}(x)=\frac{\sqrt{3}}{4} x, \text { and } q_{3}(x)=\frac{3 \sqrt{5}}{16} x^{2}-\frac{\sqrt{5}}{4}
$$

form an orthonormal basis for the subspace spanned by $1, x$, and x^{2}.
(b) According to (a), we can write

$$
x^{2}+2 x=\frac{8}{3} q_{1}(x)+\frac{8}{\sqrt{3}} q_{2}(x)+\frac{16}{3 \sqrt{5}} q_{3}(x) .
$$

5. (a) Yes, it is true. Since \boldsymbol{A} is not invertible, we have $|\boldsymbol{A}|=0$. Then we can have $|\boldsymbol{A B}|=|\boldsymbol{A}||\boldsymbol{B}|=0 \cdot|\boldsymbol{B}|=0$. Hence $\boldsymbol{A} \boldsymbol{B}$ is not invertible.
(b) No, it is false. For example, let $\boldsymbol{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then we have $|\boldsymbol{A}-\boldsymbol{B}|=\left|\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right|=-1$, and $|\boldsymbol{A}|-|\boldsymbol{B}|=0-0=0$. Hence $|\boldsymbol{A}-\boldsymbol{B}| \neq|\boldsymbol{A}|-|\boldsymbol{B}|$.
(c) Yes, it is true. For a skew-symmetric matrix satisfies $\boldsymbol{A}^{T}=-\boldsymbol{A}$, we have $\left|\boldsymbol{A}^{T}\right|=|-\boldsymbol{A}|$. Since $\left|\boldsymbol{A}^{T}\right|=|\boldsymbol{A}|$ and $|-\boldsymbol{A}|=(-1)^{n}|\boldsymbol{A}|$, we can obtain $|\boldsymbol{A}|=(-1)^{n}|\boldsymbol{A}|$. Therefore, if n is odd, we have $|\boldsymbol{A}|=-|\boldsymbol{A}|$, which implies $|\boldsymbol{A}|=0$.
6. (a) Let $S_{n}=\left|\boldsymbol{A}_{\boldsymbol{n}}\right|$ where $\boldsymbol{A}_{\boldsymbol{n}}$ is an n by n matrix. For $n \geq 3$, we have

$$
S_{n}=\left\lvert\, \begin{array}{ccccc}
3 & 1 & 0 & \cdots & 0 \\
1 & & & & \\
0 & & & \boldsymbol{A}_{\boldsymbol{n}-\mathbf{1}} \\
\vdots & & & & \left|\begin{array}{ccccc}
3 & 1 & 0 & 0 \cdots & 0 \\
1 & 3 & 1 & 0 & \cdots \\
0 & 1 & & & 0 \\
0 & & & & \boldsymbol{A}_{\boldsymbol{n}-\mathbf{2}} \\
0 & 0 & & \\
\vdots & \vdots & & & \\
0 & 0 & & &
\end{array}\right| . . \text {. } 10 .
\end{array}\right.
$$

Applying the cofactor formula to the first row, we can have

$$
\begin{aligned}
S_{n} & =3 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-\mathbf{1}}\right|+1 \cdot(-1)^{1+2}\left|\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & & & \\
0 & & & \boldsymbol{A}_{\boldsymbol{n}-\mathbf{2}} \\
\vdots & & \\
0 &
\end{array}\right| \\
& =3 S_{n-1}-1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{n-\mathbf{2}}\right| \quad \text { (apply the cofactor formula to the first column) } \\
& =3 S_{n-1}-S_{n-2} .
\end{aligned}
$$

Then we can obtain $a=3$ and $b=-1$.
(b) We have

$$
\begin{aligned}
& S_{1}=3 \\
& S_{2}=8 \\
& S_{3}=3 S_{2}-S_{1}=21 \\
& S_{4}=3 S_{3}-S_{2}=55 \\
& S_{5}=3 S_{4}-S_{3}=144 .
\end{aligned}
$$

7. (a)

$$
\begin{aligned}
\left|\boldsymbol{A}_{5}\right| & =\left|\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right| \\
& =\left|\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
4 & 4 & 4 & 4 & 4
\end{array}\right| \quad \text { [add all rows (except the last) to the last row] } \\
& =4\left|\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right| \\
& =4\left|\begin{array}{cccc}
-1 & 0 & 0 & 0
\end{array}\right| \\
0 & -1
\end{aligned} 0
$$

(b) We have that the $(1,1)$ entry of \boldsymbol{A}_{4}^{-1} is equal to

$$
\left(\boldsymbol{A}_{4}^{-1}\right)_{11}=\frac{\boldsymbol{C}_{11}}{\operatorname{det}\left(\boldsymbol{A}_{4}\right)}=\frac{\operatorname{det}\left(\boldsymbol{A}_{3}\right)}{\operatorname{det}\left(\boldsymbol{A}_{4}\right)}=\frac{\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right|}{\left|\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right|}=-\frac{2}{3}
$$

