Midterm Examination No. 2

7:00pm to 10:00pm, May 6, 2011

Problems for Solution:

1. (15%) Write down a matrix with the required property or explain why no such matrix exists.
(a) (5%) Column space contains $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, row space contains $(1,1),(1,2)$.
(b) (5%) Column space has basis $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, nullspace has basis $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
(c) (5\%) Column space $=\mathcal{R}^{4}$, row space $=\mathcal{R}^{3}$. (\mathcal{R} is the set of real numbers.)
2. (20%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 1 & 2 \\
2 & 6 & 3 & 5 \\
-1 & -3 & 1 & 0
\end{array}\right]
$$

(a) (5%) Find a basis for the row space of \boldsymbol{A}.
(b) (5%) Find a basis for the orthogonal complement of the column space of \boldsymbol{A}.
(c) (5\%) Find the projection matrix \boldsymbol{P}_{c} onto the column space of \boldsymbol{A}.
(d) (5%) Given $\boldsymbol{x}=\left[\begin{array}{c}5 \\ -1 \\ 3\end{array}\right]$, split it into $\boldsymbol{x}=\boldsymbol{x}_{c}+\boldsymbol{x}_{l n}$, where \boldsymbol{x}_{c} is in the column space of \boldsymbol{A} and $\boldsymbol{x}_{l n}$ is in the left nullspace of \boldsymbol{A}.
3. (15\%) We have four data points with measurements $b=2,0,-3,-5$ at times $t=$ $-1,0,1,2$.
(a) (5%) Suppose we want to fit the four data points with a horizontal line: $b=C_{1}$. Find the best least squares horizontal line fit.
(b) (5%) Suppose we want to fit the four data points with a straight line: $b=C_{2}+D_{2} t$. Find the best least squares straight line fit.
(c) (5%) Suppose we want to fit the four data points with a parabola: $b=C_{3}+D_{3} t+$ $E_{3} t^{2}$. Find the best least squares parabola fit.
4. (15\%) Consider the vector space $C[-2,2]$, the space of all real-valued continuous functions on $[-2,2]$, with inner product defined by

$$
\langle f, g\rangle=\int_{-2}^{2} f(x) g(x) d x
$$

(a) (10%) Find an orthonormal basis for the subspace spanned by $1, x$, and x^{2}.
(b) (5%) Express $x^{2}+2 x$ as a linear combination of those orthonormal basis functions found in (a).
5. (15\%) Let \boldsymbol{A} and \boldsymbol{B} be n by n real matrices. Is each of the following statements true or false? If it is true, prove it. Otherwise, find a counterexample.
(a) $\mathbf{(5 \%)}$ If \boldsymbol{A} is not invertible, then $\boldsymbol{A} \boldsymbol{B}$ is not invertible.
(b) (5\%) The determinant of $\boldsymbol{A}-\boldsymbol{B}$ equals $\operatorname{det} \boldsymbol{A}-\operatorname{det} \boldsymbol{B}$.
(c) (5%) A skew-symmetric matrix \boldsymbol{A} has $\operatorname{det} \boldsymbol{A}=0$ if n is odd. (Note that a skewsymmetric matrix satisfies $\boldsymbol{A}^{T}=-\boldsymbol{A}$.)
6. (10%) Let S_{n} be the determinant of the $1,3,1$ tridiagonal matrix of order n :

$$
S_{1}=|3|, \quad S_{2}=\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|, \quad S_{3}=\left|\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right|, \quad S_{4}=\left|\begin{array}{llll}
3 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 1 & 3
\end{array}\right|, \quad \ldots
$$

(a) (5\%) Show that $S_{n}=a S_{n-1}+b S_{n-2}$, for $n \geq 3$. Find the constants a and b.
(b) (5\%) Find $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5}.
7. (10\%) Consider the n by n matrix \boldsymbol{A}_{n} that has zeros on its main diagonal and all other entries equal to 1, i.e.,

$$
\boldsymbol{A}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \boldsymbol{A}_{3}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \quad \boldsymbol{A}_{4}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad \ldots
$$

(a) $\mathbf{(5 \%)}$ Find the determinant of \boldsymbol{A}_{5}. (Here is a suggested approach: Start by adding all rows (except the last) to the last row, and then factoring out a constant.)
(b) (5%) Find the $(1,1)$ entry of \boldsymbol{A}_{4}^{-1}.

