Solution to Midterm Examination No. 1

1. (a) Using the Gauss-Jordan method, we can have

$$
\begin{aligned}
{[\boldsymbol{A} \mid \boldsymbol{I}] } & =\left[\begin{array}{llll|llll}
2 & 1 & 4 & 6 & 1 & 0 & 0 & 0 \\
0 & 3 & 8 & 5 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 7 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 9 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|lll}
2 & 1 & 4 & 6 & 1 & 0 & 0 \\
0 & 3 & 8 & 5 & 0 & 1 & 0 \\
0 & 0 \\
0 & 0 & 0 & 7 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -9 / 7
\end{array}\right] .
\end{aligned}
$$

Since we cannot obtain four nonzero pivots, \boldsymbol{A} is not invertible.
(b) Using the Gauss-Jordan method, we can have

$$
\begin{aligned}
{[\boldsymbol{B} \mid \boldsymbol{I}] } & =\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 / 4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 / 2 & 1 / 2 & 1 / 2 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 / 4 & 1 & 0 & 0 \\
0 & 1 / 3 & 1 & 0 & -1 / 3 & 0 & 1 & 0 \\
0 & 1 / 2 & 1 / 2 & 1 & -1 / 2 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 / 4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 / 4 & -1 / 3 & 1 & 0 \\
0 & 0 & 1 / 2 & 1 & -3 / 8 & -1 / 2 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array} \left\lvert\, \begin{array}{cccc}
-1 / 4 & 1 & 0 & 0 \\
-1 / 4 & -1 / 3 & 1 & 0 \\
-1 / 4 & -1 / 3 & -1 / 2 & 1
\end{array}\right.\right]=\left[\begin{array}{lll}
\boldsymbol{I} & \boldsymbol{B}^{-1}
\end{array}\right] .
\end{aligned}
$$

Hence, \boldsymbol{B} is invertible and the inverse is given by

$$
\boldsymbol{B}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 0 & 0 \\
-1 / 4 & -1 / 3 & 1 & 0 \\
-1 / 4 & -1 / 3 & -1 / 2 & 1
\end{array}\right]
$$

2. First do row exchanges as

$$
\boldsymbol{A}=\left[\begin{array}{llll}
0 & 2 & 2 & 4 \\
0 & 2 & 2 & 2 \\
1 & 2 & 2 & 1 \\
2 & 6 & 7 & 5
\end{array}\right] \stackrel{\boldsymbol{P}}{\Longrightarrow}\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 2 & 2 & 4 \\
2 & 6 & 7 & 5 \\
0 & 2 & 2 & 2
\end{array}\right]=\boldsymbol{P} \boldsymbol{A}
$$

and then perform eliminations as

$$
\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 2 & 2 & 4 \\
2 & 6 & 7 & 5 \\
0 & 2 & 2 & 2
\end{array}\right] \xrightarrow{\boldsymbol{E}_{31}}\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 2 & 2 & 4 \\
0 & 2 & 3 & 3 \\
0 & 2 & 2 & 2
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 2 & 2 & 4 \\
0 & 0 & 1 & -1 \\
0 & 2 & 2 & 2
\end{array}\right] \xrightarrow{\boldsymbol{E}_{42}}\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 2 & 2 & 4 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & -2
\end{array}\right]=\boldsymbol{U}
$$

Then we have

$$
\boldsymbol{E}_{42} \boldsymbol{E}_{32} \boldsymbol{E}_{31}(\boldsymbol{P A})=\boldsymbol{U}
$$

where

$$
\begin{gathered}
\boldsymbol{P}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], \boldsymbol{E}_{31}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
\boldsymbol{E}_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \text { and } \boldsymbol{E}_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

We can obtain

$$
\boldsymbol{L}=\boldsymbol{E}_{31}^{-1} \boldsymbol{E}_{32}^{-1} \boldsymbol{E}_{42}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

The factorization $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ is hence given by

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & 2 & 2 & 4 \\
0 & 2 & 2 & 2 \\
1 & 2 & 2 & 1 \\
2 & 6 & 7 & 5
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \\
0 & 2 & 2 & 4 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & -2
\end{array}\right] .
$$

3. (a) Since $\boldsymbol{A}^{T}=\boldsymbol{A}$ and $\boldsymbol{B}^{T}=\boldsymbol{B}$, we have

$$
\begin{aligned}
\left(\boldsymbol{A}^{2}-\boldsymbol{B}^{2}\right)^{T} & =\left(\boldsymbol{A}^{2}\right)^{T}-\left(\boldsymbol{B}^{2}\right)^{T} \\
& =(\boldsymbol{A} \boldsymbol{A})^{T}-(\boldsymbol{B} \boldsymbol{B})^{T} \\
& =\boldsymbol{A}^{T} \boldsymbol{A}^{T}-\boldsymbol{B}^{T} \boldsymbol{B}^{T} \\
& =\left(\boldsymbol{A}^{T}\right)^{2}-\left(\boldsymbol{B}^{T}\right)^{2} \\
& =\boldsymbol{A}^{2}-\boldsymbol{B}^{2} .
\end{aligned}
$$

Therefore, $\boldsymbol{A}^{2}-\boldsymbol{B}^{2}$ is certainly symmetric.
(b) Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B}) & =\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right]+\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\right)\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right]-\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right]
\end{aligned}
$$

which is not symmetric. Therefore, $(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B})$ is not certainly symmetric.
4. (a) Yes, this subset is a subspace of \mathcal{R}^{3}. Let $\mathcal{B}_{1}=\left\{\left(b_{1}, b_{2}, b_{3}\right): 2 b_{1}-2 b_{2}+b_{3}=0\right\}$. Take two vectors $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right) \in \mathcal{B}_{1}$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathcal{B}_{1}$, where $2 u_{1}-2 u_{2}+u_{3}=0$ and $2 v_{1}-2 v_{2}+v_{3}=0$. Then we check the following two conditions:

- Consider $\boldsymbol{u}+\boldsymbol{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)$. Since $2\left(u_{1}+v_{1}\right)-2\left(u_{2}+\right.$ $\left.v_{2}\right)+\left(u_{3}+v_{3}\right)=\left(2 u_{1}-2 u_{2}+u_{3}\right)+\left(2 v_{1}-2 v_{2}+v_{3}\right)=0, \boldsymbol{u}+\boldsymbol{v} \in \mathcal{B}_{1}$.
- For any $c \in \mathcal{R}$, consider $c \boldsymbol{u}=\left(c u_{1}, c u_{2}, c u_{3}\right)$. Since $2 c u_{1}-2 c u_{2}+c u_{3}=$ $c\left(2 u_{1}-2 u_{2}+u_{3}\right)=0, c \boldsymbol{u} \in \mathcal{B}_{1}$.
Therefore, \mathcal{B}_{1} is a subspace of \mathcal{R}^{3}.
(b) No, this subset is not a subspace of \mathcal{R}^{3}. Let $\mathcal{B}_{2}=\left\{\left(b_{1}, b_{2}, b_{3}\right): 2 b_{1}-2 b_{2}+b_{3}=\right.$ $1\}$. Consider $(0,0,1) \in \mathcal{B}_{2}$ and $(1 / 2,0,0) \in \mathcal{B}_{2}$. Since $(0,0,1)+(1 / 2,0,0)=$ $(1 / 2,0,1) \notin \mathcal{B}_{2}, \mathcal{B}_{2}$ is not a subspace of \mathcal{R}^{3}.
(c) No, this subset is not a subspace of \mathcal{R}^{3}. Let $\mathcal{B}_{3}=\left\{\left(b_{1}, b_{2}, b_{3}\right): b_{1}=b_{2}\right.$ or $b_{1}=$ $\left.2 b_{3}\right\}$. Consider $(2,2,0) \in \mathcal{B}_{3}$ and $(2,0,1) \in \mathcal{B}_{3}$. Since $(2,2,0)+(2,0,1)=$ $(4,2,1) \notin \mathcal{B}_{3}, \mathcal{B}_{3}$ is not a subspace of \mathcal{R}^{3}.

5. (a) Since $\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)^{T}$ is in $\mathcal{C}(\boldsymbol{A}), \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ must be solvable. We can have

$$
\begin{aligned}
{\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & b_{1} \\
1 & 2 & 3 & 5 & b_{2} \\
1 & 3 & 5 & 9 & b_{3}
\end{array}\right] } & \Longrightarrow\left[\begin{array}{llll|c}
1 & 1 & 1 & 1 & b_{1} \\
0 & 1 & 2 & 4 & b_{2}-b_{1} \\
0 & 2 & 4 & 8 & b_{3}-b_{1}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|c}
1 & 1 & 1 & 1 & b_{1} \\
0 & 1 & 2 & 4 & b_{2}-b_{1} \\
0 & 0 & 0 & 0 & b_{1}-2 b_{2}+b_{3}
\end{array}\right]
\end{aligned}
$$

For $\boldsymbol{A x}=\boldsymbol{b}$ to be solvable, we should have

$$
b_{1}-2 b_{2}+b_{3}=0
$$

which is

$$
\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=0
$$

Hence, \boldsymbol{B} can be chosen as

$$
\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right] .
$$

(b) For $\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)^{T}$ to be in $\mathcal{C}(\boldsymbol{A})$, from (a) we must have

$$
b_{1}-2 b_{2}+b_{3}=0
$$

Therefore,

$$
\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right] \in \mathcal{C}(\boldsymbol{A})
$$

and the rest are not in $\mathcal{C}(\boldsymbol{A})$.
6. To find the complete solution, we reduce the matrix to the RRE form:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
1 & 2 & 3 & 3 \\
3 & 4 & k & 7
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & 1 & 2 & 1 \\
0 & 1 & k-3 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & 1 & 2 & 1 \\
0 & 0 & k-5 & 0
\end{array}\right]
$$

- If $k=5$, then we have

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus, the pivot variables are x_{1} and x_{2}, and the free variable is x_{3}. Setting $x_{3}=0$, we can obtain $x_{1}=1$ and $x_{2}=1$. Therefore, a particular solution can be given by

$$
\boldsymbol{x}_{p}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

To find the special soultion \boldsymbol{x}_{n}, we let

$$
\left\{\begin{array}{rll}
x_{1} & & -x_{3}
\end{array}=0\right.
$$

Setting $x_{3}=1$, we have $x_{1}=1, x_{2}=-2$. Therefore, a special solution \boldsymbol{x}_{n} is

$$
\boldsymbol{x}_{n}=x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

As a result, the complete solution to this problem is

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] .
$$

- If $k \neq 5, x_{3}$ must be equal to 0 . Then we can obtain $x_{1}=1$ and $x_{2}=1$. The solution to this problem is

$$
\boldsymbol{x}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

7. Consider the following equation:

$$
\begin{aligned}
& x_{1} \boldsymbol{w}_{1}+x_{2} \boldsymbol{w}_{2}+x_{3} \boldsymbol{w}_{3}=0 \\
\Longrightarrow \quad x_{1}\left(a_{11} \boldsymbol{v}_{1}+a_{12} \boldsymbol{v}_{2}+a_{13} \boldsymbol{v}_{3}\right) & +x_{2}\left(a_{21} \boldsymbol{v}_{1}+a_{22} \boldsymbol{v}_{2}+a_{23} \boldsymbol{v}_{3}\right) \\
& +x_{3}\left(a_{31} \boldsymbol{v}_{1}+a_{32} \boldsymbol{v}_{2}+a_{33} \boldsymbol{v}_{3}\right)=0 \\
\Longrightarrow \quad\left(x_{1} a_{11}+x_{2} a_{21}+x_{3} a_{31}\right) \boldsymbol{v}_{1} & +\left(x_{1} a_{12}+x_{2} a_{22}+x_{3} a_{32}\right) \boldsymbol{v}_{2} \\
& +\left(x_{1} a_{13}+x_{2} a_{23}+x_{3} a_{33}\right) \boldsymbol{v}_{3}=0 .
\end{aligned}
$$

Since $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ are linearly independent, we know the only solution to the above equation is

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1} a_{11}+x_{2} a_{21}+x_{3} a_{31}=0 \\
x_{1} a_{12}+x_{2} a_{22}+x_{3} a_{32}=0 \\
x_{1} a_{13}+x_{2} a_{23}+x_{3} a_{33}=0
\end{array}\right. \\
& \Longrightarrow\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \Longrightarrow \boldsymbol{A} \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

where $\boldsymbol{A}=\left[\begin{array}{ccc}a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33}\end{array}\right]$ and $\boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. If $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ are independent, then $x_{1} \boldsymbol{w}_{1}+x_{2} \boldsymbol{w}_{2}+x_{3} \boldsymbol{w}_{3}=0$ only if $x_{1}=x_{2}=x_{3}=0$, and hence $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ has the only one solution $\mathbf{0}$. This implies \boldsymbol{A} must be invertible, i.e., \boldsymbol{A} has full rank.
8. (a) $\mathcal{S}=\{(a, b, c, d): a+c+d=0, a, b, c, d \in \mathcal{R}\}$. We can obtain

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=0
$$

Hence, \mathcal{S} is the nullspace of $\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right]$. Since b, c, d are free variables, special solutions are given by

$$
\begin{aligned}
& (a, b, c, d)=(0,1,0,0) \\
& (a, b, c, d)=(-1,0,1,0) \\
& (a, b, c, d)=(-1,0,0,1) .
\end{aligned}
$$

The special solutions obtained are independent and span the nullspace. They form a basis for \mathcal{S}. Therefore, we have a basis:

$$
(0,1,0,0),(-1,0,1,0),(-1,0,0,1)
$$

(b) Consider $\mathcal{S} \cap \mathcal{T}$, and we can have

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=0 } \\
\Longrightarrow & {\left[\begin{array}{cccc}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=0 }
\end{aligned}
$$

Since $\mathcal{S} \cap \mathcal{T}$ is the nullspace of $\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2\end{array}\right]$, the dimension of $\mathcal{S} \cap \mathcal{T}$ is equal to $n-\operatorname{rank}\left(\left[\begin{array}{cccc}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -2\end{array}\right]\right)=4-3=1$.
9. Since $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has zero or one solution, we know that \boldsymbol{A} has full column rank.
(a) Since \boldsymbol{A} is a 3 by 2 matrix with full column rank, the rank of \boldsymbol{A} is 2 .
(b) Since \boldsymbol{A} has full column rank, the dimension of $\mathcal{N}(\boldsymbol{A})$ is 0 . Therefore, $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ has only one solution $\boldsymbol{x}=\mathbf{0}$.
(c) Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 0
\end{array}\right]
$$

Then \boldsymbol{A} has full column rank. It can be easily checked that $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ has no solution and $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ has exactly one solution $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

