Midterm Examination No. 1

7:00pm to 10:00pm, April 1, 2011

Problems for Solution:

1. (10%) For each of the matrices

$$
\boldsymbol{A}=\left[\begin{array}{llll}
2 & 1 & 4 & 6 \\
0 & 3 & 8 & 5 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 9
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 4 & 1 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 & 0 \\
1 / 2 & 1 / 2 & 1 / 2 & 1
\end{array}\right]
$$

determine whether the matrix is invertible. If so, find its inverse.
2. (10\%) Find the $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ factorization for

$$
\boldsymbol{A}=\left[\begin{array}{llll}
0 & 2 & 2 & 4 \\
0 & 2 & 2 & 2 \\
1 & 2 & 2 & 1 \\
2 & 6 & 7 & 5
\end{array}\right]
$$

where \boldsymbol{P} is a permutation matrix, \boldsymbol{L} is a lower triangular matrix with unit diagonal, and \boldsymbol{U} is an upper triangular matrix.
3. (10\%) If \boldsymbol{A} and \boldsymbol{B} are symmetric matrices, which of the following matrices are certainly symmetric? (You need to justify your answers.)
(a) $\boldsymbol{A}^{2}-\boldsymbol{B}^{2}$.
(b) $(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B})$.
4. (15%) Is each of the following subsets of \mathcal{R}^{3} actually a subspace? If yes, prove it. Otherwise, find a counterexample.
(a) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ such that $2 b_{1}-2 b_{2}+b_{3}=0$.
(b) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ such that $2 b_{1}-2 b_{2}+b_{3}=1$.
(c) All vectors $\left(b_{1}, b_{2}, b_{3}\right)$ such that $b_{1}=b_{2}$ or $b_{1}=2 b_{3}$.
5. (10%) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 5 \\
1 & 3 & 5 & 9
\end{array}\right]
$$

(a) Find a matrix \boldsymbol{B} such that the column space $\mathcal{C}(\boldsymbol{A})$ of \boldsymbol{A} equals the nullspace $\mathcal{N}(\boldsymbol{B})$ of \boldsymbol{B}. (Hint: If $\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)^{T}$ is in $\mathcal{C}(\boldsymbol{A})$, then what system of linear equations should b_{1}, b_{2}, b_{3} satisfy?)
(b) Which of the following vectors belong to the column space $\mathcal{C}(\boldsymbol{A})$:

$$
\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
4 \\
8
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] ?
$$

6. (10%) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
3 & 4 & k
\end{array}\right]
$$

For all values of k, find the complete solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}2 \\ 3 \\ 7\end{array}\right]$. (You might have to consider several cases.)
7. (10%) Suppose $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ are independent vectors. Let

$$
\begin{aligned}
\boldsymbol{w}_{1} & =a_{11} \boldsymbol{v}_{1}+a_{12} \boldsymbol{v}_{2}+a_{13} \boldsymbol{v}_{3} \\
\boldsymbol{w}_{2} & =a_{21} \boldsymbol{v}_{1}+a_{22} \boldsymbol{v}_{2}+a_{23} \boldsymbol{v}_{3} \\
\boldsymbol{w}_{3} & =a_{31} \boldsymbol{v}_{1}+a_{32} \boldsymbol{v}_{2}+a_{33} \boldsymbol{v}_{3} .
\end{aligned}
$$

Under what conditions on $a_{i j}$, for $1 \leq i, j \leq 3$, will $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ also be independent? (You need to justify your answer.)
8. (10%) Let S and T are subspaces of \mathcal{R}^{4} given by

$$
\begin{gathered}
S=\{(a, b, c, d): a+c+d=0\} \\
T=\{(a, b, c, d): a+b=0, c=2 d\}
\end{gathered}
$$

respectively.
(a) Find a basis for S.
(b) What is the dimension of the intersection $S \cap T$?
9. (15%) This problem is about a 3 by 2 matrix \boldsymbol{A} for which $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ has no solution and $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ has exactly one solution.
(a) What is the rank of \boldsymbol{A} ?
(b) Find all solutions to $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$.
(c) Write down an example of \boldsymbol{A}.

