Chi-chao Chao

EE 2030 Linear Algebra Spring 2011

Midterm Examination No. 1

7:00pm to 10:00pm, April 1, 2011

Problems for Solution:

1. (10%) For each of the matrices

$$\boldsymbol{A} = \begin{bmatrix} 2 & 1 & 4 & 6 \\ 0 & 3 & 8 & 5 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 9 \end{bmatrix} \text{ and } \boldsymbol{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1/4 & 1 & 0 & 0 \\ 1/3 & 1/3 & 1 & 0 \\ 1/2 & 1/2 & 1/2 & 1 \end{bmatrix}$$

determine whether the matrix is invertible. If so, find its inverse.

2. (10%) Find the PA = LU factorization for

$$\boldsymbol{A} = \begin{bmatrix} 0 & 2 & 2 & 4 \\ 0 & 2 & 2 & 2 \\ 1 & 2 & 2 & 1 \\ 2 & 6 & 7 & 5 \end{bmatrix}$$

where P is a permutation matrix, L is a lower triangular matrix with unit diagonal, and U is an upper triangular matrix.

- 3. (10%) If **A** and **B** are symmetric matrices, which of the following matrices are certainly symmetric? (You need to justify your answers.)
 - (a) $A^2 B^2$.
 - (b) (A + B)(A B).
- 4. (15%) Is each of the following subsets of \mathcal{R}^3 actually a subspace? If yes, prove it. Otherwise, find a counterexample.
 - (a) All vectors (b_1, b_2, b_3) such that $2b_1 2b_2 + b_3 = 0$.
 - (b) All vectors (b_1, b_2, b_3) such that $2b_1 2b_2 + b_3 = 1$.
 - (c) All vectors (b_1, b_2, b_3) such that $b_1 = b_2$ or $b_1 = 2b_3$.
- 5. (10%) Consider the matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 5 \\ 1 & 3 & 5 & 9 \end{bmatrix}$$

- (a) Find a matrix **B** such that the column space $C(\mathbf{A})$ of **A** equals the nullspace $\mathcal{N}(\mathbf{B})$ of **B**. (*Hint*: If $\mathbf{b} = (b_1, b_2, b_3)^T$ is in $C(\mathbf{A})$, then what system of linear equations should b_1 , b_2 , b_3 satisfy?)
- (b) Which of the following vectors belong to the column space $\mathcal{C}(\mathbf{A})$:

$$\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}, \begin{bmatrix} 2\\ 0\\ -2 \end{bmatrix}, \begin{bmatrix} 0\\ 2\\ 4\\ 8 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}?$$

6. (10%) Consider the matrix

$$\boldsymbol{A} = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 3 & 4 & k \end{array} \right].$$

For all values of k, find the complete solution to $Ax = \begin{bmatrix} 2\\ 3\\ 7 \end{bmatrix}$. (You might have to consider several cases.)

7. (10%) Suppose v_1 , v_2 , v_3 are independent vectors. Let

$$egin{array}{rcl} m{w}_1&=&a_{11}m{v}_1+a_{12}m{v}_2+a_{13}m{v}_3\ m{w}_2&=&a_{21}m{v}_1+a_{22}m{v}_2+a_{23}m{v}_3\ m{w}_3&=&a_{31}m{v}_1+a_{32}m{v}_2+a_{33}m{v}_3. \end{array}$$

Under what conditions on a_{ij} , for $1 \le i, j \le 3$, will w_1 , w_2 , w_3 also be independent? (You need to justify your answer.)

8. (10%) Let S and T are subspaces of \mathcal{R}^4 given by

$$S = \{(a, b, c, d) : a + c + d = 0\}$$
$$T = \{(a, b, c, d) : a + b = 0, \ c = 2d\}$$

respectively.

- (a) Find a basis for S.
- (b) What is the dimension of the intersection $S \cap T$?

9. (15%) This problem is about a 3 by 2 matrix \boldsymbol{A} for which $\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ has no solution

and $\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$ has exactly one solution.

(a) What is the rank of \boldsymbol{A} ?

(b) Find all solutions to Ax = 0.

(c) Write down an example of \boldsymbol{A} .