Solution to Final Examination

1. (a) False. For example,

$$
\boldsymbol{Q}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

is an orthogonal matrix since $\boldsymbol{Q} \boldsymbol{Q}^{T}=\boldsymbol{I}$, but we have $\operatorname{det}(\boldsymbol{Q})=-1$.
(b) False. Let

$$
\boldsymbol{A}=\frac{1}{6}\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & -5
\end{array}\right]
$$

We have

$$
\boldsymbol{A}^{2}=\frac{1}{36}\left[\begin{array}{ccc}
30 & 12 & 4 \\
12 & 12 & -8 \\
4 & -8 & 30
\end{array}\right] \neq \boldsymbol{A}
$$

Therefore, \boldsymbol{A} is not a projection matrix.
(c) True. Let

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

and

$$
\boldsymbol{B}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

We can find the eigenvalues of \boldsymbol{A} with

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right| \\
& =-\lambda^{2}(\lambda-3)=0
\end{aligned}
$$

Therefore, the eigenvalues of \boldsymbol{A} are $0,0,3$. Since \boldsymbol{A} is symmetric, it is diagonalizable and is similar to

$$
\boldsymbol{B}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

(d) True. Let r be the rank of \boldsymbol{A}, and then $r \leq n<m$. Since $\boldsymbol{A} \boldsymbol{A}^{T}$ is m by m and $\operatorname{rank}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)=\operatorname{rank}(\boldsymbol{A})=r<m, \boldsymbol{A} \boldsymbol{A}^{T}$ is singular. Therefore, $\operatorname{det}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)=0$, which yields that $\boldsymbol{A} \boldsymbol{A}^{T}$ cannot be positive definite.
2. (a) By Gaussian elimination, we can obtain

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 / 2 & 1
\end{array}\right] \boldsymbol{A}=\left[\begin{array}{cc}
2 & 1 \\
0 & 3 / 2
\end{array}\right]
$$

Therefore,

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
0 & 3 / 2
\end{array}\right]=\boldsymbol{L} \boldsymbol{U}
$$

(b) Since the columns of \boldsymbol{A} are independent, let $\boldsymbol{a}_{1}=(2,1)^{T}$ and $\boldsymbol{a}_{2}=(1,2)^{T}$. By the Gram-Schmidt process, we can have

$$
\begin{aligned}
\boldsymbol{A}_{1}=\boldsymbol{a}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] & \Longrightarrow \boldsymbol{q}_{1}=\frac{\boldsymbol{A}_{1}}{\left\|\boldsymbol{A}_{1}\right\|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
\boldsymbol{A}_{2}=\boldsymbol{a}_{2}-\left(\boldsymbol{a}_{2}^{T} \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}=\left[\begin{array}{c}
-3 / 5 \\
6 / 5
\end{array}\right] & \Longrightarrow \boldsymbol{q}_{2}=\frac{\boldsymbol{A}_{2}}{\left\|\boldsymbol{A}_{2}\right\|}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
-1 \\
2
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
\boldsymbol{A}=\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{q}_{1}{ }^{T} \boldsymbol{a}_{1} & \boldsymbol{q}_{1}{ }^{T} \boldsymbol{a}_{2} \\
0 & \boldsymbol{q}_{2}{ }^{T} \boldsymbol{a}_{2}
\end{array}\right]=\boldsymbol{Q} \boldsymbol{R}
$$

which gives

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]\left[\begin{array}{cc}
5 / \sqrt{5} & 4 / \sqrt{5} \\
0 & 3 / \sqrt{5}
\end{array}\right] .
$$

(c) We can have

$$
\begin{gathered}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=(3-\lambda)(1-\lambda) \\
\Longrightarrow\left\{\begin{array}{l}
\lambda_{1}=3 \quad \Longleftrightarrow \\
\lambda_{2}=1
\end{array} \Longleftrightarrow \boldsymbol{v}_{1}=\frac{1}{\sqrt{2}}(1,1)^{T}\right. \\
\boldsymbol{v}_{2}=\frac{1}{\sqrt{2}}(1,-1)^{T}
\end{gathered} .
$$

Therefore,

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]^{T}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} .
$$

(d) From (a), we can obtain

$$
\begin{aligned}
\boldsymbol{A} & =\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & 3 / 2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{6} / 2
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{6} / 2
\end{array}\right]^{T}\left[\begin{array}{cc}
1 & 0 \\
1 / 2 & 1
\end{array}\right]^{T} \\
& =\left[\begin{array}{cc}
\sqrt{2} & 0 \\
\sqrt{2} / 2 & \sqrt{6} / 2
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
\sqrt{2} / 2 & \sqrt{6} / 2
\end{array}\right]^{T}=\boldsymbol{C C}^{T} .
\end{aligned}
$$

3. (a) Let $\boldsymbol{u}_{k}=\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$. The relation between $\boldsymbol{u}_{k+1}=\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]$ and $\boldsymbol{u}_{k}=\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$ is given by

$$
\boldsymbol{u}_{k+1}=\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\left[\begin{array}{ll}
4 / 5 & 1 / 10 \\
1 / 5 & 9 / 10
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]=\boldsymbol{A} \boldsymbol{u}_{k} .
$$

To find \boldsymbol{A}^{k}, we first find the eigenvalues and corresponding eigenvectors of A.

$$
\begin{aligned}
& \operatorname{det}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{2}\right)=\left|\begin{array}{cc}
(4 / 5)-\lambda & 1 / 10 \\
1 / 5 & (9 / 10)-\lambda
\end{array}\right| \\
& =\lambda^{2}-\frac{17}{10} \lambda+\frac{7}{10} \\
& =(\lambda-1)(\lambda-(7 / 10))=0 \\
& \Longrightarrow\left\{\begin{array}{lll}
\lambda_{1}=1 & \Longleftrightarrow & \boldsymbol{v}_{1}=(1,2)^{T} \\
\lambda_{2}=7 / 10 & \Longleftrightarrow & \boldsymbol{v}_{2}=(1,-1)^{T} .
\end{array}\right.
\end{aligned}
$$

Therefore, we have

$$
\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 7 / 10
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]^{-1} .
$$

We can write \boldsymbol{u}_{0} as a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2} as follows:

$$
\begin{gathered}
\boldsymbol{u}_{0}=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
\Longrightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
2 / 3
\end{array}\right] \\
\Longrightarrow \boldsymbol{u}_{0}=\frac{1}{3} \boldsymbol{v}_{1}+\frac{2}{3} \boldsymbol{v}_{2}
\end{gathered}
$$

Then we can obtain

$$
\begin{aligned}
\boldsymbol{u}_{k} & =\boldsymbol{A}^{k} \boldsymbol{u}_{0} \\
& =\frac{1}{3} \boldsymbol{A}^{k} \boldsymbol{v}_{1}+\frac{2}{3} \boldsymbol{A}^{k} \boldsymbol{v}_{2} \\
& =\frac{1}{3} \boldsymbol{v}_{1}+\frac{2}{3}\left(\frac{7}{10}\right)^{k} \boldsymbol{v}_{2} \\
& =\left[\begin{array}{l}
(1 / 3)+(2 / 3)(7 / 10)^{k} \\
(2 / 3)-(2 / 3)(7 / 10)^{k}
\end{array}\right] .
\end{aligned}
$$

Therefore,

$$
\lim _{k \rightarrow \infty} y_{k}=\lim _{k \rightarrow \infty}\left(\frac{2}{3}-\frac{2}{3}\left(\frac{7}{10}\right)^{k}\right)=\frac{2}{3}
$$

i.e., after a long time, $2 / 3$ of the NTHUEE students prefer linear algebra to calculus.
(b) Let $\boldsymbol{u}=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$. We then have

$$
\frac{d \boldsymbol{u}}{d t}=\left[\begin{array}{ll}
3 & -4 \\
2 & -3
\end{array}\right] \boldsymbol{u}=\boldsymbol{A} \boldsymbol{u}
$$

To find the eigenvalues and corresponding eigenvectors of \boldsymbol{A}, we calculate

$$
\begin{aligned}
& \operatorname{det}\left(\boldsymbol{A}-\lambda \boldsymbol{I}_{2}\right)=\left|\begin{array}{cc}
3-\lambda & -4 \\
2 & -3-\lambda
\end{array}\right| \\
&=\lambda^{2}-1 \\
&=(\lambda-1)(\lambda+1)=0 \\
& \Longrightarrow\left\{\begin{array}{lll}
\lambda_{1}=1 & \Longleftrightarrow \boldsymbol{v}_{1}=(2,1)^{T} \\
\lambda_{2}=-1 & \Longleftrightarrow \boldsymbol{v}_{2}=(1,1)^{T} .
\end{array}\right.
\end{aligned}
$$

Hence, we can obtain

$$
\boldsymbol{u}=c_{1} e^{t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} e^{t}+c_{2} e^{-t} \\
c_{1} e^{t}+c_{2} e^{-t}
\end{array}\right]
$$

At $t=0$, we have

$$
\left\{\begin{array} { l }
{ x (0) = 1 = 2 c _ { 1 } + c _ { 2 } } \\
{ y (0) = 0 = c _ { 1 } + c _ { 2 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=-1
\end{array}\right.\right.
$$

Therefore,

$$
x(t)=2 e^{t}-e^{-t}
$$

and

$$
y(t)=e^{t}-e^{-t} .
$$

4. (a) A matrix \boldsymbol{A} is diagonalizable if and only if each of its eigenvalues has the same algebraic multiplicity (AM) and geometric multiplicity (GM). Hence we should find the eigenvalues and corresponding eigenvectors of \boldsymbol{A}. Since

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\left[\begin{array}{ccc}
-\lambda & 0 & 0 \\
1 & -\lambda & 0 \\
0 & 1 & -\lambda
\end{array}\right]=-\lambda^{3}=0
$$

we have $\lambda=0,0,0$. For $\lambda=0$, the AM of λ is 3 . Besides,

$$
\boldsymbol{A}-\lambda \boldsymbol{I}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

and the corresponding eigenvector is

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

This gives the GM of λ is 1 , which is smaller than the AM of λ. As a result, \boldsymbol{A} is not diagonalizable.
(b) Since the AM and GM of the eigenvalue 0 are 3 and 1, respectively, the Jordan form \boldsymbol{J} for \boldsymbol{A} is

$$
\boldsymbol{J}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

(c) To obtain the singular value decomposition of \boldsymbol{A}, we first find the eigenvalues and corresponding orthonormal eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$. After some calculations, we can obtain

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow\left\{\begin{array}{cl}
\lambda_{1}=1, \lambda_{2}=1 & \longleftrightarrow \\
\lambda_{3}=0 & \longleftrightarrow \\
\boldsymbol{v}_{1}=(1,0,0)^{T}, \boldsymbol{v}_{2}=(0,1,0)^{T} \\
&
\end{array}\right.
$$

For $\lambda_{1}=\lambda_{2}=1$, we have the singular values $\sigma_{1}=\sqrt{\lambda_{1}}=1, \sigma_{2}=\sqrt{\lambda_{2}}=1$, and

$$
\boldsymbol{u}_{1}=\frac{\boldsymbol{A} \boldsymbol{v}_{1}}{\sigma_{1}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{u}_{2}=\frac{\boldsymbol{A} \boldsymbol{v}_{2}}{\sigma_{2}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

By the Gram-Schmidt process, we can obtain

$$
\boldsymbol{u}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

As a result, we have the singular value decomposition of \boldsymbol{A} as

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \\
& =\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3}
\end{array}\right]^{T} \\
& =\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

(d) According to what was taught in class, we have $\boldsymbol{v}_{3}=(0,0,1)^{T}$ and $\boldsymbol{u}_{3}=$ $(1,0,0)^{T}$ form an orthonormal basis for $\mathcal{N}(\boldsymbol{A})$ and $\mathcal{N}\left(\boldsymbol{A}^{T}\right)$, respectively.
5. (a) Let $\beta=\left\{1, x, x^{2}\right\}$. Since

$$
\begin{aligned}
L(1) & =0 \\
L(x) & =x \\
L\left(x^{2}\right) & =2 x^{2}+2
\end{aligned}=0 \cdot 1+0 \cdot x+0 \cdot x^{2}, 1+x+0 \cdot x^{2}, 0 \cdot x+2 \cdot x^{2} .
$$

we have

$$
\boldsymbol{A}=[L]_{\beta}=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(b) Let $\gamma=\left\{1, x, 1+x^{2}\right\}$. Since

$$
\begin{aligned}
L(1) & =0 \\
L(x) & =x
\end{aligned}=0 \cdot 1+0 \cdot x+0 \cdot\left(1+x^{2}\right), ~=0 \cdot 1+1 \cdot x+0 \cdot\left(1+x^{2}\right), ~=0 \cdot 1+0 \cdot x+2 \cdot\left(1+x^{2}\right)
$$

we have

$$
\boldsymbol{B}=[L]_{\gamma}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(c) Let I be the identity transformation, i.e., $I(p(x))=p(x)$. According to what was taught in class, we have $\boldsymbol{M}=[I]_{\gamma}^{\beta}$. Since

$$
\begin{aligned}
I(1) & =1 \\
I(x) & =x
\end{aligned}=1 \cdot 1+0 \cdot x+0 \cdot x^{2}, 0 \cdot 1+1 \cdot x+0 \cdot x^{2}, ~=1 \cdot 1+0 \cdot x+1 \cdot x^{2}
$$

we can obtain

$$
\boldsymbol{M}=[I]_{\gamma}^{\beta}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(d) Using γ as the basis for P_{2}, we can have

$$
p(x)=b_{0} \cdot 1+b_{1} \cdot x+b_{2} \cdot\left(1+x^{2}\right) \Longleftrightarrow\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]
$$

and

$$
L(p(x)) \Longleftrightarrow[L]_{\gamma}\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]
$$

To find $L^{n}(p(x))$, we should diagonalize $[L]_{\gamma}$. Since $[L]_{\gamma}$ is already a diagonal matrix, we can obtain

$$
\left([L]_{\gamma}\right)^{n}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]^{n}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2^{n}
\end{array}\right] .
$$

Therefore,

$$
\begin{aligned}
\left([L]_{\gamma}\right)^{n}\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2^{n}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
b_{1} \\
2^{n} b_{2}
\end{array}\right] \\
\Longrightarrow L^{n}(p(x)) & =0 \cdot 1+b_{1} \cdot x+2^{n} b_{2} \cdot\left(1+x^{2}\right) \\
& =2^{n} b_{2}+b_{1} x+2^{n} b_{2} x^{2} .
\end{aligned}
$$

