Final Examination

7:00pm to 10:00pm, June 17, 2011

Problems for Solution:

1. (20%) True or false. (If the statement is true, prove it. Otherwise, find a counterexample or explain why it is false.)
(a) (5%) If \boldsymbol{Q} is an orthogonal matrix, then the determinant of \boldsymbol{Q} is 1 .
(b) $(5 \%) \frac{1}{6}\left[\begin{array}{ccc}5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & -5\end{array}\right]$ is a projection matrix.
(c) $(5 \%)\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ is similar to $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(d) (5\%) If \boldsymbol{A} is any m by n matrix with $m>n$, then $\boldsymbol{A} \boldsymbol{A}^{T}$ cannot be positive definite. (Hint: Consider the rank of \boldsymbol{A}.)
2. (20\%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

(a) (5\%) Find the $\boldsymbol{L} \boldsymbol{U}$ decomposition of \boldsymbol{A}, where \boldsymbol{L} is lower triangular and \boldsymbol{U} is upper triangular.
(b) (5\%) Find the $\boldsymbol{Q} \boldsymbol{R}$ decomposition of \boldsymbol{A}, where \boldsymbol{Q} is orthogonal and \boldsymbol{R} is upper triangular.
(c) (5%) Find the $\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$ decomposition of \boldsymbol{A}, where \boldsymbol{Q} is orthogonal and $\boldsymbol{\Lambda}$ is diagonal.
(d) 5%) Find the Cholesky $\left(\boldsymbol{C} \boldsymbol{C}^{T}\right)$ decomposition of \boldsymbol{A}, where \boldsymbol{C} is lower triangular with positive diagonal entries.
3. (a) (10%) Suppose x_{k} is the fraction of Electrical Engineering students at National Tsing Hua University who prefer calculus to linear algebra at year k. The remaining fraction $y_{k}=1-x_{k}$ prefers linear algebra. At year $k+1,1 / 5$ of those who prefer calculus change their mind (possibly after taking EE 2030). Also at year $k+1,1 / 10$ of those who prefer linear algebra change their mind (possibly because of the final exam). Create the matrix \boldsymbol{A} to give

$$
\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\boldsymbol{A}\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right] .
$$

If initially $x_{0}=1$, find the limit of y_{k} as $k \rightarrow \infty$.
(b) (10%) Solve for $x(t)$ and $y(t)$ in these differential equations, starting from $x(0)=$ $1, y(0)=0$:

$$
\frac{d x}{d t}=3 x-4 y, \quad \frac{d y}{d t}=2 x-3 y
$$

4. (20%) Consider

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

(a) (5\%) Is \boldsymbol{A} diagonalizable? If yes, find an invertible matrix \boldsymbol{S} and a diagonal matrix $\boldsymbol{\Lambda}$ such that $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$. Otherwise, explain why it is not.
(b) (5%) Find the Jordan form \boldsymbol{J} for \boldsymbol{A}.
(c) $\mathbf{(5 \%)}$ Find the singular value decomposition of \boldsymbol{A}.
(d) $\mathbf{(5 \%)}$ Find orthonormal bases for the nullspace and the left nullspace of \boldsymbol{A}.
5. (20%) Let P_{2} be the space of all polynomials of degree at most 2, i.e., $P_{2}=\left\{a_{0}+a_{1} x+\right.$ $\left.a_{2} x^{2}: a_{0}, a_{1}, a_{2} \in \mathcal{R}\right\}$. Consider the linear operator L on P_{2} defined by

$$
L(p(x))=x p^{\prime}(x)+p^{\prime \prime}(x)
$$

where $p^{\prime}(x)$ is the derivative of $p(x)$ and $p^{\prime \prime}(x)$ is the second derivative of $p(x)$.
(a) (5%) Find the matrix \boldsymbol{A} representing L with respect to the basis $\left\{1, x, x^{2}\right\}$.
(b) (5\%) Find the matrix \boldsymbol{B} representing L with respect to the basis $\left\{1, x, 1+x^{2}\right\}$.
(c) $\mathbf{(5 \%)}$ Find the matrix \boldsymbol{M} such that $\boldsymbol{B}=\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M}$.
(d) (5%) If $p(x)=b_{0}+b_{1} x+b_{2}\left(1+x^{2}\right)$, calculate $L^{n}(p(x))$, where $L^{1}(p(x))=L(p(x))$ and $L^{n}(p(x))=L\left(L^{n-1}(p(x))\right)$ for $n>1$.

