Solution to Midterm Examination No. 2

1. Perform Gaussian elimination to obtain the reduced row echelon form \boldsymbol{R} of \boldsymbol{A} as follows:

$$
\begin{aligned}
\boldsymbol{A}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] & \Longrightarrow\left[\begin{array}{llllc}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lllcc}
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\boldsymbol{R} .
\end{aligned}
$$

- Row space:

The row space of \boldsymbol{A} is the same as that of \boldsymbol{R}. We have a basis of the row space of \boldsymbol{A} as

$$
(0120-2),\left(\begin{array}{llll}
0 & 0 & 1 & 2
\end{array}\right) .
$$

- Column space:

It is obvious that the second and forth columns of \boldsymbol{R} form a basis for the column space of \boldsymbol{R}. Hence the second and forth columns of \boldsymbol{A} form a basis for the column space of \boldsymbol{A}. Therefore, a basis for the column space of \boldsymbol{A} is

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]
$$

- Nullspace:

By \boldsymbol{R}, we have the special solutions

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

which form a basis for $\mathcal{N}(\boldsymbol{A})$.

- Left nullspace:

To find the left nullspace of \boldsymbol{A}, we perform Gaussian elimination to obtain the reduced row echelon form of \boldsymbol{A}^{T} :

$$
\begin{aligned}
{\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
2 & 2 & 0 \\
3 & 4 & 1 \\
4 & 6 & 2
\end{array}\right] } & \Longrightarrow\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Then we have the special solution

$$
\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

which forms a basis for $\mathcal{N}\left(\boldsymbol{A}^{\mathcal{T}}\right)$.
2. (a) Since the 5×5 matrix $[\boldsymbol{A} \boldsymbol{b}]$ is invertible, there are 5 nonzero pivots and all the columns are independent. Then \boldsymbol{b} cannot be a linear combination of the columns of \boldsymbol{A}. Therefore, $\boldsymbol{A x}=\boldsymbol{b}$ has no solution.
(b) We know that \boldsymbol{A} is a 5×4 matrix with rank 4 . That is to say \boldsymbol{A} is with full column rank. Since $[\boldsymbol{A} \boldsymbol{b}]$ is singular and \boldsymbol{A} is with full column rank, there is only one free variable in the column of \boldsymbol{b}. Then \boldsymbol{b} can be a linear combination of the columns of \boldsymbol{A}. Therefore, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is solvable.
3. Since \boldsymbol{x}_{r} is in the row space of \boldsymbol{A}, we have

$$
\boldsymbol{x}_{r}=\boldsymbol{A}^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \text { for some } x_{1}, x_{2} \in \mathcal{R}
$$

Then

$$
\boldsymbol{A} \boldsymbol{x}_{r}=\boldsymbol{A} \boldsymbol{A}^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{b}
$$

where

$$
\boldsymbol{A} \boldsymbol{A}^{T}=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
5 & 9 \\
9 & 18
\end{array}\right] \text { and } \boldsymbol{b}=\left[\begin{array}{c}
13 \\
27
\end{array}\right]
$$

We can solve x_{1} and x_{2} by

$$
\left[\begin{array}{cc}
5 & 9 \\
9 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
13 \\
27
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Hence,

$$
\boldsymbol{x}_{r}=\boldsymbol{A}^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
2 & 4
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]
$$

4. Let $\boldsymbol{K}_{\mathbf{1}}$ be the subspace spanned by the first column of \boldsymbol{A} and $\boldsymbol{K}_{\mathbf{2}}$ be the column space of \boldsymbol{A}. Obviously, \boldsymbol{K}_{1} is contained in $\boldsymbol{K}_{\mathbf{2}}$. For any vector \boldsymbol{x}, the projection vector of \boldsymbol{x} onto $\boldsymbol{K}_{\mathbf{1}}$ is

$$
\boldsymbol{P}_{\mathbf{1}} \boldsymbol{x} \in \boldsymbol{K}_{\mathbf{1}} \subset K_{\mathbf{2}}
$$

Since $\boldsymbol{P}_{\mathbf{1}} \boldsymbol{x} \in \boldsymbol{K}_{\mathbf{2}}$, the projection vector of $\boldsymbol{P}_{\mathbf{1}} \boldsymbol{x}$ onto $\boldsymbol{K}_{\mathbf{2}}$ is $\boldsymbol{P}_{\mathbf{1}} \boldsymbol{x}$ itself. Thus,

$$
\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{1}} \boldsymbol{x}=\boldsymbol{P}_{\mathbf{2}}\left(\boldsymbol{P}_{\mathbf{1}} \boldsymbol{x}\right)=\boldsymbol{P}_{\mathbf{1}} \boldsymbol{x}, \text { for any vector } \boldsymbol{x}
$$

Therefore,

$$
\boldsymbol{P}_{\mathbf{2}} \boldsymbol{P}_{\mathbf{1}}=\boldsymbol{P}_{\mathbf{1}}=\frac{\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right]}{\left[\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]}=\frac{1}{6}\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 4 & 0 & 2 \\
0 & 0 & 0 & 0 \\
1 & 2 & 0 & 1
\end{array}\right]
$$

5. (a) Consider the least-square linear fit to $\left(0, b_{1}\right),\left(1, b_{2}\right)$, and $\left(2, b_{3}\right)$, and let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right], \widehat{\boldsymbol{x}}=\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right], \text { and } \boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

Since

$$
\boldsymbol{A}^{T} \boldsymbol{A} \widehat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

we have

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } \\
\Longrightarrow & {\left[\begin{array}{l}
-3 \\
-7
\end{array}\right]=\left[\begin{array}{c}
b_{1}+b_{2}+b_{3} \\
b_{2}+2 b_{3}
\end{array}\right] . }
\end{aligned}
$$

The equations that b_{1}, b_{2}, and b_{3} must satisfy are

$$
\left\{\begin{array}{l}
b_{1}+b_{2}+b_{3}=-3 \\
b_{2}+2 b_{3}=-7
\end{array}\right.
$$

(b) Since all the three points $\left(0, b_{1}\right),\left(1, b_{2}\right)$, and $\left(2, b_{3}\right)$ fall on the line $1-2 t$, we can have

$$
\begin{aligned}
& b_{1}=1-2 \times 0=1 \\
& b_{2}=1-2 \times 1=-1 \\
& b_{3}=1-2 \times 2=-3
\end{aligned}
$$

That is to say

$$
\boldsymbol{b}=\left(\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right)^{T}=\left[\begin{array}{c}
1 \\
-1 \\
-3
\end{array}\right] .
$$

Then we can have

$$
\left\{\begin{array}{l}
b_{1}+b_{2}+b_{3}=1+(-1)+-3=-3 \\
b_{2}+2 b_{3}=-1+2 \times(-3)=-7
\end{array}\right.
$$

which satisfy the equations in (a).
6. (a) Since $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{R})=2$, the maximum number of columns of \boldsymbol{A} that form an independent set of vectors is equal to 2 .
(b) Since the row space of \boldsymbol{A} is equal to that of \boldsymbol{R}, take

$$
\boldsymbol{a}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right] \text { and } \boldsymbol{a}_{2}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-9
\end{array}\right]
$$

as a basis for the row space of \boldsymbol{A}. Then perform the Gram-Schmidt process as follows.

1. Take $\boldsymbol{A}_{1}=\boldsymbol{a}_{1}$. Then $\boldsymbol{q}_{1}=\frac{\boldsymbol{A}_{1}}{\left\|\boldsymbol{A}_{1}\right\|}=\frac{1}{3}\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 2\end{array}\right]$.
2. Take $\boldsymbol{A}_{2}=\boldsymbol{a}_{2}-\left(\boldsymbol{q}_{1}^{T} \boldsymbol{a}_{2}\right) \boldsymbol{q}_{1}=\left[\begin{array}{c}2 \\ 4 \\ 1 \\ -5\end{array}\right]$. Then $\boldsymbol{q}_{2}=\frac{\boldsymbol{A}_{2}}{\left\|\boldsymbol{A}_{2}\right\|}=\frac{1}{\sqrt{46}}\left[\begin{array}{c}2 \\ 4 \\ 1 \\ -5\end{array}\right]$.

Therefore, we obtain an orthonormal basis for the row space of \boldsymbol{A} as

$$
\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right] \text { and } \frac{1}{\sqrt{46}}\left[\begin{array}{c}
2 \\
4 \\
1 \\
-5
\end{array}\right]
$$

(c) This is equivalent to finding the projection of \boldsymbol{b} onto the row space of \boldsymbol{A}. We can obtain

$$
\boldsymbol{p}=\left(\boldsymbol{q}_{1}^{T} \boldsymbol{b}\right) \boldsymbol{q}_{1}+\left(\boldsymbol{q}_{2}^{T} \boldsymbol{b}\right) \boldsymbol{q}_{2}=\left[\begin{array}{l}
2 \\
4 \\
0 \\
4
\end{array}\right]
$$

(d) By the following figure,

we can have

$$
\boldsymbol{p}^{\prime}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{c}
0 \\
1 \\
-9 \\
-1
\end{array}\right]
$$

7. (a) Consider the first three columns:

$$
\left[\begin{array}{lll}
x & x & x \\
x & x & x \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

The rank of this submatrix is at most 2 . Therefore, the columns are dependent.
(b) The big formula states that the determinant of \boldsymbol{A} is the sum of 5 ! simple determinants, times 1 or -1 , and every simple determinant chooses one entry from each row and column. If some simple determinant of \boldsymbol{A} avoids all the zero entries in \boldsymbol{A}, then it cannot choose one entry from each column. Thus every simple determinant of \boldsymbol{A} must choose at least one zero entry, and hence all the terms are zero in the big formula for $\operatorname{det} \boldsymbol{A}$.
8. (a) Let $\left|\boldsymbol{A}_{\boldsymbol{n}}\right|=\operatorname{det} \boldsymbol{A}_{n}$. First observe that, for $n \geq 3$,

$$
\left|\boldsymbol{A}_{\boldsymbol{n}}\right|=\left|\begin{array}{ccccc}
& & & & 0 \\
& \boldsymbol{A}_{n-1} & & & \vdots \\
& & & & 0 \\
0 & \cdots & 0 & 1 & a_{n}
\end{array}\right|=\left|\begin{array}{cccccc}
& & & & 0 & 0 \\
& \boldsymbol{A}_{n-2} & & & \vdots & \vdots \\
0 & \cdots & 0 & 1 & a_{n-1} & -1 \\
0 & \cdots & 0 & 0 & 1 & a_{n}
\end{array}\right| .
$$

Applying the cofactor formula to the last row, we can have

$$
\begin{aligned}
\left|\boldsymbol{A}_{\boldsymbol{n}}\right| & =a_{n} \cdot(-1)^{n+n}\left|\boldsymbol{A}_{\boldsymbol{n - \mathbf { 1 }}}\right|+1 \cdot(-1)^{n+(n-1)}\left|\begin{array}{ccc}
& & \\
& \boldsymbol{A}_{n-2} & \\
& & \\
0 \\
0 & \cdots & 0 \\
1 & 1 & -1
\end{array}\right| \\
& =a_{n}\left|\boldsymbol{A}_{\boldsymbol{n}-\mathbf{1}}\right|-(-1) \cdot(-1)^{(n-1)+(n-1)}\left|\boldsymbol{A}_{\boldsymbol{n}-\mathbf{2}}\right| \text { (expansion along the last column) } \\
& =a_{n}\left|\boldsymbol{A}_{\boldsymbol{n}-\mathbf{1}}\right|+\left|\boldsymbol{A}_{\boldsymbol{n}-\mathbf{2}}\right| .
\end{aligned}
$$

(b) (i) We can have

$$
\begin{aligned}
&\left|\boldsymbol{A}_{\mathbf{1}}\right|=1 \\
&\left|\boldsymbol{A}_{\mathbf{2}}\right|=\left|\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right|=3 \\
&\left|\boldsymbol{A}_{\mathbf{3}}\right|=3 \cdot\left|\boldsymbol{A}_{\mathbf{2}}\right|+\left|\boldsymbol{A}_{\mathbf{1}}\right|=3 \cdot 3+1=10 \\
&\left|\boldsymbol{A}_{\mathbf{4}}\right|=4 \cdot\left|\boldsymbol{A}_{\mathbf{3}}\right|+\left|\boldsymbol{A}_{\mathbf{2}}\right|=4 \cdot 10+3=43 \\
&\left|\boldsymbol{A}_{\mathbf{5}}\right|=5 \cdot\left|\boldsymbol{A}_{\mathbf{4}}\right|+\left|\boldsymbol{A}_{\mathbf{3}}\right|=5 \cdot 43+10=225 \\
&\left|\boldsymbol{A}_{\mathbf{6}}\right|=6 \cdot\left|\boldsymbol{A}_{\mathbf{5}}\right|+\left|\boldsymbol{A}_{\mathbf{4}}\right|=6 \cdot 225+43=1393 .
\end{aligned}
$$

(ii) We can have

$$
\begin{aligned}
&\left|\boldsymbol{A}_{\mathbf{1}}\right|=5 \\
&\left|\boldsymbol{A}_{\mathbf{2}}\right|=\left|\begin{array}{cc}
5 & -1 \\
1 & 4
\end{array}\right|=21 \\
&\left|\boldsymbol{A}_{\mathbf{3}}\right|=3 \cdot\left|\boldsymbol{A}_{\mathbf{2}}\right|+\left|\boldsymbol{A}_{\mathbf{1}}\right|=3 \cdot 21+5=68 \\
&\left|\boldsymbol{A}_{\mathbf{4}}\right|=2 \cdot\left|\boldsymbol{A}_{\mathbf{3}}\right|+\left|\boldsymbol{A}_{\mathbf{2}}\right|=2 \cdot 68+21=157 \\
&\left|\boldsymbol{A}_{\mathbf{5}}\right|=1 \cdot\left|\boldsymbol{A}_{\mathbf{4}}\right|+\left|\boldsymbol{A}_{\mathbf{3}}\right|=1 \cdot 157+68=225 \\
&\left|\boldsymbol{A}_{\mathbf{6}}\right|=0 \cdot\left|\boldsymbol{A}_{\mathbf{5}}\right|+\left|\boldsymbol{A}_{\mathbf{4}}\right|=0 \cdot 225+157=157 .
\end{aligned}
$$

