Midterm Examination No. 2

7:00pm to 10:00pm, May 7, 2010

Problems for Solution:

1. (15%) Find a basis for each of the four subspaces for

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

2. (10\%) Suppose \boldsymbol{A} is a 5 by 4 matrix with rank 4 .
(a) (5\%) Show that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has no solution when the 5 by 5 matrix $[\boldsymbol{A} \boldsymbol{b}]$ is invertible.
(b) $\mathbf{(5 \%)}$ Show that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is solvable when $[\boldsymbol{A} \boldsymbol{b}]$ is singular.
3. (10\%) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 1 & 4
\end{array}\right]
$$

Given the vector

$$
\boldsymbol{b}=\left[\begin{array}{l}
13 \\
27
\end{array}\right]
$$

in the column space of \boldsymbol{A}, find a vector \boldsymbol{x}_{r} in the row space of \boldsymbol{A} such that

$$
\boldsymbol{A} \boldsymbol{x}_{r}=\boldsymbol{b}
$$

4. (10%) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 1 \\
1 & 2
\end{array}\right]
$$

Suppose \boldsymbol{P}_{1} is the projection matrix onto the the one-dimensional subspace spanned by the first column of \boldsymbol{A}. Suppose \boldsymbol{P}_{2} is the projection matrix onto the two-dimensional column space of \boldsymbol{A}. Compute the product $\boldsymbol{P}_{2} \boldsymbol{P}_{1}$. (Think before you compute.)
5. (10%) You are told that the least-square linear fit to three points $\left(0, b_{1}\right),\left(1, b_{2}\right)$, and $\left(2, b_{3}\right)$ is $C+D t$ for $C=1$ and $D=-2$. That is, the fit is $1-2 t$. In this problem, you will work backwards from this fit to reason about the unknown values $\boldsymbol{b}=\left(b_{1} b_{2} b_{3}\right)^{T}$ at $t=0,1,2$.
(a) (5%) Find the explicit equations that b_{1}, b_{2}, b_{3} must satisfy for $1-2 t$ to be the least-square linear fit. (You should simplify your equations as much as possible.)
(b) (5%) If all the three points fall exactly on the line $1-2 t$, find \boldsymbol{b}. Check that this satisfies your equations in (a).
6. (20%) The matrix

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 2 & 1 & -7 \\
2 & 4 & 1 & -5 \\
1 & 2 & 2 & -16
\end{array}\right]
$$

is converted into the reduced row echelon form by the usual elimination steps, resulting in the matrix:

$$
\boldsymbol{R}=\left[\begin{array}{cccc}
1 & 2 & 0 & 2 \\
0 & 0 & 1 & -9 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (5%) What is the maximum number of columns of \boldsymbol{A} that form an independent set of vectors? (You should explain your result.)
(b) (5%) Give an orthonormal basis for the row space of \boldsymbol{A}.
(c) (5%) Given the vector $\boldsymbol{b}=\left(\begin{array}{llll}2 & 5 & -9 & 3\end{array}\right)^{T}$, find the closest vector \boldsymbol{p} to \boldsymbol{b} in the row space of \boldsymbol{A}.
(d) (5%) Given the vector $\boldsymbol{b}=\left(\begin{array}{llll}2 & 5 & -9 & 3\end{array}\right)^{T}$, find the closest vector \boldsymbol{p}^{\prime} to \boldsymbol{b} in the nullspace of \boldsymbol{A}.
7. (10\%) This problem shows in two ways that $\operatorname{det} \boldsymbol{A}=0$ (the x 's are any numbers):

$$
\boldsymbol{A}=\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x
\end{array}\right]
$$

(a) $\mathbf{(5 \%)}$ Show that the columns are linearly dependent.
(b) (5\%) Explain why all the terms are zero in the big formula for $\operatorname{det} \boldsymbol{A}$.
8. (15%) Let

$$
\boldsymbol{A}_{n}=\left[\begin{array}{cccccc}
a_{1} & -1 & 0 & 0 & \cdots & 0 \\
1 & a_{2} & -1 & 0 & \cdots & 0 \\
0 & 1 & a_{3} & -1 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & a_{n-1} & -1 \\
0 & 0 & \cdots & 0 & 1 & a_{n}
\end{array}\right]
$$

(a) (7%) Show for $n \geq 3$ that $\operatorname{det} \boldsymbol{A}_{n}=a_{n} \operatorname{det} \boldsymbol{A}_{n-1}+\operatorname{det} \boldsymbol{A}_{n-2}$.
(b) (8\%) Calculate $\operatorname{det} \boldsymbol{A}_{6}$ for the cases that (i) $a_{j}=j$, for $j=1,2, \ldots, 6$, and (ii) $a_{j}=6-j$, for $j=1,2, \ldots, 6$.

