Chi-chao Chao

EE 2030 Linear Algebra Spring 2010

Midterm Examination No. 2

7:00pm to 10:00pm, May 7, 2010

Problems for Solution:

1. (15%) Find a basis for each of the four subspaces for

$$\boldsymbol{A} = \left[\begin{array}{rrrrr} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{array} \right].$$

- 2. (10%) Suppose **A** is a 5 by 4 matrix with rank 4.
 - (a) (5%) Show that Ax = b has no solution when the 5 by 5 matrix [A b] is invertible.
 - (b) (5%) Show that Ax = b is solvable when $[A \ b]$ is singular.
- 3. (10%) Consider the matrix

$$\boldsymbol{A} = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 1 & 1 & 4 \end{array} \right]$$

Given the vector

$$\boldsymbol{b} = \left[\begin{array}{c} 13\\27 \end{array} \right]$$

in the column space of A, find a vector x_r in the row space of A such that

$$Ax_r = b$$
.

4. (10%) Consider the matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}.$$

Suppose P_1 is the projection matrix onto the the one-dimensional subspace spanned by the first column of A. Suppose P_2 is the projection matrix onto the two-dimensional column space of A. Compute the product P_2P_1 . (Think before you compute.)

5. (10%) You are told that the least-square linear fit to three points $(0, b_1)$, $(1, b_2)$, and $(2, b_3)$ is C + Dt for C = 1 and D = -2. That is, the fit is 1 - 2t. In this problem, you will work backwards from this fit to reason about the unknown values $\boldsymbol{b} = (b_1 \ b_2 \ b_3)^T$ at t = 0, 1, 2.

- (a) (5%) Find the explicit equations that b_1, b_2, b_3 must satisfy for 1 2t to be the least-square linear fit. (You should simplify your equations as much as possible.)
- (b) (5%) If all the three points fall exactly on the line 1 2t, find **b**. Check that this satisfies your equations in (a).
- 6. (20%) The matrix

$$\boldsymbol{A} = \left[\begin{array}{rrrr} 1 & 2 & 1 & -7 \\ 2 & 4 & 1 & -5 \\ 1 & 2 & 2 & -16 \end{array} \right]$$

is converted into the reduced row echelon form by the usual elimination steps, resulting in the matrix:

$$\boldsymbol{R} = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & -9 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) (5%) What is the maximum number of columns of \boldsymbol{A} that form an independent set of vectors? (You should explain your result.)
- (b) (5%) Give an orthonormal basis for the row space of A.
- (c) (5%) Given the vector $\boldsymbol{b} = (2 \ 5 \ -9 \ 3)^T$, find the closest vector \boldsymbol{p} to \boldsymbol{b} in the row space of \boldsymbol{A} .
- (d) (5%) Given the vector $\boldsymbol{b} = (2 \ 5 \ -9 \ 3)^T$, find the closest vector \boldsymbol{p}' to \boldsymbol{b} in the nullspace of \boldsymbol{A} .
- 7. (10%) This problem shows in two ways that det $\mathbf{A} = 0$ (the x's are any numbers):

$$\boldsymbol{A} = \left[\begin{array}{ccccc} x & x & x & x & x \\ x & x & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{array} \right].$$

(a) (5%) Show that the columns are linearly dependent.

(b) (5%) Explain why all the terms are zero in the big formula for det A.

8. (15%) Let

$$\boldsymbol{A}_{n} = \begin{bmatrix} a_{1} & -1 & 0 & 0 & \cdots & 0 \\ 1 & a_{2} & -1 & 0 & \cdots & 0 \\ 0 & 1 & a_{3} & -1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & a_{n-1} & -1 \\ 0 & 0 & \cdots & 0 & 1 & a_{n} \end{bmatrix}$$

.

- (a) (7%) Show for $n \ge 3$ that det $A_n = a_n \det A_{n-1} + \det A_{n-2}$.
- (b) (8%) Calculate det A_6 for the cases that (i) $a_j = j$, for j = 1, 2, ..., 6, and (ii) $a_j = 6 j$, for j = 1, 2, ..., 6.