Solution to Midterm Examination No. 1

1. (a) Since \boldsymbol{U} is obtained form \boldsymbol{A} through elimination, we know that $\mathcal{N}(\boldsymbol{A})=$ $\mathcal{N}(\boldsymbol{U})$. Transform \boldsymbol{U} into the reduced row echelon (RRE) form:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 4 & -1 & 3 \\
0 & 2 & 2 & -6 \\
0 & 0 & 0 & 0
\end{array}\right] } & \Longrightarrow\left[\begin{array}{cccc}
1 & 0 & -5 & 15 \\
0 & 2 & 2 & -6 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { (subtract } 2 \times \text { row } 2 \text {) } \\
& \left.\Longrightarrow\left[\begin{array}{cccc}
1 & 0 & -5 & 15 \\
0 & 1 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { (divide by } 2\right)
\end{aligned}
$$

The pivot variables are x_{1} and x_{2}, and the free variables are x_{3} and x_{4}.

- Given $\left(x_{3}, x_{4}\right)=(1,0)$, we have $\left(x_{1}, x_{2}\right)=(5,-1)$.
- Given $\left(x_{3}, x_{4}\right)=(0,1)$, we have $\left(x_{1}, x_{2}\right)=(-15,3)$.

Therefore, we have

$$
\mathcal{N}(\boldsymbol{A})=\mathcal{N}(\boldsymbol{U})=\left\{x_{3}\left[\begin{array}{c}
5 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-15 \\
3 \\
0 \\
1
\end{array}\right]: x_{3}, x_{4} \in \mathcal{R}\right\}
$$

(b) We have

$$
\boldsymbol{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

which records the elimination steps. Hence

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
2 \\
6
\end{array}\right] } \\
\Longrightarrow & {\left[\begin{array}{l}
0 \\
2 \\
6
\end{array}\right](\text { subtract } 2 \times \text { row } 1) } \\
\Longrightarrow & {\left[\begin{array}{l}
0 \\
2 \\
6
\end{array}\right](\text { subtract }-1 \times \text { row } 1) } \\
\Longrightarrow & {\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right](\text { subtract } 3 \times \text { row } 2) }
\end{aligned}
$$

Therefore,

$$
\boldsymbol{c}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] .
$$

2. (a) Perform Gauss-Jordan method to find \boldsymbol{A}_{4}^{-1} as follows:

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\boldsymbol{A}_{4} & \boldsymbol{I}
\end{array}\right]} \\
& =\left[\begin{array}{cccc|cccc}
1 & -a & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -c & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \left.\Longrightarrow\left[\begin{array}{cccc|cccc}
1 & -a & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & c \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { (subtract }-c \times \text { row } 4\right) \\
& \Longrightarrow\left[\begin{array}{cccc|cccc}
1 & -a & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & b & b c \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & c \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \quad(\text { subtract }-b \times \text { row } 3) \\
& \Longrightarrow\left[\begin{array}{llll|llcc}
1 & 0 & 0 & 0 & 1 & a & a b & a b c \\
0 & 1 & 0 & 0 & 0 & 1 & b & b c \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & c \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \quad(\text { subtract }-a \times \text { row 2) }
\end{aligned}
$$

We can hence obtain

$$
\boldsymbol{A}_{4}^{-1}=\left[\begin{array}{cccc}
1 & a & a b & a b c \\
0 & 1 & b & b c \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Form the result of (a), we guess that the inverse of \boldsymbol{A}_{5} is given by

$$
\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Since

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \boldsymbol{A}_{5} } & =\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & -a & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 \\
0 & 0 & 1 & -c & 0 \\
0 & 0 & 0 & 1 & -d \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{I}
\end{aligned}
$$

and

$$
\begin{aligned}
\boldsymbol{A}_{5}\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right] & =\left[\begin{array}{ccccc}
1 & -a & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 \\
0 & 0 & 1 & -c & 0 \\
0 & 0 & 0 & 1 & -d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{I}
\end{aligned}
$$

we have confirmed

$$
\boldsymbol{A}_{5}^{-1}=\left[\begin{array}{ccccc}
1 & a & a b & a b c & a b c d \\
0 & 1 & b & b c & b c d \\
0 & 0 & 1 & c & c d \\
0 & 0 & 0 & 1 & d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

3. Exchanging rows 1 and 4, we can have

$$
\left[\begin{array}{llll}
0 & 0 & 3 & 4 \\
2 & 3 & 1 & 0 \\
0 & 1 & 2 & 3 \\
1 & 2 & 0 & 0
\end{array}\right] \Longrightarrow\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 3 & 1 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 3 & 4
\end{array}\right]
$$

Then elimination gives

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 3 & 1 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 3 & 4
\end{array}\right] } \\
\Longrightarrow & {\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & 2 & 3 \\
0 & 0 & 3 & 4
\end{array}\right] \quad(\text { subtract } 2 \times \text { row } 1) } \\
\Longrightarrow & {\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 3 & 3 \\
0 & 0 & 3 & 4
\end{array}\right] \quad(\text { subtract }-1 \times \text { row } 2) } \\
\Longrightarrow & {\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \quad(\text { subtract } 1 \times \text { row } 3) }
\end{aligned}
$$

Therefore, we can obtain

$$
\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}
$$

where

$$
\begin{aligned}
\boldsymbol{P} & =\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
\boldsymbol{A} & =\left[\begin{array}{llll}
0 & 0 & 3 & 4 \\
2 & 3 & 1 & 0 \\
0 & 1 & 2 & 3 \\
1 & 2 & 0 & 0
\end{array}\right] \\
\boldsymbol{L} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \\
\boldsymbol{U} & =\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

4. (a) The invertible matrices in \boldsymbol{M} do not form a subspace. A counterexample is given as follows. Consider an invertible matrix \boldsymbol{A} in \boldsymbol{M} and $c=0$, and we have

$$
c \boldsymbol{A}=0 \boldsymbol{A}=\mathbf{0}
$$

which is not invertible in \boldsymbol{M}. Therefore, the invertible matrices in \boldsymbol{M} do not form a subspace.
(b) The matrices with the sum of the components in each row equal to zero in \boldsymbol{M} form a subspace. Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

where $a_{11}+a_{12}=a_{21}+a_{22}=b_{11}+b_{12}=b_{21}+b_{22}=0$. We need to check the following two conditions.

- For

$$
\boldsymbol{A}+\boldsymbol{B}=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

we have

$$
a_{11}+b_{11}+a_{12}+b_{12}=\left(a_{11}+a_{12}\right)+\left(b_{11}+b_{12}\right)=0+0=0
$$

and

$$
a_{21}+b_{21}+a_{22}+b_{22}=\left(a_{12}+a_{22}\right)+\left(b_{12}+b_{22}\right)=0+0=0 .
$$

Therefore, $\boldsymbol{A}+\boldsymbol{B}$ is still a matrix with the sum of the components in each row equal to zero in \boldsymbol{M}.

- For any c, consider

$$
c \boldsymbol{A}=\left[\begin{array}{ll}
c a_{11} & c a_{12} \\
c a_{21} & c a_{22}
\end{array}\right] .
$$

Since we have

$$
c a_{11}+c a_{12}=c\left(a_{11}+a_{12}\right)=0
$$

and

$$
c a_{21}+c a_{22}=c\left(a_{21}+a_{22}\right)=0
$$

$c \boldsymbol{A}$ is still a matrix with the sum of the components in each row equal to zero in \boldsymbol{M}.

Since the above two conditions are satisfied, matrices with the sum of the components in each row equal to zero in \boldsymbol{M} form a subspace.
5. (a) Let

$$
\boldsymbol{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \text { and } \boldsymbol{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]
$$

We can have

$$
\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}=\left[\begin{array}{l}
u_{1} \boldsymbol{v}^{T} \\
u_{2} \boldsymbol{v}^{T} \\
u_{3} \boldsymbol{v}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
2 & 4 & 1 & 3 \\
-4 & -8 & -2 & -6 \\
6 & 12 & 3 & 9
\end{array}\right]
$$

yielding

$$
\begin{aligned}
\boldsymbol{v}^{T} & =\frac{1}{u_{1}}\left[\begin{array}{llll}
2 & 4 & 1 & 3
\end{array}\right] \\
u_{2} & =-2 u_{1} \\
u_{3} & =3 u_{1} .
\end{aligned}
$$

Taking $u_{1}=a$ for some $a \neq 0$, we can obtain

$$
\boldsymbol{u}=a\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \text { and } \boldsymbol{v}=\frac{1}{a}\left[\begin{array}{l}
2 \\
4 \\
1 \\
3
\end{array}\right]
$$

For example, letting $a=1$, we can have

$$
\boldsymbol{u}=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right] \text { and } \boldsymbol{v}=\left[\begin{array}{l}
2 \\
4 \\
1 \\
3
\end{array}\right]
$$

(b) Since $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}$, the rank of \boldsymbol{A} is 1.
6. We can solve this system by the following procedure:

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 2 & -2 \\
2 & 5 & -4 \\
4 & 9 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] } & \Longrightarrow\left[\begin{array}{lll|l}
1 & 2 & -2 & b_{1} \\
2 & 5 & -4 & b_{2} \\
4 & 9 & -8 & b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
4 & 9 & -8 & b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 1 & 0 & -4 b_{1}+b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 0 & 0 & -2 b_{1}-b_{2}+b_{3}
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -2 & 5 b_{1}-2 b_{2} \\
0 & 1 & 0 & -2 b_{1}+b_{2} \\
0 & 0 & 0 & -2 b_{1}-b_{2}+b_{3}
\end{array}\right]
\end{aligned}
$$

It can be seen that the system is solvable only if $-2 b_{1}-b_{2}+b_{3}=0$, i.e., $b_{3}=2 b_{1}+b_{2}$. If $b_{3}=2 b_{1}+b_{2}$, we can go on solving

$$
\left\{\begin{aligned}
x_{1} & -2 x_{3} & =5 b_{1}-2 b_{2} \\
& x_{2} & =-2 b_{1}+b_{2} .
\end{aligned}\right.
$$

Letting $x_{3}=0$, we can find a particular solution $\boldsymbol{x}_{p}=\left[\begin{array}{c}5 b_{1}-2 b_{2} \\ -2 b_{1}+b_{2} \\ 0\end{array}\right]$. And the general solution to the homogeneous system is $\boldsymbol{x}_{n}=x_{3}\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$. Therefore, we can obtain the complete solution

$$
\boldsymbol{x}=x_{3}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
5 b_{1}-2 b_{2} \\
-2 b_{1}+b_{2} \\
0
\end{array}\right]
$$

where $x_{3} \in \boldsymbol{R}$.
7. (a) It is clear that \boldsymbol{A} is 3×2. For $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to be the only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$, the nullspace of \boldsymbol{A} must contain the zero vector only. Hence, the rank of \boldsymbol{A} (the number of pivots) should be 2. Let $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2}\end{array}\right]$, where \boldsymbol{a}_{1} and \boldsymbol{a}_{2} are column vectors. We have

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

which gives

$$
\boldsymbol{a}_{1}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] .
$$

And \boldsymbol{a}_{2} can be any 3×1 column vector which is not a multiple of \boldsymbol{a}_{1}.
(b) It is clear that \boldsymbol{B} is 2×3. For $\boldsymbol{x}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ to be the only one solution to $\boldsymbol{B} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, the nullspace of \boldsymbol{B} must contain the zero vector only. Hence, the rank of \boldsymbol{B} should be 3. Yet as the number of rows of \boldsymbol{B} is only 2 , the rank of \boldsymbol{B} cannot be 3. Therefore, \boldsymbol{B} does not exist.
8. (a) \boldsymbol{B} can be chosen as

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -1 \\
-1 & 1 & 3 \\
3 & 4 & 1
\end{array}\right]
$$

or any 4×3 real matrix whose columns are independent linear combinations of columns of the above matrix.
(b) This problem is equivalent to finding c such that

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
c
\end{array}\right]
$$

is a solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. Since \boldsymbol{x}_{p} is also a solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we can obtain that

$$
\boldsymbol{x}^{\prime \prime}=\boldsymbol{x}^{\prime}-\boldsymbol{x}_{p}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
c
\end{array}\right]-\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
c-4
\end{array}\right]
$$

must be in the nullspace $\mathcal{N}(\boldsymbol{A})$. That is, the system

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -1 \\
-1 & 1 & 3 \\
3 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
c-4
\end{array}\right]
$$

should be solvable. By performing elimination, we can have

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
2 & 1 & -1 & -1 \\
-1 & 1 & 3 & 0 \\
3 & 4 & 1 & c-4
\end{array}\right]} \\
\Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & -1 \\
0 & 1 & 2 & 0 \\
0 & 4 & 4 & c-4
\end{array}\right] \\
\Longrightarrow
\end{gathered}
$$

For this system to be solvable, we must have $c=0$. Therefore, Catherine's solution

$$
\boldsymbol{x}_{C}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
0
\end{array}\right]
$$

is correct while Jonathan's is not.

