Midterm Examination No. 1

7:00pm to $10: 00 \mathrm{pm}$, March 26, 2010

Problems for Solution:

1. (15%) Your classmate Emily performed the usual elimination steps to convert \boldsymbol{A} to \boldsymbol{U}, obtaining

$$
\boldsymbol{U}=\left[\begin{array}{cccc}
1 & 4 & -1 & 3 \\
0 & 2 & 2 & -6 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (8%) Find all the vectors in the nullspace $\mathcal{N}(\boldsymbol{A})$.
(b) (7%) Emily gave you a matrix

$$
\boldsymbol{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 3 & 1
\end{array}\right]
$$

and told you that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$. If $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}0 \\ 2 \\ 6\end{array}\right]$, then $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{c}$. Find \boldsymbol{c}.
2. (a) (5\%) Find the inverse of

$$
\boldsymbol{A}_{4}=\left[\begin{array}{cccc}
1 & -a & 0 & 0 \\
0 & 1 & -b & 0 \\
0 & 0 & 1 & -c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) (5\%) First guess the inverse of

$$
\boldsymbol{A}_{5}=\left[\begin{array}{ccccc}
1 & -a & 0 & 0 & 0 \\
0 & 1 & -b & 0 & 0 \\
0 & 0 & 1 & -c & 0 \\
0 & 0 & 0 & 1 & -d \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Then multiply to confirm.
3. (10\%) Find the $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ factorization for

$$
\boldsymbol{A}=\left[\begin{array}{llll}
0 & 0 & 3 & 4 \\
2 & 3 & 1 & 0 \\
0 & 1 & 2 & 3 \\
1 & 2 & 0 & 0
\end{array}\right]
$$

where \boldsymbol{P} is a permutation matrix, \boldsymbol{L} is a lower triangular matrix with unit diagonal, and \boldsymbol{U} is an upper triangular matrix.
4. (15%) If the following statement is true, prove it; otherwise, find a counterexample. Recall that \boldsymbol{M} is the vector space of all real 2×2 matrices.
(a) (8\%) The invertible matrices in \boldsymbol{M} form a subspace.
(b) (7%) The matrices with the sum of the components in each row equal to zero in \boldsymbol{M} form a subspace.
5. (a) (6\%) Find column vectors \boldsymbol{u} and \boldsymbol{v} so that $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}$:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
2 & 4 & 1 & 3 \\
-4 & -8 & -2 & -6 \\
6 & 12 & 3 & 9
\end{array}\right]
$$

(b) (4\%) Find the rank of \boldsymbol{A}.
6. (10\%) Under what condition on b_{1}, b_{2}, b_{3} is this system solvable? Find all solutions when that condition holds:

$$
\left[\begin{array}{lll}
1 & 2 & -2 \\
2 & 5 & -4 \\
4 & 9 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

7. (15\%) Find matrices \boldsymbol{A} and \boldsymbol{B} with the given property or explain why you cannot:
(a) (8\%) The only solution to $\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(b) (7%) The only solution to $\boldsymbol{B} \boldsymbol{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is $\boldsymbol{x}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.
8. (15\%) The matrix \boldsymbol{A} has its nullspace $\mathcal{N}(\boldsymbol{A})$ spanned by the following three vectors:

$$
\left[\begin{array}{c}
1 \\
2 \\
-1 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
1 \\
4
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
1
\end{array}\right] .
$$

(a) (7%) Give a matrix \boldsymbol{B} such that its column space $\mathcal{C}(\boldsymbol{B})$ is the same as $\mathcal{N}(\boldsymbol{A})$.
(b) (8%) For some vector \boldsymbol{b}, you are told that a particular solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is

$$
\boldsymbol{x}_{p}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Now, your classmate Catherine tells you that a second solution is:

$$
\boldsymbol{x}_{C}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
0
\end{array}\right]
$$

while your other classmate Jonathan tells you "No, Catherine's solution cannot be right, but here is a second solution that is correct:"

$$
\boldsymbol{x}_{J}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right]
$$

Is Catherine's solution correct, or Jonathan's solution, or are both correct?

