## Solution to Final Examination

1. (a) True.

Since $\boldsymbol{A}$ is symmetric and invertible, we have $\boldsymbol{A}^{T}=\boldsymbol{A}$ and there exists $\boldsymbol{A}^{-1}$ such that $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}$. Therefore, we can have

$$
\boldsymbol{I}=\boldsymbol{I}^{T}=\left(\boldsymbol{A} \boldsymbol{A}^{-1}\right)^{T}=\left(\boldsymbol{A}^{-1}\right)^{T} \boldsymbol{A}^{T}=\left(\boldsymbol{A}^{-1}\right)^{T} \boldsymbol{A}
$$

Multiple $\boldsymbol{A}^{-1}$ from the right to both sides, and we have

$$
\boldsymbol{A}^{-1}=\left(\boldsymbol{A}^{-1}\right)^{T}\left(\boldsymbol{A} \boldsymbol{A}^{-1}\right)=\left(\boldsymbol{A}^{-1}\right)^{T}
$$

That is to say $\boldsymbol{A}^{-1}$ is symmetric.
(b) False.
(i) Let $\boldsymbol{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, and we have

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right]=(1-\lambda)^{3}=0
$$

Therefore, the eigenvalues of $\boldsymbol{A}$ are $1,1,1$.

$$
\lambda=1 \Longrightarrow(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \boldsymbol{x}=\mathbf{0} .
$$

Therefore, two independent eigenvectors can be obtained as $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
(ii) Let $\boldsymbol{B}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$, and we have

$$
\operatorname{det}(\boldsymbol{B}-\lambda \boldsymbol{I})=\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
1 & 1-\lambda & 0 \\
0 & 1 & 1-\lambda
\end{array}\right]=(1-\lambda)^{3}=0
$$

The eigenvalues of $\boldsymbol{B}$ are also $1,1,1$.

$$
\lambda=1 \Longrightarrow(\boldsymbol{B}-\lambda \mathbf{I}) \boldsymbol{x}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \boldsymbol{x}=\mathbf{0} .
$$

Therefore, an independent eigenvector can be obtained as $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.

Since $\boldsymbol{A}$ and $\boldsymbol{B}$ do not have the same number of independent eigenvectors, they are not similar.
(c) True.

Performing elimination, we can have

$$
\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right] \Longrightarrow\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 3 & 3 \\
0 & 3 & 8
\end{array}\right] \Longrightarrow\left[\begin{array}{lll}
2 & 2 & 0 \\
0 & 3 & 3 \\
0 & 0 & 5
\end{array}\right] \Longrightarrow \text { pivots: } 2,3,5
$$

The matrix is symmetric and has all pivots $>0$ (without row exchanges), so it is positive definite.
2. (a) Since by elimination

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 2 & 4 \\
0 & 2 & 0 & 0
\end{array}\right] \Longrightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we know that $x_{3}$ is the free variable. Therefore, we can obtain a particular solution as $\boldsymbol{x}_{p}=(4,0,0)^{T}$ and the nullspace vectors as

$$
\boldsymbol{x}_{n}=x_{3}\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

where $x_{3} \in \mathcal{R}$. Finally, the complete solution is given by

$$
\boldsymbol{x}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] .
$$

(b) Since $\boldsymbol{A}_{3}$ is a symmetric matrix, the left nullspace of $\boldsymbol{A}_{3}$ is equivalent to the nullspace of $\boldsymbol{A}_{3}$. A basis can be given as the special solution: $(-2,0,1)^{T}$.
(c) A basis for the column space of $\boldsymbol{A}_{3}$ can be found as $(0,1,0)^{T},(1,0,2)^{T}$, from which we can have an orthonormal basis given by

$$
\boldsymbol{q}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{q}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

Then the projection matrix can be obtained as

$$
\boldsymbol{q}_{1} \boldsymbol{q}_{1}^{T}+\boldsymbol{q}_{2} \boldsymbol{q}_{2}^{T}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{1}{5}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 0 \\
2 & 0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
1 / 5 & 0 & 2 / 5 \\
0 & 1 & 0 \\
2 / 5 & 0 & 4 / 5
\end{array}\right] .
$$

(d) Since

$$
\operatorname{det}\left(\boldsymbol{A}_{\mathbf{3}}-\lambda \boldsymbol{I}\right)=-\lambda^{3}+5 \lambda=0
$$

we can find that the eigenvalues of $\boldsymbol{A}_{\boldsymbol{3}}$ are $0, \sqrt{5}$, and $-\sqrt{5}$.
(e) Suppose $\lambda$ is an eigenvalue of $\boldsymbol{A}_{4}$, and we can have

$$
\begin{aligned}
& \boldsymbol{A}_{4} \boldsymbol{v}=\lambda \boldsymbol{v} \\
\Longrightarrow \quad & \left(-\boldsymbol{A}_{4}\right) \boldsymbol{v}=(-\lambda) \boldsymbol{v}
\end{aligned}
$$

Then $-\lambda$ is an eigenvalue of $-\boldsymbol{A}_{4}$. Since $\boldsymbol{A}_{4}$ is similar to $-\boldsymbol{A}_{4}$, they have the same eigenvalues. Therefore, $-\lambda$ is also an eigenvalue of $\boldsymbol{A}_{4}$. We can obtain that the other two eigenvalues are -3.65 and -0.822 .
(f) Since 0 is an eigenvalue of $\boldsymbol{A}_{3}, \operatorname{det}\left(\boldsymbol{A}_{3}\right)=0$. Hence, we can have

$$
\operatorname{det}\left(\boldsymbol{A}_{5}\right)=-4 \cdot 4 \cdot \operatorname{det}\left(\boldsymbol{A}_{3}\right)=0
$$

Therefore, $\boldsymbol{A}_{5}$ is not invertible.
(g) Yes. Since $\boldsymbol{A}_{6}$ is a real symmetry matrix, it is diagonalizable by Spectral Theorem.
3. (a) We first find the eigenvalues:

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\left|\begin{array}{cc}
0.3-\lambda & c \\
0.7 & 1-c-\lambda
\end{array}\right| \\
& =\lambda^{2}-(1.3-c) \lambda+(0.3-c)
\end{aligned}
$$

Solving $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$, we can have $\lambda=1,(0.3-c)$. If $1 \neq 0.3-c$, there will be two independent eigenvectors corresponding to the two distinct eigenvalues and hence the matrix is diagonalizable. We then only have to check the case that $1=0.3-c$, i.e., $c=-0.7$. When $c=-0.7, \lambda=1,1$, and

$$
\boldsymbol{A}-\lambda \boldsymbol{I}=\left|\begin{array}{cc}
-0.7 & -0.7 \\
0.7 & 0.7
\end{array}\right|
$$

Since $\operatorname{dim}(\mathcal{N}(\boldsymbol{A}-\lambda \boldsymbol{I}))=1<2, \boldsymbol{A}$ is not diagonalizable when $c=-0.7$.
(b) From the result in (a), if $c \neq-0.7, \boldsymbol{A}$ is diagonalizable and

$$
\boldsymbol{A}=\boldsymbol{S}\left[\begin{array}{cc}
1 & 0 \\
0 & 0.3-c
\end{array}\right] \boldsymbol{S}^{-1}
$$

where $\boldsymbol{S}$ is the matrix with two independent eigenvectors as the columns. Therefore,

$$
\boldsymbol{A}^{n}=\boldsymbol{S}\left[\begin{array}{cc}
1 & 0 \\
0 & (0.3-c)^{n}
\end{array}\right] \boldsymbol{S}^{-1}
$$

When $-1<0.3-c<1$, i.e., $-0.7<c<1.3$, the limiting matrix exists. It can be easilly checked that the limiting matrix does not exist when $c<-0.7$ or $c \geq 1.3$. The only remaining case we need to check is when $\boldsymbol{A}$ is not diagonalizable, i.e., $c=-0.7$. When $c=-0.7, \lambda=1,1$, and

$$
\boldsymbol{A}-\lambda \boldsymbol{I}=\left[\begin{array}{cc}
-0.7 & -0.7 \\
0.7 & 0.7
\end{array}\right]
$$

Let the corresponding eigenvector be $(-1 / \sqrt{2}, 1 / \sqrt{2})^{T}$. Using the GramSchmidt method, we can obtain an orthonormal basis as $\boldsymbol{w}_{1}=(-1 / \sqrt{2}, 1 / \sqrt{2})^{T}$,
$\boldsymbol{w}_{2}=(1 / \sqrt{2}, 1 / \sqrt{2})^{T}$ for $\mathcal{R}^{2}$. For any vector $\boldsymbol{x} \in \mathcal{R}^{2}$, we can have $\boldsymbol{x}=a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}$, and

$$
\boldsymbol{A} \boldsymbol{x}=A\left(a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}\right)=a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{A} \boldsymbol{w}_{2} .
$$

It can be checked that $A \boldsymbol{w}_{\mathbf{2}}=1.4 \boldsymbol{w}_{\mathbf{1}}+\boldsymbol{w}_{\mathbf{2}}$, and thus

$$
\boldsymbol{A} \boldsymbol{x}=a_{1} \boldsymbol{w}_{1}+a_{2}\left(1.4 \boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right)=\left(a_{1}+1.4 a_{2}\right) \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}
$$

which leads to

$$
\boldsymbol{A}^{n} \boldsymbol{x}=\left(a_{1}+1.4 n a_{2}\right) \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2} .
$$

Therefore, as $n \rightarrow \infty$ the limit of $\boldsymbol{A}^{n} \boldsymbol{x}$ does not exist if $a_{2} \neq 0$. We can have

$$
\boldsymbol{A}^{n}=\boldsymbol{A}^{n-1}\left[\begin{array}{ll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2}
\end{array}\right]
$$

where $\boldsymbol{x}_{1}=(0.3,0.7)^{T}$ and $\boldsymbol{x}_{2}=(-0.7,1.7)^{T}$. Then the limit of $\boldsymbol{A}^{n}$ does not exist as $n \rightarrow \infty$ because $\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}$ are not both multiples of $\boldsymbol{w}_{\mathbf{1}}$. Consequently, the limiting matrix exists only when $-0.7<c<1.3$.
(c) From the result in (b), $\boldsymbol{A}$ is diagonalizable when the limiting matrix exists. Since $\boldsymbol{A}$ has eigenvalues $\lambda=1,(0.3-c)$, we first find the corresponding eigenvectors. When $\lambda=1$,

$$
\boldsymbol{A}-\lambda \boldsymbol{I}=\left[\begin{array}{cc}
-0.7 & c \\
0.7 & -c
\end{array}\right] .
$$

Let the corresponding eigenvector be $\boldsymbol{s}_{\mathbf{1}}=(c, 0.7)^{T}$. When $\lambda=0.3-c$,

$$
\boldsymbol{A}-\lambda \boldsymbol{I}=\left[\begin{array}{cc}
c & c \\
0.7 & 0.7
\end{array}\right] .
$$

Let the corresponding eigenvector be $\boldsymbol{s}_{\mathbf{2}}=(1,-1)^{T}$. Let

$$
\boldsymbol{S}=\left[\begin{array}{ll}
\boldsymbol{s}_{\mathbf{1}} & \boldsymbol{s}_{\mathbf{2}}
\end{array}\right]=\left[\begin{array}{cc}
c & 1 \\
0.7 & -1
\end{array}\right]
$$

and we can obtain

$$
\boldsymbol{S}^{-1}=\frac{1}{c+0.7}\left[\begin{array}{cc}
1 & 1 \\
0.7 & -c
\end{array}\right] .
$$

We then have

$$
\boldsymbol{A}=\boldsymbol{S}\left[\begin{array}{cc}
1 & 0 \\
0 & (0.3-c)
\end{array}\right] \boldsymbol{S}^{-1}
$$

Therefore,

$$
\boldsymbol{A}^{n}=\boldsymbol{S}\left[\begin{array}{cc}
1^{n} & 0 \\
0 & (0.3-c)^{n}
\end{array}\right] \boldsymbol{S}^{-1}
$$

When $-1<0.3-c<1$, we can have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \boldsymbol{A}^{n} & =\boldsymbol{S}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \boldsymbol{S}^{-1} \\
& =\left[\begin{array}{cc}
c & 1 \\
0.7 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \frac{1}{c+0.7}\left[\begin{array}{cc}
1 & 1 \\
0.7 & -c
\end{array}\right] \\
& =\frac{1}{c+0.7}\left[\begin{array}{cc}
c & c \\
0.7 & 0.7
\end{array}\right] .
\end{aligned}
$$

4. (a) Let

$$
\boldsymbol{A}=\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{\mathbf{2}} & \boldsymbol{v}_{3}
\end{array}\right] .
$$

Since $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}$ are independent, we know that $\operatorname{rank}(\boldsymbol{A})=3$ and $\boldsymbol{A}$ is fullrank. Therefore, $\boldsymbol{A}$ is invertible.
(b) Let

$$
A=\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right] .
$$

Since $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}, \boldsymbol{v}_{\mathbf{4}}$ span $\mathcal{R}^{3}$, we know that $\operatorname{rank}(\boldsymbol{A})=\operatorname{dim}(\mathcal{C}(\boldsymbol{A}))=3$.
(c) Since $T$ is the transformation that projects onto the plane spanned by $\boldsymbol{q}_{1}$ and $\boldsymbol{q}_{2}$, we can have

$$
\begin{aligned}
& T\left(\boldsymbol{q}_{1}\right)=\boldsymbol{q}_{1}=1 \cdot \boldsymbol{q}_{1}+0 \cdot \boldsymbol{q}_{2}+0 \cdot \boldsymbol{q}_{3} \\
& T\left(\boldsymbol{q}_{2}\right)=\boldsymbol{q}_{2}=0 \cdot \boldsymbol{q}_{1}+1 \cdot \boldsymbol{q}_{2}+0 \cdot \boldsymbol{q}_{3} \\
& T\left(\boldsymbol{q}_{3}\right)=\mathbf{0}=0 \cdot \boldsymbol{q}_{1}+0 \cdot \boldsymbol{q}_{2}+0 \cdot \boldsymbol{q}_{3} .
\end{aligned}
$$

Therefore, the matrix representation of $T$ in this basis is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

5. $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ is a $3 \times 4$ matrix where

$$
\boldsymbol{U}=\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \boldsymbol{V}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

(a) Since $\boldsymbol{A}^{T} \boldsymbol{A}$ is $4 \times 4$, it has 4 eigenvalues. The nonzero eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ are the squares of the singular values of $\boldsymbol{A}$, which are given by $1^{2}=1$ and $4^{2}=16$. Therefore, the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ are $1,16,0,0$.
(b) Since there are 2 nonzero singular values of $\boldsymbol{A}$, the rank of $\boldsymbol{A}$ is 2 . Therefore, the dimension of the nullspace of $\boldsymbol{A}=4-2=2$. A basis for the nullspace of $\boldsymbol{A}$ can be obtained as the last two columns of $\boldsymbol{V}$, i.e.,

$$
\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right],\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right]
$$

(c) Since the dimension of the column space of $\boldsymbol{A}$ is 2 , a basis for the column space of $\boldsymbol{A}$ can be obtained as the first two columns of $\boldsymbol{U}$, i.e.,

$$
\left[\begin{array}{c}
-1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right],\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right] .
$$

(d) A singular value decomposition of $-\boldsymbol{A}^{T}$ can be given by

$$
-\boldsymbol{A}^{T}=-\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)^{T}=-\boldsymbol{V} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}=\boldsymbol{U}^{\prime} \boldsymbol{\Sigma}^{\prime} \boldsymbol{V}^{\prime T}
$$

where $\boldsymbol{U}^{\prime}=-\boldsymbol{V}, \boldsymbol{\Sigma}^{\prime}=\boldsymbol{\Sigma}^{T}$ and $\boldsymbol{V}^{\prime}=\boldsymbol{U}$.

