EE 2030 Linear Algebra Spring 2010

Final Examination

7:00pm to 10:00pm, June 18, 2010

Problems for Solution:

- 1. (15%) True or false. (If it is true, prove it. Otherwise, find a counterexample or explain why it is false.)
 - (a) (5%) If \boldsymbol{A} is a symmetric invertible matrix, then \boldsymbol{A}^{-1} is also symmetric.
 - (b) (5%) The following two matrices are similar:

1	0	1		[1]	0	0	
0	1	0	,	1	1	0	
0	0	1		0	1	1	

(c) (5%) The matrix

2	2	0]
2	5	3
0	3	8

is positive definite.

2. (35%) This problem is about the matrices with entries 1, 2, 3, ..., n-1 just above and just below the main diagonal. All other entries are zero:

$$\boldsymbol{A}_{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \boldsymbol{A}_{3} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}, \quad \boldsymbol{A}_{4} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$
$$\boldsymbol{A}_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 3 & 0 \\ 0 & 0 & 3 & 0 & 4 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix}, \quad \boldsymbol{A}_{6} = \dots$$
(a) (5%) Find the complete solution to $\boldsymbol{A}_{3}\boldsymbol{x} = \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}.$

- (b) (5%) Give a basis for the left nullspace of A_3 .
- (c) (5%) Find the projection matrix onto the column space of A_3 .
- (d) (5%) Find the eigenvalues of A_3 .

(e) (5%) Two eigenvalues of A_4 are approximately 3.65 and 0.822. Find the other two eigenvalues using

$$\boldsymbol{M}^{-1}\boldsymbol{A}_{4}\boldsymbol{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 3 \\ 0 & 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = -\boldsymbol{A}_{4}$$

(Hint: If a matrix A is similar to -A, what properties should the eigenvalues of A have?)

- (f) (5%) Show that A_5 is not invertible.
- (g) (5%) Is A_6 diagonalizable? Why or why not?
- 3. (15%) Consider the matrix

$$\boldsymbol{A} = \left[\begin{array}{cc} 0.3 & c \\ 0.7 & 1-c \end{array} \right].$$

- (a) (5%) For which value of c is the matrix **A** not diagonalizable?
- (b) (5%) Find the range of the values of c so that A^n approaches a limiting matrix as $n \to \infty$.
- (c) (5%) Find $\lim_{n\to\infty} \mathbf{A}^n$ (still depending on c) when the limit exists.
- 4. (15%) This problem consists of three parts:
 - (a) (5%) If \boldsymbol{v}_1 , \boldsymbol{v}_2 , \boldsymbol{v}_3 form a basis for \mathcal{R}^3 , is the matrix with those three columns invertible? Why or why not?
 - (b) (5%) If $\boldsymbol{v}_1, \, \boldsymbol{v}_2, \, \boldsymbol{v}_3, \, \boldsymbol{v}_4$ span \mathcal{R}^3 , give all possible ranks for the matrix with those four columns.
 - (c) (5%) If $\boldsymbol{q}_1, \, \boldsymbol{q}_2, \, \boldsymbol{q}_3$ form an orthonormal basis for \mathcal{R}^3 , and T is the transformation that projects every vector \boldsymbol{v} in \mathcal{R}^3 onto the plane spanned by \boldsymbol{q}_1 and \boldsymbol{q}_2 , what is the matrix representation of T in this basis?
- 5. (20%) Suppose the singular value decomposition $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$ has

- (a) (5%) Find the eigenvalues of $A^T A$.
- (b) (5%) Find a basis for the nullspace of A.
- (c) (5%) Find a basis for the column space of A.
- (d) (5%) Find a singular value decomposition of $-\mathbf{A}^{T}$.