Final Examination

7:00pm to 10:00pm, June 18, 2010

Problems for Solution:

1. (15\%) True or false. (If it is true, prove it. Otherwise, find a counterexample or explain why it is false.)
(a) (5%) If \boldsymbol{A} is a symmetric invertible matrix, then \boldsymbol{A}^{-1} is also symmetric.
(b) $\mathbf{(5 \%)}$) The following two matrices are similar:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

(c) (5%) The matrix

$$
\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right]
$$

is positive definite.
2. (35\%) This problem is about the matrices with entries $1,2,3, \ldots, n-1$ just above and just below the main diagonal. All other entries are zero:

$$
\begin{gathered}
\boldsymbol{A}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \boldsymbol{A}_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & 0
\end{array}\right], \quad \boldsymbol{A}_{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 2 & 0 \\
0 & 2 & 0 & 3 \\
0 & 0 & 3 & 0
\end{array}\right] \\
\boldsymbol{A}_{5}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 3 & 0 \\
0 & 0 & 3 & 0 & 4 \\
0 & 0 & 0 & 4 & 0
\end{array}\right], \quad \boldsymbol{A}_{6}=\ldots
\end{gathered}
$$

(a) $\mathbf{(5 \%)}$ Find the complete solution to $\boldsymbol{A}_{3} \boldsymbol{x}=\left[\begin{array}{l}0 \\ 4 \\ 0\end{array}\right]$.
(b) (5%) Give a basis for the left nullspace of \boldsymbol{A}_{3}.
(c) (5%) Find the projection matrix onto the column space of \boldsymbol{A}_{3}.
(d) (5%) Find the eigenvalues of \boldsymbol{A}_{3}.
(e) (5\%) Two eigenvalues of \boldsymbol{A}_{4} are approximately 3.65 and 0.822 . Find the other two eigenvalues using

$$
\boldsymbol{M}^{-1} \boldsymbol{A}_{4} \boldsymbol{M}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 2 & 0 \\
0 & 2 & 0 & 3 \\
0 & 0 & 3 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]=-\boldsymbol{A}_{4}
$$

(Hint: If a matrix \boldsymbol{A} is similar to $-\boldsymbol{A}$, what properties should the eigenvalues of \boldsymbol{A} have?)
(f) (5%) Show that \boldsymbol{A}_{5} is not invertible.
(g) (5%) Is \boldsymbol{A}_{6} diagonalizable? Why or why not?
3. (15\%) Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{cc}
0.3 & c \\
0.7 & 1-c
\end{array}\right]
$$

(a) (5%) For which value of c is the matrix \boldsymbol{A} not diagonalizable?
(b) (5%) Find the range of the values of c so that \boldsymbol{A}^{n} approaches a limiting matrix as $n \rightarrow \infty$.
(c) (5%) Find $\lim _{n \rightarrow \infty} \boldsymbol{A}^{n}$ (still depending on c) when the limit exists.
4. (15\%) This problem consists of three parts:
(a) (5%) If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ form a basis for \mathcal{R}^{3}, is the matrix with those three columns invertible? Why or why not?
(b) (5%) If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}$ span \mathcal{R}^{3}, give all possible ranks for the matrix with those four columns.
(c) (5%) If $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ form an orthonormal basis for \mathcal{R}^{3}, and T is the transformation that projects every vector \boldsymbol{v} in \mathcal{R}^{3} onto the plane spanned by \boldsymbol{q}_{1} and \boldsymbol{q}_{2}, what is the matrix representation of T in this basis?
5. (20%) Suppose the singular value decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ has

$$
\boldsymbol{U}=\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \boldsymbol{V}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

(a) $\mathbf{(5 \%)}$ Find the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$.
(b) (5%) Find a basis for the nullspace of \boldsymbol{A}.
(c) (5%) Find a basis for the column space of \boldsymbol{A}.
(d) $\mathbf{(5 \%)}$ Find a singular value decomposition of $-\boldsymbol{A}^{T}$.

