Spectral Theorem

Chi-chao Chao

Department of Electrical Engineering
National Tsing Hua University
ccc@ee.nthu.edu.tw

May 15, 2013

Spectral Theorem

Spectral Theorem

Suppose \mathbf{A} is an n by n real symmetric matrix. Then \mathbf{A} has the factorization

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1}=\mathbf{Q} \wedge \mathbf{Q}^{T}
$$

where $\boldsymbol{\Lambda}$ is a diagonal matrix with real eigenvalues on the diagonal and \mathbf{Q} is an orthogonal matrix with columns formed by orthonormal eigenvectors.

Schur's Theorem

- For an n by n complex matrix \mathbf{Q}, \mathbf{Q} is called a unitary matrix if $\overline{\mathbf{Q}}^{\top}=\mathbf{Q}^{-1}$.
- If a unitary matrix is real, then it is an orthogonal matrix.

Schur's Theorem

Every square matrix factors into

$$
\mathbf{A}=\mathbf{Q} \mathbf{T} \mathbf{Q}^{-1}=\mathbf{Q} \mathbf{T} \overline{\mathbf{Q}}^{\top}
$$

where \mathbf{T} is upper triangular and \mathbf{Q} is unitary. If \mathbf{A} has real eigenvalues, then \mathbf{Q} and \mathbf{T} can be chosen real: $\mathbf{Q}^{\top}=\mathbf{Q}^{-1}$, i.e., \mathbf{Q} is orthogonal.

Proof of Schur's Theorem

- We prove this by induction.
- The result is obvious if $n=1$: $a=1 \cdot a \cdot 1^{-1}$.
- Assume the hypothesis holds for k by k matrices and let \mathbf{A} be a $k+1$ by $k+1$ matrix.
- Let λ_{1} be an eigenvalue of \mathbf{A} and \mathbf{q}_{1} be a corresponding unit eigenvector.
- Using the Gram-Schmidt process, we can find $\mathbf{q}_{2}, \mathbf{q}_{3}, \ldots, \mathbf{q}_{k+1}$ such that $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k+1}$ forms an orthonormal basis for \mathcal{C}^{k+1}, where \mathcal{C} is the set of complex numbers.
- Let

$$
\mathbf{Q}_{1}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots & \mathbf{q}_{k+1}
\end{array}\right]
$$

and then \mathbf{Q}_{1} is unitary.

- We can have

$$
\begin{aligned}
\overline{\mathbf{Q}}_{1}^{T} \mathbf{A} \mathbf{Q}_{1} & =\left[\begin{array}{c}
\overline{\mathbf{q}}_{1}^{T} \\
\overline{\mathbf{q}}_{2}^{T} \\
\vdots \\
\overline{\mathbf{q}}_{k+1}^{T}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{A q}_{1} & \mathbf{A} \mathbf{q}_{2} & \cdots & \mathbf{A q}_{k+1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\overline{\mathbf{q}}_{1}^{T} \\
\overline{\mathbf{q}}_{2}^{T} \\
\vdots \\
\overline{\mathbf{q}}_{k+1}^{T}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} \mathbf{q}_{1} & \mathbf{A \mathbf { q } _ { 2 }} & \cdots & \mathbf{A} \mathbf{q}_{k+1}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\lambda_{1} & \times & \cdots \\
0 & \\
\vdots & \mathbf{A}_{2} \\
0 &
\end{array}\right]
\end{aligned}
$$

where the last equality follows since $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k+1}$ are orthonormal.

- By the induction hypothesis, since \mathbf{A}_{2} is k by k,

$$
\mathbf{A}_{2}=\mathbf{Q}_{2} \mathbf{T}_{2} \overline{\mathbf{Q}}_{2}^{T}
$$

where \mathbf{Q}_{2} is unitary and \mathbf{T}_{2} is upper triangular.

- Let

$$
\mathbf{Q}=\mathbf{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \mathbf{Q}_{2} & \\
0 & &
\end{array}\right]
$$

- Then \mathbf{Q} is unitary since

$$
\begin{aligned}
& \mathbf{Q}_{\mathbf{Q}} \\
&=\mathbf{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \mathbf{Q}_{2} & \\
0 & & &
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & \overline{\mathbf{Q}}_{2}^{T} & \\
\vdots & & \\
0 & & \\
& =\mathbf{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \mathbf{I}_{k} & \\
0 &
\end{array}\right] \overline{\mathbf{Q}}_{1}^{T}=\mathbf{Q}_{1} \mathbf{I}_{k+1} \overline{\mathbf{Q}}_{1}^{T} \\
& =\mathbf{Q}_{1} \overline{\mathbf{Q}}_{1}^{T}=\mathbf{I}_{k+1}
\end{array}\right. \\
&
\end{aligned}
$$

where \mathbf{I}_{n} is the n by n identity matrix.

- We can have

$$
\begin{aligned}
\overline{\mathbf{Q}}^{T} \mathbf{A Q} & =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \mathbf{Q}_{2}^{T} & \\
0 & &
\end{array}\right] \overline{\mathbf{Q}}_{1}^{T} \mathbf{A} \mathbf{Q}_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & \\
\vdots & & \mathbf{Q}_{2} & \\
0 & &
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & \overline{\mathbf{Q}}_{2}^{T} & \\
\vdots & &
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & & \\
\vdots & \mathbf{A}_{2} & \\
0 & &
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & \mathbf{Q}_{2} & \\
0 & &
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \mathbf{Q}_{2}^{T} & \\
0 & &
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & & \\
\vdots & \mathbf{A}_{2} \mathbf{Q}_{2} & \\
0 & & &
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & \\
\vdots & \overline{\mathbf{Q}}_{2}^{T} \mathbf{A}_{2} \mathbf{Q}_{2} \\
0 & &
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & \times & \cdots & \times \\
0 & & \mathbf{T}_{2} & \\
\vdots & &
\end{array}\right]=\mathbf{T} .
\end{aligned}
$$

- Then \mathbf{T} is upper triangular since \mathbf{T}_{2} is upper triangular.
- Therefore, $\mathbf{A}=\mathbf{Q} \mathbf{T} \overline{\mathbf{Q}}^{T}$.
- If λ_{1} is a real eigenvalue, then \mathbf{q}_{1} and \mathbf{Q}_{1} can stay real.
- The induction step keeps everything real when \mathbf{A} has real eigenvalues.
- Induction starts with the 1 by 1 case, and there is no problem.
- This ends the proof for Schur's Theorem.

Proof of Spectral Theorem

- In class we have shown that every symmetric \mathbf{A} has real eigenvalues.
- By Schur's Theorem,

$$
\mathbf{A}=\mathbf{Q} \mathbf{T} \mathbf{Q}^{T}
$$

where \mathbf{Q} is orthogonal: $\mathbf{Q}^{T}=\mathbf{Q}^{-1}$ and \mathbf{T} is upper triangular.

- Then $\mathbf{T}=\mathbf{Q}^{T} \mathbf{A Q}$, which is a symmetric matrix since

$$
\mathbf{T}^{T}=\mathbf{Q}^{T} \mathbf{A} \mathbf{Q}=\mathbf{T}
$$

- If \mathbf{T} is triangular and also symmetric, it must be diagonal: $\mathbf{T}=\boldsymbol{\Lambda}$.
- Therefore,

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}
$$

