Spectral Theorem

Chi-chao Chao

Department of Electrical Engineering National Tsing Hua University ccc@ee.nthu.edu.tw

May 15, 2013

Spectral Theorem

Suppose ${\bf A}$ is an n by n real symmetric matrix. Then ${\bf A}$ has the factorization

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}$$

where Λ is a diagonal matrix with real eigenvalues on the diagonal and Q is an orthogonal matrix with columns formed by orthonormal eigenvectors.

- For an *n* by *n* complex matrix **Q**, **Q** is called a *unitary* matrix if $\overline{\mathbf{Q}}^T = \mathbf{Q}^{-1}$.
- If a unitary matrix is real, then it is an orthogonal matrix.

Schur's Theorem

Every square matrix factors into

$$\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{T}\overline{\mathbf{Q}}^T$$

where **T** is upper triangular and **Q** is unitary. If **A** has real eigenvalues, then **Q** and **T** can be chosen real: $\mathbf{Q}^T = \mathbf{Q}^{-1}$, i.e., **Q** is orthogonal.

- We prove this by induction.
- The result is obvious if n = 1: $a = 1 \cdot a \cdot 1^{-1}$.
- Assume the hypothesis holds for k by k matrices and let A be a k + 1 by k + 1 matrix.
- Let λ_1 be an eigenvalue of **A** and **q**₁ be a corresponding unit eigenvector.
- Using the Gram-Schmidt process, we can find $\mathbf{q}_2, \mathbf{q}_3, \dots, \mathbf{q}_{k+1}$ such that $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_{k+1}$ forms an orthonormal basis for \mathcal{C}^{k+1} , where \mathcal{C} is the set of complex numbers.
- Let

$$\mathbf{Q}_1 = \left[\begin{array}{ccc} \mathbf{q}_1 & \mathbf{q}_2 & \cdots & \mathbf{q}_{k+1} \end{array} \right]$$

and then \mathbf{Q}_1 is unitary.

• We can have

$$\overline{\mathbf{Q}}_{1}^{T} \mathbf{A} \mathbf{Q}_{1} = \begin{bmatrix} \overline{\mathbf{q}}_{1}^{T} \\ \overline{\mathbf{q}}_{2}^{T} \\ \vdots \\ \overline{\mathbf{q}}_{k+1}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{A} \mathbf{q}_{1} & \mathbf{A} \mathbf{q}_{2} & \cdots & \mathbf{A} \mathbf{q}_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} \overline{\mathbf{q}}_{1}^{T} \\ \overline{\mathbf{q}}_{2}^{T} \\ \vdots \\ \overline{\mathbf{q}}_{k+1}^{T} \end{bmatrix} \begin{bmatrix} \lambda_{1} \mathbf{q}_{1} & \mathbf{A} \mathbf{q}_{2} & \cdots & \mathbf{A} \mathbf{q}_{k+1} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_{1} \times \cdots \times \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where the last equality follows since $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_{k+1}$ are orthonormal.

• By the induction hypothesis, since A_2 is k by k,

$$\mathbf{A}_2 = \mathbf{Q}_2 \mathbf{T}_2 \overline{\mathbf{Q}}_2^T$$

where Q₂ is unitary and T₂ is upper triangular.
Let

$$\mathbf{Q} = \mathbf{Q}_1 \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \mathbf{Q}_2 & \\ 0 & & & \end{bmatrix}.$$

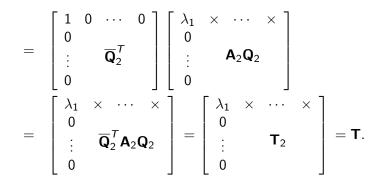
• Then **Q** is unitary since

$$\mathbf{Q}\overline{\mathbf{Q}}^{T} = \mathbf{Q}_{1} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \mathbf{Q}_{2} & & \\ 0 & & & & \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \overline{\mathbf{Q}}_{2}^{T} & \\ 0 & & & \end{bmatrix} \overline{\mathbf{Q}}_{1}^{T}$$
$$= \mathbf{Q}_{1} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \mathbf{I}_{k} & & \\ 0 & & & \end{bmatrix} \overline{\mathbf{Q}}_{1}^{T} = \mathbf{Q}_{1} \mathbf{I}_{k+1} \overline{\mathbf{Q}}_{1}^{T}$$
$$= \mathbf{Q}_{1} \overline{\mathbf{Q}}_{1}^{T} = \mathbf{I}_{k+1}$$

where \mathbf{I}_n is the *n* by *n* identity matrix.

• We can have

$$\overline{\mathbf{Q}}^{T} \mathbf{A} \mathbf{Q} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \overline{\mathbf{Q}}_{2}^{T} & \\ 0 & & & \end{bmatrix} \overline{\mathbf{Q}}_{1}^{T} \mathbf{A} \mathbf{Q}_{1} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & \\ \vdots & \mathbf{Q}_{2} & \\ 0 & & \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & \\ \vdots & \overline{\mathbf{Q}}_{2}^{T} \\ 0 & & & \end{bmatrix} \begin{bmatrix} \lambda_{1} & \times & \cdots & \times \\ 0 & & \\ \vdots & \mathbf{A}_{2} & \\ 0 & & & \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & \\ \vdots & \mathbf{Q}_{2} & \\ 0 & & & \end{bmatrix}$$



• Then ${\boldsymbol{\mathsf{T}}}$ is upper triangular since ${\boldsymbol{\mathsf{T}}}_2$ is upper triangular.

• Therefore, $\mathbf{A} = \mathbf{Q}\mathbf{T}\overline{\mathbf{Q}}^{T}$.

- If λ_1 is a real eigenvalue, then \mathbf{q}_1 and \mathbf{Q}_1 can stay real.
- The induction step keeps everything real when A has real eigenvalues.
- Induction starts with the 1 by 1 case, and there is no problem.
- This ends the proof for Schur's Theorem.

Proof of Spectral Theorem

- In class we have shown that every symmetric A has real eigenvalues.
- By Schur's Theorem,

$$\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^{\mathcal{T}}$$

where **Q** is orthogonal: $\mathbf{Q}^T = \mathbf{Q}^{-1}$ and **T** is upper triangular.

• Then $\mathbf{T} = \mathbf{Q}^T \mathbf{A} \mathbf{Q}$, which is a symmetric matrix since

$$\mathbf{T}^{\mathcal{T}} = \mathbf{Q}^{\mathcal{T}} \mathbf{A} \mathbf{Q} = \mathbf{T}.$$

If T is triangular and also symmetric, it must be diagonal: T = Λ.
Therefore,

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}.$$